Integral Bases for P-Recursive Sequences∗

Shaoshi Chena,b, Lixin Duα,b,c, Manuel Kauersc, and Thibaut Verronc

aKLMM, Academy of Mathematics and Systems Science, Chinese Academy of Sciences, Beijing 100190, China
bSchool of Mathematical Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
cInstitute for Algebra, Johannes Kepler University, Linz, A4040, Austria

schen@amss.ac.cn, dulixin17@mails.ucas.ac.cn, manuel.kauers@jku.at, thibaut.verron@jku.at

ABSTRACT

In an earlier paper, the notion of integrality known for algebraic number fields and fields of algebraic functions has been extended to D-finite functions. The aim of the present paper is to extend the notion to the case of P-recursive sequences. In order to do so, we formulate a general algorithm for finding all integral elements for valued vector spaces and then show that this algorithm includes not only the algebraic and the D-finite cases but also covers the case of P-recursive sequences.

ACM Reference Format:

1 INTRODUCTION

Singularities play an essential role in algorithms for analyzing recurrence or differential equations, and for symbolic summation and integration. The “local” behaviour at a singularity typically gives rise to severe restrictions of the possible “global” shape of a solution, and such restrictions are exploited in the design of algorithms for finding such solutions. It is therefore important to have access to information about what is going on at the singularities. Integral bases provide such access.

For algebraic number fields and algebraic function fields, this is a classical notion. Let \(K = \mathbb{C}(x) \) be the field of rational functions in \(x \) over a field \(\mathbb{C} \) and \(k = k(\alpha) \) be an algebraic extension of \(\mathbb{C} \). Every element of \(K \) has a minimal polynomial \(m \in \mathbb{C}[x][y] \). An element of \(K \) is called integral if all its series expansions only involve terms with nonnegative exponents. The integral elements form a \(\mathbb{C}[x] \)-submodule of \(K \), which somehow plays the role in \(\mathbb{C} \) that \(\mathbb{Z} \) plays in \(\mathbb{Q} \). An integral basis of \(K \) is a \(k \)-vector space basis of \(K \) which at the same time is a \(\mathbb{C}[x] \)-module basis of the module of integral elements.

Trager [2–4, 17] used integral bases in his integration algorithm for algebraic functions. This was one of the motivations for introducing the notion of integral D-finite functions [14], which were then used not only for integration [5] but also for solving differential equations in terms of hypergeometric series [11, 12]. Also for D-finite functions, integrality is defined in terms of the exponents appearing in the series expansions. The goal of the present paper is to introduce a notion of integrality for the recurrence case. Our hope is that this work will subsequently be useful for the development of new summation algorithms.

A major difference between the differential case and the shift case is the fact that singularities are no longer isolated points \(a \in \mathbb{C} \). Instead, as pointed out for instance in [19], singularities should be viewed as orbits \(a + \mathbb{Z} \subset \mathbb{C}/\mathbb{Z} \) consisting of some \(a \in \mathbb{C} \) together with all elements of \(C \) that have integer distance to \(a \). Instead of certain kinds of series solutions at \(a \) of differential operators or algebraic equations, we have to consider certain kinds of sequence solutions \(a + \mathbb{Z} \rightarrow C \) of a recurrence operator. This makes the matter considerably more technical.

We proceed in two stages. In the first stage (Sections 2 and 3), we give a general formulation of the algorithm proposed by van Hoeij for algebraic function fields [18] and adapted to D-finite functions by Kauers and Koutschan [14]. The general formulation applies to arbitrary valued vector spaces, and we identify the computational assumptions on which the correctness and termination arguments of the algorithms are based. In Section 4, we show how it indeed generalizes the previous algorithms. In the second stage (Section 5), we show how the general setting developed in Sections 2 and 3 can be applied to the shift case.

2 VALUE FUNCTIONS AND INTEGRAL ELEMENTS

In this section, we recall basic terminologies about valuations on fields and vector spaces from [10, 16, 20]. Let \(k \) be a field of characteristic zero and \(\Gamma \) be a totally ordered abelian group, written additively, and let \(\Gamma_{\infty} = \Gamma \cup \{\infty\} \) in which \(\alpha + \infty = \infty + \alpha = \infty \) for all \(\alpha \in \Gamma_{\infty} \) and \(\beta < \infty \) for all \(\beta \in \Gamma \). A mapping \(v : k \rightarrow \Gamma_{\infty} \) is called a valuation on \(k \) if for all \(a, b \in k \),

(i) \(v(a) = \infty \) if and only if \(a = 0 \);
(ii) \(v(ab) = v(a) + v(b) \);
(iii) \(v(a + b) \geq \min\{v(a), v(b)\} \).
The pair (k, v) is called a \textit{valued field} and $v(k \setminus \{0\}) \subseteq \Gamma$ is called the \textit{value group} of v. The set $O(k, v) := \{a \in k \mid v(a) \geq 0\}$ forms a subring of k that is called the \textit{valuation ring} of v.

\textbf{Example 1.} A typical example of a valued field is the field of rational functions. Let \mathbb{C} be a field of characteristic 0 and $\Gamma = \mathbb{Z}$. For any irreducible $p \in \mathbb{C}[x]$ and $f \in \mathbb{C}(x) \setminus \{0\}$, we can always write $f = p^m a/b$ for some $m \in \mathbb{Z}$ and $a, b \in \mathbb{C}[x]$ with $\gcd(a, b) = 1$ and $p \nmid \text{af}$. The valuation $v_p(f)$ at p is defined as the integer m. Set $v_p(0) = \infty$. Then $(\mathbb{C}(x), v_p)$ is a valued field with $O_{\mathbb{C}(x), v_p} = \{f \in \mathbb{C}(x) \mid v_p(f) \geq 0\}$ being a local ring with its maximal ideal generated by p. The valuation v_∞ defined by $v_\infty(f) = \deg_a(b) - \deg_a(a)$ for any $f = a/b \in \mathbb{C}(x)$ is called the valuation at ∞. Any valuation v on the field $\mathbb{C}(x)$ is either v_∞ or v_p for some irreducible $p \in \mathbb{C}[x]$ (see [6, Chapter 1, § 3]) in the language of places. When $p = x - z$ with $z \in \mathbb{C}$, we will write v_z instead of v_p. For $z \in \mathbb{C}$, the field of formal Laurent series $\mathbb{C}((x - z))$ admits a valuation $v_{(z)}$ defined as $v_{(z)}(\sum_{n \geq \nu} \gamma_n (x - z)^n) = n$, where $c_0 \neq 0$. Any $r \in \mathbb{C}(x)$ admits a representation $r_L \in C((x - z))$ with $v_{(z)}(r) = v_{(z)}(r_L)$.

\textbf{Definition 2.} Let V be a vector space over a valued field (k, v). A \textit{map} $v : V \rightarrow \Gamma$ is called a \textit{valuation function} on V if for all $x, y \in V$ and $a \in k$,

(i) $v(x) = \infty$ if and only if $x = 0$;
(ii) $v(ax + by) \geq \min\{v(ax), v(by)\}$;
(iii) $v(x + y) \geq \min\{v(x), v(y)\}$.

The pair (V, v) is called a valued vector space over k. An element $x \in V$ is said to be integral if $v(x) = 0$.

\textbf{Remark 3.} Let U be any subspace of a valued vector space (V, v). Then the restriction of v on U is also a valuation function on U, which makes (U, v) a valued vector space.

\textbf{Proposition 4.} Let (k, v) be a valued field and (V, v) be a valued vector space over k. The set $O_{V, v} \subseteq V$ of all integral elements in V forms an $O_{(k, v)}$-module.

\textbf{Proof.} For any $a, b \in O_{(k, v)}$ and $x, y \in O_{V, v}$, we have

$$v(ax + by) \geq \min\{v(ax), v(by)\} = \min\{v(a) + v(x), v(b) + v(y)\}.$$

Since $v(a), v(b) \geq 0$ and $v(x), v(y) \geq 0$, we have $v(ax + by) \geq 0$. So $ax + by \in O_{V, v}$.

A k-vector space basis of a valued vector space (V, v) which is at the same time an $O_{(k, v)}$-module basis of $O_{V, v}$ is called a (local) integral basis with respect to v. Assume that the module $O_{(V, v)}$ has a local integral basis $\{x_1, \ldots, x_r\}$ and $x = a_1 x_1 + \cdots + a_r x_r \in V$. Then $v(x) \geq 0$ if and only if $v(a_i) \geq 0$ for all $i = 1, \ldots, r$. When does a local integral basis exist and how to construct such a basis is the main problems we study in this paper. Value functions and integral bases for algebraic function fields have been extensively studied both theoretically [6, 9, 16] and algorithmically [17–19] and have also been extended to the D-finite case [14].

\textbf{Example 5.} (See [16, Example 3.3]) Any finite dimensional k-vector space can be equipped with a valuation. More precisely, let V be a vector space over a valued field (k, v) of dimension r. Let $\{B_1, \ldots, B_r\}$ be a basis of V. Take values y_1, \ldots, y_r in Γ and define $v_0 : V \rightarrow \Gamma \cup \{\infty\}$ by for all $a_1, \ldots, a_r \in k$,

$$v_0 \left(\sum_{i=1}^r a_i B_i \right) = \min\{v_0(y_1 + v(a_1)), \ldots, v_0(y_r + v(a_r))\}.$$

It is easy to check that v_0 is a valuation function on V.

\textbf{Example 6.} Let k be an algebraically closed field of characteristic 0, $k = C(x)$ and v_2 be the valuation of k at $z \in C$ as in Example 1. Then (k, v_2) is a valued field. Let $K = k(\beta)$ with β being algebraic over $C(x)$. Any nonzero element $B \in K$ can be expanded as a Puiseux series of the form

$$B = \sum_{i=0}^r c_i (x - z)^{r_i},$$

where $c_i \in C$ with $c_0 \neq 0$ and $r_i \in \mathbb{Q}$ with $r_0 < r_1 < \cdots$. The value function $v_{a_2} : K \rightarrow \Gamma \cup \{\infty\}$ is then defined by $v_{a_2}(B) = r_0$ for nonzero $B \in K$ and $v_{a_2}(0) = \infty$. In this setting, $O_{K, v_{a_2}}$ is a free $C[x]$-module.

\textbf{Example 7.} Let C be an algebraically closed field of characteristic 0 and consider a linear differential operator $L = l_0 + \cdots + l_r D^r \in C(x)[D]$ with $l_r \neq 0$. The projective module $V = C(x)[D]/L$ is a $C(x)$-vector space with $1, D, \ldots, D^r - 1$ as a basis. Its element 1 is a solution of L. If $z \in C$ is a so-called regular singular point of L [13], then there are r linearly independent solutions in the $C(x)$-vector space generated by

$$C[[[x - z]]] = \bigcup_{n \in \mathbb{C}} (x - z)^n C[[x - z]][\log(x - z)].$$

Following [14], we construct a function value $v_{a_2}(\cdot)$ on V as follows. First choose a function $i : C/\mathbb{Z} \times H \rightarrow C$ with $i(\nu + \mathbb{Z}, j) \in \nu + \mathbb{Z}$ for every $\nu \in C$ and $j \in H$, with

$$i(v_1 + \mathbb{Z}, j_1) + i(v_2 + \mathbb{Z}, j_2) - i(v_1 + \mathbb{Z} + \mathbb{Z}, j_1 + j_2) \geq 0$$

for every $v_1, v_2 \in C$ and $j_1, j_2 \in \mathbb{N}$, and with $i(0, 0) = 0$. This function picks from each \mathbb{Z}-equivalence class in C a canonical representative.

Using this auxiliary function, the valuation $v_{a_2}(\cdot)$ of a term $t := (x - z)^{r+i} \log(x - z)^j$ is the integer $r + i + \nu(t + i, j)$, and the valuation $v_{a_2}(f)$ of a series $f \in C[[[x - z]]]$ is the minimum of the valuations of all the terms appearing in it (with nonzero coefficients). The valuation of 0 is defined as ∞.

The value function $v_{a_2}(\cdot) : V \rightarrow \Gamma \cup \{\infty\}$ is then defined as the smallest valuation of a series $B \cdot f$, when f runs through all solutions of L. We now check that the function v_{a_2} is indeed a valuation function.

(i) Let $B \in V$. Clearly if $B = 0$, $v_{a_2}(B) = \infty$ for all $a \in C$. Conversely, assume that $v_{a_2}(B) = \infty$, then by definition $v_{a_2}(B \cdot f) = \infty$ and so $B \cdot f = 0$ for all $f \in \text{Sol}_a(L)$, which implies that the dimension of the solution space of B is at least r. But the order of B is less than r, and the dimension of the solution space of a nonzero operator cannot exceed its order, so it follows that $B = 0$.

(ii) For any $a \in C(x) \subseteq C[[[x - \alpha]]]$ and $f \in C[[[x - \alpha]]]$, the valuation of $a f$ is the sum of the valuations of a and f by definition. Then for any $B \in V$, $v_{a_2}(aB) = \min\{v_{\text{Sol}_a(L)}(aB), v_{a_2}(B \cdot f)\}$, which is then equal to $v_{a_2}(a) + v_{a_2}(B)$. By $v_{a_2}((B_1 + B_2) \cdot f)) \geq \min\{v_{a_2}(B_1 \cdot f), v_{a_2}(B_2 \cdot f)\}$ for all $f \in \text{Sol}_a(L)$, we have for any $B_1, B_2 \in V$,

$$v_{a_2}(B_1 + B_2) \geq \min\{v_{a_2}(B_1), v_{a_2}(B_2)\}.$$
When \(\Gamma = \mathbb{Z} \), the valued field \((k, v)\) can be endowed with a topology. We summarize here the relevant constructions, more details can be found in [15, Chapter 2]. For \(a \in k \), let \(|a| = e^{-v(a)} \). The properties of the valuation ensure that \(|\cdot|\) is an absolute value, called the \(v\)-adic absolute value. This absolute value defines a topology on \(k \), in which elements are “small” if their valuation is “large”.

Recall that a sequence of elements \((c_n) \in k^\mathbb{N} \) is said to be Cauchy if for each \(\epsilon > 0 \), there exists \(N \in \mathbb{N} \) such that for every \(m, n > N \), \(|c_m - c_n| < \epsilon \), or, equivalently, if for each \(M \in \mathbb{Z} \), there exists \(N \in \mathbb{N} \) such that for every \(m, n > N \), \(v(c_m - c_n) > M \). The field \(k \) is said to be complete if every Cauchy sequence is convergent.

The completion of \(k \) is a minimal field extension \(k_\mathbb{R} \) which is complete. It can be constructed as follows. As a set, let \(k_\mathbb{R} \) be the set of all Cauchy sequences in \(k \), modulo the equivalence relation \((c_n) \equiv (d_n) \Leftrightarrow (c_n - d_n) \) converges to \(0 \) at infinity. The field \(k \) is contained in \(k_\mathbb{R} \) via the constant sequences. Ring operations on \(k \) extend to \(k_\mathbb{R} \), component-wise, and make \(k_\mathbb{R} \) a field. The valuation \(v \) on \(k_\mathbb{R} \) is defined by \(v(\sum_n a_n c_n) = \inf_n v(a_n) \), and \(|a|_v = e^{-\lim_n v(a_n)} \) for \(a \in k_\mathbb{R} \). We have \(\lim_n v(a_n) = -\inf_n v(a_n) \).

An important feature of the topology on \(k \) and \(k_\mathbb{R} \) is that the \(v\)-adic absolute value is ultrametric: it satisfies the stronger triangular inequality \(|a + b| \leq \max\{|a|, |b|\} \). In particular, any series \(\sum_n a_n \) with \(a_n \in k_\mathbb{R} \) and \(|a_n|_v \to 0 \) is convergent in \(k_\mathbb{R} \).

Example 8. The completion of \(C(x) \) w.r.t. the valuation \(v_2 = C((x-z)) \), and its completion w.r.t. \(v_\infty \) is \(C(1/x) \).

These definitions extend naturally to a valued \(k\)-vector space. Just like in the case of fields, the hypotheses (i) and (iii) of Definition 2 ensure that we can define a norm on \(V \) by setting \(||x|| = e^{-\val(v)} \). This turns \(V \) into a topological vector space: addition and scalar multiplication are continuous.

Part (ii) of Definition 2 further ensures that \(|xv| = |x| \cdot ||v||\) for \(x \in k \), \(v \in V \). In particular, if a sequence \((a_n v) n \in \mathbb{N} \) in \(k \) converges to \(0 \), then \((a_n v) n \in \mathbb{N} \) converges to \(0 \) in \(V \).

More generally, if \(B_1, \ldots, B_r \in V \) and \((a_n(1)), \ldots, (a_n(r)) \) are sequences in \(k \) converging to \(a_1, \ldots, a_r \), respectively, then the sequence \((a_n(1) B_1 + \cdots + a_n(r) B_r) \) in \(V \) converges to \(a_1 B_1 + \cdots + a_r B_r \).

Let \(V_\mathbb{R} \) be the \(k\)-vector space obtained from scalar extension of \(V \). If \(V \) is finite dimensional and \(B_1, \ldots, B_r \) is a basis, \(V_\mathbb{R} \) can be seen as the \(k\)-vector space generated by \(B_1, \ldots, B_r \), identifying its elements with elements of \(V \) whenever possible, and it is the completion of \(V \) with respect to the above topology.

Remark 9. The inequality \(\dim_k V_\mathbb{R} \leq \dim_k V \) always holds, but it may happen that the inequality is strict. For example, consider \(C(x) \) as a \(C(x)\)-vector space, with valuation \(v = v_0 \), and let \(V \) be a \(r\)-dimensional sub-vector space of \(C(x) \). Then \(V_\mathbb{R} = C((x)) \) has dimension 1 over \(C((x)) \).

3 COMPUTING INTEGRAL BASES

In this section, we present a general algorithm for computing local and global integral bases of valued vector spaces and conditions on the termination of this algorithm.

3.1 The local case

Given a valued field \((k, v)\), a basis of a \(k\)-vector space \(V \) of dimension \(r \), and a value function \(\val \) on \(V \), our goal is to compute a local integral basis of \(V \) if it exists. The algorithm described below is based on the algorithm given by van Hoeij [18] for computing integral bases of algebraic function fields. It also covers the adaption by Kauers and Koutschan to D-finite functions [14]. For simplicity, we restrict to the case \(\Gamma = \mathbb{Z} \).

For the algorithm to apply in the general setting, we need to make the following assumptions.

(A) Arithmetic in \(k \) and \(V \) is constructive, and \(v \) and \(\val \) are computable.

(B) We know an element \(x \in k \) with \(v(x) = 1 \).

(C) For any given \(B_1, \ldots, B_d \in V \), we can find \(a_1, \ldots, a_d \) in \(k \) such that

\[
\val(a_1 B_1 + \cdots + a_d B_d) > 0
\]

or prove that no such \(a_i \)’s exist.

(D) The completion \(V_\mathbb{R} \) of \(V \) has dimension \(r \).

Algorithm 10. Input: a \(k\)-vector space basis \(B_1, \ldots, B_r \) of \(V \)

Output: a local integral basis of \(V \) w.r.t. \(\val \)

1 for \(d = 1, \ldots, r \), do:
2 \(\text{replace } B_d \text{ by } x^{-\val(B_d)} B_d \)
3 while there exist \(a_1, \ldots, a_d \in k \) such that
4 \(\val(a_1 B_1 + \cdots + a_d B_d) > 0 \),
5 choose such \(a_1, \ldots, a_d \).
6 return \(B_1, \ldots, B_r \).

Theorem 11. Alg. 10 is correct.

Proof. We show by induction on \(d \) that for every \(d = 1, \ldots, r \), the output elements \(B_1, \ldots, B_d \) form a local integral basis for the subspace of \(V \) generated by the input elements \(B_1, \ldots, B_d \). From the updates in lines 2 and 5, it is clear that the output elements generate the same subspace, so the only claim to be proven is that they are also module generators for the module of integral elements.

For \(d = 1 \), line 2 ensures that \(\val(B_1) = 0 \), and no further change is going to happen in the while loop. When \(\val(B_1) = 0 \), then the integral elements of the subspace generated by \(B_1 \) are precisely the elements \(u B_1 \) for \(u \in k \) with \(v(u) \geq 0 \), so \(B_1 \) is an integral basis.

Now assume that \(d \) is such that \(B_1, \ldots, B_{d-1} \) is an integral basis, and let \(B_d \in V \). After executing line 2, we may assume \(\val(B_d) \geq 0 \).

After termination of the while loop, we know that there are no \(a_1, \ldots, a_d \in k \) such that \(\val(a_1 B_1 + \cdots + a_d B_d) > 0 \). Let \(a_1, \ldots, a_d \in k \) be such that \(A = a_1 B_1 + \cdots + a_d B_d \) is an integral element. We have to show that \(v(a_i) \geq 0 \) for \(i = 1, \ldots, d \).

We cannot have \(v(a_d) < 0 \), otherwise, \(\val(a_d^{-1} A) > 0 \), which would contradict the termination condition of the while loop. Thus \(v(a_d) \geq 0 \). But then, \(\val(a_d B_d) \geq 0 \), so \(A - a_d B_d \) is also integral. Since \(A - a_d B_d \) is in the \(k\)-subspace generated by \(B_1, \ldots, B_{d-1} \) and the latter is an integral basis by induction hypothesis, it follows that \(v(a_i) \geq 0 \) for \(i = 1, \ldots, d - 1 \).

We prove that under the assumptions (A), (B), (C), the termination of Alg. 10 is equivalent to assumption (D). It is moreover equivalent to the the existence of a discriminant function, which is defined as follows and generalizes the corresponding notion for fields of algebraic numbers or functions. With such a function at hand, we can also bound the number of iterations of the main loop.
Definition 12. Let \((V, \text{val})\) be a valued vector space of finite dimension \(r\) over a valued field \((k, \nu)\) with the value group \(\mathbb{Z}\). Let \(x \in k\) be such that \(\nu(x) = 1\) and \(\mathbb{V}^r\) denote the set of all bases of \(V\). A map \(\text{Disc} : \mathbb{V}^r \to \mathbb{Z}\) is called a discriminant function on \(V\) if for every basis \(B_1, \ldots, B_r\) of \(V\), we have

(i) \(\gamma \equiv \text{Disc}(\{B_1, \ldots, B_r\}) \geq 0\) if all the \(B_i\)'s are integral in \(V\).
(ii) for all \(a_1, \ldots, a_{d-1} \in k\) with \(d \leq r\), \(\text{Disc}(B_1, \ldots, B_{d-1}, a_1B_1 + \cdots + a_{d-1}B_{d-1} + B_d, B_{d+1}, \ldots, B_r) = \gamma\).
(iii) \(\text{Disc}(B_1, \ldots, B_{d-1}, x^{-1}B_d, B_{d+1}, \ldots, B_r) < \gamma\).

Theorem 13. Let \((V, \text{val})\) be a valued vector space of finite dimension \(r\) over a valued field \((k, \nu)\) with the value group \(\mathbb{Z}\). Then the following four statements are equivalent under the hypotheses (A), (B), (C).

(a) There is a local integral basis of \(V\) w.r.t. \(\text{val}\).
(b) There is a discriminant function \(\text{Disc} : \mathbb{V}^r \to \mathbb{Z}\).
(c) Alg. 10 terminates.
(d) The topological assumption (D) on \(V\) is satisfied.

Proof. (c) \(\Rightarrow\) (a) follows from Theorem 11.

(a) \(\Rightarrow\) (b): Given a local integral basis \([C_1, \ldots, C_r]\) and a basis \(B = \{B_1, \ldots, B_r\}\) of \(V\) with \(B_i = \sum_{j<i} b_{ij}C_j\) for some \(b_{ij} \in k\), the discriminant function can be defined as

\[
\text{Disc}(B) = \nu(\det((b_{ij}))_{i,j=1}^r)).
\]

(b) \(\Rightarrow\) (c): By assumption (B), there exists \(x \in k\) such that \(\nu(x) = 1\). Let \(B_1, \ldots, B_r\) be any basis of \(V\) over \(k\). We may always assume that \(\text{val}(B_i) = 0\) by replacing \(B_i\) by \(x^{-\text{val}(B_i)}B_i\) for all \(i\). It suffices to show that Alg. 10 terminates on \(\{B_1, \ldots, B_r\}\). Let \(\gamma = \text{Disc}(\{B_1, \ldots, B_r\}) \in \mathbb{N}\). At any intermediate step of Alg. 10, \(B_1, \ldots, B_r\) are always integral and form a basis of \(V\). If \(\alpha_i\)'s exist in the while loop, \(\gamma\) decreases strictly. So there can be at most \(\gamma\) basis updates, which implies that Alg. 10 terminates.

(d) \(\Rightarrow\) (c): Assume that for some \(d \in \{1, \ldots, r\}\), the inner loop does not terminate. Let \(B_{d,i}\) be the value of \(B_d\) before entering the \(i\)th iteration, and let \(\tilde{B}_{d,i} = x^iB_{d,i}\). The operation for computing \(B_{d,i}\) from \(B_{d,i-1}\) (step 5) ensures that for all \(i\), \(\text{val}(B_{d,i}) \geq 0\) and \(\text{val}(\tilde{B}_{d,i}) \geq i\). For all \(i \in \mathbb{N}\), there exists \(a_{i,j} \in k\) for \(j \in \{0, \ldots, d-1\}\) such that

\[
B_{d,i} = x^iB_{d,i-1} + \sum_{j=0}^{d-1} a_{i,j}B_j
\]
and \(B_{d,i}\) has valuation 0. We can unroll the sum as

\[
\tilde{B}_{d,i} = B_{d,0} + \sum_{j=0}^{d-1} \left(\sum_{\ell=0}^{i-1} x^\ell a_{i,j}\ell\right)B_j.
\]

Viewing this equality in \(V\) and taking the limit as \(i \to \infty\) yields

\[
\tilde{B}_{d,\infty} = \lim_{i \to \infty} \tilde{B}_{d,i} = B_{d,0} + \sum_{j=0}^{d-1} \left(\sum_{\ell=0}^{\infty} x^\ell a_{i,j}\ell\right)B_j.
\]
Furthermore, \(\tilde{B}_{d,\infty}\) has valuation \(\infty\), so it is zero and

\[
B_{d,0} = -\sum_{j=0}^{d-1} \left(\sum_{\ell=0}^{\infty} x^\ell a_{i,j}\ell\right)B_j\quad\text{in } V_r.
\]

But by hypothesis (D), \(V_r\) has dimension \(r\), so \(B_1, \ldots, B_r\) must be linearly independent over \(k_r\) too, a contradiction. So the loop terminates.

(c) \(\Rightarrow\) (d): Let \(B_1, \ldots, B_r\) be the output of Alg. 10. If the dimension falls, then there exist some \(a_i \in k\) and \(d \leq r\) such that \(B_{d} = \sum_{i=1}^{d-1} a_i B_i\). For each \(i\), let \(a_{i,j}\) be a sequence in \(k\) converging to \(a_i\). Let \(B_{d,i} = B_d - \sum_{i=1}^{d-1} a_{i,j}B_{d,f}\). By assumption, \(\tilde{B}_{d,i}\) goes to 0 when \(j\) goes to infinity, so its valuation goes to infinity. We can assume \(\text{val}(\tilde{B}_{d,i}) \geq j\). Then \(\tilde{B}_{d,i} = x^{-j}\tilde{B}_{d,i}\) is an infinite sequence such that Alg. 10 does not terminate, a contradiction.

3.2 The global case

In a next step, we seek integral bases with respect to several valuations simultaneously. Instead of a single valuation \(\text{val} : V \to \mathbb{Z} \cup \{\infty\}\), we have a set of valuations \(\nu : k \to \mathbb{Z} \cup \{\infty\}\) and a set of value functions \(\nu : V \to \mathbb{Z} \cup \{\infty\}\). We want to find a vector space basis \(B_1, \ldots, B_r\) of \(V\) that is also an \(O_{k,\nu}\)-module basis of \(O_{\nu'}\) for every \(\nu' \in \mathcal{N}\). The idea is to apply Alg. 10 repeatedly. In order to make this work, we impose the following additional assumptions:

(B') For every \(\nu' \in \mathcal{N}\), we know an element \(x_{\nu'} \in k\) with \(\nu_{\nu'}(x_{\nu'}) = 1\) and \(\nu_{\nu'}(x_{\nu'}) = 0\) for all \(\alpha \notin \nu'\).

(C') For every \(\nu' \in \mathcal{N}\) and any given \(B_1, \ldots, B_d \in V\), we can compute \(a_1, \ldots, a_{d-1} \in k\) with \(\nu_{\nu'}(a_i) \geq 0\) for all \(i\) and all \(\alpha \in \nu'\).

Under these circumstances, we can proceed as follows.

Algorithm 14. Input: a \(k\)-vector space basis \(B_1, \ldots, B_r\) of \(V\) which is an integral basis for all \(\nu \in \mathcal{N}\). Output: an integral basis for all \(\nu \in \mathcal{N}\).

1. for all \(\nu \in \mathcal{N}\), do:
2. apply Alg. 10 to \(B_1, \ldots, B_r\) using \(\nu\), \(\text{val}\), and \(x_{\nu}\) in place of \(\nu\), \(\text{val}\), and \(x\) and ensuring in step 3 that \(\nu_{\nu'}(a_i) \geq 0\) for all \(i\) and all \(\alpha \in \nu'\).
3. replace \(B_1, \ldots, B_r\) by the output of Alg. 10.
4. return \(B_1, \ldots, B_r\).

Theorem 15. Alg. 14 is correct.

Proof. We only have to show that one application of Alg. 10 does not destroy the integrality properties arranged in earlier calls. To see that this is the case, consider the effects of steps 2 and 5 with respect to a value function other than \(\text{val}\). If \(\text{val}\) is such a function, then by (B'), \(\forall \nu , \nu' (x_{\nu}) = 0\), so \(B_1, \ldots, B_d \in V\) and \(B_1, \ldots, B_d \in \mathcal{N}\) generate the same \(O_{k,\nu',\nu'}\)-module, for any \(\nu' \in \mathcal{N}\). Hence this step is safe. Likewise, by the choice of the \(a_i\) in step 5, \(\{B_1, \ldots, B_d\}\) and \(\{B_1, \ldots, B_d, B_{d+1}\}\) generate the same \(O_{k,\nu',\nu'}\)-module. So this step is safe too.
3.3 Avoiding constant field extensions

We shall discuss one more refinement, which also appears already in earlier versions of the algorithm [11, 14, 18]. In applications, we typically have $k = \hat{C}(x)$ where C is a field and \hat{C} is an algebraic closure of C, with the usual valuation v_z for $z \in \hat{C}$ (see Example 1). For this valuation, $x_z = x - z$ is a canonical choice.

For theoretical purposes it is advantageous to work with vector spaces over k, but computationally it would be preferable to work with coefficients in $C(x)$ rather than $\hat{C}(x)$. It is therefore desirable to ensure that the basis elements returned by Alg. 14 have coefficients in $C(x)$ with respect to the input basis.

Note that in this setting, we have the following properties:

Lemma 16. (1) For every automorphism $\sigma : \hat{C} \to \hat{C}$ leaving C fixed, for every $z \in Z$, and for every $u \in C(x)$, we have $v_z(u) = v_{\sigma(z)}(\sigma(u))$, where $\sigma(u)$ is the element of $\hat{C}(x)$ obtained by applying σ to the coefficients of u.

(2) For every $u \in \hat{C}(x) \setminus \{0\}$, and for every $z \in Z$, u admits a unique Laurent series expansion

$$u = c_z(x - z)^{v_z(u)} + (x - z)^{v_z(u)+1}r,$$

with $c_z \in \hat{C} \setminus \{0\}$ and $v_z(r) \geq 0$.

The constant c_z in item 2 is called the leading coefficient of u.

The second property of the lemma ensures that the coefficients $a_1, \ldots, a_{d-1} \in \hat{C}(x)$ from (C) and (C') can be chosen in \hat{C}. Indeed, we can replace a_i by its leading coefficient if $v_z(a_i) = 0$ and by zero otherwise, because whenever $a_1, \ldots, a_{d-1} \in C(x)$ is a solution and $b_1, \ldots, b_{d-1} \in \hat{C}(x)$ are arbitrary with $v_z(b_i) \geq 1$ for all i, then also $a_1 + b_1, \ldots, a_{d-1} + b_{d-1}$ is a solution.

If we restrict a_1, \ldots, a_{d-1} to \hat{C}, then there can be at most one solution whenever we seek a solution in step 3 of Alg. 10, because the difference of any two distinct solutions would be a nontrivial \hat{C}-linear combination of B_1, \ldots, B_{d-1}, and by the invariant of the outer loop, B_1, \ldots, B_{d-1} already form an integral basis of the k-subspace they generate.

We shall adopt the following last assumption, stating that we can apply σ on V:

(F) We know a basis B_1, \ldots, B_d as in (E) such that for every automorphism $\sigma : \hat{C} \to \hat{C}$ fixing C, and for all $a_1, \ldots, a_r \in k$, we have $v_z(\sigma(a_i)B_i) = v_z(\sigma(z))\sigma(a_i)B_i + \cdots + \sigma(\alpha_i)B_r$.

Using this assumption, it can further be shown that the unique elements $a_1, \ldots, a_{d-1} \in \hat{C}$ from (C') must in fact belong to $C(z)$ (if they exist at all). This is because if some a_i were in $\hat{C} \setminus C(z)$, then there would be some automorphism $\sigma : \hat{C} \to \hat{C}$ fixing $C(z)$ but moving a_i, and (F) would imply that $\sigma(a_1), \ldots, \sigma(a_d)$ would be another solution to (C'), in contradiction to the uniqueness.

In order to ensure that the output elements of Alg. 14 are $\hat{C}(x)$-linear combinations of the input elements, we adjust Alg. 10 as follows. Let G be the Galois group of $C(z)$ over C. In step 2, instead of replacing B_d by $x_z^{-v_z(\sigma(B_d))}$, we replace B_d by

$$\left(\prod_{\sigma \in G} \sigma(x_z)^{-v_z(\sigma(B_d))}\right)B_d.$$

Note that $\prod_{\sigma \in G} \sigma(x_z) = \prod_{\sigma \in G} \sigma(x-z)$ is the minimal polynomial of z in $C[x]$.

In step 5 of Alg. 10, we choose $a_1, \ldots, a_{d-1} \in C(z)$ (if there are any), and instead of replacing B_d by $x_z^{-1}(a_1B_1 + \cdots + a_{d-1}B_{d-1} + a_dB_d)$ (with $a_d = 1$), we replace B_d by

$$A := \sum_{i=1}^{d} \left(\sum_{\sigma \in G} \sigma(a_i) x_z^{-1}\right) B_i.$$

Proposition 17. When the steps 2 and 5 of Alg. 10 are adjusted as indicated, Alg. 14 returns an integral basis of V whose elements are $C(x)$-linear combinations of the input elements.

Proof. By Galois theory, $\prod_{\sigma \in G} \sigma(x_z) = \prod_{\sigma \in G} \sigma(x-z) \in C(x)$ and $\alpha_i := \sum_{\sigma \in G} \sigma(\alpha_i/x_z) \in C(x)$ for every i. Therefore, all updates in the modified Alg. 10 replace certain basis elements by $\hat{C}(x)$-linear combinations of basis elements.

It remains to show that the output is an integral basis for all $z \in Z$. To see this, we have to check the effect of Alg. 10 concerning val_z and concerning val_{ζ} for $\zeta \in Z \setminus \{z\}$. For the latter, we distinguish the case when ζ is conjugate to z and when it is not.

By part 1 of Lemma 16, for all $\zeta \in Z$ that are not conjugate to z we have $v_{\zeta}(\alpha_i) \geq 0$ for $i = 1, \ldots, d$ and $v_{\zeta}(\alpha_d) = 0$. Therefore, B_1, \ldots, B_{d-1} and A generate the same $O_{(k, v_{\zeta})}$-module as B_1, \ldots, B_{d-1} and B_d, for every $\zeta \in Z$ that is not conjugate to z. This settles the case when ζ is not conjugate to z.

Next, observe that $\text{val}_z(x_z^{-1}(a_1B_1 + \cdots + a_dB_d)) \geq 0$ by the assumptions on x_z, a_1, \ldots, a_d. Moreover, by part 1 of Lemma 16, $v_{\zeta}(\sigma(x-z)) = v_{\sigma^{-1}(z)}(x-z) = 0$ for every $\sigma \in G \setminus \{id\}$, and $v_{\zeta}(\sigma(a_i)) = v_{\sigma^{-1}(z)}(\alpha_i) \geq 0$ because $v_{\zeta}(\alpha_i) \geq 0$ for all ζ. Therefore $\text{val}_z(\sigma(x_z^{-1})\sigma(a_1)B_1 + \cdots + \sigma(a_d)B_d) \geq 0$ for every $\sigma \in G \setminus \{id\}$. It follows that

$$\text{val}_z(A) \geq \max_{\sigma \in G} \text{val}_z\left(\sum_{i=1}^{d} \sigma\left(\frac{\alpha_i}{x-z}\right) B_i\right) \geq 0.$$

Moreover, since $a_d = 1$ and $\text{val}_z(\alpha_i/x_z) \geq 0$ for all $\sigma \neq id$, we have that B_1, \ldots, B_{d-1} and A generate the same $O_{(k, v_{\zeta})}$-module as B_1, \ldots, B_{d-1} and $x_z^{-1}(a_1B_1 + \cdots + a_dB_d)$. This settles the concern about val_z.

Finally, if ζ is conjugate to z, say $\zeta = \sigma(z)$ for some automorphism $\sigma \in G$, then $\text{val}_z(\sigma(A)) = \text{val}_z(\sigma(A)) = \text{val}_z(A) \geq 0$ by assumption (F), because A is a $C(x)$-linear combination of the original basis elements. So A belongs to the $O_{(k, v_{\zeta})}$-module of all integral elements (w.r.t. val_z) of the subspace generated by B_1, \ldots, B_d in V, so we are not making the module larger than we should. Conversely, the old B_d belongs to the $O_{(k, v_{\zeta})}$-module generated by B_1, \ldots, B_{d-1} and A, so by updating B_d to A, the module generated by B_1, \ldots, B_d does not become smaller.

Informally, what happens by taking the sums over the Galois group is that the algorithm working locally at z simultaneously works at all its conjugates. If for a certain z, the set Z_0 contains z as well as its conjugates, it is fair (and advisable) to discard all the conjugates from Z_0 and only keep z. More precisely, the whole process requires only knowing the minimal polynomial of z in $C[x]$, so for applications where the set Z_0 is computed as the set of roots of some polynomial $p \in C[x]$, the algorithms can proceed with the factors of p instead of all its roots.
4 THE ALGEBRAIC AND D-FINITE CASES

We will see below how the algorithms in [14, 18] for computing integral bases are special cases of the general formulation in Section 3.

Let \mathcal{C} be a computable subfield of \mathbb{C} and $k = \mathcal{C}(x)$ with a valuation v_x for $z \in \mathcal{C}$. The value function v_x, on $V = k(\beta)$ with $\beta \in \mathcal{C}(x)$ is defined in Example 6 and on $V = \mathcal{C}(x)[D]/(L)$ with $L \in \mathcal{C}[x][D]$ is defined in Example 7. We show that the assumptions imposed on value functions in Section 3 are fulfilled in the algebraic and D-finite settings. Note that (B), (C), (D) are subsumed in (B'), (C'), (D'), respectively.

(A) It is assumed that C is a computable field, so it is clear that arithmetic in $\mathcal{C}(x)$ and V are computable, and v_x on $\mathcal{C}(x)$ is also computable. The value functions v_x for algebraic and D-finite functions are computable since we can determine first few terms of Puiseux or generalized series solutions by algorithms in [8, 13].

(B') For every $z \in \mathcal{C}$, we can take $x_2 = x - z$ such that $v_x(x_2) = 1$ and $v_x(x_2) = 0$ for all $\vec{z} \in Z \setminus \{z\}$. The value function v_x is defined in Example 6.

(C') Done in [14, Section 4].

(D') Clear.

(E) In the algebraic case, we can choose as Z_0 the set of singularities of $\beta \in \mathcal{C}(x)$ which is clearly a finite set. In the D-finite case, we can choose as Z_0 the set of zeros of ℓ_0 which are the only possible singularities by [14, Lemma 9].

(1) If r_0 and \bar{r} are conjugates, let σ be an element of the Galois group of \mathcal{C}/\mathbb{C} such that $\bar{r} = \sigma(r)$. In particular $\sigma(L) = L$ and $\sigma(B) = B$. For all $i \in \{1, \ldots, r\}$, $\sigma(f_{\alpha, i}) \in \mathcal{C}[[x - \bar{a}]]$ is a solution of $\sigma(L) = L$. Since σ is an automorphism, the $\sigma(f_{\alpha, i})$ form a fundamental system of L in $\mathcal{C}[[x - \bar{a}]]$. For all $i \in \{1, \ldots, r\}$, $B \cdot \sigma(f_{\alpha, i}) = \sigma(B) \cdot \sigma(f_{\alpha, i}) = \sigma(B \cdot f_{\alpha, i})$ and the equality of the value functions, and the equality of the value functions.

The termination of the general algorithm 10 in the algebraic and D-finite cases have been shown in [14, 18] by using classical discriminants and generalized Wronskians. The discriminant functions in these cases can be taken as the compositions of the valuation v_x and these functions. More precisely, for a basis B_1, \ldots, B_r of $V = k(\beta)$, the discriminant function $\text{Disc}(B_1, \ldots, B_r) = v_x(\det(\text{Tr}(B_i B_j)))$.

$\text{Disc}(B) = v_x(\det(\text{Tr}(B_i B_j)))$,

where Tr is the trace map from V to $\mathcal{C}(x)$. If B_1, \ldots, B_r are integral, $\det(\text{Tr}(B_i B_j)) \in \mathcal{C}(x)$ and then $\text{Disc}(B_1, \ldots, B_r) \in \mathbb{N}$. Let $a_1, \ldots, a_{d-1} \in k$, replacing B_d by $a_1 B_1 + \cdots + a_{d-1} B_{d-1} + B_d$ is equivalent to multiplying the matrix $(\text{Tr}(B_i B_j))$ left and right by elementary transformation matrices with determinant 1, so the determinant (and its valuation) are constant. Similarly, replacing B_d by $(x - z)^{-1} B_d$ is equivalent to multiplying the matrix $(\text{Tr}(B_i B_j))$ left and right by a matrix with determinant $(x - z)^{-1}$, so the discriminant decreases by 2. So Disc is indeed a discriminant function on $k(\beta)$.

In the case of D-finite functions, for any basis $B = \{B_1, \ldots, B_r\}$ of $V = \mathcal{C}(x)[D]/(L)$ and fundamental series solutions $b_1, \ldots, b_r \in \mathcal{C}[[x - z]]$, the generalized Wronskian is defined as

$$w_{L, \bar{z}}(B) := \det((B_i \cdot b_j)_{1 \leq i, j \leq r}) \in \mathcal{C}[[x - z]].$$

The discriminant function Disc can be defined as the valuation of $w_{L, \bar{z}}(B)$ at z. By the proof of Theorem 18 in [14], Disc is indeed a discriminant function on $\mathcal{C}(x)[D]/(L)$.

5 THE P-RECURSIVE CASE

5.1 Solution Spaces

For the case of recurrence operators, we use a setting that has already been used for instance in [1, 7, 19] in the context of finding hypergeometric solutions. The relevant parts of the construction are summarized in this section. We consider the Ore algebra $\mathcal{C}(x)[S]$ with the commutation rule $Sx = (x + 1)S$. We fix an operator $L = \ell_0 + \ell_1 S + \cdots + \ell_r S^r \in \mathcal{C}(x)[S]$ with $\ell_0, \ell_r \neq 0$, and we consider the vector space $V = \mathcal{C}(x)[S]/(L)$, where $(L) = \mathcal{C}(x)[S]$. The operator L acts on a sequence $f : \alpha + Z \to \mathcal{C}$ through $(L \cdot f)(z) := \ell_0(z) f(z) + \cdots + \ell_r(z) f(z + r)$ for all $z \in \alpha + Z$. This action turns $\mathcal{C}[\alpha + Z]$ into a left $\mathcal{C}(x)[S]$-module, but not to a left $\mathcal{C}(x)[S]$-module, because a sequence $f : \alpha + Z \to \mathcal{C}$ cannot meaningfully be divided by a polynomial which has a root in $\alpha + Z$.

In order to obtain a $\mathcal{C}(x)[S]$-module, consider the space $\mathcal{C}(\alpha)^{\alpha + Z}$ of all sequences $f : \alpha + Z \to \mathcal{C}(\alpha)$ whose terms are Laurent series in a new indeterminate α, and define the action of $L = \ell_0 + \cdots + \ell_r S^r \in \mathcal{C}(x)[S]$ on a sequence $f : \alpha + Z \to \mathcal{C}(\alpha)$ through $(L \cdot f)(z) := \ell_0(z + q) f(z) + \cdots + \ell_r(z + q) f(z + r)$ for all $z \in \alpha + Z$. Note that no $\ell_0 \in \mathcal{C}(x)$ can have a pole at $z + q$ for any $z \in \alpha + Z$ when $\alpha \in \mathcal{C}$ and $q \notin \mathcal{C}$.

For a fixed operator $L = \ell_0 + \cdots + \ell_r S^r \in \mathcal{C}(x)[S]$ with $\ell_0, \ell_r \neq 0$, the set $\text{Sol}(L) := \{ f : \alpha + Z \to \mathcal{C}(\alpha) : L \cdot f = 0 \}$ is a $\mathcal{C}(\alpha)$-\mathcal{C}-vector space of dimension r. Indeed, a basis b_1, \ldots, b_r is given by specifying the initial values $b_i(\alpha + j) = \delta_{i,j}$ for $i, j = 0, \ldots, r$ and observing that the operator L uniquely extends any choice of initial values indefinitely to the left as well as to the right. The reason is again that $q \notin \mathcal{C}$ implies $\ell_0(z + q), \ell_r(z + q) \neq 0$ for every $z \in \alpha + Z$, so there is no danger that computing a certain sequence term $b_i(z)$ from $b_i(z + 1), \ldots, b_i(z + r)$ or from $b_i(z - 1), \ldots, b_i(z + r)$ could produce a division by zero. Instead of a division by zero, we can only observe a division by q.

The valuation $v_q(a)$ of a nonzero Laurent series $a \in \mathcal{C}(\alpha)$ is the smallest $n \in \mathbb{N}$ such that the coefficient $[q^n] a$ of q^n in a is nonzero. We further define $v_q(0) = +\infty$. For a nonzero solution $f : \alpha + Z \to \mathcal{C}(\alpha)$ of an operator $L \in \mathcal{C}[x][S]$, we will be interested in how the valuation changes as z ranges through $\alpha + Z$. As we have noticed, there can be occasional divisions by q as we extend f towards the left or the right, so $v_q(f(z))$ can go up and down as z moves through $\alpha + Z$. In fact, it can go up and down arbitrarily often, as the solution $f : Z \to \mathcal{C}(\alpha)$, $f(z) = 1 + q - (1)^z$ of the operator $L = x^2 - 1$ shows. However, only when z is a root of ℓ_0 we can have

$$v_q(f(z)) = \min(v_q(f(z + 1)), \ldots, v_q(f(z + r))),$$

and only when z is a root of $\ell_r(x - r)$ we can have

$$v_q(f(z)) = \min(v_q(f(z - 1)), \ldots, v_q(f(z - r))).$$

Since the nonzero polynomials ℓ_0, ℓ_r have at most finitely many roots in $\alpha + Z$, we can conclude that both

$$\liminf_{n \to +\infty} v_q(f(\alpha + n)) \quad \text{and} \quad \liminf_{n \to +\infty} v_q(f(\alpha + n))$$
are well-defined for every solution \(f : \alpha + \mathbb{Z} \to \mathcal{C}(q) \) of \(L \). Their difference
\[
vg f := \liminf_{n \to \infty} v_q(f(\alpha + n)) - \liminf_{n \to \infty} v_q(f(\alpha + n))
\]
is called the valuation growth of \(f \).

5.2 A Value Function

In our context, solutions with negative valuation growth are troublesome, because we want to define the valuation of a residue class \(B \in \mathcal{C}(\alpha)[S]/(L) \) at \(z \) in terms of the valuations of the sequence terms \((B \cdot b)(z) \in \mathcal{C}(q) \), where \(b \) runs through \(\text{Sol}(L) \). When \(b \in \text{Sol}(L) \) has negative valuation growth, then we can have \(v_q((B \cdot b)(z)) < 0 \) for infinitely many \(z \), which makes it hard to meet assumption (E). Moreover, if all solutions have positive valuation growth, we have \(v_q((B \cdot b)(z)) > 0 \) for infinitely many \(z \), which is also in conflict with assumption (E). In order to circumvent this problem, we let \(Z \subseteq \mathcal{C} \) be such that for each orbit \(\alpha + \mathbb{Z} \) with \(Z \cap (\alpha + \mathbb{Z}) \neq \emptyset \) and for which \(L \) has a solution in \(\mathcal{C}(q)^{r \times r} \) with nonzero valuation growth, the set \(Z \cap (\alpha + \mathbb{Z}) \) has a (computable) right-most element. We then define the value function \(val_z : V \to \mathbb{Z} \cup \{0\} \) by
\[
val_z(B) := \min_{b \in \text{Sol}(L)} \left(v_q((B \cdot b)(z)) - \liminf_{n \to \infty} v_q(b(\alpha + n)) \right).
\]
We use the convention \(\infty - \infty = \infty \).

Proposition 18. \(val_z \) is a value function for every \(z \in \mathbb{Z} \).

Proof. We check the conditions of Def. 2.

(i) If \(B = 0 \), then \(B \cdot b \) is the zero sequence for every \(b \in \text{Sol}(L) \), so \(v_q((B \cdot b)(z)) = \infty \) for all \(z \in \mathbb{Z} \).

Conversely, let \(B \in \mathcal{C}(\alpha)[S] \) be such that \(val_z((B)) = \infty \). We may assume that the order of \(B \) is less than \(r \), so that \([B] = 0 \) is equivalent to \(B = 0 \). By \(val_z((B)) = \infty \) we have \(v_q((B \cdot b)(z)) = \infty \) for all \(b \in \text{Sol}(L) \), i.e., \((B \cdot b)(z) = 0 \) for all \(b \in \text{Sol}(L) \).

If \(b_1, \ldots, b_r \) is a basis of \(\text{Sol}(L) \), then the matrix
\[
M = ((b_j(z + i - 1)))_{i,j=1}^r \in \mathcal{C}(q)^{r \times r}
\]
is regular. Now if \(B \) were nonzero and \(\beta_k S^k \) is a nonzero term appearing in \(B \), then multiplying the \(k \)th row of \(M \) by \(\beta_k \) and adding suitable multiples of other rows to the \(k \)th row, we obtain a matrix whose \(k \)th row is 0, because \((B \cdot b_j)(z) = 0 \). On the other hand, the determinant of this matrix is equal to \(\beta_k \det(M) \neq 0 \), so \(B \) cannot be nonzero.

(ii) Clear by \(v_q((u \cdot f)(z)) = v_q(u) + v_q(f(z)) \) for all \(u \in \mathcal{C}(q) \) and \(f \in \mathcal{C}(q)^{r \times r} \).

(iii) Clear by \(v_q((B_1 + B_2) \cdot u)(z)) = v_q((B_1 \cdot u)(z) + (B_2 \cdot u)(z)) \geq \min(v_q((B_1 \cdot u)(z)), v_q((B_2 \cdot u)(z))) \) for all \(u \in \mathcal{C}(q)^{r \times r} \).

Next, we show that we can meet the computability assumptions of Section 3. Note again that \((B), (C), (D) \) are subsumed in \((B'), (C'), (D') \), respectively.

(A) It is assumed that \(C \) is a computable field, so it is clear that arithmetic in \(\mathcal{C}(x) \) and \(V \) are computable, and that \(v_z \) is computable. We show that \(val_z \) is computable as well.

Let \(\zeta \in z + \mathbb{Z} \) be such that all roots of \(\ell \ell \ell_r \) contained in \(z + \mathbb{Z} \) are to the right of \(\zeta \), and consider the basis \(b_1, \ldots, b_r \) of \(\text{Sol}(L) \) in \(\mathcal{C}(q)^{r \times r} \) defined by the initial values \(b_j(\zeta + i - 1) - \delta_{i,j} (i, j = 1, \ldots, r) \). We shall prove that for all \(\eta \in z + \mathbb{Z} \),
\[
val_q(B) = \min_{j=1}^r v_q((B \cdot b_j)(\eta)).
\]
Since we can compute \((B \cdot b_j)(\eta) \) for any \(j = 1, \ldots, r \) and \(\eta \in z + \mathbb{Z} \), this implies that \(val_q \) is computable. In particular, \(val_z \) is then computable.

We have \(\min_{j=1}^r v_q((b_j(\zeta + i - 1) - \delta_{i,j}) = 0 \) for \(j = 1, \ldots, r \) by construction, and in fact \(\lim_{n \to \infty} v_q(b_j(\zeta - n)) = 0 \) for \(j = 1, \ldots, r \), because at no position \(\zeta \) the valuation can be smaller than the minimum valuation of its \(r \) neighbors to the right or than the minimum valuation of its \(r \) neighbors to the left, due to the lack of roots of \(\ell \ell \ell_r \) in the range under consideration.

Let now \(b = c_1 b_1 + \cdots + c_r b_r \) for coefficients \(c_1, \ldots, c_r \) in \(\mathcal{C}(q) \). Let \(v := \min_{j=1}^r v_q(c_j) \). Assume that \(v = 0 \), and let \(\eta \) be such that \(v_q(\eta_0) = 0 \). Then for all \(\eta \in z + \mathbb{Z} \),
\[
\min_{j=1}^r v_q((B \cdot b_j)(\eta)) = \min_{j=1}^r v_q((B \cdot b_j)(\eta)).
\]
and \(v_q((B \cdot b_j)(\eta)) = \min_{j=1}^r v_q((B \cdot b_j)(\eta)) \).

Furthermore, by construction of the basis \(b_j \)'s, for all \(i \in \{1, \ldots, r\} \), \(b(\zeta + i - 1) = c_i \), so \(\min_{j=1}^r v_q(b(\zeta + i - 1)) = 0 \). Again, for lack of roots of \(\ell \ell \ell_r \) left of \(\zeta \), it implies that
\[
\lim_{n \to \infty} v_q(b(\zeta - n)) = 0.
\]
It follows from the above that
\[
v_q((B \cdot b)(\eta)) - \liminf_{n \to \infty} v_q(b(\eta - n)) \geq \min_{j=1}^r v_q((B \cdot b_j)(\eta)).
\]
Assume now that \(v = 0 \). In that case, consider \(q^{-v} b = q^{-v} c_1 b_1 + \cdots + q^{-v} c_r b_r \), with \(\min_{j=1}^r v_q(q^{-v} c_j) = 0 \). From the above,
\[
v_q((B \cdot q^{-v} b)(\eta)) - \liminf_{n \to \infty} v_q(q^{-v} b(\eta - n)) \geq \min_{j=1}^r v_q((B \cdot b_j)(\eta)) \]
\[
\liminf_{n \to \infty} v_q(b(\eta - n)) \geq \min_{j=1}^r v_q((B \cdot b_j)(\eta)).
\]
Since for all \(\eta \in z + \mathbb{Z} \) we have \(v_q(q^{-v} b(\eta)) = v_q(b(\eta)) - v \) and \(v_q((B \cdot q^{-v} b)(\eta)) = v_q((B \cdot b)(\eta)) - v \), it still holds that
\[
v_q((B \cdot b)(\eta)) - \liminf_{n \to \infty} v_q(b(\eta - n)) \geq \min_{j=1}^r v_q((B \cdot b_j)(\eta)),
\]
so that indeed \(val_q(B) = \min_{j=1}^r v_q((B \cdot b_j)(\eta)) \).

(B') We can take \(x = z - x \).

(C') Let \(B_1, \ldots, B_d \in \mathcal{C}(\alpha)[S]/(L) \) be given. We can then compute \(u := \min_{j=1}^r \text{val}_z(B_j) \) and we can find the required \(a_1, \ldots, a_{d-1} \in \mathcal{C} \) by equating the coefficients of \(q^n \) for \(n \leq v \) in the linear combination \(a_1(B_1 \cdot b)(z) + \cdots + a_{d-1}(B_{d-1} \cdot b_j)(z) + (B_d \cdot b_j)(z) \) to zero and solving the resulting inhomogeneous linear system for \(a_1, \ldots, a_{d-1} \).

(D') Clear.
So Λ is integral if and only if $v_2(p_j) \geq 0$ for any j. Let L be an integral basis at z. Since $\ell_0\alpha$ can only have at finitely many roots, we can restrict z_0 to finitely many orbits $\alpha+\mathbb{Z}$. In each of these orbits, there is a natural bound for $z_0\ell_0\alpha$ that depends on the left after lack of roots of $\ell_0\alpha$, by the similar argument as above. If L has a solution with nonzero valuation growth, then the bound to the right is given by the choice of Z. Now suppose all solutions of L in $C((q))^{\infty}$ have zero valuation growth. Let $\zeta \in \alpha+\mathbb{Z}$ be such that all roots of $\ell_0\alpha$ are contained to the left. Then $\zeta + n$ for any $n \geq 0$. Then we get
\[
\liminf_{n \to \infty} v_2(p_j(z+n)) = \min_{i=1}^r v_2(p_j(z+i-1)) \leq 0
\]
for all $j = 1, \ldots, r$. Then $\liminf_{n \to \infty} v_2(p_j(z-n)) = 0$. For any operator $A \in V$, it again follows that $v_2(A) = \min_{j=1}^r v_2(A \cdot b_j(z))$ and hence \mathcal{B} is an integral basis at z for some $\zeta = \zeta_0 + \mathbb{Z}$.

Using such a basis as an input, continue to find all locally integral elements at $\alpha = -1$. Similar replace $B_3 = \frac{3}{x^2} + S^2$ by $(x+1)B_3$ since $v_2(B_3) = -1$. This operation does change the local integrality at $Z \setminus \{ -1 \}$, because $x + 1$ is invertible in the localization of $C[x]$. Do the output integral basis at $\alpha = -1$ is also a global basis integral for Z:
\[
\left\{ 1, \frac{3}{x^2} + \frac{1}{x^3}, \frac{3}{x^4} + \frac{3}{x^5} \right\}
\]

Acknowledgement. We thank the referees for their careful reading and their valuable suggestions, in particular the referee who pointed out the implication $(a) \Rightarrow (b)$ in Theorem 13.

REFERENCES