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Abstract

Zeilberger’s method of creative telescoping is crucial for the computer-generated proofs of com-
binatorial and special-function identities. Telescopers are linear differential or (q-)recurrence
operators computed by algorithms for creative telescoping. Two fundamental problems related
to creative telescoping are whether telescopers exist, and how to construct them efficiently when
they do. In this paper, we solve the existence problem of telescopers for rational functions in
three variables including 18 cases. We reduce the existence problem from the trivariate case to
the bivariate case and some related problems. The existence criteria given in this paper enable
us to determine the termination of algorithms for creative telescoping with trivariate rational
inputs.

Key words: Creative telescoping, Existence criterion, Reduction, Telescoper

1. Introduction

Creative telescoping plays a crucial role in the algorithmic proof theory of combina-

torial identities developed by Wilf and Zeilberger in the early 1990s [45, 46, 44]. For a
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given function f(x, y1, . . . , yn), the process of creative telescoping constructs a nonzero

linear differential or (q-)recurrence operator L in x such that

L(f) = Θy1(g1) + · · ·+ Θyn(gn),

where Θyi denotes the derivation or (q-)difference operator in yi and the gi’s belong to

the same class of functions as f . The operator L is then called a telescoper for f , and

the gi’s are called the certificates of L. Two fundamental problems have been studied

extensively related to creative telescoping. The first problem is the existence problem of

telescopers, i.e., deciding the existence of telescopers for a given class of functions. The

second one is the construction problem of telescopers, i.e., designing efficient algorithms

for computing telescopers if they exist. For additional open problems related to creative

telescoping, see [19]. In this paper, we will mainly focus on the existence problem of

telescopers and will study the construction problem of telescopers in future work.

The existence of telescopers is closely connected to the termination of algorithms for

creative telescoping and the hypertranscendence and algebraic dependency of functions

defined by indefinite sums or integrals [33, 40]. In [45], Zeilberger first presented a suffi-

cient condition on the existence of telescopers by showing that telescopers always exist

for the so-called holonomic functions using Bernstein’s theory of algebraic D-modules.

Soon after this work, Wilf and Zeilberger in [44] proved that telescopers exist for proper

hypergeometric terms. However, holonomicity and properness are only sufficient condi-

tions. Abramov and Le [4] gave a necessary and sufficient condition on the existence of

telescopers for rational functions in two discrete variables. This work was soon extend-

ed to the hypergeometric case by Abramov [3], the q-hypergeometric case in [24], and

the mixed rational and hypergeometric case in [22, 13]. All of the above work only fo-

cused on the problem for bivariate functions of a special class. The first criterion for the

existence of telescopers beyond the bivariate case was given in [18], where a necessary

and sufficient condition is presented for the existence problem of telescopers for rational

functions in three discrete variables. This paper will continue this project by consider-

ing the remaining cases where continuous, discrete and q-discrete variables can appear

simultaneously.

The remainder of this paper is organized as follows. We define the existence problem

of telescopers precisely in Section 2 and recall different types of reductions that are used

in testing the exactness of bivariate rational functions in Section 3. Existence criteria are

given for 18 types of telescopers for rational functions in three variables in Section 4.

A preliminary version [14] of this article has appeared in the Proceedings of ISSAC’19.

In the present version, the proofs are supplemented with further details, and twelve more

cases are treated to cover in addition the q-shift operators.
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2. Preliminaries

Let K be a field of characteristic zero and K(v) be the field of rational functions in
the variables v = {x, y1, . . . , yn} over K. For each v ∈ v, the derivation δv on K(v) is
defined as the usual partial derivation ∂/∂v with respect to v satisfying that δv(f + g) =
δv(f) + δv(g) and δv(fg) = gδv(f) + fδv(g) for all f, g ∈ K(v). Moreover, δv(c) = 0 if
and only if c ∈ K(v \ {v}), i.e., c is free of v. For each v ∈ v, the shift operator σv is the
K-automorphism of K(v) defined by σv(v) = v + 1 and σv(w) = w for all w ∈ v \ {v}.
Let q ∈ K \ {0} be such that qm 6= 1 for all nonzero m ∈ Z. For each v ∈ v, the q-shift
operator τq,v is the K-automorphism defined by τq,v(v) = qv and τq,v(w) = w for all
w ∈ v \ {v}. Abusing notation, we let δv and θv with θv ∈ {σv, τq,v} denote a fixed

extension of δv and θv to the derivation and the K-automorphism of K(v), the algebraic
closure of K(v).

For each v ∈ v, let ∂v ∈ {Dv, Sv, Tq,v}, where Dv, Sv and Tq,v refer to the differential,
shift and q-shift operators, respectively. We consider D := K(v)〈∂x, ∂y1 , . . . , ∂yn〉 as a
noncommutative ring in ∂x, ∂y1 , . . . , ∂yn subject to the multiplication rules

∂vi∂vj = ∂vj∂vi for all vi, vj ∈ v

and for any v ∈ v and f ∈ K(v),

∂vf =


f∂v + δv(f) if ∂v = Dv,

σv(f)∂v if ∂v = Sv,

τq,v(f)∂v if ∂v = Tq,v.

(1)

Actually D is a noncommutative algebra over K(v), which is also called the ring of linear
functional operators or Ore polynomials (for more details, see [10, 26]). Let ∆v be the
difference operator Sv − 1 and ∆q,v be the q-difference operator Tq,v − 1. For each v ∈ v,
we define

Θv := ∂v − ∂v(1) =


Dv if ∂v = Dv,

∆v if ∂v = Sv,

∆q,v if ∂v = Tq,v.

(2)

The action of the operator ∂v ∈ D on an element f ∈ K(v) is defined as

∂v(f) =


δv(f) if ∂v = Dv,

σv(f) if ∂v = Sv,

τq,v(f) if ∂v = Tq,v.

(3)

In general, the action of the operator L =
∑
i0,i1,...,in≥0 ai0,i1,...,in∂

i0
x ∂

i1
y1 · · · ∂

in
yn ∈ D on

f ∈ K(v) is defined as

L(f) =
∑

i0,i1,...,in≥0

ai0,i1,...,in∂
i0
x ∂

i1
y1 · · · ∂

in
yn(f).

Then the field K(v) becomes a left D-module. In this paper, we will mainly work with
rational functions in three variables x, y, z and the operators in K(x, y, z)〈∂x, ∂y, ∂z〉.
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Example 2.1. Let L = 1 + (x + yz)Dx + 2SyTq,z ∈ K(x, y, z)〈Dx, Sy, Tq,z〉 and f =
1/(x+ yz). Then we have

L(f) = f + (x+ yz)δx(f) + 2σy(τq,z(f)) =
2

qz + qyz + x
.

The functions we consider will be in a certain D-module, such as the field K(v) or
its algebraic closure K(v). The ring K(x)〈∂x〉 is a subring of D that is also a left Eu-
clidean domain. An operator L ∈ K(x)〈∂x〉 is called a common left multiple of operators
L1, . . . , Ln ∈ K(x)〈∂x〉 if there exist R1, . . . , Rn ∈ K(x)〈∂x〉 such that

L = R1L1 = · · · = RnLn.

Among all of such multiples, the monic one of minimal degree in ∂x is called the least
common left multiple (LCLM) of operators L1, . . . , Ln. Efficient algorithms for basic
operations in K(x)〈∂x〉, such as the LCLM computation, have been developed in [10, 5].

Since field extensions will occur in our studies, let us first recall some basic terminolo-
gies from Galois Theory (see [43]). Let F be a finite algebraic extension of K(x) with
n = [F : K(x)]. Since char(K) = 0, F is also a separable extension and then F = K(x)(α)
for some α ∈ F. Let α1 = α, α2, . . . , αn be the conjugates of α and τ1, . . . , τn be the
distinct embeddings of F into the algebraic closure K(x) such that τi(α) = αi for all
i = 1, . . . , n. The derivation Dx on K(x) can be uniquely extended to F [9, Theorem
3.2.3] and the extended derivation commutes with all τi’s [9, Theorem 3.2.4 (i)]. An
extension F of K(x) is said to be normal over K(x) if F is a splitting field of some
polynomial p ∈ K(x)[y] and is a Galois extension of K(x) if it is both separable and
normal over K(x). Let Gal(F/K(x)) be the Galois group of all automorphisms of F that
fix K(x). For any τ ∈ Gal(F

/
K(x)) and L =

∑r
i=0 `iD

i
x ∈ F〈Dx〉, we define the action

τ(L) =
∑r
i=0 τ(`i)D

i
x. Since the derivation Dx commutes with any τ ∈ Gal(F

/
K(x)), we

have τ(L1L2) = τ(L1)τ(L2) for all operators L1, L2 ∈ F〈Dx〉. If F is a Galois extension
of K(x), the Fundamental Theorem of Galois Theory [43, Theorem 2.8.8] implies that
L ∈ K(x)〈Dx〉 if and only if τ(L) = L for all τ ∈ Gal(F

/
K(x)).

Lemma 2.2. For an operator L =
∑ρ
i=0 eiD

i
x ∈ K(x)〈Dx〉 with eρ = 1, we let F be

a finite normal extension of K(x) containing the coefficients ei and let G be the Galois
group of F over K(x). Let T be the LCLM of the operators σ(L) =

∑ρ
i=0 σ(ei)D

i
x for all

σ ∈ G. Then T belongs to K(x)〈Dx〉.

Proof. It suffices to show that τ(T ) = T for all τ ∈ G. For each σ ∈ G, we have
T = Pσσ(L) for some Pσ ∈ F〈Dx〉. Since τ(L1L2) = τ(L1)τ(L2) for all L1, L2 ∈ F〈Dx〉,
the operator τ(σ(L)) divides τ(T ) for each σ ∈ G. When σ runs through all of the
elements of G, so does τσ. Hence τ(T ) is also a common left multiple of the operators
σ(L) for all σ ∈ G. Since τ(T ) and T are both monic and of the same degree in Dx, we
get τ(T ) = T .

Example 2.3. For operator L = Dx +
√
x. The LCLM of L and its conjugate Dx −

√
x

is D2
x − 1

2xDx − x ∈ K(x)〈Dx〉.

Remark 2.4. Note that Lemma 2.2 is not true in the (q-)shift case. For example, take
L = Sx +

√
x. The LCLM of L and its conjugate is S2

x −
√
x(x+ 1), which is not in

K(x)〈Sx〉.
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Definition 2.5. For any rational function f ∈ K(x, y1, . . . , yn), a nonzero operator
L(x, ∂x) ∈ K(x)〈∂x〉 is called a telescoper of type (∂x,Θyi1

, . . . ,Θyik
) for f if there exist

rational functions g1, . . . , gk ∈ K(x, y1, . . . , yn) such that

L(x, ∂x)(f) = Θyi1
(g1) + · · ·+ Θyik

(gk), (4)

where 1 ≤ i` ≤ n for any 1 ≤ ` ≤ k. The rational functions g1, . . . , gk are called the
certificates of L.

Note that all of the telescopers for a given function together with the zero operator
form a left ideal of K(x)〈∂x〉 (see [25, Definition 1]). The following lemma summarizes
closure properties related to the existence of telescopers.

Lemma 2.6. Let f, g ∈ K(x, y, z), a, b ∈ K(x) and α, β ∈ K(x). Then we have
(i) if both f and g have telescopers in K(x)〈Dx〉 of type (Dx,Θy,Θz), so does αf + βg;
(ii) if both f and g have telescopers in K(x)〈∂x〉 of type (∂x,Θy,Θz) with ∂x ∈ {Sx, Tq,x},

so does af + bg.

Proof. We first show that αf has a telescoper in K(x)〈Dx〉 if f does. When α = 0, the
conclusion is obvious. Next we assume that α 6= 0 and L =

∑ρ
i=0 eiD

i
x ∈ K(x)〈Dx〉 is

a telescoper for f . Then L(f) = Θy(u) + Θz(v) with u, v ∈ K(x, y, z). Set L̃ = L · 1
α ,

which belongs to K(x)〈Dx〉. Then we have L̃(αf) = Θy(u) + Θz(v), which means L̃ is
a telescoper for αf . By Lemma 2.2, there exists T ∈ K(x)〈Dx〉 such that T is a left
multiple of L̃. So T is also a telescoper for αf . When telescopers are in K(x)〈Sx〉 or
K(x)〈Tq,x〉, the above argument works for af for any a ∈ K(x). It remains to show that
f + g has a telescoper in K(x)〈∂x〉 with ∂x ∈ {Dx, Sx, Tq,x} if both f and g do. Assume
that P,Q ∈ K(x)〈∂x〉 are telescopers for f, g, respectively. Then the LCLM of P and Q
is a telescoper for f + g by the commutativity between operators in K(x)〈∂x〉 and the
operators Θy and Θz.

Let V = (V1, . . . , Vm) be any set partition of the variables v = {x, y1, . . . , yn}. A
rational function f ∈ K(v) is said to be split with respect to the partition V if f =
f1 · · · fm with fi ∈ K(Vi). A polynomial p ∈ K[v] is said to be integer-linear in K[v]
if there exist r ∈ K[z] and a, b1, . . . , bn ∈ Z such that p = r(ax + b1y1 + · · · + bnyn).
A polynomial p ∈ K[v] is said to be q-integer-linear in K[v] if there exist r ∈ K[z]
and a, b1, . . . , bn, s, t1, . . . , tn ∈ Z such that p = xsyt11 · · · ytnn r(xay

b1
1 · · · ybnn ). A rational

function f = P/Q ∈ K(v) with P,Q ∈ K[v] and gcd(P,Q) = 1 is said to be (q-)proper
in K(v) if Q is a product of (q-)integer-linear polynomials over K. Split polynomials and
(q-)proper rational functions will be used to state our existence criteria for telescopers
in Section 4.

In the subsequent sections, we will study the existence of telescopers for rational
functions in three variables. More precisely, we consider the following problem.

Existence Problem for Telescopers. For a rational function f ∈ K(x, y, z), decide
the existence of telescopers of type (∂x,Θy,Θz) for f .

Remark 2.8. In the trivariate case, there are 18 different types of telescopers up to
the symmetry among (Θy,Θz) which are collected into six different classes in Table 2.7
according to different techniques used in the studies.
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Classes Types Telescoping equations

1. 1.1. (Dx, Dy, Dz) L(x,Dx)(f) = Dy(g) + Dz(h).

2.

2.1. (Dx,∆y,∆z)

2.2. (Dx,∆q,y,∆z)

2.3. (Dx,∆q,y,∆q,z)

L(x,Dx)(f) = ∆y(g) + ∆z(h)

L(x,Dx)(f) = ∆q,y(g) + ∆z(h)

L(x,Dx)(f) = ∆q,y(g) + ∆q,z(h)

3.
3.1. (Sx, Dy, Dz)

3.2. (Tq,x, Dy, Dz)

L(x, Sx)(f) = Dy(g) + Dz(h)

L(x, Tq,x)(f) = Dy(g) + Dz(h)

4.

4.1. (Sx,∆y, Dz)

4.2. (Sx,∆q,y, Dz)

4.3. (Tq,x,∆y, Dz)

4.4. (Tq,x,∆q,y, Dz)

L(x, Sx)(f) = ∆y(g) + Dz(h)

L(x, Sx)(f) = ∆q,y(g) + Dz(h)

L(x, Tq,x)(f) = ∆y(g) + Dz(h)

L(x, Tq,x)(f) = ∆q,y(g) + Dz(h)

5.

5.1. (Sx,∆y,∆z)

5.2. (Sx,∆q,y,∆z)

5.3. (Sx,∆q,y,∆q,z)

5.4. (Tq,x,∆y,∆z)

5.5. (Tq,x,∆q,y,∆z)

5.6. (Tq,x,∆q,y,∆q,z)

L(x, Sx)(f) = ∆y(g) + ∆z(h)

L(x, Sx)(f) = ∆q,y(g) + ∆z(h)

L(x, Sx)(f) = ∆q,y(g) + ∆q,z(h)

L(x, Tq,x)(f) = ∆y(g) + ∆z(h)

L(x, Tq,x)(f) = ∆q,y(g) + ∆z(h)

L(x, Tq,x)(f) = ∆q,y(g) + ∆q,z(h)

6.
6.1. (Dx,∆y, Dz)

6.2. (Dx,∆q,y, Dz)

L(x,Dx)(f) = ∆y(g) + Dz(h)

L(x,Dx)(f) = ∆q,y(g) + Dz(h)

Table 2.7. Six different classes of existence problems of telescopers

Different types of partial fraction decompositions will be used in solving the existence

problems of telescopers. Let G = 〈θx, θy, θz〉 be the free abelian group generated by the

operators θx, θy, θz with θv ∈ {σv, τq,v}. Let f ∈ K(x, y, z) and H be a subgroup of G.

We call the set

[f ]H := {c · ψ(f) | ψ ∈ H and c ∈ K \ {0}}
the H-orbit at f . Two elements f, g ∈ K(x, y, z) are said to be H-equivalent if [f ]H =

[g]H , denoted by f ∼H g. The relation ∼H is an equivalence relation in K(x, y, z). Let

f = P/Q and g = A/B with P,Q,A,B ∈ K[x, y, z], gcd(P,Q) = 1 and gcd(A,B) = 1. If

f ∼H g, then P ∼H A and Q ∼H B since any ψ ∈ H is an automorphism on K(x, y, z).

So detecting the H-equivalence among rational functions can be reduced to that among

polynomials. Two irreducible polynomials in distinct H-orbits are clearly coprime. A

nonzero rational function f ∈ K(x, y, z) is said to be (θx, θy, θz)-invariant if there exist

m,n, k ∈ Z not all zero, and c ∈ K \ {0} such that θmx θ
n
y θ

k
z (f) = c · f . By comparing the

leading coefficients, the constant c in the above relation must be of the form qs for some

s ∈ Z. Moreover, c = 1 if all of θx, θy, and θz are shift operators.

For any subgroup H of G and any polynomial Q ∈ K(x, y)[z], one can group all of
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irreducible factors in z of Q into distinct H-orbits which leads to a factorization

Q = c ·
n∏
i=1

mi∏
j=1

ψi,j(di)
ei,j , where c ∈ K(x, y), n,mi, ei,j ∈ N and ψi,j ∈ H

and the di’s are monic irreducible polynomials in distinct H-orbits. With respect to this
fixed representation, we have the unique partial fraction decomposition for a rational
function f = P/Q ∈ K(x, y, z) of the form

f = p+

n∑
i=1

mi∑
j=1

ei,j∑
`=1

ai,j,`
ψi,j(di)`

, (5)

where p, ai,j,` ∈ K(x, y)[z] satisfy degz(ai,j,`) < degz(di) for all i, j, `. In the sequel, we
will take different H according to different types of existence problems.

Example 2.9. Consider the rational function of the form

f =
x

z2 + 2x+ y
+

y

z2 + 2x+ y + 1
+

−yz + x

z2 + 2qx+ y
+

3x2

z2 + 2qx+ y + 2z + 2
.

If H = 〈σy〉, then we have a decomposition

f =
x

d1
+

y

σy(d1)
+
−yz + x

d2
+

3x2

d3
,

where d1 = z2+2x+y, d2 = z2+2qx+y and d3 = z2+2qx+y+2z+2. Note that d1, d2, d3

are in distinct 〈σy〉-orbits. If H = 〈τq,x, σy〉, then we have a different decomposition

f =
x

d1
+

y

σy(d1)
+
−yz + x

τq,x(d1)
+

3x2

d3
,

where d1, d3 are in distinct 〈τq,x, σy〉-orbits. If H = 〈τq,x, σy, σz〉, then we have another
decomposition

f =
x

d1
+

y

σy(d1)
+
−yz + x

τq,x(d1)
+

3x2

τq,xσyσz(d1)
.

3. Reductions and Exactness Criteria

In this section, let F be any field of characteristic zero and later we will specialize
F to the rational function field K(x) in Section 4. In order to detect the existence of
telescopers, we first need to check whether 1 is a telescoper or not. This is equivalent to
the so-called exactness problem.

Definition 3.1. Let E be a differential subfield of K(y1, . . . , yn). A rational function f ∈
E is called (Θyi1

, . . . ,Θyik
)-exact in E if there exist g1, . . . , gk ∈ E such that

f = Θyi1
(g1) + · · ·+ Θyik

(gk),

where 1 ≤ i` ≤ n for any 1 ≤ ` ≤ k.

Exactness Testing Problem. Decide whether a given function in E is (Θyi1
, . . . ,Θyik

)-
exact in E.
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Cases Exactness equations

Continuous case 1.1. f = Dy(g) + Dz(h)

Discrete cases

2.1. f = ∆y(g) + ∆z(h)

2.2. f = ∆q,y(g) + ∆z(h)

2.3. f = ∆q,y(g) + ∆q,z(h)

Mixed cases
3.1. f = ∆y(g) + Dz(h)

3.2. f = ∆q,y(g) + Dz(h)

Table 3.3. Six different cases of exactness testing problems

Remark 3.2. In this paper, we will only focus on the exactness testing problem for
bivariate rational functions in F(y, z). Since there are three choices for each operator in
{Θy,Θz}, by the symmetry between Θy and Θz, there are 6 different types of exactness
testing problems, listed in Table 3.3.

Let E be a finite separable extension of F(y, z) with n = [E : F(y, z)]. Let τ1, . . . , τn
be the distinct embbeddings of E into F(y, z). The trace map TrE/F(y,z) : E → F(y, z) is
defined by TrE/F(y,z)(u) =

∑n
i=1 τi(u) for any u ∈ E. The following lemma shows that

the (non)exactness is preserved even when we are looking for g and h in a larger field.

Lemma 3.4. Let f ∈ F(y, z). Then f is (Θy,Θz)-exact in F(y, z) if and only if it is
(Θy,Θz)-exact in F(y, z).

Proof. The sufficiency is obvious. For the necessity, we assume that there exist u, v ∈
F(y, z) such that f = Θy(u) + Θz(v). Let L be a finite normal extension of F(y, z)
containing u, v and Θy(u),Θz(v) and let TrL/F(y,z) be the trace from L to F(y, z), which
commutes with (q-)shift operators by [23, Lemma 3.1] and also with derivations by [9,
Theorem 3.2.4 (i)]. Then

TrL/F(y,z)(f)=TrL/F(y,z) (Θy(u) + Θz(v)) =Θy(TrL/F(y,z)(u)) + Θz(TrL/F(y,z)(v)).

Since f ∈ F(y, z), we have TrL/F(y,z)(f) = mf with m=[L : F(y, z)]. Thus f = Θy(g) +

Θz(h) with g = 1
mTrL/F(y,z)(u) and h = 1

mTrL/F(y,z)(v) that are both in F(y, z).

Let E denote the set of all (Θy,Θz)-exact rational functions in F(y, z). Note that E
forms a subspace of F(y, z) viewed as an F-vector space. Reduction algorithms have been
developed in [21, 23, 35, 11, 41] for simplifying rational functions modulo E and then
reducing the exactness problem from general rational functions to simple fractions. For
later use, we summarize these reductions as follows.

3.1. The continuous case

For a rational function f ∈ F(y, z), the Ostrogradsky–Hermite reduction [39, 34] with
respect to z decomposes f into the form

f = Dz(g) +
a

b
, (6)

where g ∈ F(y, z) and a, b ∈ F(y)[z] with gcd(a, b) = 1, degz(a) < degz(b) and b being
squarefree in z over F(y). Moreover, f = Dz(u) for some u ∈ F(y, z) if and only if a = 0.
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We recall the criterion on the (Dy, Dz)-exactness of bivariate rational functions from [21,
Lemma 4].

Lemma 3.5. Let f ∈ F(y, z) be of the form (6) and write

a

b
=

n∑
i=1

αi
z − βi

,

where αi, βi ∈ F(y) with βi 6= βj for i, j with 1 ≤ i, j ≤ n and i 6= j. Then f is (Dy, Dz)-
exact in F(y, z) if and only if for each i with 1 ≤ i ≤ n, we have αi = Dy(γi) for some

γi ∈ F(y).

The above lemma reduces the exactness problem in the differential case from bivariate
rational functions to univariate algebraic functions. Let α ∈ F(y) be an algebraic function
over F(y) with m := [F(y, α) : F(y)]. If α = Dy(β) for some β ∈ F(y), then we can find
such a β ∈ F(y, α) by the trace argument as in the proof of Lemma 3.4. Assume that
β = b0 + b1α + · · · + bm−1α

m−1 with bi ∈ F(y). Then the equality α = Dy(β) leads
to a system of linear differential equations in the bi’s, whose rational solutions can be
computed by the method in [6]. A generalization of the Ostrogradsky–Hermite reduction
to the algebraic case also solves the exactness problem of algebraic functions [20].

3.2. The discrete cases

For any automorphism θ on F(y, z) and a, b ∈ F(y, z), we have the reduction formula

a

θn(b)
= θ(g)− g +

θ−n(a)

b
, (7)

where g =
∑n−1
i=0

θi−n(a)
θi(b) if n ≥ 0 and g = −

∑−n−1
i=0

θi(a)
θn+i(b) if n < 0. By using the above

reduction formula with θ = σz, Abramov’s reduction in z [1, 2] decomposes f ∈ F(y, z)
into the form

f = ∆z(g) +
a

b
, (8)

where g ∈ F(y, z) and a, b ∈ F(y)[z] with gcd(a, b) = 1, degz(a) < degz(b) and b being
shift-free in z over F(y), i.e., for any k ∈ Z \ {0} we have gcd(b, σkz (b)) = 1. Moreover,
f = ∆z(u) for some u ∈ F(y, z) if and only if a = 0. We use the reduction formula (7)
with θ = σy to further decompose f as

f = ∆y(u) + ∆z(v) +

I∑
i=1

Ji∑
j=1

ai,j

dji
, (9)

where u, v ∈ F(y, z), ai,j ∈ F(y)[z], and di ∈ F[y, z] are such that degz(ai,j) < degz(di)
and the di’s are irreducible polynomials in distinct 〈σy, σz〉-orbits. We recall the criterion
on the (∆y,∆z)-exactness of bivariate rational functions by combining Lemma 3.2 and
Theorem 3.3 in [35].

Lemma 3.6. Let f ∈ F(y, z) be of the form (9). Then f is (∆y,∆z)-exact in F(y, z)
if and only if for all i, j with 1 ≤ i ≤ I, 1 ≤ j ≤ Ji, we have σmiy (di) = σniz (di) for
some mi, ni ∈ Z with mi > 0 and ai,j = σmiy σ−niz (bi,j)− bi,j for some bi,j ∈ F(y)[z] with

degz(bi,j) < degz(di). In particular, if f is (∆y,∆z)-exact, so is each ai,j/d
j
i .
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For a rational function f ∈ F(y, z), Abramov’s reduction in z and its q-analogue in y
decompose f into

f = ∆q,y(g) + ∆z(h) +

I∑
i=1

Ji∑
j=1

ai,j

dji
, (10)

where g, h ∈ F(y, z), ai,j ∈ F(y)[z], di ∈ F[y, z] satisfy that degz(ai,j) < degz(di) and
di’s are irreducible polynomials in distinct 〈τq,y, σz〉-orbits. We recall the criterion on the
(∆q,y,∆z)-exactness in F(y, z) from [11, Theorem 3].

Lemma 3.7. Let f ∈ F(y, z) be of the form (10). Then f is (∆q,y,∆z)-exact in F(y, z) if
and only if for each i ∈ {1, . . . , I}, di ∈ F[z] and for each j ∈ {1, . . . , Ji}, ai,j = ∆q,y(bi,j)

for some bi,j ∈ F(y)[z]. In particular, if f is (∆q,y,∆z)-exact, so is each ai,j/d
j
i .

The q-analogue of Abramov’s reduction decomposes f ∈ F(y, z) into the form

f = ∆q,z(g) + c+
a

b
, (11)

where g ∈ F(y, z), c ∈ F(y) and a, b ∈ F(y)[z] with gcd(a, b) = 1, degz(a) < degz(b) and
b being q-shift-free in z over F(y), that is gcd(b, τkq,zb) = 1 for any k ∈ Z \ {0}. Moreover,
f = ∆q,z(u) for some u ∈ F(y, z) if and only if c = 0 and a = 0.

Applying the reduction formula (7) with θ = τq,y, we can further decompose f as

f = ∆q,y(u) + ∆q,z(v) + c+

I∑
i=1

Ji∑
j=1

ai,j

dji
, (12)

where u, v ∈ F(y, z), c ∈ F(y), ai,j ∈ F(y)[z], and di ∈ F[y, z] are such that degz(ai,j) <
degz(di) and the di’s are irreducible polynomials in distinct 〈τq,y, τq,z〉-orbits. Then the
(∆q,y,∆q,z)-exactness criterion of f can be given by combining Lemma 3.6 and Theorem
3.8 in [41], which is a q-analogue of Lemma 3.6.

Lemma 3.8. Let f ∈ F(y, z) be of the form (12). Then f is (∆q,y,∆q,z)-exact in F(y, z)
if and only if c = ∆q,y(h) for some h ∈ F(y) and for all i, j with 1 ≤ i ≤ I, 1 ≤ j ≤ Ji,
we have σmiy (di) = qsiσniz (di) for some mi, ni, si ∈ Z with mi > 0 and for the smallest

such positive integer mi, ai,j = q−jsiτmiq,y τ
−ni
q,z (bi,j) − bi,j for some bi,j ∈ F(y)[z] with

degz(bi,j) < degz(di). In particular, if f is (∆q,y,∆q,z)-exact, so is each ai,j/d
j
i .

3.3. The mixed cases

For a rational function f ∈ F(y, z), applying the Ostrogradsky–Hermite reduction in z
and the reduction formula (7) with θ = θy ∈ {σy, τq,y} to f yields

f = Θy(u) +Dz(v) +

I∑
i=1

ai
di
, (13)

where u, v ∈ F(y, z), ai ∈ F(y)[z], di ∈ F[y, z] with degz(ai) < degz(di) and the di’s are
irreducible polynomials in distinct 〈θy〉-orbits. We recall the criterion on the (Θy, Dz)-
exactness in F(y, z) from [11, Theorem 2].

Lemma 3.9. Let θy ∈ {σy, τq,y} and f ∈ F(y, z) be of the form (13). Then f is (Θy, Dz)-
exact in F(y, z) if and only if for each i ∈ {1, . . . , I}, di ∈ F[z] and ai = Θy(bi) for some
bi ∈ F(y)[z]. In particular, if f is (Θy, Dz)-exact, so is each ai/di.
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4. Existence Criteria

We will reduce the existence problem of telescopers in the trivariate case to that in
the bivariate case and two related problems. To this end, we first recall the existence
criteria on telescopers for bivariate rational functions from [4, 38, 3, 22, 13].

Theorem 4.1. Let f(x, y) be a rational function in K(x, y). Then
(i) Differential case (see [22, Theorem 4.5]): f always has a telescoper of type (Dx, Dy);
(ii) Shift case (see [4, Theorem 1] or [22, Theorem 4.11]): f has a telescoper of type

(Sx,∆y) if and only if f is of the form f = ∆y(g) + r for some g, r ∈ K(x, y) and r
is proper in K(x, y).

(iii) q-Shift case (see [38, Theorem 1] or [22, Theorem 4.15]): f has a telescoper of type
(Tq,x,∆q,y) if and only if f is of the form f = ∆q,y(g) + r for some g, r ∈ K(x, y)
and r is q-proper in K(x, y).

(iv) Mixed cases (see [22, Theorems 4.6, 4.7, 4.9, 4.12, 4.13, 4.14]): f has a telescoper
of type (∂x,Θy) ∈ {(Sx, Dy), (Tq,x, Dy), (Dx,∆y), (Tq,x,∆y), (Dx,∆q,y), (Sx,∆q,y)}
if and only if f is of the form f = Θy(g) + r for some g, r ∈ K(x, y) and the
denominator of r is split with respect to the partition ({x}, {y}).

Example 4.2. Let f = 1/(x+ y). It is easy to check that

L1(f) = Dy(f), L2(f) = ∆y(f) and L3(f) = ∆q,y(−τ−1
q,y f),

where L1 = Dx, L2 = Sx − 1 and L3 = qTq,x − 1. Then f has a telescoper of type
(Dx, Dy), (Sx,∆y) and (Tq,x,∆q,y), but f has no telescoper in the mixed cases since
x+ y is not split.

To verify the existence of a telescoper for a trivariate rational function, we firstly
introduce the following (q-)shift equivalence testing problem and separation problem.

Problem 4.3 (Shift Equivalence Testing Problem). Let F be any computable field of
characteristic zero. Given p ∈ F[x1, ..., xn], decide whether there exist m1, . . . ,mn ∈ Z
with m1 > 0 such that p(x1 +m1, . . . , xn +mn) = p(x1, . . . , xn).

This problem is solved by Grigoriev in [31, 32] and more recently by Kauers and
Schneider in [36] and Dvir et al. in [28].

Problem 4.4 (q-Shift Equivalence Testing Problem). Let p ∈ F[x1, ..., xn], decide if there
existm0,m1, . . . ,mn ∈ Z withm1 > 0 such that p(qm1x1, . . . , q

mnxn) = qm0p(x1, . . . , xn).

This problem is much easier than the shift case, and an algorithm for testing q-shift
equivalence has been given in [41].

Problem 4.5 (Separation Problem). Given an algebraic function α ∈ K(x, y), decide
whether there exists a nonzero operator L ∈ K(x)〈Dx〉 such that L(α) = 0. If such an
operator exists, we say that α is separable in x and y.

As a special case of [15, Proposition 10], a rational function in K(x, y) is separable
if and only if it is of the form a/(bc) with a ∈ K[x, y], b ∈ K[x] and c ∈ K[y]. This
motivates the nomenclature of Problem 4.5. We will study the separation problem in
the forthcoming paper [16], in which an algorithm is presented for constructing such a
differential annihilator L ∈ K(x)〈Dx〉 if it exists.
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4.1. Existence criteria of the first class

In the pure differential setting, telescopers always exist for general D-finite functions
over K(v), which was proved by Zeilberger in 1990 using the elimination property of
holonomic D-modules [45]. For the sake of completeness, we will give a more direct
proof for rational functions in K(v). We first adapt Wegschaider’s “non-commutative
trick” in [42, Theorem 3.2] to the differential case.

Lemma 4.6. Let f ∈ K(x, y1, . . . , yn) and A ∈ K[x]〈Dx, Dy1 , . . . , Dyn〉 be a nonzero
operator such that A(f) = 0. Then there exists a nonzero operator L ∈ K[x]〈Dx〉 such
that L(f) = Dy1(g1) + · · ·+Dyn(gn) for some g1, . . . , gn ∈ K(x, y1, . . . , yn).

Proof. We will follow the same argument as in the proof of [42, Theorem 3.2]. We claim
that for every ` ∈ {1, . . . , n + 1}, there exist Qj,` ∈ K[v]〈Dx, Dyj , . . . , Dyn〉 for each
j ∈ {1, . . . , `− 1} and a nonzero R` ∈ K[x]〈Dx, Dy` , . . . , Dyn〉 such that f is annihilated
by the operator

P` =

`−1∑
j=1

DyjQj,` +R`. (14)

The lemma follows from this claim since Rn+1 is the desired operator L ∈ K[x]〈Dx〉 with
gj := −Qj,`(f) ∈ K(v) for j ∈ {1, . . . , n}.

We prove the claim inductively: for ` = 1 take P1 = R1 = A. Assume that for some
` ∈ {1, . . . , n} we have a nonzero operator P` of the form (14) that annihilates f . We
show that by division of R` by D` we can construct the operator P`+1.

Since Dy` commutes with x and Dx, Dy`+1
, . . . , Dyn , we can write R` = Dm

y`
(R`+1 +

Dy`M), where m ∈ N, M ∈ K[x]〈Dx, Dy` , . . . , Dyn〉, and R`+1 is a nonzero operator
in K[x]〈Dx, Dy`+1

, . . . , Dyn〉. For any w ∈ K[y`] of degree at most m, we have

wDm
y`

= Dy`Q̃` + r (15)

for some r ∈ K and Q̃` ∈ K[y`]〈Dy`〉. In particular, r = (−1)mm! 6= 0 if we take w = ym` .
Using the fact rDyi = Dyir for all i ∈ {1, . . . , n} and (15), we find

ym`
(−1)mm!

P` =

`−1∑
j=1

Dyj

(
ym`

(−1)mm!
Qj,`

)
+

ym`
(−1)mm!

Dm
y`

(R`+1 +Dy`M)

=

`−1∑
j=1

Dyj

(
ym`

(−1)mm!
Qj,`

)
+
(
Dy`Q̃` + 1

)
(R`+1 +Dy`M)

=
∑̀
j=1

Dyj Q̃j,` +R`+1 , P`+1 with Q̃j,` ∈ K[v]〈Dx, Dyj , . . . , Dyn〉.

Since P`(f) = 0, we have P`+1(f) = 0. So P`+1 is the desired operator.

Theorem 4.7. For any rational function f ∈ K(v), there exists a nonzero L ∈ K[x]〈Dx〉
such that L(f) = Dy1(g1) + · · ·+Dyn(gn) for some g1, . . . , gn ∈ K(v).

Proof. It suffices to show that there exists a nonzero A ∈ K[x]〈Dx, Dy1 , . . . , Dyn〉 such
that A(f) = 0 by Lemma 4.6. Write f = P/Q with P,Q ∈ K[v] and gcd(P,Q) =
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1. Denote dx = max{degx(P ),degx(Q)} and dyi = max{degyi(P ),degyi(Q)} for i ∈
{1, . . . , n}. Let WN be the K-vector space generated by the set

{xiDj0
x D

j1
y1 · · ·D

jn
yn | 0 ≤ i+ j0 + · · ·+ jn ≤ N }

over K. By an easy combinatorial counting, the dimension of WN is
(
N+n+2
n+2

)
= O(Nn+2)

over K. Furthermore, for any (i, j0, . . . , jn) ∈ Nn+2, a direct calculation yields

xiDj0
x D

j1
y1 · · ·D

jn
yn(f) =

Pi,j0,...,jn
Qi+j0+···+jn+1

, (16)

where Pi,j0,...,jn ∈ K[v] with degx(Pi,j0,...,jn) ≤ (i+ j0 + · · ·+ jn + 1)dx + i and

degyi(Pi,j0,...,jn) ≤ (i+ j0 + · · ·+ jn + 1)dyi for i ∈ {1, . . . , n}.

So the set WN (f) is included in the K-vector space VN spanned by the set{
xk0yk11 · · · yknn

QN+1

∣∣∣∣∣0 ≤ k0 ≤ (N + 1)dx +N, 0 ≤ ki ≤ (N + 1)dyi for i = 1, . . . , n

}
,

whence the dimension of VN is (N +1)(dx+1)
∏n
i=1((N +1)dyi +1) = O(Nn+1) over K.

We now define the linear map ψ : WN → VN by ψ(L) = L(f) for any L ∈ WN . For
sufficiently large N , we have(

N + n+ 2

n+ 2

)
> (N + 1)(dx + 1)

n∏
i=1

((N + 1)dyi + 1),

which implies that the kernel of ψ is nontrivial. Therefore, there exists a nonzero opera-
tor A ∈WN ⊆ K[x]〈Dx, Dy1 , . . . , Dyn〉 such that A(f) = 0.

Remark 4.8. In the continuous setting, the existence of telescopers for rational functions
implies that for algebraic functions by [21, Lemma 4]. Efficient algorithms for computing
telescopers have been given in [7, 21, 8, 37].

Example 4.9. Let f = 1/(2x+ y2 + yz2) ∈ K(x, y, z). One can check that

L(f) = Dy (−2y · f) +Dz (−z · f) ,

where L = 4xDx + 1. Thus f has a telescoper of type (Dx, Dy, Dz).

4.2. Existence criteria of the second class

We now solve the second class of existence problems where telescopers are linear
differential operators in K(x)〈Dx〉 and (Θy,Θz) ∈ {(∆y,∆z), (∆q,y,∆z), (∆q,y,∆q,z)}.

Problem 4.10. Given f ∈ K(x, y, z), determine if there exists a nonzero operator L ∈
K(x)〈Dx〉 such that L(f) = Θy(g) + Θz(h) for some g, h ∈ K(x, y, z).

For v ∈ {y, z}, let θv = σv if Θv = ∆v or θv = τq,v if Θv = ∆q,v. By partial fraction
decomposition w.r.t z, any f ∈ K(x, y, z) can be uniquely decomposed into

f = µ+ zp+

m∑
i=1

ni∑
j=1

ai,j

dji
,
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where µ ∈ K(x, y), m,ni ∈ N, p, ai,j , di ∈ K(x, y)[z], degz(ai,j) < degz(di), and the
di’s are distinct monic irreducible polynomials. Since qn 6= 1, it is easy to check that
zp is Θz-exact. Utilizing the transformation (7) first with θ = θy and subsequently with
θ = θz, f can be further decomposed into

f = Θy(u) + Θz(v) + µ+

I∑
i=1

Ji∑
j=1

ai,j

dji
, (17)

where u, v ∈ K(x, y, z), di’s are irreducible polynomials in distinct 〈θy, θz〉-orbits and none

of the nonzero ai,j/d
j
i is (Θy,Θz)-exact since otherwise it can be removed by adding into

the u and v part.
The following theorem shows that Problem 4.10 can be reduced to the same problem

but for simple fractions and bivariate rational functions.

Theorem 4.11. Let f ∈ K(x, y, z) be of the form (17). Then f has a telescoper of type
(Dx,Θy,Θz) if and only if µ and the fraction ai,j/d

j
i have a telescoper of the same type

for all i, j with 1 ≤ i ≤ I and 1 ≤ j ≤ Ji.

Proof. The sufficiency follows from Lemma 2.6. For the necessity, when f has a tele-
scoper of type (Dx,Θy,Θz), since Dx does not change the 〈θy, θz〉-equivalence of the

denominators, one can deduce that µ and r =
∑I
i=1

∑Ji
j=1

ai,j

dj
i

both have a telescoper of

the same type.
Next we will show each fraction ai,j/d

j
i has a telescoper of the same type when r

has a telescoper. To this end, we first show that Dx(di) = 0, that is di ∈ K[y, z] for all
1 ≤ i ≤ I. Over the field K(x, y), we can decompose r as

r = Θy(u?) + Θz(v
?) + r? with r? =

I′∑
i=1

J′i∑
j=1

αi,j
(z − βi)j

,

where u?, v? ∈ K(x, y)(z), αi,j , βi ∈ K(x, y) with αi,J′
i
6= 0, z − βi and z − βi′ are not

〈θy, θz〉-equivalent for all i, i′ with 1 ≤ i 6= i′ ≤ I ′. It suffices to show Dx(βi) = 0 for all i
with 1 ≤ i ≤ I ′. We will prove this claim by contradiction. Suppose that Dx(βk) 6= 0 for
some 1 ≤ k ≤ I ′ and that L =

∑ρ
`=0 e`D

`
x ∈ K(x)〈Dx〉 with eρ 6= 0 is a telescoper for r?.

Then

L(r?) =

I′∑
i=1

J ′ρi eραi,J′iDx(βi)
ρ

(z − βi)J
′
i
+ρ

+

J′i+ρ−1∑
j=1

α̃i,j
(z − βi)j

 ,

where J ′ρi = J ′i(J
′
i + 1) · · · (J ′i + ρ− 1) and α̃i,j ∈ K(x, y). As L(r?) is (Θy,Θz)-exact and

Dx(βk) 6= 0, we have
θmky (z − βk) = qskθnkz (z − βk) (18)

for some mk, nk, sk ∈ Z with mk > 0 and

J ′ρk eραk,J′kDx(βk)ρ = q−(J′k+ρ)skθmky (γk)− γk (19)

for some γk ∈ K(x, y). From Equation (18), we know θmky Dx(βk) = qskDx(βk). Dividing

Equation (19) by J ′ρk eρDx(βk)ρ gives

αk,J′
k

= q−J
′
kskθmky

(
γk

J ′ρk eρDx(βk)ρ

)
− γk

J ′ρk eρDx(βk)ρ
.
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Thus
αk,J′

k

(z−βk)J
′
k

is (Θy,Θz)-exact in K(x, y)(z), and hence can be moved into u? and v?.

Then by similar discussions as above, one can see
αk,j

(z−βk)j is (Θy,Θz)-exact for all j with

1 ≤ j ≤ Ji. Notice that βk is a root of dk for some 1 ≤ k ≤ I and that Dx(βk) 6= 0 leads to

Dx(β) 6= 0 for any conjugate root β of dk. Then all fractions of the form α
(z−β)j in r? are

also (Θy,Θz)-exact. Collecting all these fractions together, we get
ak,j

dj
k

is (Θy,Θz)-exact

in K(x, y)(z) and hence in K(x, y, z) by Lemma 3.4, which contradicts the assumption

that none of the nonzero
ai,j

dj
i

in r is exact. At this stage we have proved di ∈ K[y, z].

Since L is also a telescoper for r, we have

L(r) =

I∑
i=1

Ji∑
j=1

L(ai,j)

dji
= Θy(g) + Θz(h)

for some g, h ∈ K(x, y, z). Since the di’s are in distinct 〈θy, θz〉-orbits and also free of x,

we have for each i, j,

L

(
ai,j

dji

)
=
L(ai,j)

dji
= Θy(gi,j) + Θz(hi,j)

for some gi,j , hi,j ∈ K(x, y, z). So L is a telescoper for all ai,j/d
j
i with 1 ≤ i ≤ I and

1 ≤ j ≤ Ji.
Notice that for µ ∈ K(x, y), having telescopers of type (Dx,Θy,Θz) or (Dx,Θy) are

equivalent. As the existence problem of telescopers for bivariate rational functions has

been settled by Theorem 4.1, we only need to decide when

f =
a

dj
,

where a ∈ K(x, y)[z], d ∈ K[x, y, z] with degz(a) < degz(d) and d being irreducible, has

telescopers of type (Dx,Θy,Θz). The same argument as in the proof of Theorem 4.11

implies that if f is not (Θy,Θz)-exact but has a telescoper of type (Dx,Θy,Θz), then d is

free of x. Assume d ∈ K[y, z] and L ∈ K(x)〈Dx〉 is a telescoper of f . Then L(f) = L(a)
dj is

(Θy,Θz)-exact. We will proceed by checking whether the two conditions for the exactness

in Lemmas 3.6–3.8 are satisfied. In order to carry out this case distinction explicitly, we

will refer to the corresponding (q)-shift equivalence testing problems.

If θmy (d) 6= qtθnz (d) whenever m,n, t ∈ Z and m > 0, then we have L(a) = 0 which can

be reduced to solving the separation problem for bivariate rational functions and settled

via GCD computations.

If θmy (d) = qtθnz (d) for some m,n, t ∈ Z with m being the smallest such positive in-

teger, then L(a) satisfies an equation. Next we will show how to solve the equation for

different (θy, θz) separately.

(1) When (θy, θz) = (σy, σz), Lemma 3.6 shows that L(x,Dx)(a) = σmy σ
−n
z (b) − b for

some b ∈ K(x, y)[z] with degz(b) < degz(d). Taking ȳ = y/m and z̄ = ny +mz shows

L(x,Dx)(a) = σmy σ
−n
z (b) − b is equivalent to the existence problem of telescopers of

type (Dx,∆y) for bivariate rational functions, which has been solved by Theorem 4.1.

(2) When (θy, θz) = (τq,y, σz), Lemma 3.7 leads to L(a) = ∆q,y(b), which is the existence

problem of telescopers of type (Dx,∆q,y) solved by Theorem 4.1.
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(3) When (θy, θz) = (τq,y, τq,z), by Lemma 3.8 we know L(x,Dx)(a) = q−jtτmq,yτ
−n
q,z (b)− b

for some b ∈ K(x, y)[z] with degz(b) < degz(d). Define an F-homomorphism ϕ of F(y, z)

by y 7→ ym, z 7→ y−nz. Then the q-difference equation can also be simplified.

Proposition 4.12. Let f ∈ F(y, z) be a rational function and m,n, s ∈ N integers with

m > 0. Then f = qsτmq,yτ
−n
q,z (g)−g for some g ∈ F(y, z) if and only if ϕ(f) = qsτq,y(h)−h

for some h ∈ F(y, z).

Proof. Let τ = τmq,yτ
−n
q,z . The necessity part follows from the fact that ϕ ◦ τ = τq,y ◦ ϕ.

For the sufficiency, define ψ : F(y, z)→ F(y, z) by y 7→ y1/m, z 7→ yn/mz, where F(y, z)

is the algebraic closure of F(y, z). It is easy to see ψ ◦ϕ = idF(y,z) and ψ ◦ τq,y = τ ◦ψ,

where τq,y and τq,z are extended to F(y, z). Thus ϕ(f) = qsτq,y(h) − h implies f =

qsτmq,yτ
−n
q,z (g̃)− g̃ with g̃ = ψ(h) ∈ F(y, z). By similar trace arguments as those used in

Lemma 3.4, one can see f = qsτmq,yτ
−n
q,z (g̃) − g̃ if and only if f = qsτmq,yτ

−n
q,z (g) − g for

some g ∈ F(y, z).

At this stage, by letting ȳ = y1/m and z̄ = yn/mz, we only need to decide whether

L(ā) = q−jtτq,y(b̄) − b̄ for some b̄ ∈ K(x, y, z), which can be determined by a similar

discussion process as the existence problem of telescopers of type (Dx,∆q,y).

Example 4.13. Let f = x+1
y+z2 . Notice that d = y + z2 is free of x and θmy (d) 6=

qtθnz (d) whenever m,n, t ∈ Z and m > 0. It is easy to check that L(f) = 0 for L =

(x + 1)Dx − 1, which means that f has a telescoper of type (Dx,Θy,Θz). If we add a

x to the denominator of f , the obtained function x+1
x+y+z2 does not have a telescoper of

type (Dx,Θy,Θz) since x+ y + z2 is not free of x.

4.3. Existence criteria of the third class

We now consider the third class of the existence problems of telescopers for rational

functions in three variables.

Problem 4.14. Given f ∈ K(x, y, z), decide whether there exists a nonzero operator L in

K(x)〈∂x〉 with ∂x ∈ {Sx, Tq,x} such that L(f) = Dy(g)+Dz(h) for some g, h ∈ K(x, y, z).

Let f ∈ F(y, z) be of the form (6) with F = K(x). If f is (Dy, Dz)-exact in K(x, y, z),

then 1 is a telescoper for f . From now on, we assume that f is not (Dy, Dz)-exact.

Let (∂x, θx) ∈ {(Sx, σx), (Tq,x, τq,x)}. By dividing the roots of b in K(x, y) into different

〈θx〉-orbits, we can write f as f = Dz(u) + r with u ∈ F(y, z) and

r =

I∑
i=1

Ji∑
j=0

αi,j

z − θjx(βi)
, (20)

where αi,j , βi ∈ K(x, y) and the βi’s are in distinct 〈θx〉-orbits. Note that f has a tele-

scoper of type (∂x, Dy, Dz) if and only if r has a telescoper of the same type.

Lemma 4.15. Let r =
∑J
j=0 αj/(z − θjx(β)) with αj , β ∈ K(x, y) and θmx (β) 6= β for

any m ∈ Z \ {0}. Then r is (Dy, Dz)-exact if it has a telescoper of type (∂x, Dy, Dz).
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Proof. Assume that L =
∑ρ
`=0 e`∂

`
x ∈ K(x)〈∂x〉 with e0 6= 0 is a telescoper for r of type

(∂x, Dy, Dz). Then

L(r) =

J+ρ∑
j=0

α̃j

z − θjx(β)
= Dy(u) +Dz(v),

where u, v ∈ K(x, y)(z) and α̃j =
∑j
k=0 ekθ

k
x(αj−k) with ek = 0 for k > ρ and αj = 0 for

j > J . Since θmx (β) 6= β whenever m ∈ Z\{0}, for each 1 ≤ j ≤ J+ρ we have α̃j = Dy(γ̃j)

for some γ̃j ∈ K(x, y) by Lemma 3.5. We now prove inductively that for each j with

0 ≤ j ≤ J , αj = Dy(γj) for some γj ∈ K(x, y). Since α̃0 = e0α0 and e0 ∈ K(x) \ {0}, we
have α0 = Dy(γ0) with γ0 = γ̃0/e0. Suppose that we have shown that αj = Dy(γj) for
j = 0, . . . , k−1 with k ≤ J . Note that α̃k = e0αk+e1θx(αk−1)+ · · ·+ekθkx(α0) = Dy(γ̃k).

Then αk = Dy(γk) with γk = 1
e0

(γ̃k −
∑k
j=1 ejθ

j
x(γk−j)). So r is (Dy, Dz)-exact by

Lemma 3.5.

Theorem 4.16. Let r ∈ K(x, y, z) be of the form (20). Then r has a telescoper of
type (∂x, Dy, Dz) if and only if for each i with 1 ≤ i ≤ I, either αi,j/(z − θjx(βi))

is (Dy, Dz)-exact or βi ∈ K(y) and there exists a nonzero Li,j ∈ K(x)〈∂x〉 such that
Li,j(αi,j) = Dy(γi,j) for some γi,j ∈ K(x, y)(βi).

Proof. The sufficiency part follows from Lemma 2.6 since each fraction αi,j/(z− θjx(βi))
is either (Dy, Dz)-exact or has a telescoper of type (∂x, Dy, Dz). To show the necessity
part, we assume that L =

∑ρ
`=0 e`∂

`
x ∈ K(x)〈∂x〉 with e0 6= 0 is a telescoper for r of type

(∂x, Dy, Dz). Then we have

L(r) =

I∑
i=1

Ji+ρ∑
j=0

α̃i,j

z − θjx(βi)
= Dy(u) +Dz(v),

where u, v ∈ K(x, y, z) and α̃i,j =
∑j
k=0 ekθ

k
x(αi,j−k) with ek = 0 for k > ρ and αi,j = 0

for j > Ji. By Lemma 3.5, we have ri =
∑Ji+ρ
j=0

α̃i,j

z−θjx(βi)
is (Dy, Dz)-exact for each

i with 1 ≤ i ≤ I since the βi’s are in distinct 〈θx〉-orbits. If there exists a nonzero
mi ∈ N such that θmix (βi) = βi, then βi ∈ K(y) by [22, Lemma 3.4 (i)]. So Ji = 0
and L(αi,0/(z − βi)) = L(αi,0)/(z − βi) is (Dy, Dz)-exact, which implies that L(αi,0) =

Dy(γi,0) for some γi,0 ∈ K(x, y). Since αi,0 ∈ K(x, y)(βi), we can choose γi,0 ∈ K(x, y)(βi)
by the trace argument. If there is no nonzero mi ∈ N such that θmix (βi) = βi, then the
theorem follows from Lemma 4.15.

Problem 4.14 now has been reduced to the exactness testing problem and the following
existence problem.

Problem 4.17. Given α ∈ K(x, y)(β) with β algebraic over K(y), decide whether α has a
telescoper of type (∂x, Dy) with ∂x ∈ {Sx, Tq,x}, i.e., there exists a nonzero L ∈ K(x)〈∂x〉
such that L(α) = Dy(γ) for some γ ∈ K(x, y)(β).

In order to solve the above problem, we first present a vector version of the Hermite-
like reduction in [29]. Let ~a = 1

d (a1, . . . , an) ∈ K(x, y)n with ai, d ∈ K[x, y] satisfying
that gcd(d, a1, . . . , an) = 1 and B = 1

e (bi,j) ∈ K(x, y)n×n with e, bi,j ∈ K[x, y] such
that gcd(e, b1,1, . . ., b1,n, . . ., bn,n) = 1. Let p ∈ K[x, y] be any irreducible factor of d
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that is coprime with e. Then d = pmd1 with d1 ∈ K[x, y] and gcd(p, d1) = 1. Since

gcd(p,Dy(p)) = 1, we have gcd(p,Dy(p)d1) = 1 and then the Bézout relation

ai = sip+ tiDy(p)d1,

where si, ti ∈ K(x)[y]. Using integration by parts, we get

ai
pmd1

=
sip+ tiDy(p)d1

pmd1
= Dy

(
ui

pm−1

)
+

vi
pm−1d1

,

where ui = ti(1 − m)−1 and vi = si − (1 − m)−1Dy(ti)d1. Let ~u = (u1, . . . , un) and

~v = (v1, . . . , vn). Then we have

~a=Dy

(
~u

pm−1

)
+

~v

pm−1d1
=Dy

(
~u

pm−1

)
+

~u

pm−1
·B +

~w

pm−1d1e
,

where ~w ∈ K(x)[y]n. This process of multiplicity reduction yields

~a = Dy

(
~g

pm−1

)
+

~g

pm−1
·B +

~h

pd1e
,

where ~g,~h ∈ K(x)[y]n. By reducing the multiplicity of each irreducible factor of d that is

coprime with e in the above way, we obtain the additive decomposition

~a = Dy(~b) +~b ·B + ~r, (21)

where ~b ∈ K(x, y)n and ~r = 1
pc (r1, . . . , rn) with ri ∈ K(x)[y] and p, c ∈ K[x, y] \ {0} be

such that p is a squarefree polynomial and gcd(p, e) = 1 and each irreducible factor of c

divides e. We call the above process a vector Hermite reduction of ~a with respect to B.

Let β ∈ K(y) and n = [K(y, β) : K(y)]. Assume that {β1, . . . , βn} is a basis for K(y, β)

as a linear space over K(y). Since Dy(βi) ∈ K(y, β), we have Dy(βi) = 1
e

∑n
j=1 bj,iβj with

e, bj,i ∈ K[y]. Set B = 1
e (bi,j) ∈ K(y)n×n. Then Dy(~β) = ~β · B with ~β = (β1, . . . , βn).

Since α ∈ K(x, y)(β), we can write α = ~a · ~βT for some ~a = 1
d (a1, . . . , an) ∈ K(x, y)n with

d, ai ∈ K[x, y]. Applying the vector Hermite reduction to ~a with respect to B yields the

additive decomposition (21), which is equivalent to

α = Dy(~b · ~βT ) + α̃ with α̃ =
1

pc

n∑
i=1

riβi, (22)

where ri, p, c ∈ K[x, y] with p being squarefree and gcd(p, e) = 1 and each irreducible

factor of c divides e ∈ K[y].

Theorem 4.18. Let α ∈ K(x, y)(β) be of the form (22). Then α has a telescoper of type

(∂x, Dy) if and only if the polynomial p in (22) is split in x and y.

Proof. Assume that p is split in x and y, i.e., p = p1p2 for some p1 ∈ K[x] and p2 ∈ K[y].

Then α̃ can be written as α̃ =
∑m
j=1 fj · gj with fj ∈ K(x) and gj ∈ K(y)(β) since

βi ∈ K(y)(β) and c ∈ K[y]. Let Lj = fj(x)∂x − θx(fj) ∈ K(x)〈∂x〉 for each 1 ≤ j ≤ m.

Then Lj(fj · gj) = 0. So the LCLM of the Lj ’s annihilates α̃, which then is a telescoper

for α of type (∂x, Dy). To show the necessity, we assume that L =
∑ρ
`=0 e`∂

`
x ∈ K(x)〈∂x〉
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with e0eρ 6= 0 is a telescoper for α of type (∂x, Dy). Then L(α̃) = Dy(γ̃) for some

γ̃ ∈ K(x, y)(β). Write γ̃ = ~s · ~βT with ~s ∈ K(x, y)n and ~r = (r1, . . . , rn). Then we have

L

(
1

pc
~r

)
=

ρ∑
`=0

e`
θ`x(p)c

θ`x(~r) = Dy(~s) + ~s ·B.

Suppose that p is not split in x and y. Then there exists a non-split irreducible factor

p0 of p such that θx(p0) - p. Then θρx(p0) is also a non-split irreducible polynomial and

only divides the denominator θρx(p)c. Since p is squarefree, the valuation of the left-hand

side of the above equality at θρx(p0) is −1. However, the valuation of the right-hand side

is either ≥ 0 or < −1 since B ∈ K(y)n×n. This leads to a contradiction. So p is split in

x and y.

Example 4.19. Let f = x/(z2 − y). Then

f =
α

z − β
+
−α
z + β

,

where α = x/(2
√
y) and β =

√
y. By Theorem 4.16, f has a telescoper of type (∂x, Dy, Dz)

since β ∈ K(y) and L(α) = 0 for L = x∂x − θx(x). Hence,

L(f) =
L(α)

z − β
+
L(−α)

z + β
= Dy(0) +Dz(0).

Example 4.20. Let f = x/((x+ y)(z2 − y)). Then

f =
α

z − β
+
−α
z + β

,

where α = x/(2
√
y(x+y)) and β =

√
y. Since x+y is not split in x and y, Theroem 4.16

and Theorem 4.18 imply f does not have any telescoper of type (∂x, Dy, Dz).

4.4. Existence criteria of the fourth class

We continue to address the fourth class of the existence problems of telescopers for

rational functions in three variables. There are four cases in this class.

Problem 4.21. Let ∂x ∈ {Sx, Tq,x} and Θy ∈ {∆y,∆q,y}. Given f ∈ K(x, y, z), decide

whether there exists a nonzero operator L ∈ K(x)〈∂x〉 such that L(f) = Θy(g) +Dz(h)

for some g, h ∈ K(x, y, z).

Let (∂x, θx) ∈ {(Sx, σx), (Tq,x, τq,x)} and (Θy, θy) ∈ {(∆y, σy), (∆q,y, τq,y)}. By the

Ostrogradsky–Hermite reduction in z and the reduction formula (7) with θ = θy, we can

decompose f as

f = Θy(u) +Dz(v) + r, where r =

I∑
i=1

Ji∑
j=0

ai,j

θjx(di)
(23)

with ai,j ∈ K(x, y)[z] and di ∈ K[x, y, z] satisfying the condition degz(ai,j) < degz(di)

and the di’s are irreducible polynomials in distinct 〈θx, θy〉-orbits. Note that f has a

telescoper of type (∂x,Θy, Dz) if and only if r does.
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Lemma 4.22. Let r ∈ K(x, y, z) be as in (23). Then r has a telescoper of type (∂x,Θy, Dz)

if and only if for each i with 1 ≤ i ≤ I, the function ri =
∑Ji
j=0

ai,j

θjx(di)
has a telescoper of

the same type.

Proof. The sufficiency part follows from Lemma 2.6. For the necessity, we assume that
L =

∑ρ
k=0 `k∂

k
x ∈ K(x)〈∂x〉 with ∂x ∈ {Sx, Tq,x} and `0 6= 0 is a telescoper for r of type

(∂x,Θy, Dz). Then

L(r) =

I∑
i=1

L(ri) =

I∑
i=1

Ji+ρ∑
j=0

∑j
k=0 `kθ

k
x(ai,j−k)

θjx(di)


is (Θy, Dz)-exact, where `k = 0 if k > ρ and ai,j = 0 if j > Ji. Since the di’s are in

distinct 〈θx, θy〉-orbits, θjx(di) and θj
′

x (di′) are in distinct 〈θy〉-orbits for any j, j′ ∈ Z and
1 ≤ i, i′ ≤ I with i 6= i′. By Lemma 3.9, we have L(ri) is (Θy, Dz)-exact for each i with
1 ≤ i ≤ I. So each ri has a telescoper of the same type.

Now the existence problem is reduced to that for rational functions of the form

f =

I∑
i=0

ai
θix(d)

, (24)

where ai ∈ K(x, y)[z], d ∈ K[x, y, z] with degz(ai) < degz(d) and d is irreducible in z over
K(x, y). We will proceed by a case distinction according to whether or not d satisfies the
condition: there exist c ∈ K \ {0} and integers m,n with m > 0 such that

θmx (d) = c · θny (d). (25)

Note that the constant c in (25) must be 1 if (θx, θy) ∈ {(σx, σy), (σx, τq,y)} by the
comparison of leading coefficients. When (θx, θy) = (τq,x, σy), we have τmq,x(d) = c · σny (d)
which implies d = xm0 · d1 for some m0 ∈ Z and d1 ∈ K(y, z). Then it is easy to see that
c = qmm0 . When (θx, θy) = (τq,x, τq,y), we claim that c = qs for some s ∈ Z. To show this
claim, we write d =

∑
i,j,k ci,j,kx

iyjzk. Then the equality τmq,x(d) = c ·τnq,y(d) implies that

for all i, j, we have c = qim−jn. Let s = gcd(m,n). Thenm = sm̄ and n = sn̄. For different
pairs (i1, j1) and (i2, j2) with qi1m−j1n = qi2m−j2n, we have i1m− j1n = i2m− j2n since
q is not a root of unity, which further implies that (i2, j2) = (i1, j1) + λ(n̄, m̄) for some
nonzero λ ∈ Z. Thus d = xi0yj0 d̄, where i0, j0 ∈ Z and d̄ =

∑ρ
k=0 dk(xn̄ym̄)zk with

ρ ∈ N and the dk’s being univariate polynomials over K. Since τmq,x(d̄) = τnq,y(d̄), we

have c = qi0m−j0n. Combining the above discussions with [12, Proposition 1] yields a
characterization of polynomials satisfying the condition (25).

Lemma 4.23. Let d =
∑ρ
i=0 diz

i ∈ K(x, y)[z] be a polynomial in z over K(x, y). If there
exist c ∈ K \ {0} and m,n ∈ Z with m > 0 such that θmx (d) = c · θny (d), then for each i
with 0 ≤ i ≤ ρ we have

(1) if (θx, θy) = (σx, σy), then c = 1 and di is integer-linear in x and y, i.e., di =
f(nx+my) for some f ∈ K(t);

(2) if (θx, θy) = (σx, τq,y), then c = 1 and di ∈ K(y). If n 6= 0, we have di ∈ K;
(3) if (θx, θy) = (τq,x, σy), then di = xm0 · fi(y) for some m0 ∈ Z and fi(y) ∈ K(y). If

n 6= 0, we have di = ci · xm0 for some ci ∈ K;
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(4) if (θx, θy) = (τq,x, τq,y), then c = qs for some s ∈ Z and di is q-integer-linear in x
and y, i.e., di = xn0ym0fi(x

nym) for some fi ∈ K(t) and n0,m0 ∈ Z.

By the above characterization, the condition (25) can be checked by solving the bi-
variate case of Problems 4.3 and 4.4 in the pure shift and q-shift cases, respectively.

Lemma 4.24. Let f ∈ K(x, y, z) be of the form (24) and d does not satisfy the condi-
tion (25). Then f has a telescoper of type (∂x,Θy, Dz) if and only if f is (Θy, Dz)-exact.

Proof. The sufficiency is clear by definition. Assume that L =
∑ρ
k=0 `k∂

k
x with `0 6= 0 is

a telescoper for f of type (∂x,Θy, Dz). Then we have that

L(f) =

ρ+I∑
i=0

(∑i
j=0 `jθ

j
x(ai−j)

θix(d)

)
is (∆y, Dz)-exact, where `j = 0 if j > ρ and ai = 0 if i > I. Since d does not satisfy

the condition (25), we have θix(d) and θi
′

x (d) in distinct 〈θy〉-orbits for all i 6= i′. By
Lemma 3.9, for any i with 0 ≤ i ≤ ρ+ I, there exist ui, vi ∈ K(x, y, z) such that∑i

j=0 `jθ
j
x(ai−j)

θix(d)
= Θy(ui) +Dz(vi). (26)

To show that all fractions ai/θ
i
x(d) are (Θy, Dz)-exact, we proceed by induction. The

assertion is true for i = 0 since a0/d = Θy(u0/`0) + Dz(v0/`0). Suppose that we have
shown that ai/θ

i
x(d) is (Θy, Dz)-exact for i = 0, . . . , s−1 with s ≤ I. By the equality (26)

with i = s, we get

as
θsx(d)

= Θy

(
us
`0

)
+Dz

(
vs
`0

)
−

s∑
j=1

`j
`0
θjx

(
as−j

θs−jx (d)

)
.

Since θx, θy and δz commute, by Lemma 3.9, we have a/θix(d) is (Θy, Dz)-exact for any

i ∈ N if a/d is. By the induction hypothesis, we have
`j
`0
θjx(as−j/θ

s−j
x (d)) is (Θy, Dz)-exact

for all 1 ≤ j ≤ s. Then so are as/θ
s
x(d) and f .

We now deal with the case in which d satisfies condition (25). From now on, we will
always assume that m is the smallest such positive integer such that θmx (d) = c · θny (d)
for some n ∈ Z and c ∈ K \ {0}. By the reduction formula (7) with θ = θy, the existence
problem is further reduced to that for rational functions of the form

f =

m−1∑
i=0

ai
θix(d)

, (27)

where ai ∈ K(x, y)[z], d ∈ K[x, y, z] with degz(ai) < degz(d) and d is irreducible in z over
K(x, y).

The following lemma is similar to Lemma 5.3 in [18].

Lemma 4.25. Let f ∈ K(x, y, z) be of the form (27) and let d satisfy the condition (25).
Then f has a telescoper of type (∂x,Θy, Dz) if and only if for each i with 0 ≤ i ≤ I, the
fraction ai/θ

i
x(d) has a telescoper of the same type.
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Proof. The sufficiency follows from Lemma 2.6. For the necessity direction, one can
adapt the second part of the proof of [18, Lemma 5.3] to the setting of telescopers of
type (∂x,Θy, Dz) literally by interpreting ≡y,z 0 as being (Θy, Dz)-exact.

The above lemma further reduces the existence problem to that for simple fractions
of the form

f =
a

bd
, (28)

where a, d ∈ K[x, y, z], b ∈ K[x, y] satisfy that gcd(a, bd) = 1 and degz(a) < degz(d), and
d is irreducible and satisfies the condition (25). We will consider two cases according to
whether d is in K[x, z] or not. If d ∈ K[x, z], then θiy(d) = d for all i ∈ N. The condition
θmx (d) = c·θny (d) implies that d is also free of x, i.e., d ∈ K[z]. Thus L ∈ K(x)〈∂x〉 is a
telescoper for f of type (∂x,Θy, Dz) if and only if L(a/b) = Θy(u) for some u ∈ K(x, y)[z]

with degz(u) < degz(d). Write a =
∑degz(d)−1
i=0 aiz

i and u =
∑degz(d)−1
i=0 uiz

i. Then for
each i with 0 ≤ i ≤ degz(d) − 1, we have L(ai/b) = Θy(ui), i.e., L is a telescoper for
all ai/b of type (∂x,Θy). The existence problem is then reduced to that in the bivariate
case, for which Theorem 4.1 applies. So it remains to deal with the case when d is not in
K[x, z].

Lemma 4.26. Let τ := θmx θ
−n
y with m,n ∈ Z and m > 0 and let p ∈ K[x, y] be an

irreducible polynomial. If τk(p) = λ · p for some nonzero k ∈ Z and nonzero λ ∈ K, then
τ(p) = µ · p for some nonzero µ ∈ K.

Proof. Write p =
∑
i,j pi,jx

iyj with pi,j ∈ K. We will proceed by case distinctions.

(1) If (θx, θy) = (σx, σy), then τk(p) = λ·p implies that λ = 1 by comparing the leading
coefficients. So σkmx (p) = σkny (p). By Lemma 4.23, we have p = r(knx + kmy) for

some r =
∑s
j=0 rjz

j ∈ K[z]. Thus p = r̃(nx + my) with r̃ =
∑s
j=0 rjk

jzj , which
implies that τ(p) = p.

(2) If (θx, θy) = (σx, τq,y), then τk(p) = λ · p implies that p ∈ K[y] and moreover
p = c · y for some c ∈ K if n 6= 0 by [13, Lemma 5.4], which leads to τ(p) = µ · p
with µ = q−n.

(3) If (θx, θy) = (τq,x, σy), by [13, Lemma 5.4], τk(p) = λ · p implies that p ∈ K[y] or
p = cx for some c ∈ K. In the former case, we have n = 0 or p ∈ K, hence τ(p) = p.
In the latter case, τ(p) = cqmx = µ · p with µ = qm.

(4) If (θx, θy) = (τq,x, τq,y), then τk(p) = λ · p implies that p = (xsyt) · r(xknykm) for
some s, t ∈ Z and r ∈ K[z] by [27, Lemma 5.2]. So we have τ(p) = µ · p with
µ = qsm−nt. This completes the proof.

Lemma 4.27. Let τ := θmx θ
−n
y with m,n ∈ Z and m > 0 and let f = a/b with

a, b ∈ K[x, y] and gcd(a, b) = 1. If there exist e0, . . . , er ∈ K(x), not all zero, such
that

∑r
i=0 eiτ

i(f) = 0, then b = b1b2 with b1 ∈ K[x] and b2 ∈ K[x, y] satisfying that
τ(b2) = λ · b2 for some nonzero λ ∈ K.

Proof. Assume that
∑r
i=0 eiτ

i(f) = 0. Let b1 and b2 be the content and primitive part
of b as a polynomial in y over K[x]. If b2 is a constant in K, then the assertion holds since
τ(b2) = b2. We now assume that b2 /∈ K. Then all of its irreducible factors have positive
degree in y. Assume that there exists an irreducible factor p of b2 such that τ(p) 6= c · p
for any c ∈ K. Then for any integers i 6= 0, τ i(p) 6= ci · p for any ci ∈ K by Lemma 4.26.
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Among all of such irreducible factors, we can always find one factor p such that τ i(p) - b2
for all integer i < 0. Then τ i(p) is also irreducible for all i ∈ Z and gcd(τ i(p), τ j(p)) = 1

if i 6= j. Let s be the largest integer such that τs(p) | b2. Then the irreducible polynomial

τ r+s(p) only divides the r-th transform τ r(b) of b and not others, which implies that∑r
i=0 eiτ

i(f) 6= 0 since p depends on y and the coefficients ei are in K(x). This leads to

a contradiction. So for each irreducible factor p of b2 we have τ(p) = c · p for some c ∈ K.

This implies that τ(b2) = λ · b2 for some λ ∈ K.

Lemma 4.28. Let a ∈ K(x)[y, z] and b ∈ K[x, y, z] be such that b 6= 0 and θmx (b) =

c · θny (b) for some c ∈ K \ {0} and m,n ∈ Z with m > 0. Then a/b has a telescoper of

type (∂x,Θy, Dz).

Proof. Set f = a/b. It suffices to show that for sufficiently large I ∈ N, there exist

`0, . . . , `I ∈ K(x), not all zero, and g ∈ K(x, y, z) such that L(f) = Θy(g) with L =∑I
i=0 `i∂

im
x . By the reduction formula (7) with θ = θy, we have

θimx (f) =
θimx (a)

θimx (b)
=

θimx (a)

ci · θiny (b)
= Θy(gi) +

θ−iny θimx (a)

ci · b

for some gi ∈ K(x, y, z). Note that the degrees of the polynomials θ−iny θimx (a) in y and z

are the same as those of a. So all of the polynomials θ−iny θimx (a) lie in a finite dimensional

linear space over K(x). Therefore, for sufficiently large I, there exist `0, . . . , `I ∈ K(x),

not all zero, such that
∑I
i=0 `iθ

−in
y θimx (a) = 0. This implies that L is a telescoper for f

of type (∂x,Θy, Dz).

Theorem 4.29. Let f ∈ K(x, y, z) be of the form (28). Assume that d is not in K[x, z].

Then f has a telescoper of type (∂x,Θy, Dz) if and only if b = b1b2 for some b1 ∈ K[x]

and b2 ∈ K[x, y] satisfying θmx (b2) = λ · θny (b2) for some nonzero λ ∈ K.

Proof. The sufficiency part follows from Lemma 4.28. For the necessity, we assume that

L ∈ K(x)〈∂x〉 is a telescoper for f of type (∂x,Θy, Dz). Write L = L0 +L1 + · · ·+Lm−1

with Li =
∑ri
j=0 `i,j∂

jm+i
x . Since θix(d) and θjx(d) are in distinct 〈θy〉-orbits for all 0 ≤

i 6= j ≤ m− 1, Lemma 3.9 implies that Li is also a telescoper for f of the same type for

each i with 0 ≤ i ≤ m− 1. A direct calculation yields

L0(f) = Θy(g0) +
A

d
,

where g0 ∈ K(x, y, z), A =
∑r0
j=0 c

−j`0,jτ
j(a/b) with τ = θmx θ

−n
y and τ(d) = c · d. By

Lemma 3.9, we have A = 0 since d /∈ K[x, z]. Necessity follows from Lemma 4.27.

Example 4.30. Let f = x+z
(x+y)(x+y+z2)2 . Note that d = x + y + z2 ∈ K[x, y, z] \ K[x, z]

satisfies the condition σx(d) = σy(d). Since b = x + y satisfies the same condition as d,

Theorem 4.29 implies that f has a telescoper of type (Sx,∆y, Dz). In fact L = −xSx +

(1 + x) is a telescoper for f since

L(f) = ∆y(r1 · f) +Dz(r2 · f) with r1 = −x+ x2 + xz

x+ z
and r2 = −x+ y + z2

2(x+ z)
.
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Example 4.31. Let f = x+z
(2x+y)(x+y+z2)2 . Since b1 = 2x + y does not satisfy the same

condition as d = x + y + z2, we know from Theorem 4.29 that f does not have any
telescoper of type (Sx,∆y, Dz).

4.5. Existence criteria of the fifth class

We now consider the fifth class of existence problems in which both telescopers and
(Θy,Θz) are involving (q-)shift operators. More precisely, we solve the following problem.

Problem 4.32. Let ∂x ∈ {Sx, Tq,x} and (Θy,Θz) ∈ {(∆y,∆z), (∆q,y,∆z), (∆q,y,∆q,z)}.
Given f ∈ K(x, y, z), determine if there exists a nonzero operator L ∈ K(x)〈∂x〉 such
that L(f) = Θy(g) + Θz(h) for some g, h ∈ K(x, y, z).

For v ∈ {x, y, z}, let θv = σv if Θv = ∆v or θv = τq,v if Θv = ∆q,v. By partial fraction
decomposition w.r.t z and the transformation (7) with θ = θy and subsequently with
θ = θz, any rational function f ∈ K(x, y, z) can be decomposed into

f = Θy(u) + Θz(v) + µ+

I∑
i=1

Ji∑
j=1

ti,j∑
`=0

ai,j,`

θ`xd
j
i

, (29)

where u, v ∈ K(x, y, z), µ ∈ K(x, y), ai,j,` ∈ K(x, y)[z], di ∈ K[x, y, z] with degz(ai,j,`) <

degz(di), di’s are irreducible polynomials in distinct 〈θx, θy, θz〉-orbits, θ`xdi and θ`
′

x di are
not 〈θy, θz〉-equivalent for any 1 ≤ i ≤ I, 0 ≤ `, `′ ≤ ti,j with ` 6= `′. Then by similar
discussions as in the proofs of Lemmas 5.2 and 5.3 in [18], we can obtain the following
result.

Lemma 4.33. Let f ∈ K(x, y, z) be of the form (29). Then f has telescopers of type
(∂x,Θy,Θz) if and only if µ and all

ai,j,`

θ`xd
j
i

with 1 ≤ i ≤ I, 1 ≤ j ≤ Ji and 0 ≤ ` ≤ ti,j have

telescopers of the same type.

Notice that for µ ∈ K(x, y), having telescopers of type (∂x,Θy,Θz) and (∂x,Θy) are
equivalent. The existence problem of bivariate rational functions has been solved by
Theorem 4.1. Thus Problem 4.32 for a general rational function has been reduced to that
for a rational function of the form

f =
b(x, y, z)

c(x, y)d(x, y, z)λ
, (30)

where λ ∈ N\{0}, c ∈ K[x, y], b, d ∈ K[x, y, z], d is irreducible and 0 ≤ degz(b) < degz(d).
Suppose α(x) ∈ K(x) \ {0}. It is easy to check that

ρ∑
i=0

ai(x)∂ix(αf) =

ρ∑
i=0

(
ai(x)∂ix(α)

)
∂ix(f)

whenever ai(x) ∈ K(x) and f ∈ K(x, y, z). This means the existence problem of f is
equivalent to that of αf . As such we can assume in the form (30) that b, c, d are all
primitive as polynomials in y and z. If f is (Θy,Θz)-exact, then 1 is a telescoper for f .

Lemma 4.34. Let f ∈ K(x, y, z) be of the form (30) and not (Θy,Θz)-exact. If f has a
telescoper of type (∂x,Θy,Θz), then

θmx (d) = qsθny θ
k
z (d) for some m, s, n, k ∈ Z with m > 0. (31)
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Proof. We prove the claim by contradiction. Suppose the condition (31) does not hold.

Assume that L =
∑I
i=0 ai∂

i
x ∈ K(x)〈∂x〉 with a0 6= 0 is a telescoper for f . Then

L(f) =

I∑
i=0

aiθ
i
x(b)

θix(c)θix(dλ)
= Θy(g) + Θz(h)

for some g, h ∈ K(x, y, z). By assumption, we know θixd’s are in distinct 〈θy, θz〉-orbits,

Lemmas 3.6–3.8 show that for any 0 ≤ i ≤ I,
aiθ

i
x(b)

θix(c)θix(dλ)
are (Θy,Θz)-exact. In particular,

a0b

cdλ
= Θy(g0) + Θz(h0) for some g0, h0 ∈ K(x, y, z).

As a0 ∈ K(x) \ {0}, we get b
cdλ

= Θy( g0a0 ) + Θz(
h0

a0
) which contradicts the assumption

that f is not (Θy,Θz)-exact. This completes the proof.

Next, we will proceed by case distinction according to whether or not

θn1
y (d) = qs1θk1z (d) for some s1, n1, k1 ∈ Z with n1 > 0. (32)

Theorem 4.35. Let f ∈ K(x, y, z) be of the form (30) and d satisfy the condition (31)

but not the condition (32). Then f has a telescoper of type (∂x,Θy,Θz) if and only if

θtmx (c) = qs2θtny (c) (33)

for (m,n) as in (31) and some t, s2 ∈ Z with t > 0.

Proof. For the sufficiency, assume that c satisfies the condition (33). Then we will set

L =
∑I
i=0 ai∂

itm
x , where I ∈ N and ai ∈ K(x) are to be determined. Applying the

reduction formula (7) yields

L(f) =

I∑
i=0

aiq
−is2−itsθitmx (b)

θitny (c)θitny θitkz (dλ)
= Θy(u) + Θz(v) +

1

cdλ

I∑
i=0

aiq
−is2−itsθitmx θ−itny θ−itkz (b)

for some u, v ∈ K(x, y, z). Note that the degrees of the polynomials θitmx θ−itny θ−itkz (b) in

y or z are the same as that of b. Thus all shifts of b lie in a finite dimensional linear space

over K(x). If I is large enough, then there always exist ai ∈ K(x), not all zero, such that∑I
i=0 aiq

−is2−itsθitmx θ−itny θ−itkz (b) = 0. As a result L =
∑I
i=0 ai∂

itm
x is a telescoper for

f .

For the necessity, assume f = b(x,y,z)
c(x,y)d(x,y,z)λ

has a telescoper L1 of type (∂x,Θy,Θz).

Let C1 be the maximal factor of c satisfying the condition (33) and C2 = c/C1. If C2 ∈ K,

then we are done. Now assume that C2 6∈ K. Then degy(C2) > 0 since c is primitive with

respect to y, z. It follows that there exist B1, B2 ∈ K[x, y, z] with degz(Bi) < degz(d)

and gcd(Bi, Ci) = 1 for i = 1, 2, such that

f =
1

dλ

(
B1

C1
+
B2

C2

)
.

Then B1

C1dλ
has a telescoper L2 of type (∂x,Θy,Θz) by the sufficiency. The least common

left multiple of L1 and L2 is a telescoper for B2

C2dλ
. Since d satisfies the condition (31),

we can assume L =
∑I
i=0 ai∂

im
x ∈ K(x)〈∂x〉 with a0aI 6= 0 to be a telescoper for B2

C2dλ
.
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Thus

L

(
B2

C2dλ

)
=

I∑
i=0

q−isaiθ
im
x (B2)

θimx (C2)θiny θ
ik
z (dλ)

= Θy(u) + Θz(v) +

I∑
i=0

q−isaiθ
im
x θ−iny θ−ikz (B2)

θimx θ−iny (C2)dλ

(34)

for some u, v ∈ K(x, y, z). Notice that L
(

B2

C2dλ

)
is (Θy,Θz)-exact and that d does not

satisfy condition(32). Then Lemmas 3.6–3.8 lead to

I∑
i=0

q−isaiθ
im
x θ−iny θ−ikz (B2)

θimx θ−iny (C2)
= 0. (35)

Let Λ = {cj ∈ K[x, y] \K[x]| cj is an irreducible factor of C2}. Then Λ is nonempty and
finite and none of cj satisfies condition (33) by the maximality of C1. By the method
of proof by contradiction, one can prove that there exists a c` ∈ Λ such that c` 6=
qs
′
θimx θ−iny cj for any cj ∈ Λ and s′, i ∈ Z with i > 0. This fact together with equation

(35) and the constraint gcd(B2, C2) = 1 implies that B2 = 0.

Lemma 4.36. Let f ∈ K(x, y, z) be of the form (30) and d satisfy conditions (31) and
(32). Suppose

θm2
x (c) = qs2θn2

y (c) for some integers m2, s2, n2 with m2 > 0. (36)

Then f has a telescoper of type (∂x,Θy,Θz).

Proof. Since d satisfies both (31) and (32), without loss of generality, we assume m,n1 are

the smallest such positive integers. Let m0 = mm2n1 and L =
∑I
i=0 ai∂

im0
x , where I ∈ N

and ai ∈ K(x) are to be determined. Then

L (f) =

I∑
i=0

aiθ
im0
x (b)

θim0
x (c)θim0

x (dλ)
=

I∑
i=0

aiq
−ims2n1−ism2n1θim0

x (b)

θimn2n1
y (c)θinm2n1

y θikm2n1
z (dλ)

=

I∑
i=0

aiq
αθim0
x (b)

θimn2n1
y θβz (cdλ)

= Θy(u) + Θz(v) +

∑I
i=0 aiq

αθim0
x θ−imn2n1

y θ−βz (b)

cdλ
, (37)

where u, v ∈ K(x, y, z), α = −ims2n1 − ism2n1 − i(m2n −mn2)s1 and β = ikm2n1 +
i(m2n −mn2)k1. Since the (q-)shift operators do not change the degree of b, when I is
large enough, we can find nontrivial solutions ai such that

I∑
i=0

aiq
αθim0
x θ−imn2n1

y θ−βz (b) = 0.

Then identity (37) leads to the fact that L =
∑I
i=0 ai∂

im0
x is a telescoper for f .

Theorem 4.37. Let f be of the form (30) and assume that d satisfies conditions (31)
and (32). Then f has a telescoper of type (∂x,Θy,Θz) if and only if f can be decomposed
into the form

f =
1

dλ

(
B1

C1
+
B2

C2

)
,

where B1, B2 ∈ K[x, y, z], C1, C2 ∈ K[x, y] satisfy the following two constraints: (1) C1

satisfies the condition (36); (2) B2/(C2d
λ) is (Θy,Θz)-exact.
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Proof. The sufficiency part follows from Lemma 4.36. For the necessity, let C1 be the

maximal factor of c satisfying the condition (36) and C2 = c/C1. If C2 ∈ K, then we are

done. Now assume that C2 6∈ K. Then degy(C2) > 0 since c is primitive with respect

to y, z. It follows that there exist B1, B2 ∈ K[x, y, z] with degz(Bi) < degz(d) and

gcd(Bi, Ci) = 1 for i = 1, 2, such that f = 1
dλ

(
B1

C1
+ B2

C2

)
. Next we will prove that B2

C2dλ

is (Θy,Θz)-exact. Note that B1

C1dλ
has a telescoper of the same type as f by Lemma 4.36.

Then B2

C2dλ
has a telescoper L =

∑I
i=0 ai∂

im
x with a0aI 6= 0 and

L

(
B2

C2dλ

)
= Θy(u) + Θz(v) +

I∑
i=0

q−isaiθ
im
x θ−iny θ−ikz (B2)

θimx θ−iny (C2)dλ
(38)

for some u, v ∈ K(x, y, z). Since degz(B2) < degz(d), the function
I∑
i=0

q−isaiθ
im
x θ−iny θ−ikz (B2)

θimx θ−iny (C2)dλ

is (Θy,Θz)-exact and d satisfies condition (32), exactness criteria in Lemmas 3.6–3.8 yield

that there exists g ∈ K(x, y)[z] such that

I∑
i=0

q−isaiθ
im
x θ−iny θ−ikz

(
B2

C2

)
= q−λs1θn1

y θ−k1z (g)− g. (39)

Let Λ = {cj ∈ K[x, y] \ K[x] | cj is an irreducible factor of C2}. Then Λ is nonempty

and finite since degy(C2) > 0. Notice that none of cj in Λ satisfies the condition (36).

One can find a c` ∈ Λ such that c` 6= qsθm3
x θn3

y cj for any cj ∈ Λ and s,m3, n3 ∈ Z with

m3 > 0. Collecting all irreducible factors in C2, which are 〈θy〉-equivalent to c`, into D1,

we can decompose B2

C2
into B2

C2
= A1

D1
+ A

D , where A1, A ∈ K[x, y, z], D = C2/D1. Rewrite

g = g1 + g?2 where g1, g
?
2 ∈ K(x, y)[z] and the denominator of g1 contains exactly all

irreducible factors in the denominator of g which are 〈θy〉-equivalent to c`. Equation (39)

and the choice of D1 and g1 imply A1

D1
= q−λs1θn1

y θ−k1z ( g1a0 )− g1
a0
, and hence

I∑
i=0

q−isaiθ
im
x θ−iny θ−ikz

(
A1

D1

)
= q−λs1θn1

y θ−k1z (h1)− h1, (40)

where h1 =
I∑
i=0

q−isaiθ
im
x θ−iny θ−ikz ( g1a0 ). Subtracting Equation (40) from (39), we obtain

I∑
i=0

q−isaiθ
im
x θ−iny θ−ikz

(
A

D

)
= q−λs1θn1

y θ−k1z (g?1)− g?1 (41)

with g?1 = g−h1. Repeating the above arguments for the equation (41), B2

C2
can be finally

decomposed as B2

C2
= A1

D1
+ A2

D2
+ · · · + AT

DT
for some Ai ∈ K[x, y, z], Di ∈ K[x, y] and

Ai
Di

= q−λs1θn1
y θ−k1z ( gia0 )− gi

a0
for any 1 ≤ i ≤ T . Then we get

B2

C2
= q−λs1θn1

y θ−k1z

(
1

a0

T∑
i=0

gi

)
− 1

a0

T∑
i=0

gi

and hence B2

C2dλ
is (Θy,Θz)-exact. This completes the proof.
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Example 4.38. Let f = 1/(bd2), where b = x+ y and d = 3x+ 2y+ z. Since d satisfies
σx(d) = σyσz(d) and σy(d) = σ2

z(d), and b satisfies σx(b) = σy(b), Lemma 4.36 implies f
has a telescoper of type (Sx,∆y,∆z). In fact,

L(f) = ∆y(r1 · f) + ∆z(r2 · f) with L = Sx− 1, r1 =
3x+ 2y + z

1 + 3x+ 2y + z
and r2 = −2y + z

3x
.

Example 4.39. Let f = 1/(bd2
1) with b = x + y as in the Example 4.38 and d1 =

3x2 + 2y+ z. Then f does not have any telescoper of type (Sx,∆y,∆z) since d1 does not
satisfy the condition (31).

4.6. Existence criteria of the sixth class

We consider the last class of the existence problems of telescopers for rational functions
in three variables.

Problem 4.40. Let ∂y ∈ {Sy, Tq,y} and Θy = ∂y − 1. Given f ∈ K(x, y, z), decide
whether there exists a nonzero operator L ∈ K(x)〈Dx〉 such that L(f) = Θy(g) +Dz(h)
for some g, h ∈ K(x, y, z).

Let θy = σy if Θy = ∆y and θy = τq,y if Θy = ∆q,y. By the Ostrogradsky–Hermite
reduction and the reduction formula (7), we can decompose f ∈ K(x, y, z) as

f = Θy(u) +Dz(v) + r with r =

I∑
i=1

αi
z − βi

, (42)

where u, v ∈ K(x, y, z) and αi, βi ∈ K(x, y) with αi 6= 0 and the βi’s are in distinct
〈θy〉-orbits. Then f has a telescoper of type (Dx,Θy, Dz) if and only if r has a telescoper
of the same type.

Lemma 4.41. For any L =
∑ρ
j=0 `jD

j
x ∈ K(x)〈Dx〉 and α, β ∈ K(x, y), there exists

g ∈ K(x, y)(z) such that

L

(
α

z − β

)
=
L(α)

z − β
+Dz(g). (43)

Proof. Let resz(f, β) denote the residue of f ∈ K(x, y, z) at z = β in z. The map resz(·, β)
is K(x, y)-linear and commutes with the operator Dx by [21, Proposition 3]. Then we
have

resz

(
L

(
α

z − β

)
, β

)
= L

(
resz

(
α

z − β
, β

))
= L(α).

So all residues of h := L(α/(z − β)) − L(α)/(z − β) at all of its poles are zero. By
Proposition 2.2 in [22], we have h is Dz-exact, i.e., h = Dz(g) for some g ∈ K(x, y)(z).

The next theorem reduces Problem 4.40 to the separation problem for algebraic func-
tions (Problem 4.5) and the existence problem of telescopers in K(x, y)(β) with β ∈ K(x).

Theorem 4.42. Let f ∈ K(x, y, z) be of the form (42). Then f has a telescoper of type
(Dx,Θy, Dz) if and only if for each i with 1 ≤ i ≤ I, either αi is separable in x and y or

βi ∈ K(x) and αi ∈ K(x, y)(βi) has a telescoper of type (Dx,Θy).
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Proof. If for each i with 1 ≤ i ≤ I, either αi is separable or βi ∈ K(x) and αi ∈
K(x, y)(βi) has a telescoper of type (Dx,Θy), then there exists a nonzero Li ∈ K(x)〈Dx〉
such that either Li(αi) = 0 or Li(αi) = Θy(γi) for some γi ∈ K(x, y)(βi). By Lemma 4.41,

we have

Li

(
αi

z − βi

)
= Dz(gi) +

Li(αi)

z − βi
= Dz(gi) +

Θy(γi)

z − βi

= Dz(gi) + Θy

(
γi

z − βi

)
,

where gi ∈ K(x, y)(z). So for each i with 1 ≤ i ≤ I, the fraction αi/(z − βi) has a

telescoper of type (Dx,Θy, Dz). Then f has a telescoper of the same type by Lemmas 2.6

and 3.4. To show the necessity, we assume that L ∈ K(x)〈Dx〉 is a telescoper for f of

type (Dx,Θy, Dz). By Lemma 4.41, there exists w ∈ K(x, y)(z) such that

L(f) = Θy(L(u)) +Dz(L(v) + w) +

I∑
i=1

L(αi)

z − βi
= Θy(g) +Dz(h)

for some g, h ∈ K(x, y, z). For each i with 1 ≤ i ≤ I, either αi is separable if L(αi) = 0

or L(αi)/(z − βi) is (Θy, Dz)-exact if L(αi) 6= 0. In the latter case we have βi ∈ K(x)

and L(αi) = Θy(γi) for some γi ∈ K(x, y)(βi) by Lemma 3.9.

Remark 4.43. The separation problem for algebraic functions will be solved in the

forthcoming paper [16]. The existence problem of telescopers of type (Dx,Θy) can be

solved by using Theorem 4.1, whose statement is for functions in K(x, y), but its proof

also works for functions in K(x)(y). In particular, this covers the case in which the

functions are in K(x, y)(β) with β ∈ K(x).

Example 4.44. Let f = 1/(z2 − xy). Then

f =
α

z − β
+
−α
z + β

,

where α = 1
2
√
xy and β =

√
xy. Since α is separable in x and y, Theorem 4.42 implies

that f has a telescoper of type (Dx,Θy, Dz). In fact, L(f) = Θy(0) +Dz(−z · f), where

L = 2xDx + 1.

Example 4.45. Let f = 1/((x+ y)(z2 − x− y)). Then

f =
α

z − β
+
−α
z + β

,

where α = 1
2(x+y)

√
x+y

and β =
√
x+ y. Note that α is not separable in x and y since

its successive derivatives Di
x(α) = (−1)i

∏i
j=0(j + 1/2)(x+ y)−(i+3/2) are linearly inde-

pendent over K(x). Since β is not in K(x), it follows from Theorem 4.42 that f has no

telescoper of type (Dx,Θy, Dz).
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5. Conclusion

In this paper, we present existence criteria for telescopers for rational functions in
three variables. The criteria reduce the existence problem of telescopers for the trivariate
inputs to that for the bivariate inputs and two related solvable problems: the (q-)shift
equivalence testing problem and the separation problem. In the pure differential case,
algorithms for constructing minimal telescopers for rational functions in three variables
have been presented in [21, 8] using residues and reductions. This has also recently been
extended to the pure shift case in [17] based on the existence criteria given in [18]. The
first natural direction for future work is to implement the existence criteria presented in
this paper and also develop efficient algorithms for computing telescopers if they exist
in the other sixteen cases using the existence criteria from this paper. The next more
challenging direction is to study the existence problem of telescopers for more general
inputs, such as rational functions and hypergeometric terms in several variables. To this
end, we first need to solve the multivariate summability problem for those inputs. In
particular, it is already quite intriguing to extend the classical Gosper algorithm for
indefinite hypergeometric summation [30] to the bivariate case.
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