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Abstract. Let K be an algebraically closed field of characteristic zero,
let G be a finitely generated subgroup of the multiplicative group of K,
and let X be a quasiprojective variety defined over K. We consider K-
valued sequences of the form an := f(ϕn(x0)), where ϕ : X 99K X and
f : X 99K P1 are rational maps defined over K and x0 ∈ X is a point whose
forward orbit avoids the indeterminacy loci of ϕ and f . Many classical
sequences from number theory and algebraic combinatorics fall under this
dynamical framework, and we show that the set of n for which an ∈ G is
a finite union of arithmetic progressions along with a set of upper Banach
density zero. In addition, we show that if an ∈ G for every n and X
is irreducible and the ϕ orbit of x is Zariski dense in X then there is a
multiplicative torus Gd

m and maps Ψ : Gd
m → Gd

m and g : Gd
m → Gm such

that an = g ◦ Ψn(y) for some y ∈ Gd
m. We then obtain results about the

coefficients of D-finite power series using these facts.
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1. Introduction

A rational dynamical system is a pair (X,ϕ), where X is a quasiprojective
variety defined over a field K, and ϕ : X 99K X is a rational map. The
forward ϕ-orbit of a point x0 ∈ X is given by

Oϕ(x0) := {x0, ϕ(x0), ϕ
2(x0), . . .}

as long as this orbit is defined (i.e., x0 is outside the indeterminacy locus of
ϕn for every n ≥ 0).

In [BGS] and [BHS], the authors develop a broad dynamical framework giv-
ing rise to many classical sequences from number theory and algebraic com-
binatorics, by considering dynamical sequences, which are sequences of the
form f ◦ ϕn(x0), where (X,ϕ) is a rational dynamical system, f : X 99K P1
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is a rational map, and x0 ∈ X. In particular, the class of dynamical se-
quences includes all sequences whose generating functions are D-finite, i.e.,
those satisfying homogeneous linear differential equations with rational func-
tion coefficients. This is an important class of power series since it appears
ubiquitously in algebra, combinatorics, and number theory. In particular, this
class contains:

• all hypergeometric series (see, for example, [Gar09, WZ92]);
• generating functions for many classes of lattice walks [DHRS18];
• diagonals of rational functions [Lip88];
• power series expansions of algebraic functions [Sta96, Chapter 6];
• generating series for the cogrowth of many finitely presented groups

[GP17];
• many classical combinatorial sequences (see Stanley [Sta96, Chapter

6] and Mishna [Mis20, Chapter 5] for more examples).

The D-finiteness of generating functions reflects the complexity of combina-
torial classes [Pak18]. Since this class is closed under addition, multiplication,
and the process of taking diagonals, it has become a useful data structure for
the manipulation of special functions in symbolic computation [Sal17]. The
main goal of this paper is to study D-finite power series in the framework of
rational dynamical systems.

The study of power series with coefficients in a finitely generated subgroup
G of the multiplicative group of a field enjoys a long history, going back
at least to the early 1920s, with the pioneering work of Pólya [Pól21], who
characterized rational functions whose Taylor expansions at the origin have
coefficients lying in a finitely generated multiplicative subgroup of Z. Pólya’s
results were later extended to D-finite power series by Bézivin [Béz86]. From
this point of view, it is then natural to consider when the dynamical sequences
we study take values in a finitely generated multiplicative group. This question
and related questions have already been considered in the case of self-maps of
P1 in [BOSS, OSSZ19].

Conventions. Throughout, N := {1, 2, 3, . . .} and N0 := N ∪ {0}. If R is a
ring then R∗ is its multiplicative group of units. An arithmetic progression is
a set of the form {a + bn}n≥0 ⊆ N0 where a, b ∈ N0. A singleton counts as
an arithmetic progression with b = 0. A subset N ⊆ N0 is called eventually
periodic if it is a union of finitely many arithmetic progressions.

We show that, with the above notation, the set of n for which f ◦ϕn(x0) ∈ G
is well-behaved. To make this precise, we recall that the upper Banach density
of a subset S ⊆ N0 is

δ(S) := lim sup
|I|→∞

|S ∩ I|
|I|

,

where I ranges over all non-empty intervals of N0 (see [Fur81, Definition 3.7]).
Then our main result is the following.

Theorem 1.1. Let X be a quasiprojective variety over a field K of charac-
teristic zero, let ϕ : X 99K X be a rational map, let f : X 99K P1 be a rational
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function, and let G ≤ K∗ be a finitely generated group. If x0 ∈ X is a point
with well-defined forward ϕ-orbit that also avoids the indeterminacy locus of
f , then the set

N := {n ∈ N0 : f(ϕn(x0)) ∈ G}
is a finite union of arithmetic progressions along with a set of upper Banach
density zero.

In the case when G is the trivial group, Theorem 1.1 follows independently
from the work of several authors [BGT15, Gig14, Pet15], and was originally
conjectured by Denis [Den94], and is now considered as a relaxed version
of the so-called Dynamical Mordell-Lang Conjecture (see [BGT16] for further
background). There is also some overlap between our result and that of Ghioca
and Nguyen [GN17]: in particular, when G is an infinite cyclic group and f
is a linear map, one gets a special case of their result.

The zero density sets in Theorem 1.1 are not necessarily finite. For a simple
example, consider the map ϕ : A1 → A1 defined by ϕ(x) = x + 1 and the
rational function f(x) = x. Let G = 〈2〉. Then for the initial point x0 = 1 the
set {n ∈ N0 : f(ϕn(x0)) ∈ G} = {2n − 1 | n ∈ N0} is an infinite set of upper
Banach density zero.

The case N = N0 can be easily achieved: let T := Gd
m be a d-dimensional

multiplicative torus. Then an endomorphism ϕ of T is a map of the form

(x1, . . . , xd) 7→

(
c1
∏
j

x
a1,j
j , . . . , cd

∏
j

x
ad,j
j

)
.

Now if we begin with a point x0 = (β1, . . . , βd), then every point in the orbit
of x0 has coordinates in the multiplicative group G generated by

c1, . . . , cd, β1, . . . , βd.

In particular, if f : T → P1 is a map of the form (x1, . . . , xd) 7→ κxp11 · · ·x
pd
d

with κ ∈ G then f ◦ ϕn(x0) ∈ G for every n ≥ 0.
In fact, we show that in characteristic zero any dynamical system (X,ϕ)

with N = N0 is “controlled” by one of this form, in the following sense.

Theorem 1.2. Let K be an algebraically closed field of characteristic zero
and let X be an irreducible quasiprojective variety with a dominant self-map
ϕ : X 99K X and let f : X 99K P1 be a dominant rational map, all defined
over K. Suppose that x0 ∈ X has the following properties:

(1) every point in the orbit of x0 under ϕ avoids the indeterminacy loci of
ϕ and f ;

(2) Oϕ(x0) is Zariski dense;
(3) there is a finitely generated multiplicative subgroup G of K∗ such that

f ◦ ϕn(x0) ∈ G for every n ∈ N0.

Then there exists a dominant rational map Θ : X 99K Gd
m for some nonneg-

ative integer d, and a dominant endomorphism Φ : Gd
m → Gd

m such that the
following diagram commutes
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X X

Gd
m Gd

m.

ϕ

Θ Θ

Φ

Moreover, Oϕ(x0) avoids the indeterminacy locus of Θ and f = g ◦ Θ, where
g : Gd

m → Gm is a map of the form

g(t1, . . . , td) = Cti11 · · · t
id
d

for some i1, . . . , id ∈ Z and some C ∈ G.

One can interpret the above theorem as saying that if the entire orbit of a
point under a self-map has some “coordinate” that lies in a finitely generated
multiplicative group then there must be a compelling geometric reason causing
this to occur: in this case, it is that the dynamical behaviour of the orbit is
in some sense determined by the behaviour of a related system associated
with a multiplicative torus. In fact, we prove a more general version of this
result involving semigroups of maps (see Corollary 3.5). We remark that the
situation in positive characteristic is more subtle and the conclusion to the
statement of Theorem 1.2 fails (see Example 3.7).

As a consequence of Theorem 1.2, we get the following characterization of
orbits whose values lie in a group of S-units, which shows that on arithmetic
progressions they are well-behaved.

Corollary 1.3. Let K be an algebraically closed field of characteristic zero
and let X be an irreducible quasiprojective variety with a dominant self-map
ϕ : X 99K X and let f : X 99K P1 be a dominant rational map, all defined
over K. Suppose that x0 ∈ X has the following properties:

(1) every point in the orbit of x0 under ϕ avoids the indeterminacy loci of
ϕ and f ;

(2) there is a finitely generated multiplicative subgroup G of K∗ such that
f ◦ ϕn(x0) ∈ G for every n ∈ N0.

Then there are integers p and L with p ≥ 0 and L > 0 such that if h1, . . . , hm
generate G then there are integer valued linear recurrences bj,1(n), . . . , bj,m(n)
for j ∈ {0, . . . , L− 1} such that

f ◦ ϕLn+j(x0) =
m∏
i=1

h
bj,i(n)
i

for n ≥ p.

Finally, we apply our results to D-finite power series, which, as stated
above, are the generating functions of sequences that fall under the dynamical
framework we study. We use Theorem 1.1 to prove the following result.

Theorem 1.4. Let F (x) =
∑

n≥0 anx
n be a D-finite power series defined over

a field K of characteristic zero. Consider the sets

N := {n ≥ 0 : an ∈ G} and N0 := {n ≥ 0 : an ∈ G ∪ {0}},
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where G ≤ K∗ is a finitely generated group. Then N and N0 are both express-
ible as a union of finitely many infinite arithmetic progressions along with a
set of upper Banach density zero.

When G = {1}, this recovers a result of Methfessel [Met00] and Bézivin
[Béz89]. We conclude by revisiting the earlier works of Pólya [Pól21] and
Bézivin [Béz86] in terms of the dynamical results obtained in this paper. The
conclusion to the statement to Theorem 1.4 does not hold if one instead works
with a power series F (x) that is differentiably algebraic (cf. Pak [Pak18]).

Organization. In §2 we develop a general theory of recurrences for sequences
indexed by semigroups, which will be needed in proving our main results. In
§3 we prove a semigroup version of Theorem 1.2. In §4, we give the proof of
Theorem 1.1, and in §5 we give results on the heights of points in orbits for
dynamical systems defined over Q̄. Finally, §6 gives applications of our results
to D-finite power series.

Acknowledgments. We thank Dragos Ghioca and Igor Pak for helpful com-
ments, and we thank the anonymous referee for many helpful comments and
suggestions. In this work, J. P. Bell and E. Hossain were supported by NSER-
C grant RGPIN-2016-03632; S. Chen was partially supported by the NSFC
grants 11871067, 11688101, the Fund of the Youth Innovation Promotion As-
sociation, CAS, and the National Key Research and Development Project
2020YFA0712300.

2. Linear recurrences in abelian groups

In this section we develop the necessary background on general recurrences
in abelian groups. Because we will ultimately prove a result about a semigroup
of morphisms, we will work with sequences indexed by monoids in this section.
The proofs of these results become significantly simpler when the underlying
monoid is just (N0,+), which is the key case needed for dealing with a single
map.

Let (A,+) be an abelian group, let S be a finitely generated monoid with
identity 1 = 1S, and let Z be a set upon which S acts. Then the space of
sequences

AZ := {u : Z → A}
is an abelian group, and for u ∈ AZ and z ∈ Z, we use the notations uz = u(z)
interchangeably. Given a ring R, we let R[S] denote the semigroup algebra
of S with coefficient ring R; that is, the elements of R[S] are formal R-linear
combinations of elements of S, where we multiply via the rule (rs) · (r′s′) =
rr′ss′ for r, r′ ∈ R and s, s′ ∈ S and we extend this multiplication bilinearly.
Notice that AZ has a natural Z[S]-module structure given by the rule:

(ms · u)z = musz for m ∈ Z, s ∈ S, and z ∈ Z.

We call the set of f ∈ Z[S] such that f · u = 0 the annihilator of u. It is not
hard to check that the annihilator of u is a two-sided ideal of Z[S].
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For us, the abelian groups we work with will often be subgroups of the
multiplicative group of a field K, in which case it makes sense to use multipli-
cation rather than addition for the group operation. In the case when A is an
abelian group under multiplication, we can still endow AZ with a Z[S]-module
structure and we now have

(ms · u)z = umsz for m ∈ Z, s ∈ S, and z ∈ Z.

Definition 2.1. Let A be an abelian group, let S be a finitely generated
monoid that acts on a set Z, and let u ∈ AZ be a sequence. Then u satisfies
an S-linear recurrence if the annihilating ideal I of u has the property that
Z[S]/I is a finitely generated Z-module. We say that the sequence u satisfies
an S-quasilinear recurrence if there is a set of generators s1, . . . , sd of S and
a natural number M such that whenever si1 · · · siM is an element of S that is
a product of M elements of s1, . . . , sd, there is an element in I of the form

M∑
j=1

cjsij · · · siM

with c1, . . . , cM ∈ Z satisfying that gcd(c1, . . . , cM) = 1.

Observe that the given definition works for abelian groups under addition
and multiplication, once we use the relevant Z[S]-module structure on AZ pro-
vided earlier. In the case when the abelian group A is written multiplicatively,
we will use the terms multiplicative linear recurrence and multiplicative quasi-
linear recurrence when considering recurrences in the multiplicative setting.
The reason for introducing the notion of quasilinear recurrences is for later
convenience, as it is often easier to demonstrate that a quasilinear recurrence
holds.

Example 2.2. In general, a quasilinear recurrence may not be linear. To see
this, let S = N0 and let A be the additive group (Q,+). Then if we consider
the sequence an = 1/2n and identify Z[S] with Z[x], then this sequence is
annihilated by the primitive polynomial f(x) = 2x−1, but it does not satisfy
an S-linear recurrence since an+1 is never in the additive group generated by
the initial terms a1, . . . , an.

We will make use of the following well-known facts throughout this section.

Lemma 2.3. Let T be a commutative noetherian integral domain and let R
be a finitely generated associative (but not necessarily commutative) T -algebra
and suppose that I and J are two ideals of R such that both R/I and R/J are
finitely generated T -modules. Then the following hold:

(a) R/IJ is also a finitely generated T -module;
(b) I and J are finitely generated as left ideals of R.

Proof. We first prove (a). Let U = {u1, . . . , ud} be elements of R with u1 = 1
whose images span both R/I and R/J as T -modules and that generate R as
a T -algebra. We prove that every finite product of elements from u1, . . . , ud is
congruent to a T -linear combination of elements of the form uiujuku` modulo
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IJ . (Since u1 = 1, this includes products of smaller length.) We prove this by
induction on the length of the product, with the case for products of length
at most four following by construction. Suppose now that the result holds for
all products of elements from u1, . . . , ud of length less than M with M ≥ 5,
and consider a product ui1 · · ·uiM . Then by our choice of U we have

ui1 · · ·uiM−2
≡
∑

aiui (mod I)

and
uiM−1

uiM ≡
∑

biui (mod J)

for ai, bi ∈ T . Hence(
ui1 · · ·uiM−2

−
∑

aiui

)(
uiM−1

uiM −
∑

biui

)
∈ IJ.

Then expanding the product, we see that ui1 · · ·uiM is congruent to a T -linear
combination of products of u1, . . . , ud of length at most max(M−1, 3) = M−1,
and so by the induction hypothesis it is in the span of products of length at
most 4. Thus (a) now follows by induction.

For part (b), it suffices to prove that I is finitely generated as a left ideal.
Then since U spans R/I as a T -module, there exist elements ci,j,k ∈ T such
that

αi,j := uiuj −
∑
k

ci,j,kuk ∈ I for 1 ≤ i, j, k ≤ d.

Next, consider the submodule M of T d defined by

M :=
{

(t1, . . . , td) ∈ T d :
∑

tiui ∈ I
}
.

Then since T is noetherian, M is finitely generated as a T -module and we
pick elements

βk =
∑

ti,kui for k = 1, . . . , s

such that (t1,k, . . . , td,k) with k = 1, . . . , s generate M .
Let L denote the finitely generated left ideal in R generated by the αi,j and

the βk. By construction L ⊆ I and so to complete the proof of (b) it suffices
to show that I ⊆ L. We first claim that every non-trivial finite product of
elements from {u1, . . . , ud} is congruent modulo L to a T -linear combination
of u1, . . . , ud. This is immediate for products of length one, and since the αi,j
are in L, we see that the claim holds for each product of length 2. Now suppose
that the claim holds for all products of length less than m with m ≥ 3 and
consider a product ui1 · · ·uim of length m. Then by the induction hypothesis,
there exist γ1, . . . , γd ∈ T such that

ui2 · · ·uim −
d∑
j=1

γjuj ∈ L.

Since L is a left ideal, we may left multiply by ui1 and we see that

ui1 · · ·uim −
d∑
j=1

γiui1uj ∈ L.
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Since each αi1,j ∈ L, we can express ui1uj as a T -linear combination of
u1, . . . , ud, which completes the proof of the claim.

It follows that if f ∈ I then f ≡
∑
tiui (mod L) for some t1, . . . , td ∈ T .

But since L ⊆ I, t1u1 + · · ·+ tdud ∈ I and so by construction, t1u1 + · · ·+ tdud
is a T -linear combination of the βk and hence it is in L. It then follows that
f ∈ L, giving us that I ⊆ L and showing that I = L and so I is finitely
generated as a left ideal. �

Corollary 2.4. Let S be a finitely generated monoid acting on a set Z, let A
and B be abelian groups, and let u ∈ AZ and v ∈ BZ be sequences satisfying
S-linear recurrences. Then (u, v) = (uz, vz)z∈Z ∈ (A ⊕ B)Z also satisfies an
S-linear recurrence.

Proof. Let I and J be respectively the annihilators of u and v. Then Z[S]/I
and Z[S]/J are finitely generated Z-modules. Observe that Z[S]/(I ∩ J)
embeds in Z[S]/I × Z[S]/J via the map

z + I ∩ J 7→ (z + I, z + J) for z ∈ Z[S]

and so Z[S]/I ∩ J is a finitely generated Z-module as it is a submodule of
a finitely generated Z-module. Since I ∩ J annihilates both u and v, it also
annihilates (u, v) and so the annihilator of (u, v) contains I ∩ J . Therefore
if L denotes the annihilator of (u, v), we have Z[S]/L is a finitely generated
Z-module, since it is a quotient of Z[S]/I ∩J . Thus (u, v) satisfies an S-linear
recurrence. �

We now prove a result we will use repeatedly throughout the remainder
of the paper; this result generalizes the classical Fatou’s lemma on rational
power series in Z[[x]].

Proposition 2.5. Let A be a finitely generated abelian group, let S be a finitely
generated monoid acting on a set Z, and let u ∈ AZ. If u = (uz)z∈Z satisfies
an S-quasilinear recurrence then u satisfies an S-linear recurrence.

In order to prove this result, we require a technical lemma concerning quasi-
linear sequences taking values in cyclic groups.

Lemma 2.6. Let P be a prime ideal of Z, let S be a finitely generated monoid
acting on a set Z, let u be a sequence in (Z/P )Z, and let I be the annihilator
ideal of u in Z[S]. If u = (uz)z∈Z satisfies an S-quasilinear recurrence then

R := Z[S]/I ⊗Z/P Frac(Z/P )

is a finite-dimensional Frac(Z/P )-vector space, where Frac(Z/P ) is the field
of fractions of Z/P .

Proof. Since u ∈ (Z/P )Z , we see that P ⊆ I and so we may regard Z[S]/I
as a Z/P -algebra. Since u satisfies an S-quasilinear recurrence, there is a
finite generating set T = {t1, . . . , td} of S and a positive integer M such that
whenever (i1, . . . , iM) ∈ {1, . . . , d}M , there exist integers c1, . . . , cM ∈ Z with
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gcd(c1, . . . , cM) = 1 such that

M∑
j=1

cjtij · · · tiM ∈ I.

We claim that R is spanned as a Frac(Z/P )-vector space by the finite set X,
consisting of elements of the form (t + I) ⊗ 1 where t is a product of length
at most M of elements from T . To see this, suppose towards a contradiction
that this is not the case. Since R is spanned as a vector space by elements
of the form (s + I)⊗ 1 with s ∈ S and since T generates S, there is then an
element

s = tj1 · · · tjL ∈ S,
with 1 ≤ j1, . . . , jL ≤ d, such that (s + I) ⊗ 1 is not in the span of X.
Among all such s, we pick one with L minimal. Then L > M , since otherwise
(s + I) ⊗ 1 ∈ X. By quasilinearity, there exist integers c1, . . . , cM ∈ Z with
gcd(c1, . . . , cM) = 1 such that

M∑
k=1

cktjL−M+k
· · · tjL ∈ I.

Since gcd(c1, . . . , cM) = 1, there is some smallest k0 ∈ {1, . . . ,M} such that
ck0 6∈ P . In particular, ck0 is a unit in Frac(Z/P ) and cj ∈ I for j < k0. Thus

(tjL−M+k0
· · · tjL + I)⊗ 1 =

M∑
k=k0+1

(tjL−M+k
· · · tjL + I)⊗ (−ckc−1k0 )

in R. Left multiplying both sides by the image of tj1 · · · tjL−M+k0−1
⊗ 1 in R,

we have

(s+ I)⊗ 1 =
M∑

k=k0+1

(tj1 · · · tjL−M+k0−1
tjL−M+k

· · · tjL + I)⊗ (−ckc−1k0 ).

In particular, s is a Frac(Z/P )-linear combination of words of the form

(s′ + I)⊗ 1

with each s′ a product of elements of T of length strictly less than L. But
by minimality of L, we then see that these elements are in the span of X and
hence so is (s+ I)⊗ 1, a contradiction. The result now follows. �

Proof of Proposition 2.5. We let I denote the annihilator of u in Z[S]. Since
every finitely generated abelian group is a direct sum of cyclic groups, by
Corollary 2.4, it suffices to prove this in the case when A is a non-trivial cyclic
group, and so we divide the proof into two cases.

Case I. A = Z.

Since u satisfies an S-quasilinear recurrence, by Lemma 2.6, taking the
prime P = (0), Z[S]/I ⊗Z Q is finite-dimensional as a Q-vector space. We
pick t1, . . . , td ∈ S with the property that the set {(ti + I) ⊗ 1: i = 1, . . . , d}
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spans Z[S]/I ⊗Z Q as a vector space and we let R = Z[S]/I. Consider the
Z-submodule W of Zd = Ad spanned by elements of the form

vz := (u(t1 · z), . . . , u(td · z))

with z ∈ Z. Then W is finitely generated as a Z-module and hence there exist
z1, . . . , zm ∈ Z such that W is generated by vz1 , . . . , vzm .

We define a homomorphism of additive abelian groups Ψ : Z[S]→ Am given
by

s 7→ (u(s · z1), . . . , u(s · zm)).

We claim that f ∈ Z[S] is in the kernel of Ψ if and only if f annihilates u.
It is clear that if f annihilates u then it is in the kernel of Ψ. Conversely,
suppose that f is in the kernel of Ψ. Then since the images of t1⊗1, . . . , td⊗1
span R ⊗Z Q, there is some positive integer m and some integers c1, . . . , cd
such that

mf − c1t1 − · · · − cdtd ∈ I.
Then for z ∈ Z,

mf · uz = (c1t1 + · · ·+ cdtd) · uz =
d∑
i=1

ciu(ti · z). (1)

Observe that the right-hand side of Equation (1) is zero if and only if

d∑
i=1

ciu(tizj) = 0

for j = 1, . . . ,m, since the vectors vz with z ∈ Z are all in the Z-span of
vz1 , . . . , vzm . Since f ∈ ker(Ψ), mf ∈ ker(Ψ), we have mf · uzj = 0 for
j = 1, . . . ,m. It follows from Equation (1) and the preceding remarks that
m · f annihilates u and so the positive integer m annihilates f · u. But since
A is torsion-free, we necessarily have f is in I, giving us the claim. It follows
that Ψ induces an injective map from R into Am. Since Am is a finitely
generated abelian group, we then have R is a finitely generated abelian group.
Thus Z[S]/I is a finitely generated Z-module and so u satisfies an S-linear
recurrence, which completes the proof in this case.

Case II. A = Z/nZ with n > 1.

In this case, we assume towards a contradiction that there exists a sequence
u ∈ AZ that satisfies an S-quasilinear recurrence but does not satisfy an S-
linear recurrence. We may also assume that n > 1 is minimal among all
positive integers for which there exists such a sequence in (Z/nZ)Z .

Observe that if n is prime then by Lemma 2.6, Z[S]/I is a finite-dimensional
Z/nZ-vector space and hence Z[S]/I is a finitely generated Z-module, which
contradicts the fact that u does not satisfy an S-linear recurrence. Thus n is
composite, and so there is a prime number p such that n = pn0 with n0 > 1.
Now let

A0 = {x ∈ A : px = 0}.
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Then

ū := (uz + A0)z∈Z

satisfies an S-quasilinear recurrence and since A/A0 is cyclic of order n0 < n,
we have that ū satisfies an S-linear recurrence by minimality of n.

Hence if J denotes the annihilator of ū then Z[S]/J is a finitely generated
Z-module. Then for f ∈ J , we have f · u ∈ AZ0 and f · u satisfies an S-
quasilinear recurrence, since u does. Since |A0| = p, f · u satisfies an S-linear
recurrence by the above remarks. In particular, for each f ∈ J , if we let Jf
denote the annihilator of f · u, then Z[S]/Jf is a finitely generated Z-module,
since f · u satisfies an S-linear recurrence.

Since Z[S]/J is a finitely generated Z-module and S is a finitely generated
monoid, we have that J is finitely generated as a left ideal by Lemma 2.3.
We let f1, . . . , fq denote a set of generators of J as a left ideal. Then by
construction the left ideal J ′ := Jf1f1 + · · · + Jfqfq annihilates u and hence
J ′ ⊆ I. To finish the proof, observe that each Z[S]/Jfi is a finitely generated
Z-module, and so by an induction using Lemma 2.3, Z[S]/L is a finitely
generated Z-module, where

L := Jf1 · · · Jfq .

By construction

I ⊇ J ′ ⊇ Lf1 + · · ·+ Lfq = LJ,

and since Z[S]/L and Z[S]/J are both finitely generated Z-modules, so is
Z[S]/LJ by Lemma 2.3. Hence Z[S]/I is finitely generated as a Z-module
as it is a homomorphic image of Z[S]/LJ . It now follows that u satisfies an
S-linear recurrence. �

We require a few more basic facts about recurrences.

Lemma 2.7. Let A be an abelian group, let S be a finitely generated monoid,
and let u = (us)s∈S be a sequence in AS. Suppose there is a surjective semi-
group homomorphism Ψ : S → G where G is a finite group and let T be the
semigroup Ψ−1(1). Then T acts on the set Zg := Ψ−1(g) for each g ∈ G.
Furthermore, if T is finitely generated as a monoid and if for each g ∈ G
ug := (uz)z∈Zg satisfies a T -linear recurrence, then (us) satisfies an S-linear
recurrence.

Proof. Notice that if t ∈ T and z ∈ Zg then

Ψ(t · z) = Ψ(t)Ψ(z) = 1 · g = g,

and so t · z ∈ Zg. Hence T acts on Zg.
For g ∈ G, we let Ig ⊆ Z[T ] denote the annihilator of ug. Then by assump-

tion Z[T ]/Ig is a finitely generated Z-module and since there are only finitely
many ideals (Ig)g∈G, inductively applying Lemma 2.3 gives that Z[T ]/J is also
a finitely generated Z-module, where

J :=
∏
g∈G

Ig.
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Since each Ig is contained in J , if f ∈ J then f annihilates each ug. Observe
that after reindexing S, we have u = (ug)g∈G, and since T acts on Zg, we have

f · u = (f · ug)g∈G = 0,

and so f annihilates u.
It follows that the ideal I := Z[S]JZ[S] ⊆ Z[S] is contained in the anni-

hilator of u. To finish the proof, it suffices to show that Z[S]/I is a finitely
generated Z-module.

We claim that there is a finite subset U of S such that every element of S
can be expressed in the form

u1t1u2t2 · · ·um−1tm−1um,

with m ≤ |G|, u1, . . . , um−1 ∈ U , and t1, . . . , tm−1 ∈ T . To see this, we pick a
set of generators s1, . . . , sd of S and let U denote the set of elements of S that
can be expressed as a product of elements in s1, . . . , sd of length at most |G|.
Then it is immediate that if s is an element of S, then s has an expression of
the form u1t1u2 · · ·up−1tp−1up for some p. For this element s, we pick such an
expression with p minimal. If p ≤ |G|, there is nothing to prove, so we may
assume that p > |G|. Then

Ψ(u1),Ψ(u1u2), . . . ,Ψ(u1 · · ·up)

are p elements of G and since p > |G|, two of them must be the same. Thus
there exist i, j with 1 ≤ i < j ≤ p such that

Ψ(u1 · · ·ui) = Ψ(u1 · · ·uj),

and so Ψ(ui+1 · · ·uj) = 1. In particular,

Ψ(ui+1ti+1 · · ·uj−1tj−1uj) = 1

and so t := ui+1ti+1 · · ·uj−1tj−1uj ∈ T . Thus we can rewrite s as

u1t1 · · ·ui(tittj)uj+1 · · · tp−1up,

which contradicts the minimality of p in our expression for s. The claim now
follows.

Since Z[T ]/J is a finitely generated Z-module, there exists a finite subset
V of T such that Z[T ]/J is spanned by images of elements of V . It follows
that Z[S]/I is spanned as a Z-module by images of elements of the form
u1t1u2t2 · · ·um−1tm−1um with ui ∈ U and ti ∈ V and m ≤ |G|. Thus Z[S]/I
is a finitely generated Z-module and so (us) satisfies an S-linear recurrence,
as required. �

The following result is connected to the classical Skolem-Mahler-Lech the-
orem [Lec53].

Proposition 2.8. Let A be a finitely generated abelian group, let B ≤ A be a
subgroup, and let (un)n∈N0 be an A-valued sequence that satisfies an N0-linear
recurrence. Then {n : un ∈ B} is eventually periodic.
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Proof. We may replace (un) by the sequence (un + B) taking values in the
quotient group A/B and thus we may assume without loss of generality that
B = (0).

Then A/B is a finitely generated abelian group and hence is a direct sum
of cyclic groups. We write

A/B = C1 ⊕ · · · ⊕ Cr,
with each Ci cyclic. Then

un = (u1,n, . . . , ur,n)

with (ui,n) a Ci-valued sequence satisfying an N0-linear recurrence for i =
1, . . . , r. Then

{n : un = 0} =
r⋂
i=1

{n : ui,n = 0}.

Since a finite intersection of eventually periodic subsets of N0 is again eventu-
ally periodic, we see that it suffices to consider the case when A is cyclic and
B = (0). There are now two cases. First, when A = Z, the result follows from
the Skolem-Mahler-Lech theorem [Lec53], since we have an integer-valued se-
quence un that satisfies a linear recurrence and the Skolem-Mahler-Lech theo-
rem asserts that the set of n for which un = 0 is eventually periodic. The other
case is when A is a finite cyclic group. In this case, un satisfies a recurrence
of the form

un + c1un−1 + · · ·+ cdun−d = 0

for some d ≥ 1, which holds for n ≥ d. Since A is finite, there exist indices
p and q with d ≤ p < q such that (up−1, . . . , up−d) = (uq−1, . . . , uq−d). The
recurrence then gives that un+p = un+q for n ≥ 0, and so un is eventually
periodic. In particular the set of n for which un = 0 is eventually periodic.
The result follows. �

We now turn our attention to multiplicative recurrences in K∗ with K a
field.

Proposition 2.9. Let K be a finitely generated extension of Q, and let
(un) ∈ (K∗)N0 be a sequence satisfying a multiplicative N0-quasilinear recur-
rence. Then in fact (un) satisfies a (multiplicative) linear recurrence and if H
is a finitely generated subgroup of K∗ then {n : un ∈ H} is eventually periodic.

This is not true without the hypothesis that K is finitely generated as an
extension of Q. For example if K = C and un = exp(2πi/2n), then u2n = un−1
and so (un) satisfies a quasilinear recurrence. But since un is never in the
subfield generated by u1, . . . , un−1, we see that un does not satisfy a linear
recurrence.

Proof of Proposition 2.9. The assumption that (un) is a quasilinear recurrence
means that there is some d ≥ 0 and integers i0, . . . , id with gcd(i0, . . . , id) = 1
so that the following relation holds for all n ≥ 0:

ui0n · · ·u
id
n+d = 1.
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Then if G is the subgroup generated by u0, . . . , ud, it follows that un lies in
the radical of G for all n ≥ 0:

√
G := {g ∈ K∗ : gm ∈ G for some m ≥ 1}.

We will show that
√
G is finitely generated, from which the desired conclusion

follows from Proposition 2.5.
To see that

√
G is finitely generated: since K/Q is finitely generated, K

is a finite extension of a function field L = Q(t1, . . . , tm). Now let R =
Z[G, t1, . . . , td] be the subring of K generated by t1, . . . , td and G, and let
F := Frac(R) so that K/F is finite. Finally let R denote the integral closure
of R in K. Then R is a finitely generated Z-algebra, so the same is true
for R [Eis95, Corollary 13.13]. It follows that the group of units R

∗
is finitely

generated by Roquette’s Theorem [Roq57]. But
√
G ≤ R

∗
since every element

of
√
G is integral over R. Thus

√
G is finitely generated.

Now let H0 := H ∩
√
G. Then by Proposition 2.8 we have {n : un ∈ H0} is

eventually periodic, and since un ∈ H if and only if un ∈ H0 we obtain the
result. �

3. Multiplicative dependence and S-unit equations

The goal of this section is to establish a key lemma which converts the
statement of Theorem 1.2 into a problem about linear recurrences (in the
sense of §2). Thus we may apply the results of §2 to obtain the main theorem.

Definition 3.1. Let K be a field and let k be a subfield of K. Elements
a1, . . . , an ∈ K∗ are multiplicatively dependent modulo k∗ if there are integers
i1, . . . , in ∈ Z, not all zero, such that ai11 · · · ainn ∈ k∗. If a1, . . . , an ∈ K∗

are not multiplicatively dependent modulo k∗ then they are multiplicatively
independent modulo k∗.

Observe that if k is algebraically closed in K, the integers i0, . . . , id in
Definition 3.1 can be chosen to satisfy gcd(i0, . . . , id) = 1. Indeed, if m =
gcd(i0, . . . , id), then (i0, . . . , id) = (mj0, . . . ,mjd) for some j0, . . . , jd, and set
g := f j00 · · · f

jd
d . Then gm is in k∗. But then g ∈ k∗ as k is algebraically closed.

Since gcd(j0, . . . , jd) = 1, this is the required multiplicative dependence mod-
ulo k∗.

Let K be an algebraically closed field and let X be an irreducible quasipro-
jective variety over K. For a group G ≤ K∗ and rational functions f1, . . . , fn ∈
K(X), we set

XG(f1, . . . , fn) := {x ∈ X : f1(x), . . . , fn(x) ∈ G} =
n⋂
i=1

f−1i (G). (2)

Notice that if X = An and fi(x1, . . . , xn) := xi is a coordinate function, then
XG(f1, . . . , fn) is the set X(G) of affine points with coordinates in G. The set
XG has been studied in [BOSS] in the case X = P1 and f0 = f1 = f : P1 → P1

is a rational function; they determine exactly the form of such f so that XG
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is infinite. Similarly, multiplicative dependence of values of rational functions
has been studied in [OSSZ19].

Now we state our key lemma.

Lemma 3.2. Let K be an algebraically closed field of characteristic zero, let
G be a finitely generated multiplicative subgroup of K∗, let X be an irreducible
quasiprojective variety over K of dimension d, and let f0, . . . , fd ∈ K(X) be
d+ 1 rational functions on X. If XG := XG(f0, . . . , fd) is Zariski dense in X,
then f0, . . . , fd are multiplicatively dependent modulo K∗.

Proof. Since the field extension K(X)/K has transcendence degree d, the
functions f0, . . . , fd must be algebraically dependent over K. Thus there is a
polynomial relation ∑

i0,...,id

ci0···idf
i0
0 · · · f

id
d = 0

where ci0···id ∈ K and the sum is over a finite set of indices in Nd+1
0 ; this

holds on some open subset of X. To simplify notation, let I be the (finite)
set of those indices α = (i0, . . . , id) ∈ Nd+1

0 where ci0···id is nonzero. For
γ = (i0, . . . , id) ∈ Zd+1, we set

fγ := f i00 · · · f
id
d and cγ := ci0···id .

Then for every y ∈ XG, the I-tuple (cαfα(y))α∈I is a solution to the S-unit
equation ∑

α∈I

Xα = 0

in the group G generated by G ∪ {cα : α ∈ I}. This tuple may be degenerate
in the sense that some subsum vanishes, so we partition it into nondegenerate
subtuples. Thus, for each partition π ` I, say π = {I1, . . . , Im}, we let
XG,π be the set of points y ∈ XG such that, for each s = 1, . . . ,m, the Is-
tuple (cαfα(y))α∈Is is nondegenerate (i.e. its sum vanishes, but no subsum
vanishes). Note that there is a decomposition XG =

⋃
π `I XG,π and hence

there is some partition π of I such that XG,π is Zariski dense in X. Notice
XG,π is empty if π has some part of size 1 since cαfα(y) 6= 0 for α ∈ I and
y ∈ XG, and hence if π = (I1, . . . , Im) then each Ik has size at least two. Thus
there exist α, β, two distinct indices in the same component Is of π.

By the Main Theorem on S-unit equations [ESS02], an S-unit equation
in characteristic zero has only finitely many nondegenerate solutions up to
scalar multiplication [ESS02]. Let (t1,µ)µ∈Is , . . . , (tn,µ)µ∈Is be all solutions to
the equation ∑

µ∈Is

tµ = 0

up to scaling. Then for each y ∈ XG,π, we know that (cµfµ(y))µ∈Is is a multiple
of some (tj,µ)µ∈Is , so there is some g ∈ G such that

cµfµ(y) = gtj,µ for all µ ∈ Is.
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Here g, j may depend on y. But then for α, β ∈ Is, we can take quotients to
get

fα−β(y) =
cβtj,α
cαtj,β

and there are only finitely many possible values for the right-hand side of this
equation, independent of y. Taking γ = α − β, we have fγ(y) takes only
finitely many values for y ∈ XG,π. Since X is irreducible and fγ is constant
on XG,π, which is Zariski dense in X, we have fγ ∈ K∗, which completes the
proof. �

3.1. Interpolation of G-valued orbits as recurrences. Now we enter the
setup of our semigroup-version of Theorem 1.2. We find it convenient to fix
the following assumptions and notation for the remainder of this section.

Notation 3.3. We introduce the following notation:

(1) we let K be an algebraically closed field of characteristic zero;
(2) we let G be a finitely generated subgroup of K∗;
(3) we let X be an irreducible quasiprojective variety over K;
(4) we let ϕ1, . . . , ϕm be dominant rational self-maps of X and we let S

denote the monoid generated by these maps under composition;
(5) we let Sop denote the opposite semigroup, which is, as a set, just S

but with multiplication ? given by µ1 ? µ2 = µ2 ◦ µ1;
(6) we let f : X → P1 be a non-constant rational map;
(7) we assume that x0 ∈ X has the property that its forward orbit under

S is Zariski dense and each point avoids the indeterminacy loci of the
maps ϕ1, . . . , ϕm and f .

With these data fixed, we may thus define a sequence u in KS by

uϕ := f(ϕ(x0)) for ϕ ∈ S.

Notice that the semigroup algebra Z[Sop] acts on KS via the rule

ϕ · (vµ)µ∈S = (vµ◦ϕ)µ∈S = (vϕ?µ)µ∈S for ϕ ∈ S.

In this section, we analyze the case when uϕ ∈ G for every ϕ ∈ S.

Proposition 3.4. Adopt the assumptions and notation of Notation 3.3. If
uϕ = f(ϕ(x0)) ∈ G for every ϕ ∈ S then (f(ϕ(x0)))ϕ∈S satisfies a multiplica-
tive Sop-linear recurrence.

Proof. We let C ⊆ (K∗)S denote the set of constant sequences and let v denote
the image of u in KS/C. We first show that v satisfies an Sop-quasilinear
recurrence. Let d denote the dimension of X and let ϕi1 ◦ · · · ◦ ϕid+1

be a
(d+ 1)-fold composition of ϕ1, . . . , ϕm. For j = 1, 2, . . . , d+ 1, we let

µj := ϕij ◦ · · · ◦ ϕid+1

and let fj = f ◦ µj. Then we take XG := XG(f1, . . . , fd+1), as in Equation
(2). The assumption that uϕ ∈ G for ϕ ∈ S implies that XG contains the



RATIONAL DYNAMICAL SYSTEMS, S-UNITS, AND D-FINITE POWER SERIES 17

orbit of x0 under S, which is dense. Thus XG = X and it follows from Lemma
3.2 that f1, . . . , fd+1 are multiplicatively dependent modulo K∗. Hence

fp11 · · · f
pd+1

d+1 ≡ c

where c ∈ K∗ is a constant and p1, . . . , pd+1 ∈ Z with gcd(p1, . . . , pd+1) = 1.
Now evaluating this at ϕ(x0) gives

up1ϕ?µ1 · · ·u
pd+1
ϕ?µd+1

= c for all ϕ ∈ S.

In particular, p1µ1 + · · · + pd+1µd+1 ∈ Z[Sop] annihilates v. It follows that
v satisfies an Sop-quasilinear recurrence and it now follows from Proposition
2.5 that it satisfies an Sop-linear recurrence. We now claim that u satisfies
an Sop-linear recurrence. To see this, let I ⊆ Z[Sop] denote the annihilator
of v. Then we have shown that R := Z[Sop]/I is a finitely generated Z-
module. In particular, there exists some M such that R is spanned as a
Z-module by compositions of ϕ1, . . . , ϕm of length at most M . Now let J
denote the annihilator of u. We claim that Z[Sop]/J is spanned as a Z-
module by compositions of length at most M + 1, which will complete the
proof that u satisfies an Sop-linear recurrence. So to show this, let ϕ be a
composition of length ` ≥ M + 1. We shall show by induction on ` that ϕ is
equivalent mod J to a Z-linear combination of compositions of ϕ1, . . . , ϕm of
length M+1, with the base case ` = M+1 being immediate. So suppose that
the claim holds whenever ` < q and consider the case when ` = q. Then we
can write ϕ = µ◦ϕj for some µ that is a composition of length q−1 and some
j ∈ {1, . . . ,m}. Then µ ≡

∑
mjµj (mod I), where the mj are integers and

the µj are all compositions of ϕ1, . . . , ϕm of length at most M . In particular,
(µ−

∑
mjµj) · u ∈ C and so (ϕj − 1) ? (µ−

∑
mjµj) · u = 0. Hence

µ ◦ ϕj ≡ µ−
∑
j

mj(µj ◦ ϕj − µj) (mod J).

By the induction hypothesis the right-hand side is equivalent mod J to a Z-
linear combination of compositions of ϕ1, . . . , ϕm of length M + 1, and so we
now obtain the result. �

Proposition 3.4 gives a combinatorial description of the sequence (uϕ)ϕ∈S.
We now give a more geometric interpretation of this result.

Corollary 3.5. Adopt the assumptions and notation of Notation 3.3. If
uϕ = f(ϕ(x0)) ∈ G for every ϕ in the monoid S generated by the dominant
self-maps ϕ1, . . . , ϕm then there exists a dominant rational map Θ : X 99K Gd

m

with d ≤ dim(X) that is defined at each point in Oϕ(x0) = (ϕ(x0))ϕ∈S and
endomorphisms Φ1, . . . ,Φm : Gd

m → Gd
m such that the following diagram com-

mutes
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X X

Gd
m Gd

m.

ϕ1, . . . , ϕm

Θ Θ

Φ1, . . . ,Φm

Moreover, f = g ◦Θ, where g : Gd
m → Gm is a map of the form

g(t1, . . . , td) = Cti11 · · · t
id
d

for some i1, . . . , id ∈ Z and some C ∈ G.

Proof. We let Sop denote the opposite monoid of S. Then by Proposition
3.4 the sequence uϕ := (f(ϕ(x0)))ϕ∈S ∈ GS satisfies a multiplicative Sop-
linear recurrence. It follows that there is some M such that every M -fold
composition of ϕ1, . . . , ϕm is congruent, modulo the annihilator of u, to a
Z-linear combination of j-fold compositions of these endomorphisms, as j
ranges over numbers < M . Let W denote the set of j-fold compositions of
ϕ1, . . . , ϕm with j < M . Then we construct a rational map Θ : X 99K GL

m,
where L = |W |, given by Θ(x) = (f ◦ ϕ(x))ϕ∈W . Now let i ∈ {1, . . . ,m} and
consider Θ(ϕi(x)) = (f ◦ ϕ ◦ ϕi(x))ϕ∈W . By construction f = π ◦Θ, where π
is a suitable projection.

Then for ϕ ∈ W and i ∈ {1, . . . ,m}, ϕ ◦ ϕi either remains in W or it is an
M -fold composition of ϕ1, . . . , ϕm, in which case the fact that u satisfies an
Sop-linear recurrence gives that there exist integers pµ for each µ ∈ W such
that

f ◦ ϕ ◦ ϕi(x) =
∏
µ∈W

(f ◦ µ(x))pµ

for all x in the S-orbit of x0. In particular, since the S-orbit of x0 is Zariski
dense in X, Θ ◦ ϕi = Ψi ◦Θ for some self-map Ψi of GL

m of the form

(u1, . . . , uL) 7→

(∏
j

u
p1,j
j , . . . ,

∏
j

u
pL,j
j

)
.

In particular, each Ψi is a group endomorphism of the multiplicative torus.
Now let Y denote the Zariski closure of the S-orbit of x0 under Θ. Then by
construction Y has a Zariski dense set of points in GL ≤ GL

m and is irreducible.
Then a theorem of Laurent [Lau84, Théorème 2] gives that Y is a translation
of a subtorus of GL

m. In particular, Y ∼= Gd
m for some d ≤ dim(X) and

Ψ1, . . . ,Ψd restrict to endomorphisms of Y . Moreover, since Y is a translation
of a subtorus, the restriction of π to Y induces a map g : Gd

m → Gm of the
form g(u1, . . . , ud) 7→ Cuq11 · · ·u

qd
d . The result now follows. �

We point out that Theorem 1.2 follows from Corollary 3.5 by taking m = 1.

Remark 3.6. In fact, it can be observed that Θ(x0) ∈ Gd and that the Ψi

induce maps of Gd
m of the form

(x1, . . . , xd) 7→ (λ1x
p1,1
1 · · ·xp1,dd , . . . , λdx

pd,1
1 · · ·xpd,dd )



RATIONAL DYNAMICAL SYSTEMS, S-UNITS, AND D-FINITE POWER SERIES 19

with λ1, . . . , λd ∈ G; finally, g(x1, . . . , xd) 7→ Cxq11 · · ·x
qd
d with C ∈ G.

The following example shows that the conclusion to Corollary 3.5 does not
necessarily hold if K has positive characteristic.

Example 3.7. Let K = F̄p(u) and let X = P1
K . Then we have a map

ϕ : X → X given by t 7→ tp + 1 and let f : X → P1 be the map f(t) = t.
Notice that if we take x0 = u then f ◦ ϕn(u) = up

n
+ n = up

n
(1 + n/u)p

n
and

hence ϕn(u) lies in the finitely generated subgroup G of K∗ generated by u
and 1 + n/u for n = 1, 2, . . . , p − 1. Then if the conclusion to Corollary 3.5
held, we would necessarily have d = 1 since Θ is dominant and f ◦ ϕn(u) has
infinite orbit. Thus the function fields of P1 and Gd

m are both isomorphic to
K(t) and the commutative diagram given in the statement of Corollary 3.5
would give rise to a corresponding diagram at the level of functions fields:

K(t) K(t)

K(t) K(t)

Φ∗

Θ∗ Θ∗

ϕ∗

with ϕ∗(t) = tp + 1 and Φ∗(t) = Cta for some integer a and some C ∈ K∗.
Moreover, f ∗ = Θ∗ ◦ g∗ and since f ∗ is the identity map of K(t), Θ∗ and g∗

are automorphisms of K(t); since g∗(t) = C ′tb for some integer a and some
C ′ ∈ K∗, we have b = ±1, and so Θ∗(t) = C ′−btb. But now Θ∗ ◦ Φ∗(t) =
(C ′)−abCtab and ϕ∗ ◦ Θ∗(t) = (C ′)−b(tp + 1)−b, and so the two sides do not
agree.

Proof of Corollary 1.3. For each n ≥ 1, we let X≥n denote the Zariski closure
of {ϕm(x0) : m ≥ n}. Since the X≥i form a descending chain of closed sets
and since X endowed with the Zariski topology is a noetherian topological
space, there is some m such that X≥m = X≥m+1 = · · · . We let Y = X≥m
and we let Z1, . . . , Zr denote the irreducible components of Y . By our choice
of m, ϕ induces a dominant rational self-map of Y and in particular there
is some permutation σ of {1, . . . , r} such that ϕ(Zi) is Zariski dense in Zσ(i).
It follows that there is some L such that ϕL maps each Zi into itself. Let
j ∈ {m, . . . ,m+L− 1}. Then ϕj(x0) ∈ Zi for some i. Then by the above, we
have {ϕLn+j(x0) : n ≥ 0} is Zariski dense in Zi. Moreover, f(ϕLn+j(x0)) ∈ G
for every n ≥ 0 and so Theorem 1.2 implies that there is some e ≥ 0 and
some endomorphism Ψ : Ge

m → Ge
m and a map g : Ge

m → Gm such that
f(ϕLn+j(x0)) = g ◦ Ψn(z0) for some z0 ∈ Ge

m whose coordinates lie in G. Let
h1, . . . , hm be a set of generators for G. Then

Ψn(z0) = (h
a1,1(n)
1 · · ·ha1,m(n)

m , . . . , h
ae,1(n)
1 · · ·hae,m(n)

m )

for some integer-valued sequence ai,j(n). (There may be several choices for
the sequences ai,j(n) if the hi are not multiplicatively independent.) Since

Ψ(x1, . . . , xe) = (h
p1,1
1 · · ·hp1,mm x

q1,1
1 · · ·xq1,ee , . . . , h

pe,1
1 · · ·hpe,mm x

qe,1
1 · · · xqe,ee ),
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there is a choice of the sequences ai,j(n) such that there is an integer matrix
A and an integer vector p such that

v(n+ 1) = Av(n) + p

for every n ≥ 0, where v(n) is the column vector whose entries are ai,j(n) for
i = 1, . . . , e, and j = 1, . . . ,m in some fixed ordering of the indices that does
not vary with n. In particular, if Q(x) = q0 + q1x+ · · ·+ qrx

r ∈ Z[x] then

Q(A)v(n) = q0v(n) + q1v(n+ 1) + · · ·+ qrv(n+ r) + bQ

for n ≥ 0, where bQ is an integer vector that depends upon Q but not upon
n. In particular, if we take Q(x) to be the characteristic polynomial of A,
the Cayley-Hamilton theorem gives that the vectors v(n) satisfy a non-trivial
affine linear recurrence of the form

0 = q0v(n) + q1v(n+ 1) + · · ·+ qrv(n+ r) + bQ

for n ≥ 0. In particular, substituting n + 1 for n into this equation and
subtracting from our original equation gives a recurrence

0 = q0v(n) + (q1 − q0)v(n+ 1) + · · ·+ (qr − qr−1)v(n+ r)− qrv(n+ r + 1).

It follows that each ai,j(n) satisfies a linear recurrence. Then applying the map
g and using the fact that a sum of sequences satisfying a linear recurrence also
satisfies a linear recurrence now gives the result. �

4. Proof of Theorem 1.1

In this section we prove Theorem 1.1. The setup is as follows: X is a
quasiprojective variety defined over a field K of characteristic zero, ϕ : X 99K
X is a rational map, x0 ∈ X is a point whose forward ϕ-orbit is well-defined,
f : X 99K K is a rational function defined on this orbit, and G is a finitely
generated subgroup of K∗. Finally, we let

N := {n ∈ N0 : f(ϕn(x0)) ∈ G}.

We first show that if N has a positive upper Banach density then it must
contain an infinite arithmetic progression. Once a single arithmetic progres-
sion is obtained, we then use noetherian induction to show that N is a union
of finitely many arithmetic progressions together with a set of upper Banach
density zero.

4.1. A single arithmetic progression. With notation as above, in this
section we will prove:

Proposition 4.1. Let X be a quasiprojective variety over an algebraically
closed field K of characteristic zero, let ϕ : X 99K X be a rational map, let
f : X 99K K be a rational function, and let G ≤ K∗ be a finitely generated
group. Suppose that x0 ∈ X is a point with well-defined forward ϕ-orbit that
also avoids the indeterminacy locus of f . Then if the set

N := {n ∈ N0 : f(ϕn(x0)) ∈ G}
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has a positive upper Banach density then it contains an infinite arithmetic
progression.

To prove this result, we require a lemma.

Lemma 4.2. Let K be an algebraically closed field of characteristic zero,
let X be an irreducible quasiprojective variety over K, let ϕ : X → X and
f : X → P1 be rational maps, and let x0 ∈ X be a point whose forward orbit
under ϕ is defined and is Zariski dense and avoids the indeterminacy locus
of f . If the set of n for which f ◦ ϕn(x0) = 0 has upper Banach density zero
and if un := f ◦ ϕn(x0) has the property that there exists C 6= 0 and integers
i0, . . . , id with i0id 6= 0 and gcd(i0, . . . , id) = 1 such that ui0n · · ·u

id
n+d = C for

every n ≥ 0 then:

(1) un ∈ K∗ for all n;
(2) the set of n for which un ∈ G is an eventually periodic set, whenever

G is a finitely generated subgroup of K∗.

Proof. Since ui0n · · ·u
id
n+d = C and since x0 has a Zariski dense orbit, we have

f i0 = C
∏d

j=1(f ◦ ϕj)−ij . In particular, if f has a zero at ϕn(x0) for some n,

then there is some j ∈ {1, 2, . . . , d} for which f ◦ ϕj has a zero or a pole at
ϕn(x0). But since the orbit of x0 under ϕ avoids the indeterminacy locus of
f , f(ϕj+n(x0)) = 0 for some j ∈ {1, 2, . . . , d}. Hence if un = 0 then un+j = 0
for some j ∈ {1, 2, . . . , d}. In particular, {n : un = 0} has a positive upper
Banach density, a contradiction. Thus un ∈ K∗. In fact, there is a finitely
generated extension of Q, K0 ⊆ K, such that x0 ∈ X(K0) and such that ϕ
and f are defined over K0. It follows that un ∈ K∗0 for all n and using the
equation ui0n · · ·u

id
n+d = C and substituting n + 1 for n and taking quotients,

we have
uidn+d+1u

id−1−id
n+d · · ·ui0−i1n+1 u

−i0
n = 1.

Moreover, it is straightforward to show that gcd(i0, i0−i1, . . . , id−1−id, id) = 1
and so (un) satisfies an N0-quasilinear recurrence. But that means it satisfies
a linear recurrence by Proposition 2.5. In particular, the ui are all contained
in a subfield K0 of K that is finitely generated over Q and so the result follows
from Proposition 2.9. �

Proof of Proposition 4.1. By [BGT15, Theorem 1.4] there is some positive
integer L such that for j ∈ {0, . . . , L−1} we have Zj := {n : f ◦ϕLn+j(x0) = 0}
either is a set of upper Banach density zero or contains all sufficiently large
natural numbers. If δ(N) > 0 then there is some j such that N∩(LN0+j) has
a positive upper Banach density and such that Zj has upper Banach density
zero. Then we can replace ϕ by ϕL and x0 by ϕj(x0) and we may assume
without loss of generality that the set of n for which f ◦ϕn(x0) = 0 has upper
Banach density zero.

Let S denote the collection of Zariski closed subsets Y of X for which there
exists a rational self-map Ψ : Y 99K Y and y0 ∈ Y whose forward orbit under
Ψ is well-defined and avoids the indeterminacy locus of f and such that the
following hold:
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(i) N(Y, y0,Ψ, f, G) := {n : f ◦Ψn(y0) ∈ G} has a positive upper Banach
density but does not contain an infinite arithmetic progression;

(ii) {n : f ◦Ψn(y0) = 0} has upper Banach density zero.

If S is empty, then we are done. Thus we may assume S is non-empty and
since X is a noetherian topological space, there is some minimal element Y
in S. By assumption, there exists a rational self-map Ψ : Y 99K Y and y0 ∈ Y
such that conditions (i) and (ii) hold.

Observe that the orbit of y0 under Ψ must be Zariski dense in Y , since
otherwise, we could replace Y with the Zariski closure of this orbit and con-
struct a smaller counterexample. We also note that Y is necessarily irre-
ducible. To see this, we suppose towards a contradiction that this is not
the case and let Y1, . . . , Yr denote the irreducible components of Y , with
r ≥ 2. Then since the orbit of y0 is Zariski dense, Ψ is dominant and
hence it permutes the irreducible components of Y in the sense that there
is a permutation σ of {1, . . . , r} with the property that Ψ(Yi) is Zariski dense
in Yσ(i). It follows that there is some M > 1 such that ΨM maps Yi in-
to Yi for every i. Now there must be some j ∈ {0, . . . ,M − 1} such that
(MN + j) ∩ N(Y, y0,Ψ, f, G) has a positive upper Banach density. Then
Ψj(y0) ∈ Yi for some i, and so by construction N(Yi,Ψ

j(y0),Ψ
M , f, G) has a

positive upper Banach density. Since Yi is a proper closed subset of Y , by min-
imality of Y , N(Yi,Ψ

j(y0),Ψ
M , f, G) contains an infinite arithmetic progres-

sion. But N(Yi,Ψ
j(y0),Ψ

M , f, G) ⊆ N(Y, y0,Ψ, f, G) and so N(Y, y0,Ψ, f, G)
contains an infinite arithmetic progression, a contradiction. Thus Y is irre-
ducible.

Let d := dim(Y ). Since the upper Banach density of N(Y, y0,Ψ, f, G) is
positive, a version of Szemerédi’s Theorem [Sze75] due to Furstenberg [Fur77,
Theorem 1.4] gives that there is a set A of positive upper Banach density and
a fixed integer b ≥ 1 such that N(Y, y0,Ψ, f, G) contains the finite progression

a, a+ b, a+ 2b, . . . , a+ db

for every a ∈ A. Setting fn := f ◦Ψbn for n ≥ 0, we have defined d+1 rational
functions f0, . . . , fd, so by Lemma 3.2 either the set

YG := YG(f0, . . . , fd) = {x ∈ Y : f0(x), . . . , fd(x) ∈ G}

is contained in a proper subvariety of Y , or the functions f0, . . . , fd satisfy
some multiplicative dependence relation. We proceed by ruling out the first
possibility. Suppose that YG ( Y . Since Ψa(y0) ∈ YG for every a ∈ A, the set

P := {n ∈ N0 : Ψn(y0) ∈ YG}

has a positive upper Banach density. Hence [BGT15, Theorem 1.4] gives that
P is a union of infinite arithmetic progressions A1, . . . , Ar and a set of density
zero. In particular, since P has a positive upper Banach density, P contains an
infinite arithmetic progression. But since P ⊆ N(Y, y0,Ψ, f, G), we then see
N(Y, y0,Ψ, f, G) contains an infinite arithmetic progression, a contradiction.
It follows that YG is Zariski dense in Y .
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Combining this with Lemma 3.2, we conclude that there is a multiplicative
dependence relation

d∏
s=0

f(Ψsb(x))is = C ∈ K∗, (3)

where i0, . . . , id ∈ Z with gcd(i0, . . . , id) = 1. Then for a ∈ {0, . . . , b − 1} we
let ua(n) := f(Ψa+bn(y0)). Evaluating Equation (3) at x = Ψa+bn(y0) then
gives the relation

ua(n)i0 · · ·ua(n+ d)id = C.

and so Lemma 4.2 gives that ua(n) ∈ K∗ for all n ≥ 0 and that ua(n) satisfies
a multiplicative N0-linear recurrence and that the set of n for which ua(n) ∈ G
is eventually periodic. In particular, since there is some a for which the set
{n : ua(n) ∈ G} has a positive upper Banach density, for this a, {n : ua(n) ∈
G} contains an infinite arithmetic progression c + eN0. This then gives that
N contains the infinite arithmetic progression a+b(c+eN0) = (a+bc)+beN0,
as required. �

4.2. A union of arithmetic progressions. We now use Proposition 4.1 to
prove Theorem 1.1.

Proof of Theorem 1.1. First, by [BGT15, Theorem 1.4] there is some positive
integer L such that for j ∈ {0, . . . , L−1} we have Zj := {n : f ◦ϕLn+j(x0) = 0}
either is a set of upper Banach density zero or contains all sufficiently large
natural numbers. Then to prove the result, it suffices to prove that for every
natural number j ∈ {0, . . . , L − 1}, the set of n for which f ◦ ϕLn+j(x0) ∈ G
is a finite union of arithmetic progressions along with a set of upper Banach
density zero. In the case that Zj contains all sufficiently large natural numbers,
this is immediate; hence we may replace ϕ by ϕL and x0 by some point in the
orbit under ϕ and assume without loss of generality that the set Z of n for
which f ◦ ϕn(x0) = 0 has upper Banach density zero. We now let X≥i denote
the Zariski closure of {ϕn(x0) : n ≥ i}. Then as in the proof of Corollary 1.3,
we have that there is some m such that X≥m = X≥m+1 = · · · and without loss
of generality we may replace X with X≥m and x0 with ϕm(x0) and assume
that the orbit of x0 is Zariski dense in X. Now let X1, . . . , Xr denote the
irreducible components of X. Then there is some positive integer M such
that ϕM(Xi) is Zariski dense in Xi for i = 1, . . . , r. Then it suffices to prove
that for j ∈ {0, . . . ,M − 1} we have {n : f ◦ ϕMn+j(x0) ∈ G} is a finite
union of arithmetic progressions along with a set of upper Banach density
zero. Since {ϕMn+j(x0) : n ≥ 0} is Zariski dense in some component Xi, we
may replace X by Xi, x0 by ϕj(x0) and ϕ with ϕM and we may assume that
X is irreducible and that {ϕn(x0) : n ≥ 0} is Zariski dense in X. Now let
N := {n : f(ϕn(x0)) ∈ G}. If N has upper Banach density zero, then there is
nothing to prove. Thus we may assume that N has a positive upper Banach
density, and hence it contains an infinite arithmetic progression, say aN0 + b
with a > 0.

We point out that the Zariski closure, Y , of the set {ϕan+b(x0) : n ≥ 0}
must be Zariski dense in X, since the union of the closures Yi of ϕi(Y ) for
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i = 0, 1, . . . , a− 1 contains all but finitely many points in the orbit of x0 and
hence is dense in X. Since X is irreducible, we then see that Yi must be X
for some i, which then gives that Y = X.

Now for each i ≥ 0, define a rational function fi := f ◦ ϕai, and set

XG := {x ∈ X : f0(x), . . . , fd(x) ∈ G},
where d is the dimension of X. Then XG contains {ϕan+b(x0) : n ≥ 0}, which
is Zariski dense in X and so Lemma 3.2 gives that the functions f0, . . . , fd
satisfy some multiplicative dependence of the form

f i00 · · · f
id
d = c

with c nonzero and i0, . . . , id integers with gcd(i0, . . . , id) = 1. It follows that
if we set un = f(ϕn(x0)) then ui0n u

i1
n+a · · ·uidn+ad = c for every n ≥ 0. Moreover,

by assumption the set of n for which un = 0 has upper Banach density zero
and thus by Lemma 4.2, the set

{n ∈ N0 : un ∈ G}
is eventually periodic. This completes the proof. �

Remark 4.3. We point out that if K is a field of characteristic zero, then
a K-valued sequence g(n) that satisfies a linear recurrence can be realized as
a sequence of the form f(φn(x0)) with x0 a point in a suitable affine space
Ad, φ a linear self-map, and f a projection to A1. In particular, Theorem
1.1 shows that for a finitely generated subgroup G of K∗, the set of n for
which g(n) ∈ G is a finite union of arithmetic progressions along with a
set of upper Banach density zero. In the case when G is finite, one can
strengthen the conclusion and replace the density zero set with a finite set;
this is the content of the celebrated Skolem-Mahler-Lech theorem [Lec53]. The
case when g(n) ∈ G ∪ {0} for every n was first dealt with by Pólya [Pól21]
and later, more generally, by Bézivin [Béz86].

5. Heights of points in orbits

Corollary 1.3 gives an interesting “gap” about heights of points in the for-
ward orbit of a self-map ϕ for varieties and maps defined over Q.

In order to state this gap result, we must first recall the definition of the
Weil height here. Let K be a number field and let MK be the set of places
of K. For a place v, let | · |v be the corresponding absolute value, normalized
so that |p|v = p−1 when v lies over the p-adic valuation on Q. Let Kv be the
completion of K at a place v and let nv := [Kv : Qv]. Now define a function
H : Q → [1,∞) as follows: for x ∈ Q \ {0}, choose any number field K
containing x, and set

H(x)[K:Q] :=
∏
v∈MK

max{|x|nvv , 1}.

This is independent of the choice of K and defines a function H : Q→ [1,∞)
called the absolute Weil height. We let h : Q → [0,∞) be its logarithm; i.e.,
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h(x) := logH(x). For further background on height functions, we refer the
reader to [BG06, Chapter 2] and [Sil07, Chapter 3]. We have the following
result.

Theorem 5.1. Let X be an irreducible quasiprojective variety with a domi-
nant self-map ϕ : X 99K X and let f : X 99K P1 be a rational map, all defined
over Q̄. Suppose that x0 ∈ X has the following properties:

(1) every point in the orbit of x0 under ϕ avoids the indeterminacy loci of
ϕ and f ;

(2) there is a finitely generated multiplicative subgroup G of Q̄∗ such that
f ◦ ϕn(x0) ∈ G for every n ∈ N0.

If h(f ◦ ϕn(x0)) = o(n2) then the sequence (f ◦ ϕn(x0))n satisfies a linear
recurrence. More precisely, there exists an integer L ≥ 1 such that for each
j ∈ {0, . . . , L− 1} there are αj, βj ∈ G such that for all n sufficiently large we
have

f ◦ ϕLn+j(x0) = αjβ
n
j .

Proof. Let d denote the rank of G. Then a result of Schlickewei [Sch97, The-
orem 1.1] gives that there exist g1, . . . , gd ∈ G such that every element of G
can be expressed uniquely in the form ζgn1

1 · · · g
nd
d with ζ being a root of unity

and n1, . . . , nd ∈ Z and such that

h(ζgn1
1 · · · g

nd
d ) ≥ max

1≤i≤d
{|ni|4−dh(gi)}. (4)

Moreover, since G is finitely generated, there exists a positive integer N and
an N -th root of unity g0 ∈ G such that every element of G is of the form
gn0
0 g

n1
1 · · · g

nd
d with n0, . . . , nd ∈ Z. By Corollary 1.3, there is a positive integer

L and integer-valued sequences bi,j(n) for j = 0, . . . , L − 1 and i = 1, . . . ,m,
each of which satisfies a linear recurrence, such that

f ◦ ϕLn+j(x0) =
d∏
i=0

g
bi,j(n)
i

for n ≥ p. Then multiplication by a root of unity does not affect the height
of a number and so by Equation (4),

h(f ◦ ϕLn+j(x0)) = h

(
d∏
i=1

g
bi,j(n)
i

)
≥ max

1≤i≤d
{|bi,j(n)|4−dh(gi)}.

Thus if h(f ◦ ϕLn+j(x0)) = o(n2) then bi,j(n) = o(n2) for j = 0, . . . , L − 1
and i = 1, . . . , d. Since each bi,j(n) is also an integer-valued sequence satis-
fying a linear recurrence, we have that it is in fact O(n) and is “piecewise
linear”, i.e., it has the form A + Bn on progressions of a fixed gap [BNZ,
Proposition 3.6]. Formally, this means that there exists a fixed M ≥ 1 and
integers Ai,j, Bi,j for j ∈ {0, . . . ,M−1} and i ∈ {1, . . . , d}, and integer-valued
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sequences cj(n), which satisfy a linear recurrence for j = 0, . . . ,M − 1, such
that for n sufficiently large we have

f ◦ ϕMn+j(x0) = g
cj(n)
0

d∏
i=1

g
Ai,j+Bi,jn
i . (5)

Then since each cj(n) is an integer-valued sequence satisfying a linear re-
currence, it is eventually periodic modulo N , and since g0 is an N -th root of
unity, we may assume without loss of generality that each sequence cj(n) is
eventually periodic. We set

αj =
d∏
i=1

g
Ai,j
i and βj =

d∏
i=1

g
Bi,j
i .

Then by Equation (5),

f ◦ ϕMn+j(x0) = αjβ
n
j g

cj(n)
0 ,

for j = 0, . . . ,M − 1. Since we are only concerned about what holds for n
sufficiently large, it is no loss of generality to assume that each sequence cj(n)
is periodic and we let q be a positive integer that is a common period for each
of c0, . . . , cM−1. Then for j ∈ {0, . . . ,M − 1} and i ∈ {0, . . . , q − 1} we have

f ◦ ϕqMn+Mi+j(x0) =
(
αjg

cj(i)
0 βij

)
(βqj )

n.

We take L = qM . Then for each s ∈ {0, . . . , L − 1} we can find unique
j ∈ {0, . . . ,M − 1} and i ∈ {0, . . . , q − 1} such that s = Mi+ j. Then

f ◦ ϕLn+s(x0) =
(
αjg

cj(i)
0 βij

)
(βqj )

n,

which is of the desired form. The result now follows. �

6. Applications to D-finite power series

In this section we apply our results to D-finite power series, showing how
Theorem 1.1 generalizes a result of Methfessel [Met00] and Bézivin [Béz89].
We also look at classical results of Pólya [Pól21] and Bézivin [Béz86] through
a dynamical lens.

Definition 6.1. Let K be a field. A power series F (x) ∈ K[[x]] ⊆ K((x)) is
D-finite if the set of formal derivatives {F (i)(x) : i ≥ 0} is linearly dependent
over K(x) ⊆ K((x)); equivalently, F (x) satisfies a linear differential equation
of the form

d∑
i=0

pi(x)F (i)(x) = 0,

where p0(x), . . . , pd(x) ∈ K[x] are polynomials, not all zero.
A sequence (an) ∈ KN0 is holonomic or P-recursive over K if it satisfies a

recurrence relation

an+1 =
d∑
i=0

ri(n)an−i,
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for all n ≥ d, where r0(t), . . . , rd(t) ∈ K(t) are rational functions. If each ri(t)
is constant, then (an) satisfies a K-linear recurrence.

For further background, we refer the reader to the works of Stanley [Sta80,
Sta96]. It is well-known that if F (x) =

∑
n≥0 anx

n is a formal power series
with coefficients in a field K of characteristic zero, then F (x) is D-finite
(resp. rational) if and only if (an) is P -recursive (resp. K-linearly recursive)
[Sta80]. The first application of our main result Theorem 1.1 in this setting
is immediate, as follows.

Since F (x) is D-finite, its coefficient sequence is P -recursive: there is a
recurrence relation

an+1 =
d∑
i=0

ri(n)an−i,

valid for all sufficiently large n, where the ri(x) ∈ K(x) are rational functions
[Sta80]. Thus we may define a rational map ϕ : Ad+2 99K Ad+2 as follows:

(t, t0, t1, . . . , td) 7→

(
t+ 1, t1, t2, . . . , td,

d∑
i=0

ri(t)ti

)
.

Here (t, t0, t1, . . . , td) are coordinates on Ad+2. Now there is some p > 0
such that none of the ri(x) have a pole at x = n when n ≥ p. Now
take the initial point to be x0 := (p, ap, . . . , ap+d) and the rational function
f(t, t0, t1, . . . , td) := t0. Then the sequence (an)n≥0 can be recovered as

an+p = f(ϕn(x0)) for n ≥ 0. (6)

Proof of Theorem 1.4. By Equation (6), after taking a suitable shift of the
sequence (an)n≥0, it can be recovered as

an = f(ϕn(x0)).

Thus the desired sets N and N0 are just

N = {n ∈ N0 : f(ϕn(x0)) ∈ G} and N0 = {n ∈ N0 : f(ϕn(x0)) ∈ G ∪ {0}}.
Then we obtain the desired decomposition of N from Theorem 1.1; since
N0 = N ∪ Z, where Z = {n ∈ N0 : f(ϕn(x0)) = 0}, applying [BGT15,
Theorem 1.4] then gives that Z is a finite union of arithmetic progressions
along with a set of upper Banach density zero. Then since both N and Z are
expressible as a finite union of infinite arithmetic progressions along with a
set of upper Banach density zero, so is their union. The result follows. �

6.1. Theorems of Pólya and Bézivin. Pólya [Pól21] showed that, given a
fixed set of prime numbers S, if F (x) =

∑
anx

n ∈ Z[[x]] is the power series
of a rational function and the prime factors of an lie inside of S for every n,
then there is some natural number L such that for n sufficiently large

aLn+j =
Aj
Bj

· βnj ,

where Aj, Bj, and βj are integers whose prime factors lie inside of S for
j = 0, . . . , L−1 and Bj divides Ajβ

m
j for some positive integer m. This result
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was later extended by Bézivin [Béz86], who showed that if K is a field of char-
acteristic zero and G ≤ K∗ is a finitely generated group then if F (x) =

∑
anx

n

is a D-finite power series such that there is some fixed m such that each an is
a sum of at most m elements of G, then F (x) is rational; moreover, he gave
a precise form of these rational functions. We show how to recover Bézivin’s
theorem in the case that m = 1 from the dynamical results we obtained in
the preceding sections. In particular, this recovers Pólya’s theorem. We con-
clude by showing the relationship between these classical theorems and the
dynamical results developed in the preceding sections. More precisely, we give
a dynamical proof of the following result.

Theorem 6.2. (Bézivin [Béz86]) Let K be a field of characteristic zero and
let F (x) =

∑
anx

n ∈ K[[x]] be a D-finite power series such that an ∈ G∪{0}
for every n, where G is a finitely generated subgroup of K∗. Then F (x) is
rational.

To do this, we require a basic result on orders of zeros and poles of coeffi-
cients in a D-finite series. We recall that if X is a smooth irreducible projective
curve over an algebraically closed field k, and if k(X) is the field of rational
functions on X, then to each p ∈ X we have a discrete non-archimedean
valuation νp : k(X)∗ → Z that gives the order of vanishing of a function at
p (when the function has a pole at p then this valuation is negative). Then
for a function f ∈ k(X)∗ we have a divisor div(f) =

∑
p∈X νp(f)[p], which is

a formal Z-linear combination of points of X. The support of div(f) is the
(finite) set of points p for which νp(f) 6= 0; that is, it is the set of points where
f has a zero or a pole. We make use of the fact

∑
p νp(f) = 0 [Har77, II,

Corollary 6.10].

Lemma 6.3. Let E be an algebraically closed field of characteristic zero and
let K be the field of rational functions of a smooth projective curve C over E.
Suppose that F (x) =

∑
anx

n ∈ K[[x]] is D-finite, an 6= 0 for every n, and
that there is a finite subset S of C such that div(an) is supported on S for
every n. Then for each p ∈ S, νp(an) = O(n).

Proof. We have a polynomial recurrence

RM(n)an+M + · · ·+R0(n)an = 0

for n sufficiently large. Since each Ri(n) =
∑L

j=0 ri,jn
j, we claim there is a

fixed number Ci such that νp(Ri(n)) = Ci for sufficiently large n for each
nonzero polynomial Ri. To see this, pick a uniformizing parameter u for the
local ring OC,p that consists of all rational functions in K with p being not a
pole and suppose that Q(x) = q0 + · · ·+qLx

L is a nonzero polynomial in K[x].

Then we can rewrite it as
∑N

i=0 u
miq′ix

L where mi = νp(qi) and q′i ∈ O∗X,p. Let

s denote the minimum of m0, . . . ,mN . Then Q(x)/us =
∑N

i=0 u
mi−sq′ix

L and
by construction

N∑
i=0

umi−s(p)q′i(p)x
L
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is a nonzero polynomial in E[x] and hence it is nonzero for n sufficiently large,
which shows that νp(Q(n)) = s for all n sufficiently large. Thus in particular
if C is the maximum of the Ci as i ranges over the indices for which Ri(x) is
nonzero, then for n sufficiently large

νp(an+M) = νp(RM(n)an+M)− C

= νp(
M−1∑
i=0

Ri(n)an+i)− C

≥ −2C + min(νp(an+i) : i = 0, . . . ,M − 1).

It follows that νp(an) ≥ −2Cn + B for some constant B and all sufficiently
large n. It follows that there is a fixed constant C0 such that νp(an) ≥ −C0n
for every p ∈ S, for all n sufficiently large. To get an upper bound, observe
that

∑
p∈S νp(an) = 0 [Har77, II, Corollary 6.10] and so for n sufficiently large

we have

νp(an) =
∑

q∈S\{p}

−νq(an) ≤ (|S| − 1)C0n,

which now gives νp(an) = O(n). �

We now give a quick overview of how one can recover Theorem 6.2 from the
above dynamical framework.

Proof of Theorem 6.2. By Theorem 1.4, {n : an ∈ G} is a finite union of arith-
metic progressions along with a set of upper Banach density zero. Hence there
exists some L such that for each j ∈ {0, . . . , L − 1}, the set {n : aLn+j = 0}
either contains all sufficiently large n or is a set of upper Banach density ze-
ro. Since F (x) =

∑
anx

n is D-finite if and only if for each L ≥ 1 and each
j ∈ {0, . . . , L− 1}, the series

∑
aLn+jx

n is D-finite, by Lemma 4.2 it suffices
to consider the case when an ∈ G for every n. The fact that the coefficients
are P -recursive gives that there is a finitely generated field extension K0 of Q
such that F (x) ∈ K0[[x]]. We prove the result by induction on trdegQ(K0).
If [K0 : Q] < ∞ then K0 is a number field. Then by [BNZ, Theorem 1.6],
h(an) = O(n log n) and by Equation (6) and Theorem 5.1, we then get an sat-
isfies a linear recurrence, giving the result when K0 has transcendence degree
zero over Q.

We now suppose that the result holds whenever K0 has transcendence de-
gree less than m, with m ≥ 1, and consider the case when trdegQ(K0) = m.
Then there is a subfield E of K0 such that K0 has transcendence degree 1 over
E and such that E is algebraically closed in K0. Since K0 has characteristic
zero and E is algebraically closed in K0, K0 is a regular extension of E, and
so R := K0 ⊗E Ē is an integral domain. Then the field of fractions of R is
the field of regular functions of a smooth projective curve X over Ē. Now let
g1, . . . , gd, gd+1, . . . , gm be generators for G so that g1, . . . , gd generate a free
abelian group and gd+1, . . . , gm are roots of unity and let {p1, . . . , p`} ∈ X
denote the collection of points at which some element from g1, . . . , gd has a
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zero or a pole. Then there are integers bi,j such that

div(gi) =
∑

bi,j[pj]

for i = 1, . . . , d. Now we have an = g
e1(n)
1 · · · gem(n)

m and so

div(an) =
∑̀
j=1

(
d∑
i=1

bi,jei(n)

)
[pj].

In particular, by Lemma 6.3,

d∑
i=1

bi,jei(n) = O(n)

and since the left-hand side satisfies a linear recurrence, we have that it is
piecewise linear in the sense of having the form A + Bn on progressions of
a fixed gap [BNZ, Proposition 3.6]. It then follows that there exists some
r ≥ 1 and some fixed h0, . . . , hr−1 ∈ K∗0 such that for j ∈ {0, . . . , r − 1},
ar(n+1)+j/arn+j = Cj,nhj, where Cj,n ∈ E∗. It follows that for arn+j =
Cj,nh

n
jPj, where Pj ∈ K0 is constant. Then since the series

∑
P−1j h−nj xn

is D-finite and since D-finite series are closed under Hadamard product,

Gj(x) :=
∑

Cj,nx
n ∈ Ē[[x]]

is D-finite and takes values in a finitely generated multiplicative group. Thus
Gj(x) is rational and then it is straightforward to show that

Fj(x) :=
∑

arn+jx
n =

∑
Cj,nPjh

n
j x

n

must also be rational and thus F (x) =
∑r−1

j=0 x
jFj(x

r) is also rational, as
required. �
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