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D-FINITENESS, RATIONALITY, AND HEIGHT III:

MULTIVARIATE PÓLYA-CARLSON DICHOTOMY

JASON P. BELL, SHAOSHI CHEN, KHOA D. NGUYEN, AND UMBERTO ZANNIER

Abstract. We prove a result that can be seen as an analogue of the Pólya-
Carlson theorem for multivariate D-finite power series with coefficients in Q̄.
In the special case that the coefficients are algebraic integers, our main result
says that if

F (x1, . . . , xm) =
∑

f(n1, . . . , nm)xn1

1
· · · xnm

m

is a D-finite power series in m variables with algebraic integer coefficients and
if the logarithmic Weil height of f(n1, . . . , nm) is o(n1 + · · ·+ nm), then F is
a rational function and, up to scalar multiplication, every irreducible factor of
the denominator of F has the form 1− ζx

q1

1
· · · x

qm
m where ζ is a root of unity

and q1, . . . , qm are nonnegative integers, not all of which are zero.

1. Introduction

In this paper, we continue the investigation, which was begun in the earlier
papers [BNZ20, BNZ23], of how height restrictions on D-finite power series can
force such series to be rational. We let N denote the set of positive integers and let
N0 := N ∪ {0}. For m ∈ N, we consider the ring K[[x1, . . . , xm]] of power series in
m variables over a field K of characteristic 0. Let n = (n1, . . . , nm) ∈ Nm

0 and let
x = (x1, . . . , xm) be the vector of the indeterminates x1, . . . , xm. We write xn to
denote the monomial xn1

1 . . . xnm
m having the total degree ‖n‖ := n1+ · · ·+nm. We

also write
∂‖n‖

∂xn

to denote the operator

(

∂

∂x1

)n1

. . .

(

∂

∂xm

)nm

on K[[x1, . . . , xm]]. A power series F (x) ∈ K[[x]] is said to be D-finite (over K(x))

if all the derivatives
∂‖n‖F

∂xn

for n ∈ Nm
0 span a finite-dimensional vector space over

K(x). When using an uppercase letter to denote a power series, we typically use
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the corresponding lowercase letter to denote its coefficients, for example:

F (x) =
∑

n∈Nm
0

f(n)xn ∈ K[[x]]

with f : Nm
0 → K. If F (x) ∈ Q̄[[x]] is D-finite, there exists a number field

containing all the coefficients of F since all coefficients can be recursively generated
by finitely many initial values in Q̄ (see remarks 3.10 in [Lip89]).

Univariate D-finite series include many important classes of functions, includ-
ing algebraic power series, hypergeometric series, exponential functions, and many
generating functions that arise in algebraic combinatorics (see [Sta80, Sta99]). Mul-
tivariate D-finite series were introduced by Lipschitz [Lip89] and have again played
an important role. In particular, Lipschitz proved that diagonals of multivariate
D-finite series are univariate D-finite series and Christol’s conjecture [Chr87, Chr90]
asserts that all globally bounded G-functions can be obtained as diagonals of mul-
tivariate rational power series.

In the first paper in this series [BNZ20], we proved a rationality theorem of
sorts: if F (x) ∈ Q̄[[x]] is D-finite and h(f(n)) = o(log ‖n‖) as ‖n‖ → ∞ then F is
necessarily a rational function, with its denominator of a special form, and where
the coefficients f(n) form a finite set. This improves earlier results of van der
Poorten-Shparlinski [vdPS96] and Bell-Chen [BC17]. In the second paper [BNZ23],
this result was refined in the univariate case. Here h is the absolute logarithmic
Weil height and we refer the reader to §2 and to the book [BG06] for more details
on heights. In the special case when the coefficients of F are integers, one can
interpret this as saying that if log f(n)/ log ‖n‖ → 0 then F is necessarily rational.

If, however, one puts additional arithmetical constraints on the coefficients, one
can sometimes obtain analogous rationality theorems that are significantly stronger.
A key example of this comes from the Pólya-Carlson theorem [Pól22, Car21], which
shows that if G(x) =

∑

g(n)xn is an integer power series in one variable then if
h(g(n)) = o(log n) (equivalently, G(x) has radius of convergence 1), then G(x) is
either rational or admits the unit circle as a natural boundary. In particular, if G
is D-finite with integer coefficients and has radius of convergence at least 1, then it
is necessarily rational, as D-finite power series have only finitely many singularities.
On the other hand, an integrality condition on the coefficients is essential in this
result; for example, for k ∈ N, the univariate irrational D-finite series

log(1 + xk) = xk −
x2k

2
+

x3k

3
− · · ·

has coefficients whose heights grow logarithmically in n.
In this paper, we extend the results from [BNZ20] under the weaker condition

that h(f(n)) = o(‖n‖) but with arithmetical constraints on the coefficients. For
a ∈ Q̄, we use den(a) to denote its denominator: this is the smallest d ∈ N such
that da is an algebraic integer. We prove the following result.

Theorem 1.1. Let m ∈ N and let F (x) =
∑

n∈Nm
0

f(n)xn ∈ Q̄[[x]] be a D-finite

power series in m variables with algebraic coefficients. For N ∈ N0, put:

hN = max{h(f(n)) : ‖n‖ ≤ N} and dN = lcm{den(f(n)) : ‖n‖ ≤ N}.

Suppose that hN = o(N) and log dN = o(N) as N → ∞ then the following hold:

(a) F is a rational function;
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(b) up to scalar multiplication, every irreducible factor of the denominator of
F has the form:

1− ζxn

where ζ is a root of unity and n ∈ Nm
0 \ {0}.

Remark 1.2. Consider the earlier transcendental example:

log(1 + xk) = xk −
x2k

2
+

x3k

3
− · · · =:

∑

n

anx
n

where k ∈ N. Put dN = lcm{den(an) : n ≤ N} then by the Prime Number
Theorem, log dN ∼ N/k as N → ∞. Since k can be arbitrarily large, the condition
log dN = o(N) in Theorem 1.1 is optimal.

Corollary 1.3. Let K be a number field and let S be a finite set of places of K
containing all the archimedean ones. Let m ∈ N and let

F (x) =
∑

n∈Nm
0

f(n)xn ∈ K[[x]]

be a D-finite power series in m variables with S-integer coefficients. Suppose that
h(f(n)) = o(‖n‖) as ‖n‖ → ∞ then F is a rational function with denominator of
the form given in Theorem 1.1(b).

We note, in fact, that one can view Corollary 1.3 as being a multivariate version
of the Pólya-Carlson theorem for D-finite series. In particular, if one takes K = Q

and S to be the archimedean place then it says that if F (x) ∈ Z[[x1, . . . , xm]] is a
D-finite power series in m variables that converges in the open unit polydisc then
F is a rational function with denominator of the form given in Theorem 1.1(b). In
general, there do exist multivariate analogues of the Pólya-Carlson theorem (see,
for example, Straube [Str87]), but they necessarily impose significantly stronger
conditions on the region of convergence than in the univariate case. For example,
the bivariate series

∑

n x
nyn! is irrational and converges on the unit polydisc. For

this reason, an additional assumption, such as D-finiteness, is necessary for showing
that convergence on the polydisc is sufficient to obtain rationality.

For a tuple (α1, . . . , αm) of algebraic numbers, we let H(α1, . . . , αm) denote the
height of the affine point (α1, . . . , αm) ∈ Am(Q̄); in other words,

(1) H(α1, . . . , αm) := H([α1 : · · · : αm : 1]).

We then let

(2) h(α1, . . . , αn) = logH(α1, . . . , αn).

One can reinterpret the main result of [BNZ20] as saying that if

F (x) =
∑

n∈Nm
0

f(n)xn ∈ Q̄[[x]]

is D-finite and h(f(n) : ‖n‖ ≤ N) = o(logN) then h(f(n) : ‖n‖ ≤ N) = O(1).
This suggests, in a certain sense, that the function logN is a “boundary” function
for the growth of h(f(n) : ‖n‖ ≤ N): if this latter quantity is much smaller
than logN as N → ∞ then it falls into the next level given in the above-stated
dichotomy; namely it is O(1).

It follows from Theorem 1.1 that a linear function in N is the level right above
the function logN for the growth of h(f(n) : ‖n‖ ≤ N):
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Corollary 1.4. Let m ∈ N and let F (x) =
∑

n∈Nm
0

f(n)xn ∈ Q̄[[x]] be a D-finite

power series in m variables with algebraic coefficients. If h(f(n) : ‖n‖ ≤ N) =
o(N) as N → ∞ then h(f(n) : ‖n‖ ≤ N) = O(logN) as N → ∞.

One can regard Corollary 1.4 and the discussion before it as variants of results
and problems discussed in [BNZ23, Section 5]. It is expected that the next level
above the linear function in N is the function N logN : if h(f(n) : ‖n‖ ≤ N) =
o(N logN) then h(f(n) : ‖n‖ ≤ N) = O(N). However even the univariate case of
this remains a long standing open problem in the theory of Siegel E-functions (see
[Sie29], [Beu08, pp. 11–12], [FR22, Section 2.1] and[BNZ23, §4] for more details).

The paper [BNZ20] has motivated several results in both number theory and dy-
namics, and it is our hope that this paper will similarly motivate results where one
imposes additional arithmetical constraints. In arithmetic dynamics, this work
motivated a height gap conjecture in work of Bell, Hu, Ghioca, and Satriano
[BHS20, BGS21] concerning the quantity lim supn→∞ h(f(Φn(x)))/ log n, where
Φ : X 99K X and f : X 99K P1 are rational maps on quasi-projective varieties
defined over Q̄ and x ∈ X(Q̄) is such that the forward orbit of x under Φ is well de-
fined and avoids the indeterminacy locus of f . It would be interesting if there were
an arithmetic-dynamical height gap result analogous to that of Corollary 1.4, which
holds for maps under the additional constraint that {f(Φn(x)) : n ≥ 0} now takes
values in a ring of S-integers of a number field, where S is a finite set of places that
includes all archimedean ones. In the theory of Mahler functions, Adamczewski,
Bell, and Smertnig [ABS] provide a complete classification of the possible height
growth of the coefficients of a Mahler function. In fact, one can show from the recur-
rences satisfied by Mahler functions that their coefficients lie in a finitely generated
ring and hence these results are close in spirit to the arithmetical constraints we
consider in this paper. We note that [BNZ20], together with earlier work of Perelli
and Zannier [PZ84, Zan96], motivated [BN21], in which a function field analogue
of a conjecture of Ruzsa is established and, in part, helped to inspire Dimitrov’s
spectacular solution [Dim] of the Schinzel-Zassenhauss conjecture from the 1960s.
More recently, the paper [BNZ23] motivates a more general criterion for the uni-
variate Pólya-Carlson dichotomy [BGNS23] with applications to the Artin-Mazur
zeta function in certain algebraic dynamical systems [BC18, BGNS23, BCH].

The outline of this paper is as follows. In §2 we give the basic background on
heights and show how the corollaries stated in the introduction quickly follow from
Theorem 1.1 and in §3 we prove our main result.

2. Some preliminary results and proof of the corollaries

In this section, we give a brief overview of the height machinery for later use and
we prove Corollary 1.3 and Corollary 1.4 under the assumption that Theorem 1.1
holds. In addition we prove the univariate case of Theorem 1.1.

For a number field K, we let M∞
K denote the set of archimedean places (equiv-

alence classes of archimedean absolute values) of K and we let M0
K denote the set

of finite places. We write MK = M∞
K ∪ M0

K . For every place w ∈ MK , let Kw

denote the completion of K with respect to w and we let d(w) denote the quantity
[Kw : Qv] where v is the restriction of w to Q. We now follow the treatment given
in [BG06, Chapter 1]: for every w ∈ MK with restriction v on Q, we may always
take | · |v to be either the ordinary Euclidean absolute value or the p-adic absolute
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value for some prime p. We can then normalize | · |w by defining

|x|w = |NKw/Qv
(x)|1/[K:Q]

v .

Letm ∈ N and P ∈ Pm(Q̄), letK be a number field such that P has a representative
u = (u0, . . . , um) ∈ Km+1 \ {0} and define:

H(P ) =
∏

w∈MK

max
0≤i≤m

|ui|w.

Define h(P ) = log(H(P )).
For α ∈ Q̄, we write H(α) = H([α : 1]) and h(α) = log(H(α)). More gener-

ally, for a tuple (α1, . . . , αm) of algebraic numbers, we define H(α1, . . . , αm) and
h(α1, . . . , αm) as in Equations (1) and (2).

Proof of Corollary 1.3 assuming Theorem 1.1. We assume the notation appearing
in the statement of Corollary 1.3. For every a ∈ K, we have that den(a) divides

∏

v∈M0

K
, |a|v>1

|a|[K:Q]
v =

∏

v∈M0

K

max{|a|[K:Q]
v , 1}.

For N ∈ N0, put

dN = lcm{den(f(n)) : ‖n‖ ≤ N} and hN = max{h(f(n)) : ‖n‖ ≤ N}.

We have that dN divides
∏

v∈M0

K

max{max{|f(n)|[K:Q]
v , 1} : ‖n‖ ≤ N}

=
∏

v∈M0

K
∩S

max{max{|f(n)|[K:Q]
v , 1} : ‖n‖ ≤ N}

≤ exp([K : Q]|S|hN) = eo(N)

since each f(n) is an S-integer and hN = o(N). Therefore the power series F (x)
satisfies the conditions in Theorem 1.1 and we finish the proof. �

Proof of Corollary 1.4 assuming Theorem 1.1. For N ∈ N0, let hN and dN be as
in the statement of Theorem 1.1. By elementary estimates as in the above proof of
Corollary 1.3, we have that the property h(f(n) : ‖n‖ ≤ N) = o(N) as N → ∞
implies the property that hN = o(N) and log dN = o(N) as N → ∞. Therefore F
is a rational function of the form:

(3)
A(x)

(1− ζ1xn1) · · · (1− ζkxnk)

where A(x) ∈ Q̄[x], k ∈ N0, ζi is a root of unity, and ni ∈ Nm
0 \ {0} for 1 ≤ i ≤ k.

Let K be a number field containing the coefficients of A and all the ζi’s. There
exists a positive constant C such that when expanding (3) into a power series in x,
we can express f(n) for n 6= 0 as a sum of at most C‖n‖k many terms from a finite
set. Therefore the f(n)’s have bounded denominators and for every v ∈ M∞

K we
have |f(n)|v ≪ ‖n‖k as ‖n‖ → ∞. This implies h(f(n) : ‖n‖ ≤ N) = O(logN) as
N → ∞. �

We conclude this section with a proof of Theorem 1.1 in the case of univariate
power series using well-known techniques.
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Proposition 2.1. Let F (x) =

∞
∑

n=0

f(n)xn ∈ Q̄[[x]] be a univariate D-finite power

series. For N ∈ N0, let hN and dN be as in Theorem 1.1. Suppose that hN = o(N)
and log dN = o(N) as N → ∞. Then F is a rational function and all of its finite
poles are roots of unity.

Proof. Let K be a number field such that F (x) ∈ K[x]. Consider the Hankel
determinant:

∆n := det









a0 a1 · · · an
a1 a2 · · · an+1

. . .
an an+1 · · · a2n









for n ≥ 0. The given condition hN = o(N) implies that F is convergent in the open
unit disc |x|v < 1 of Kv for every v ∈ MK . Since F is D-finite, it can be extended
analytically beyond the open unit disc |x|v < 1 for every v ∈ M∞

K . By Polya’s
inequality [BNZ23, Section 2], there exists r < 1 such that

∏

v∈M∞

K

|∆n|v < rn
2

for all large n. Together with the condition log dN = o(N), we have that dn+1
2n ∆n is

an algebraic integer and its norm is less than 1 when n is large. Therefore ∆n = 0
when n is large. Kronecker’s criterion [BNZ23, Section 2] implies that F is rational.
The assertion on the poles of F follows from [BNZ20, Proposition 3.6]. �

3. Proof of Theorem 1.1

In this section, we give a proof of our main result. We henceforth let T denote
the unit circle. The following lemma is an easy corollary of Proposition 2.3 (iii)
in [Lip89], whose proof was not given. For the sake of completeness, we provide the
detailed proof of this lemma.

Lemma 3.1. Let m ∈ N, let K be a field of characteristic zero, and let F (x) =
∑

f(n)xn ∈ K[[x]] be a D-finite power series in m variables. Then:

(a) If α1, . . . , αm−1 ∈ K then F (x1, . . . , xm−1,
∑m−1

i=1 αixi) ∈ K[[x1, . . . , xd−1]]
is D-finite.

(b) If β1, . . . , βm ∈ K then F (β1t, . . . , βmt) ∈ K[[t]] is D-finite.

Proof. Let G(x1, . . . , xm−1) = F (x1, . . . , xm−1,
∑m−1

i=1 αixi). By symmetry, it suf-
fices to show that {Di

x1
G : i ≥ 0} is linearly dependent overK(x1, . . . , xm−1), where

Dxi
is the operator given by partial differentiation with respect to xi. For n ≥ 0

we have:

(4) Dn
x1
G =





n
∑

j=0

(

n

j

)

αn−j
1 Dj

x1
Dn−j

xm
F





∣

∣

∣

∣

∣

(x1,x2,...,α1x1+···+αm−1xm−1)

.
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Let Gn =

n
∑

j=0

(

n

j

)

αn−j
1 Dj

x1
Dn−j

xd
F for n ≥ 0. Since F is D-finite, we have a linear

dependence of the form

(5)

N
∑

i=0

Pi(x1, . . . , xm)Gi(x1, . . . , xm) = 0

for some N ≥ 0, with P0, . . . , PN ∈ K[x1, . . . , xm], not all of which are 0. Further-
more, we may assume without loss of generality that P0, . . . , PN have no non-trivial

common factor and hence xm −

m−1
∑

i=1

αixi does not divide all of P0, . . . , Pm. Let

Qj(x1, . . . , xm−1) = Pj(x1, . . . , xm−1,
∑m−1

i=1 αixi) for j = 0, . . . , N then at least
one of the Qj ’s is nonzero. Then by (4) and (5) we have the non-trivial linear
dependence relation:

N
∑

i=0

Qi(x1, . . . , xm−1)D
i
x1
G = 0.

This proves part (a) of the lemma.
We prove part (b) by induction on m. When m = 1, the result is immediate. We

consider m ≥ 2 and suppose that the statement is valid for power series in fewer
thanm variables. The case β1 = · · · = βm = 0 is trivial, so without loss of generality
we may assume that β1 6= 0. By part (a), we have F (x1, . . . , xm−1, (βm/β1)x1) is a
D-finite power series in m− 1 variables. Then making the substitution xi 7→ βit for
i = 1, . . . ,m− 1 and using the induction hypothesis gives the desired result. �

Lemma 3.2. Let m, F =
∑

f(n)xn, hN , and dN be as in the statement of Theo-
rem 1.1. If with hN = o(N) and log dN = o(N), then there exist positive constants
C1 and C2 such that the following hold.

(a) |f(n)| ≤ C1‖n‖
C2 when ‖n‖ is large.

(b) For every (α1, . . . , αm) ∈ Tm and for every positive integer n, the coeffi-
cient of tn in F (α1t, . . . , αmt) has modulus at most C1n

C2 .

Proof. Let σ be the complex conjugate automorphism. Then both F and the series

σ(F ) :=
∑

n

σ(f(n))xn are D-finite. Therefore the Hadamard product

G(x) =
∑

n

|f(n)|2xn

is also D-finite [Lip89]. The univariate series

G(t, . . . , t) =:
∑

n

g(n)tn

is D-finite and satisfies:

• h(g(n)) = o(n); and
• log lcm{den(g(n)) : n ≤ N} = o(N) thanks to the assumption on hN and
dN for the original series F .

By Proposition 2.1, G(t, . . . , t) is a rational function and its poles are roots of
unity. Therefore, along suitable arithmetic progressions, we can express the g(n)’s
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as polynomials in n and this implies
∑

n1+···+nm=n

|f(n1, . . . , nm)|2 = g(n) ≪ nC3

for some positive constant C3. Therefore |f(n1, . . . , nm)| ≪ nC3/2. Hence if
(α1, . . . , αm) ∈ Tm, the coefficient of tn in F (α1t, . . . , αmt) has modulus at most

∑

n1+···+nm=n

|f(n1, . . . , nm)| ≪ nm−1+C3/2.

The result follows. �

Lemma 3.3. Let m, F =
∑

f(n)xn, hN , and dN be as in the statement of

Theorem 1.1. If hN = o(N) and log dN = o(N), then for every tuple of roots of
unity (ζ1, . . . , ζm), the univariate series F (ζ1t, . . . , ζmt) is a rational function and
all of its finite poles are roots of unity.

Proof. This uses similar arguments to those in the proof of Lemma 3.2 and Propo-
sition 2.1. �

We now prove a key specialization lemma.

Lemma 3.4. Let E be a subfield of C and let F (x1, . . . , xm) ∈ E[[x1, . . . , xm]] be
D-finite. Suppose that there exist positive constants C1 and C2 such that for all
(α1, . . . , αm) ∈ Tm and for all n ≥ 1, the coefficient of tn in F (α1t, . . . , αmt) is at
most C1n

C2 in modulus. Then there exists a nonzero polynomial W (x1, . . . , xm, t) ∈
E[x1, . . . , xm, t] such that whenever (α1, . . . , αm) ∈ Tm is such that F (α1t, . . . , αmt)
is a rational function, the series W (α1, . . . , αm, t)F (α1t, . . . , αmt) has radius of
convergence strictly greater than 1.

Proof. Let

G(t) = F (x1t, . . . , xmt) ∈ E[x1, . . . , xm][[t]].

Given j1, . . . , jd ∈ {1, . . . ,m}, we let Fj1,...,jd(x1, . . . , xm) denote the d-th partial
derivative

∂d

∂xj1 · · · ∂xjd

F (x1, . . . , xm).

Then

(6) G(d)(t) =
∑

xj1xj2 · · ·xjdFj1,...,jd(x1t, . . . , xmt),

where the sum runs over all d-tuples in {1, . . . ,m}d. Now since F is D-finite, there
exists some natural number T such that for i = 1, . . . ,m, we have

Qi,T (x1, . . . , xm)
∂T

∂xi
T
F (x1, . . . , xm) =

∑

j<T

Qi,j(x1, . . . , xm)
∂j

∂xi
j
F (x1, . . . , xm)

for some polynomials Qi,j ∈ E[x1, . . . , xm] with Qi,T nonzero. It follows that for
every d and every d-tuple j1, . . . , jd, we have

Fj1,...,jd(x1, . . . , xm) ∈
∑

s≤Tm

∑

(i1,...,is)

E(x1, . . . , xm)Fi1,...,is(x1, . . . , xm),
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where the second sum runs over elements of {1, . . . ,m}s. Combining this with (6),
we have that for every d:

G(d)(t) =
∑

s≤Tm

∑

(i1,...,is)

q(i1,...,is),dFi1,...,is(x1t, . . . , xmt),

for some q(i1,...,is),d ∈ E(x1, . . . , xm, t). Put M =
∑

s≤Tm

ms. Then the M + 1 power

series G(d)(t) for 0 ≤ d ≤ M satisfy a non-trivial linear dependence relation:

M
∑

d=0

sd(x1, . . . , xm, t)G(d)(t) = 0,

with s0, . . . , sM ∈ E[x1, . . . , xm, t]. Let L be the largest index d for which sd is a
nonzero polynomial.

Let (α1, . . . , αm) ∈ Tm such that A(t) := F (α1t, . . . , αmt) is a rational function.
First consider the case when sL(α1, . . . , αm, t) is a nonzero polynomial in C[t]. Then
we have the relation

L
∑

d=0

sd(α1, . . . , αm, t)A(d)(t) = 0.

Thanks to this relation, we have that if A(t) has a pole at t = α then the
leading polynomial sL(α1, . . . , αm, t) has a zero at t = α. By the given up-
per bounds on the modulus of the coefficients of A(t), we have that A(t) con-
verges on the open unit disc and every pole α ∈ T has order at most ⌊C2⌋ + 1.
Therefore sL(α1, . . . , αm, t)⌊C2⌋+1A(t) has radius of convergence greater than 1.
The case when sL(α1, . . . , αm, t) is the zero polynomial is obvious: the product
sL(α1, . . . , αm, t)⌊C2⌋+1A(t) is identically zero. We now take W (x1, . . . , xm, t) =
sL(x1, . . . , xm, t)⌊C2⌋+1 and finish the proof. �

Corollary 3.5. Let m, F =
∑

f(n)xn, hN , and dN be as in the statement of

Theorem 1.1. If hN = o(N) and log dN = o(N), then there exists a nonzero
polynomial W (x1, . . . , xm, t) ∈ Q̄[x1, . . . , xm, t] such that for every tuple of roots of
unity (α1, . . . , αm), the series W (α1, . . . , αm, t)F (α1t, . . . , αmt) is a polynomial.

Proof. Lemma 3.2 implies that F satisfies the conditions in Lemma 3.4 and so
there exists a polynomial W (x1, . . . , xm, t) as in the conclusion of the statement
of Lemma 3.4. Then for every tuple (α1, . . . , αm) of roots of unity, A(t) :=
W (α1, . . . , αm, t)F (α1t, . . . , αmt) is a rational function without any poles in the
closed unit disc. Since the coefficient of tn in A(t) has height o(n), the only possi-
ble finite poles of A(t) are roots of unity. Therefore A(t) must be a polynomial. �

Lemma 3.6. Let P (x1, . . . , xm, t) ∈ Q̄[x1, . . . , xm, t] be nonzero and let X be a
Zariski dense subset of Cm consisting of m-tuples of roots of unity. Then there
exist a positive constant C and a Zariski dense subset Y of X such that every
(ζ1, . . . , ζm, α) ∈ Y × Q̄ with P (ζ1, . . . , ζm, α) = 0 satisfies h(α) < C.

Proof. Write

P (x1, . . . , xm, t) =

d
∑

j=0

Pj(x1, . . . , xm)tj ,
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with Pd 6= 0. Let Y be the set of (ζ1, . . . , ζm) ∈ X such that Pd(ζ1, . . . , ζm) 6= 0.
We have an explicit upper bound on the height of every zero t = α of

P (ζ1, . . . , ζm, t) =

d
∑

j=0

Pj(ζ1, . . . , ζm)tj

in terms of d and maxj h(Pj(ζ1, . . . , ζm)), see [BG06, Theorem 1.6.13]. Since the ζi’s
are roots of unity, we have a uniform upper bound for maxj h(Pj(ζ1, . . . , ζm)). �

We can now prove the rationality part of our main result.

Proof of Theorem 1.1(a). Let W (x1, . . . , xm, t) be as in the conclusion of Corol-
lary 3.5. Write:

∞
∑

j=0

gjt
j := G(t) := W (x1, . . . , xm, t)F (x1t, . . . , xmt) ∈ Q̄[x1, . . . , xm][[t]]

with gj ∈ Q̄[x1, . . . , xm] for every j. By using similar arguments to the proof of
Lemma 3.4, we have a relation:

L
∑

d=0

sd(x1, . . . , xm, t)G(d)(t) = 0

where L ∈ N0, each sd ∈ Q̄[x1, . . . , xm], and sL 6= 0. This gives rise to a non-trivial
linear recurrence relation (with polynomial coefficients) among the coefficients gn’s
of G:

(7) PR(x1, . . . , xm, n)gn+R + · · ·+ P0(x1, . . . , xm, n)gn = 0

for n ≥ C where C,R ∈ N0, P0, . . . , PR ∈ Q̄[x1, . . . , xm, θ], and P0PR 6= 0. Let
X ⊂ Cm be the set of tuples of roots of unity. By Lemma 3.6, there exists Y ⊆ X
that is Zariski dense in Cm and a positive constant C1 such that n < C1 whenever
P0(ω1, . . . , ωm, n) = 0 with n ∈ N0 and (ω1, . . . , ωm) ∈ Y.

Given (ω1, . . . , ωm) ∈ Y, since G(t) is a polynomial after the specialization at
(x1, . . . , xm) = (ω1, . . . , ωm), we have gn(ω1, . . . , ωm) = 0 for all sufficiently large
n. Let N := N(ω1, . . . , ωm) be the largest index n such that gn(ω1, . . . , ωm) 6= 0 if
such an n exists; otherwise let N := N(ω1, . . . , ωm) := −1. Suppose N ≥ C then
(7) implies that P0(ω1, . . . , ωm, N) = 0, hence N ≤ C1.

We have proved that for every n > max{C,C1}, gn(ω1, . . . , ωm) = 0 for every
(ω1, . . . , ωm) ∈ Y. Since Y is Zariski dense in Cm, we have gn = 0 for n >
max{C,C1}. Consequently

W (x1, . . . , xm, t)F (x1t, . . . , xmt) ∈ Q̄[x1, . . . , xm, t].

Since W is nonzero, there exists a nonzero λ ∈ Q̄ such that W (x1, . . . , xm, λ) is a
nonzero polynomial in Q̄[x1, . . . , xm]. Then we replace xi by xi/λ to have that

A(x1, . . . , xm) := W (x1/λ, . . . , xm/λ, λ) ∈ Q̄[x1, . . . , xm] \ {0}

and

A(x1, . . . , xm)F (x1, . . . , xm) ∈ Q̄[x1, . . . , xm].

This finishes the proof. �

We now prove a result that will quickly give us part (b) of Theorem 1.1.
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Theorem 3.7. Let m ∈ N and let F (x) =
∑

f(n)xn ∈ Q̄[[x]] be the power series
representation of a rational function. For N ∈ N0, put:

hN = max{h(n) : ‖n‖ ≤ N}.

If hN = o(N) then up to scalar multiplication every irreducible factor of the de-
nominator of F has the form 1− ζxn where ζ is a root of unity and n ∈ Nm

0 \ {0}.

Proof. The case m = 1 is given in [BNZ20, Proposition 3.6] and we will use
this case repeatedly by considering F (ω1t, . . . , ωmt) ∈ Q̄[[t]] for appropriate tuples
(ω1, . . . , ωm) of roots of unity as in the earlier arguments.

Since the condition on hN remains valid when we replace F by its product
with a polynomial, we may assume that F = A/B where A,B ∈ Q̄[x1, . . . , xm],
B is irreducible, and B is not a factor of A. By the same arguments as in
[BNZ20, Section 3.2], we have B(0, . . . , 0) 6= 0. Without loss of generality, as-
sume B(0, . . . , 0) = 1. Let K be a number field and let S be a finite set of places of
K containing M∞

K such that the coefficients of A and B are S-integers in K. Then
it follows that the coefficients of F are S-integers.

Let (ω1, . . . , ωn) be an n-tuple of roots of unity, and let
∞
∑

n=0

cnt
n := F (ω1t, . . . , ωmt).

Then it follows that h(cn) = o(n) by using similar estimates as before: for every
place v of K(ω1, . . . , ωm) lying above a place in MK \ S we have |cn|v ≤ 1 and
for every place w of K(ω1, . . . , ωn) lying above a place in S we have |cn|w = eo(n)

thanks to the given condition hN = o(N). Therefore F (ω1t, . . . , ωmt) is a rational
function and every root of its denominator is a root of unity.

Write B = 1 +B1 + · · ·+Bd with d ∈ N, Bi is the homogeneous part of degree
i for 1 ≤ i ≤ d, and Bd 6= 0. Then we have:

(8) B(x1t, . . . , xmt) = 1 + tB1(x1, . . . , xm) + · · ·+ tdBd(x1, . . . , xm).

First we show that B(x1t, . . . , xmt) is irreducible in Q̄[x1, . . . , xm, t]. Suppose oth-
erwise B(x1t, . . . , xmt) = PQ for non-constant P,Q ∈ Q̄[x1, . . . , xm, t]. Then there
must be i ∈ {1, . . . ,m} such that degxi

(P ) > 0; otherwise P ∈ Q̄[t] has a zero γ ∈ Q̄,
which gives that B(γx1, . . . , γxm) is identically zero contradicting B(0, . . . , 0) = 1.
Similarly, degxj

(Q) > 0 for some j ∈ {1, . . . ,m} as well. Consequently, there exists

a nonzero λ ∈ Q̄ such that P (x1, . . . , xm, λ) and Q(x1, . . . , xm, λ) are non-constant
polynomials in Q̄[x1, . . . , xm]. Replacing xi by xi/λ for every i, we have the non-
trivial factorization

B(x1, . . . , xm) = P (x1/λ, . . . , xm/λ, λ)Q(x1/λ, . . . , xm/λ, λ)

contradicting the irreducibility of B(x1, . . . , xm) in Q̄[x1, . . . , xm].
We have that B(x1t, . . . , xmt) is not a factor of A(x1t, . . . , xmt) in the poly-

nomial ring Q̄[x1, . . . , xm, t]; otherwise we can specialize t = 1 and have that
B(x1, . . . , xm) is a factor of A(x1, . . . , xm) in Q̄[x1, . . . , xm]. Hence there exist

Ã, B̃ ∈ Q̄[x1, . . . , xm, t] and G ∈ Q̄[x1, . . . , xm], with G 6= 0, such that:

(9) A(x1t, . . . , xmt)Ã(x1, . . . , xm, t) +B(x1t, . . . , xmt)B̃(x1, . . . , xm, t) = G.

Let Z ⊂ Cm+1 be the zero locus of B(x1t, . . . , xmt) and let π denote the projec-
tion from Z to the (x1, . . . , xm) coordinates. By Equation (8), π surjects onto the
complement of the zero set of the polynomials B1, . . . , Bd in Cm.
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Let U denote the Zariski open set of Cm defined by BdG 6= 0. By the above
remarks, U is contained in the image of π. We now let V = π−1(U) ⊆ Z and let
X be the Zariski dense subset of U consisting of tuples of roots of unity. Since the
induced map V → U is a surjective finite morphism, π−1(X ) is dense V . For each
(ω1, . . . , ωm, θ) ∈ π−1(X ), we have the following:

• B(ω1t, . . . , ωmt) is a polynomial of degree d since Bd(ω1, . . . , ωm) 6= 0, and
θ is a root of this polynomial,

• F (ω1t, . . . , ωmt) =
A(ω1t, . . . , ωmt)

B(ω1t, . . . , ωmt)
, and

• the polynomials A(ω1t, . . . , ωmt) and B(ω1t, . . . , ωmt) do not have a com-
mon root thanks to (9) and the fact that G(ω1, . . . , ωm) 6= 0.

Therefore B(ω1t, . . . , ωmt) is the denominator of F (ω1t, . . . , ωmt). Then it follows
that the root θ must be a root of unity.

We have proved that every point in π−1(X ) is a tuple of roots of unity. Since
π−1(X ) is Zariski dense in the hypersurface Z, it follows that Z is a torsion coset
of Gm+1

m , see [BG06, Chapter 3] or [BNZ20, Section 3.2]. Then we use (8) and
[BG06, Chapter 3] to conclude that the defining polynomial B(x1t, . . . , xmt) of Z
must have the form 1 − ζtkxn1

1 · · ·xnm
m for some root of unity ζ, k ∈ {1, . . . , d}

and (n1, . . . , nm) ∈ Nm
0 with n1 + · · · + nm = k. Consequently, B(x1, . . . , xm) =

1− ζxn1

1 · · ·xnm
m and this finishes the proof. �

Proof of Theorem 1.1(b). This immediately follows from Theorem 1.1(a) and The-
orem 3.7. �
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[Pól22] G. Pólya, Sur les séries entières à coefficients entiers. Proc. London Math. Soc. (2) 21

(1922), 22–38.
[vdPS96] A. J. van der Poorten and I. Shparlinski, On linear recurrence sequences with polynomial

coefficients. Glasg. Math. J. 38 (1996), 147–155.
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