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Abstract

Telescopers for a function are linear differential (resp. difference) op-
erators annihilating the definite integral (resp. definite sum) of this func-
tion. They play a key role in Wilf-Zeilberger theory and algorithms for
computing them have been extensively studied in the past thirty years.
In this paper, we introduce the notion of telescopers for differential forms
with D-finite function coefficients. These telescopers appear in several
areas of mathematics, for instance parametrized differential Galois theory
and mirror symmetry. We give a sufficient and necessary condition for
the existence of telescopers for a differential form and describe a method
to compute them if they exist. Algorithms for verifying this condition are
also given.
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1 Introduction

In the Wilf-Zeilberger theory, telescopers usually refer to the operators in the
output of the method of creative telescoping, which are linear differential (resp.
difference) operators annihilating the definite integrals (resp. the definite sums)
of the input functions. The telescopers have emerged at least from the work of
Euler [22] and have found many applications in the various areas of mathematics
such as combinatorics, number theory, knot theory as well as others (see Section
7 of [26] for details or [27, 29] for applications in Feyman integrals). In particu-
lar, telescopers for a function are often used to prove the identities involving this
function or even obtain a simpler expression for the definite integral or sum of
this function. As a clever and algorithmic process for constructing telescopers,
creative telescoping firstly appeared as a term in the essay of van der Poorten
on Apréy’s proof of the irrationality of ζ(3) [40]. However, it was Zeilberger and
his collaborators [3, 37, 45, 46, 49] in the early 1990s who equipped creative tele-
scoping with a concrete meaning and formulated it as an algorithmic tool. Since
then, algorithms for creative telescoping have been extensively studied. Based
on the techniques used in the algorithms, the existing algorithms are divided
into four generations, see [15] for the details. Most recent algorithms are called
reduction-based algorithms which were first introduced by Bostan et al. in [7]
and further developed, for example, in [8, 9, 16, 20]. The termination of these
algorithms relies on the existence of telescopers. The question for which input
functions the algorithms will terminate has been answered in [1, 2, 11, 21, 47]
for several classes of functions such as rational functions and hypergeometric
functions as well as others. The algorithmic framework for creative telescoping
is now called the Wilf-Zeilberger theory.

Most algorithms for creative telescoping focus on the case of one bivariate
function as input. There are only a few algorithms which deal with multivariate
case (see, for example, [10, 12, 14, 28]). It is still a challenge to develop the
multivariate analogue of the existing algorithms (see Section 5 of [15]). In the
language of differential forms (with m variables and one parameter), the results
in [12] and [28] dealt with the cases of differential 1-forms and differential m-
forms respectively. On the other hand, in the applications to other domains
such as mirror symmetry (see [31, 34, 35]), one needs to deal with the case of
differential p-forms with 1 ≤ p ≤ m. Below is an example.

Example 1. Consider the following one-parameter family of the quintic poly-
nomials

W (t) =
1

5
(x5

1 + x5
2 + x5

3 + x5
4 + x5

5)− tx1x2x3x4x5
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where t is a parameter. Set

ω =

5∑
i=1

(−1)i−1xi

W (t)
dx1 ∧ · · · ∧ d̂xi ∧ · · · ∧ dx5.

To obtain the Picard-Fuchs equation for the mirror quintic, the geometers want
to compute a fourth order linear differential operator L in t and ∂t such that
L(ω) = dη for some differential 3-form η. Here one has that

L = (1− t5)
∂4

∂t4
− 10t4

∂3

∂t3
− 25t3

∂2

∂t2
− 15t2

∂

∂t
− 1.

Set θt = t∂/∂t. Then

L̃ = − 1

54
L
1

t
= θ4t − 5t(5θt + 1)(5θt + 2)(5θt + 3)(5θt + 4)

and the equation L̃(y) = 0 is the required Picard-Fuchs equation.

We call the operator L appearing in the above example a telescoper for the
differential form ω (see Definition 4). In this paper, we study the telescopers for
differential forms with D-finite function coefficients. Instead of the geometric
method used in [31, 34, 35], we provide an algebraic treatment. We give a
sufficient and necessary condition guaranteeing the existence of telescopers and
describe a method to compute them if they exist. In addition, we also present
algorithms to verify this condition.

The rest of this paper is organized as follows. In Section 2, we recall dif-
ferential forms with D-finite function coefficients and introduce the notion of
telescopers for differential forms. In Section 3, we give a sufficient and neces-
sary condition for the existence of telescopers, which can be considered as a
parametrized version of Poincaré’s lemma on differential manifolds. In Section
4, we give two algorithms for verifying the condition presented in Section 3.

Throughout this paper, we assume the following notations:

� ∂t =
∂
∂t , the usual derivation with respect to t;

� ∂xi
= ∂

∂xi
, the usual derivation with respect to xi;

� x = {x1, . . . , xn};

� ∂x = {∂x1
, . . . , ∂xn

}.

The following formulas will also be frequently used:

∂µ
xx

ν =

{
ν(ν − 1) · · · (ν − µ+ 1)xν−µ + P∂x, ν ≥ µ

P∂x, ν < µ
(1)

xµ∂ν
x =

{
(−1)νµ(µ− 1) · · · (µ− ν + 1)xµ−ν + ∂xP, µ ≥ ν

∂xP, µ < ν
(2)

where P ∈ k⟨x, ∂x⟩.
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2 D-finite elements and differential forms

Throughout this paper, let k be an algebraically closed field of characteris-
tic zero and let K be the differential field k(t, x1, . . . , xn) with the derivations
∂t, ∂x1

, . . . , ∂xn
. Let D = K⟨∂t,∂x⟩ be the ring of linear differential operators

with coefficients in K. For S ⊂ {t,x, ∂t,∂x}, denote by k⟨S⟩ the subalgebra
over k of D generated by S. For brevity, we denote k⟨t,x, ∂t, ∂x⟩ by W. Let U
be the universal differential extension of K in which every algebraic differential
equation having a solution in an extension of U has a solution in U (see page
133 of [24] for more precise description).

Definition 2. An element f ∈ U is said to be D-finite over K if for every δ ∈
{∂t, ∂x1

, . . . , ∂xn
}, there is a nonzero operator Lδ ∈ K⟨δ⟩ such that Lδ(f) = 0.

Denote by R the ring ofD-finite elements overK, and byM a free R-module
of rank n with base {a1, . . . , an}. Define a map D×M → M given by(

L,

n∑
i=1

fiai

)
−→ L

(
n∑

i=1

fiai

)
:=

n∑
i=1

L(fi)ai.

This map endows M with a left D-module structure. Let∧
(M) =

n⊕
i=0

∧i
(M)

be the exterior algebra of M, where
∧i

(M) denotes the i-th homogeneous part

of
∧
(M) as a graded R-algebra. We call an element in

∧i
(M) an i-form. Note

that
∧
(M) inherites a left D-module structure from M. In fact, for L ∈ D and

ω =
∑

fs1,...,sias1 ∧ · · · ∧ asi ∈
∧i

(M), one can define

L(ω) =
∑

L(fs1,...,si)as1 ∧ · · · ∧ asi

and for ω =
∑

i ωi with ωi ∈
∧i

(M), define L(ω) =
∑

i L(ωi). Let d : R → M
be a map defined as

df = ∂x1
(f)a1 + · · ·+ ∂xn

(f)an

for any f ∈ R. Then d is a derivation over k. Note that for each i = 1, . . . , n one
has that dxi = ai. Hence in the rest of this paper we shall use {dx1, . . . ,dxn}
instead of {a1, . . . , an}. The map d can be extended to a derivation on

∧
(M)

which is defined recursively as

d(ω1 ∧ ω2) = dω1 ∧ ω2 + (−1)iω1 ∧ dω2

for any ω1 ∈
∧i

(M) and ω2 ∈
∧j

(M). For detailed definitions on exterior
algebra and differential forms, we refer the readers to Chapter 19 of [30] and
Chapter 1 of [44] respectively. As the usual differential forms, we introduce the
following definition.
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Definition 3. Let ω ∈
∧
(M) be a form.

(1) ω is said to be closed if dω = 0, and exact if there is η ∈
∧
(M) such that

ω = dη.

(2) ω is said to be ∂t-closed (resp. ∂t-exact) if there is a nonzero L ∈ k(t)⟨∂t⟩
such that L(ω) is closed (resp. exact).

Definition 4. Assume that ω ∈
∧
(M). A nonzero L ∈ k(t)⟨∂t⟩ is called a

telescoper for ω if L(ω) is exact.

3 Parametrized Poincaré’s lemma

The famous Poincaré lemma states that if B is an open ball in Rn, any smooth
closed i-form ω defined on B is exact, for any integer i with 1 ≤ i ≤ n. In
this section, we shall prove the following lemma which can be viewed as a
parametrized analogue of Poincaré’s lemma for

∧
(M).

Lemma 5 (Parameterized Poincaré’s lemma). Let ω ∈
∧p

(M). If ω is ∂t-
closed then it is ∂t-exact.

To prove the above lemma, we need some lemmas. Note that the annihilated
ideal of a D-finite element in the Weyl algebra k⟨t, x1, . . . , xn, ∂t, ∂x1

, . . . , ∂xn
⟩

is holonomic, as demonstrated in [19] (or refer to [5, 23] for the proofs). Using a
dimension argument, the holonomic property implies the existence of a specific
operator L in the annihilated ideal. However, the proofs of two lemmas below
are constructive, providing algorithms for computing L.

Lemma 6 (Lipshitz’s lemma, see Lemma 3 of [33]). Assume that f is a D-
finite element over k(x). For each i = 1, 3, 4, . . . , n, there is a nonzero operator
L ∈ k(x1, x3, . . . , xn)⟨∂x2

, ∂xi
⟩ such that L(f) = 0.

The following lemma is a generalization of Lipshitz’s lemma.

Lemma 7. Assume that f1, . . . , fm are D-finite elements over k(x, t) and

S ⊂ {t, x1, . . . , xn, ∂t, ∂x1 , . . . , ∂xn}

with |S| > n+1. Then one can compute a nonzero operator L in k⟨S⟩ such that
L(fi) = 0 for all i = 1, . . . ,m.

Proof. For each δ ∈ {∂t, ∂x1
, . . . , ∂xn

} and i = 1, . . . ,m, let Ti,δ be a nonzero op-
erator inK⟨δ⟩ such that Ti,δ(fi) = 0. Set Tδ to be the least common left multiple
of T1,δ, . . . , Tm,δ. Then Tδ(fi) = 0 for all i = 1, . . . ,m and δ ∈ {∂t, ∂x1 , . . . , ∂xn}.
The lemma then follows from an argument similar to that in the proof of Lip-
shitz’s lemma.

Remark 8. Lemma 7 originally appears in [48] (see Lemma 4.1), where Zeil-
berger proves the existence of the operator L in the setting of Weyl algebra and
gives an algorithm to compute L in the case of two variables. Furthermore, there
is a Mathematica package called HolonomicFunctions developed by Koutschan
which allows one to compute L (see [25]).
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Lemma 9. Assume that f1, . . . , fm are D-finite over k(x, t), I, J ⊂ {1, . . . , n}
and I ∩ J = ∅. Assume further that V ⊂ {xi, ∂xi |i ∈ {1, . . . , n} \ (I ∪ J)} with
|V | = n− |I| − |J |. Then one can compute an operator P of the form

L+
∑
i∈I

∂xi
Mi +

∑
j∈J

Nj∂xj

such that P (fl) = 0 for all l = 1, . . . ,m, where L is a nonzero operator in
k⟨{t, ∂t} ∪ V }⟩, Mi, Nj ∈ W and Nj is free of xi for all i ∈ I and j ∈ J .

Proof. Without loss of generality, we assume that I = {1, . . . , r} and J =
{r + 1, . . . , r + s} where r = |I| and s = |J |. Let

S = {t, ∂t} ∪ {∂xi
|i ∈ I} ∪ {xj |j = r + 1, . . . , r + s} ∪ V.

Then |S| = n+2 > n+1. By Lemma 7, one can compute a T ∈ k⟨S⟩ \ {0} such
that T (fl) = 0 for all l = 1, . . . ,m. Write

T =
∑

d=(d1,...,dr)∈Γ1

∂d1
x1

. . . ∂dr
xr
Td

where Td ∈ k⟨{t, ∂t, xr+1, . . . , xr+s} ∪ V }⟩ \ {0} and Γ1 is a finite subset of Zr.
Let d̄ = (d̄1, . . . , d̄r) be the minimal element of Γ1 with respect to the lex order

on Zr. Multiplying T by
∏r

i=1 x
d̄i
i on the left and using the formula (2) yield

that (
r∏

i=1

xd̄i
i

)
T = αTd̄ +

r∑
i=1

∂xi
T̃i (3)

where α is a nonzero integer and T̃i ∈ k⟨S ∪ {xi|i ∈ I}⟩. Write

Td̄ =
∑

e=(e1,...,es)∈Γ2

Lex
e1
r+1 . . . x

es
r+s

where Le ∈ k⟨{t, ∂t}∪V ⟩\{0} and Γ2 is a finite subset of Zs. Let ē = (ē1, . . . , ēs)
be the maximal element of Γ2 with respect to the lex order on Zs. Multiplying
Td̄ by

∏s
i=1 ∂

ēi
xr+i

on the left and using the formula (1) yield that(
s∏

i=1

∂ēi
xr+i

)
Td̄ = βLē +

∑
j∈J

L̃j∂xj
(4)

where L̃i ∈ k⟨{t, ∂t, xr+1, . . . , xr+s, ∂xr+1 , . . . , ∂xr+s} ∪ V ⟩ and β is a nonzero
integer. Combining (3) with (4) yields the required operator P .

Corollary 10. Assume that f1, . . . , fm are D-finite over k(x, t), J is a subset
of {1, . . . , n} and V ⊂ {xi, ∂xi

|i ∈ {1, . . . , n} \ J} with |V | = n − |J |. Assume
further that ∂xj

(fl) = 0 for all j ∈ J and l = 1, . . . ,m. Then one can compute
a nonzero L ∈ k⟨{t, ∂t} ∪ V ⟩ such that L(fl) = 0 for all l = 1, . . . ,m.
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Proof. In Lemma 9, set I = ∅.

The main result of this section is the following theorem which can be viewed
as a generalization of Corollary 10 to differential forms. To describe and prove
this theorem, let us recall some notation from the first chapter of [44]. For any
f ∈ R, we define d0(f) = 0 and

ds(f) = ∂x1
(f)dx1 + · · ·+ ∂xs

(f)dxs

for s ∈ {1, 2, . . . , n}. We can extend ds to the module
∧
(M) in a natural way.

Precisely, let ω =
∑m

i=1 fimi where mi is a monomial in dx1, . . . ,dxn. Then
d0(ω) = 0 and

ds(ω) =
m∑
i=1

s∑
j=1

∂xj
(fi)dxj ∧mi =

s∑
j=1

dxj ∧ ∂xj
(ω).

By definition, one sees that

ds(u ∧ dxs) = ds−1(u) ∧ dxs and ds(u) = ds−1(u) + dxs ∧ ∂xs
(u).

Theorem 11. Assume that 0 ≤ s ≤ n, V ⊂ {xs+1, . . . , xn, ∂xs+1
, . . . , ∂xn

} with
|V | = n − s and ω ∈

∧p
(M). If dsω = 0, then one can compute a nonzero

L ∈ k⟨{t, ∂t} ∪ V ⟩ and µ ∈
∧p−1

(M) such that L(ω) = dsµ.

Remark 12. 1. If p = 0, then ω = f ∈ R and dsf = 0 if and only if s = 0
or ∂xi

(f) = 0 for all 1 ≤ i ≤ s if s > 0. Therefore Corollary 10 is a
special case of Theorem 11.

2. Note that the parametrized Poincaré’s lemma is just the special case of
Theorem 11 when s = n.

Proof. We proceed by induction on s. Assume that s = 0 and write

ω =

m∑
i=1

fimi

where mi a monomial in dx1,dx2, . . . ,dxn and fi ∈ R. By Corollary 10 with
I = ∅, one can compute a nonzero L ∈ k⟨{t, ∂t}∪V ⟩ such that L(fi) = 0 for all
i = 1, . . . ,m. Then one has that

L(ω) =

m∑
i=1

L(fi)mi = 0.

This proves the base case. Now assume that the theorem holds for s < ℓ and
consider the case s = ℓ. Write

ω = u ∧ dxℓ + v

7



where both u and v do not involve dxℓ. Then the assumption dℓω = 0 implies
that

dℓ−1u ∧ dxℓ + dℓv = dℓ−1u ∧ dxℓ + dℓ−1v + dxℓ ∧ ∂xl
(v) = 0.

Since all of dℓ−1u,dℓ−1v, ∂xℓ
(v) do not involve dxℓ, one has that dℓ−1v = 0 and

dℓ−1(u)− ∂xℓ
(v) = 0. By the induction hypothesis, one can compute a nonzero

L̃ ∈ k⟨{t, xℓ, ∂t} ∪ V ⟩ and µ̃ ∈
∧p−1

(M) such that

L̃(v) = dℓ−1(µ̃). (5)

We claim that L̃ can be chosen to be free of xℓ. Write

L̃ =

d∑
j=0

Njx
d
ℓ

where Nj ∈ k⟨{t, ∂t} ∪ V ⟩ and Nd ̸= 0. Multiplying L̃ by ∂d
xℓ

on the left and
using the formula (2) yield that

∂d
xℓ
L̃ =

d∑
j=0

Nj∂
d
xℓ
xj
ℓ = αNd + Ñ∂xℓ

(6)

where α is a nonzero integer and Ñ ∈ k⟨{t, xℓ, ∂t, ∂xℓ
} ∪ V ⟩. The equalities (5)

and (6) together with ∂xℓ
(v) = dℓ−1(ũ) yield that Nd(v) = dℓ−1(π) for some

π ∈
∧p−1

(M). This proves the claim. Now one has that

L̃(ω) = L̃(u) ∧ dxℓ + dℓ−1(µ̃) = L̃(u) ∧ dxℓ + dxℓ ∧ ∂xℓ
(µ̃) + dℓ(µ̃).

Since L̃ is free of x1, . . . , xℓ, L̃dℓ = dℓL̃. This implies that

0 = L̃(dℓ(ω)) = dℓ(L̃(ω)) = dℓ−1(L̃(u)) ∧ dxℓ + dxℓ ∧ dℓ−1(∂xℓ
(µ̃))

= dℓ−1

(
L̃(u)− ∂xℓ

(µ̃)
)
∧ dxℓ.

Note that µ̃ can always be chosen to be free of dxℓ. Hence one has that
dℓ−1(L̃(u) − ∂xℓ

(µ̃)) = 0. By the induction hypothesis, one can compute a

nonzero L̄ ∈ k⟨{t, ∂xℓ
, ∂t} ∪ V ⟩ and µ̄ ∈

∧p−1
(M) such that

L̄
(
L̃(u)− ∂xℓ

(µ̃)
)
= dℓ−1(µ̄). (7)

Write

L̄ =

e2∑
j=e1

∂j
xℓ
Mj

where Mj ∈ k⟨{t, ∂t} ∪ V ⟩ and Me1 ̸= 0. Multiplying L̄ by xe1
ℓ on the left and

using the formula (2) yield that

xe1
ℓ L̄ = βMe1 + ∂xℓ

M̃

8



where β is a nonzero integer and M̃ ∈ k⟨{t, ∂t, ∂xℓ
, xℓ} ∪ V ⟩. Hence applying

xe1
ℓ to the equality (7), one gets that

βMe1

(
L̃(u)− ∂xℓ

(µ̃)
)
= dℓ−1(x

e1
ℓ µ̄) + ∂xℓ

(
M̃
(
L̃(u)− ∂xℓ

(µ̃)
))

.

Set L = βMe1L̃. Then one has that

L(ω) = βMe1

(
(L̃(u)− ∂xℓ

(µ̃)) ∧ dxℓ + dℓ(µ̃)
)

=
(
βMe1

(
L̃(u)− ∂xℓ

(µ̃
))

∧ dxℓ + dℓ(βMe1(µ̃))

= dℓ−1(x
e1
ℓ µ̄) ∧ dxℓ + ∂xℓ

M̃
(
L̃(u)− ∂xℓ

(µ̃)
)
∧ dxℓ + dℓ(βMe1(µ̃))

= dℓ

(
xe1
ℓ µ̄+ M̃

(
L̃(u)− ∂xℓ

(µ̃)
)
+ βMe1(µ̃)

)
.

The last equality holds because

dℓ−1

(
M̃
(
L̃(u)− ∂xℓ

(µ̃)
))

= M̃dℓ−1

(
L̃(u)− ∂xℓ

(µ̃)
)
= 0.

Remark 13. Lemma 5 can be derived from the finiteness of the de Rham co-
homology groups of D-modules in the Bernstein class. To see this, let ω be a
differential s-form with coefficients in R and let M be the D-module generated
by all coefficients of ω and all derivatives of these coefficients with respect to
∂t. By Proposition 5.2 on page 12 of [6], M is a D-module in the Bernstein
class. Assume that ω is closed. Then ∂j

t (ω) ∈ Hs
DR(M), the s-th de Rham co-

homology group of M , for all nonnegative integers j. By Theorem 6.1 on page
16 of [6], Hs

DR(M) is of finite dimension over k(t). This implies that there are

a0, . . . , am ∈ k(t) such that
∑m

j=0 aj∂
j
t (ω) = 0 in Hs

DR(M), i.e.
∑m

j=0 aj∂
j
t (ω)

is exact. This proves the existence of telescopers for the ∂t-closed differential
forms. However the proof of Theorem 11 is constructive and it provides a method
to compute a telescoper if it exists.

The proof of Theorem 11 can be summarized as the following algorithm.

Algorithm 14. Input: ω ∈
∧p

(M) and V ⊂ {xi, ∂xi
|i = s+1, . . . , n} satisfying

that ds(ω) = 0 and |V | = n− s
Output: a nonzero L ∈ k⟨{t, ∂t} ∪ V ⟩ such that L(ω) = ds(µ).

1. If ω ∈ R, then by Corollary 10, compute a nonzero L ∈ k⟨{t, ∂t}∪V ⟩ such
that L(ω) = 0. Return L.

2. Write ω = u ∧ dxs + v with u, v not involving dxs.

3. Call Algorithm 14 with v and V ∪ {xs} as inputs and let L̃ be the output.

(a) Write L̃ =
∑d

j=0 Njx
j
s with Nj ∈ k⟨{t, ∂t} ∪ V ⟩ and Nd ̸= 0.

9



(b) Compute a µ̃ ∈
∧p−1

(M) such that Nd(v) = ds−1(µ̃).

4. Write Nd(ω) = (Nd(u)− ∂xs(µ̃)) ∧ dxs + ds(µ̃).

5. Call Algorithm 14 with Nd(u)− ∂xs(µ̃) and V ∪ {∂xs} as inputs and let L̄
be the output.

6. Write L̄ =
∑e2

j=e1
∂j
xs
Mj with Mj ∈ k⟨{t, ∂t} ∪ V ⟩ and Me1 ̸= 0.

7. Return Me1Nd.

4 The existence of telescopers

It is easy to see that if a differential form is ∂t-exact then it is ∂t-closed. There-
fore Lemma 5 implies that given an ω ∈

∧p
(M), to decide whether it has a

telescoper, it suffices to decide whether there is a nonzero L ∈ k⟨t, ∂t⟩ such that
L(dω) = 0. Suppose that

dω =
∑

1≤i1<···<ip+1≤n

ai1,...,ip+1
dxi1 · · · dxp+1, ai1,...,ap+1

∈ U .

Then L(dω) = 0 if and only if L(ai1,...,ip+1
) = 0 for all 1 ≤ i1 < · · · < ip+1 ≤ n.

So the existence problem of telescopers can be reduced to the following problem.

Problem 15. Given an element f ∈ R and its minimal annihilating operator
P ∈ K⟨∂t⟩, decide whether there exists a nonzero L ∈ k⟨t, ∂t⟩ such that L(f) =
0.

Example 16. Let W (t) be as in Example 1. Then W (t) ∈ R since it is rational
in x1, . . . , x5, t. Its minimal annihilating operator in K⟨∂t⟩ is

P = ∂t +
x1x2x3x4x5

1
5 (x

5
1 + x5

2 + x5
3 + x5

4 + x5
5)− tx1x2x3x4x5

.

Set L = ∂2
t . Then L is a nonzero operator in k⟨t, ∂t⟩ such that L(W (t)) = 0.

Note that f is annihilated by a nonzero L ∈ k(t)⟨∂t⟩ if and only if P is a
right-hand factor of L, i.e. L = QP for some Q ∈ K⟨∂t⟩. For convenience, we
introduce the following definition.

Definition 17. An operator P ∈ K⟨∂t⟩ is called (x, t)-separable if there is a
nonzero L ∈ k(t)⟨∂t⟩ such that L = QP for some Q ∈ K⟨∂t⟩.

Problem 15 then is reduced to the following one.

Problem 18. Given a P ∈ K⟨∂t⟩ \ {0}, decide whether P is (x, t)-separable.

The above problem was called the separability problem in [13] that investi-
gates the possibility of eliminating the parameters x (not t) by left-multiplying
the operator P by a specific operator. Many special cases of the separability

10



problem had been studied in [13] and we will address the general D-finite case
in this section. A similar idea has been successfully applied in the desingu-
larization of linear differential operators. In this process, multiplying P by an
operator on the left enables the removal of factors of the leading coefficient of
P that correspond to the removable singularities, see for example [17, 18]. It
is important to note that desingularization focuses on removing factors (in t)
within the leading coefficient, whereas in our case, the objective is to eliminate
the parameters x present in all coefficients. The rest of this paper is aimed at
developing an algorithm to solve the above problem. Let us first investigate the
solutions of (x, t)-separable operators.

Notation 19.

Ct := {c ∈ U | ∂t(c) = 0} , Cx := {c ∈ U | ∀x ∈ x, ∂x(c) = 0} .

Assume that L ∈ k(t)⟨∂t⟩ \ {0}. By Corollary 1.2.12 of [39], the solution
space of L = 0 in U is a Ct-vector space of dimension ord(L). Moreover we have
the following lemma.

Lemma 20. If L ∈ k(t)⟨∂t⟩ \ {0}, then the solution space of L = 0 in U has a
basis in Cx.

Proof. Let A0 be the companion matrix of L(y) = 0, i.e.

A0 =


0 1

0 1
. . .

. . .

0 1
−a0 −a1 −a2 . . . −am−1


where m = ord(L) and L = ∂m

t + am−1∂
m−1
t + · · · + a0. Set Ai = 0 for all

i = 1, . . . , n. Let ∂0 = ∂t, ∂i = ∂xi
for i = 1, . . . , n. Then the system

∂0(Y ) = A0Y, ∂1(Y ) = A1Y, . . . , ∂n(Y ) = AnY

satisfies the integrability condition:

∂i(Aj)− ∂j(Ai) = AiAj −AjAi

for all 0 ≤ i < j ≤ n. Therefore there is a solution V in GLm(U). Let v be
the first row of V . Note that det(V ) is the Wronskian determinant of v and
det(V ) ̸= 0. These imply that v is a basis of the solution space of L(y) = 0.
Since ∂i(v) = 0 for all 1 ≤ i ≤ n, v has entries in Cx.

As a consequence, we have the following corollary.

Corollary 21. Assume that P ∈ K⟨∂t⟩ \ {0}. Then P is (x, t)-separable if and
only if the solutions of P (y) = 0 in U are of the form

s∑
i=1

gihi, gi ∈ Ct, hi ∈ Cx ∩ {f ∈ U | Q(f) = 0} (8)

for some Q ∈ K⟨∂t⟩.

11



Proof. The “only if” part is a direct consequence of Lemma 20. For the “if” part,
one only need to prove that if h ∈ Cx∩{f ∈ U | Q(f) = 0} then h is annihilated
by a nonzero operator in k(t)⟨∂t⟩. Suppose that h ∈ Cx ∩ {f ∈ U | Q(f) = 0}.
Let L be the monic operator in K⟨∂t⟩\{0} which annihilates h and is of minimal
order. Write

L = ∂ℓ
t +

ℓ−1∑
i=0

ai∂
i
t , ai ∈ K.

Then for every j ∈ {1, . . . , n}

0 = ∂xj
(L(h)) =

ℓ−1∑
i=0

∂xj
(ai)∂

i
t(h) + L(∂xj

(h)) =

ℓ−1∑
i=0

∂xj
(ai)∂

i
t(h).

The last equality holds because h ∈ Cx. By the minimality of L, one sees that
∂xj

(ai) = 0 for all i = 0, . . . , ℓ − 1 and all j = 1, . . . , n. Hence ai ∈ k(t) for all
i. In other words, L ∈ k(t)⟨∂t⟩.

For convention, we introduce the following definition.

Definition 22. (1) We say f ∈ U is split if it can be written in the form
f = gh where g ∈ Ct and h ∈ Cx, and say f is semisplit if it is the sum
of finitely many split elements.

(2) We say a nonzero operator P ∈ K⟨∂t⟩ is semisplit if it is monic and all
its coefficients are semisplit.

The semisplit operators have the following property.

Lemma 23. Assume that P = Q1Q2 where P,Q1, Q2 are monic operators
in K⟨∂t⟩. Assume further that Q2 ∈ k(t)[x, 1/r]⟨∂t⟩ where r ∈ k[x, t]. Then
P ∈ k(t)[x, 1/r]⟨∂t⟩ if and only if Q1 is also.

Proof. Comparing the coefficients on both sides of P = Q1Q2 concludes the
proof.

As a direct consequence, we have the following corollary.

Corollary 24. Assume that P = Q1Q2 where P,Q1, Q2 are monic operators
in K⟨∂t⟩. Assume further that Q2 is semisplit. Then P is semisplit if and only
if Q1 is also.

4.1 The completely reducible case

In Proposition 10 of [12], we show that given a hyperexponential function h
over K, ann(h)∩ k(t)⟨∂t⟩ ≠ {0} if and only if there is a nonzero p ∈ k(x)[t] and
r ∈ k(t) such that

a =
∂t(p)

p
+ r,
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where a = ∂t(h)/h. Remark that a, p, r with p ̸= 0 satisfy the above equality
if and only if 1

p (∂t − a) = (∂t − r) 1p . Under the notion of (x, t)-separable and

the language of differential operators, Proposition 10 of [12] states that ∂t − a
is (x, t)-separable if and only if it is similar to a first order operator in k(t)⟨∂t⟩
by some 1/p with p being a nonzero polynomial in t. In this section, we shall
generalize Proposition 10 of [12] to the case of completely reducible operators.
We shall use lclm(Q1, Q2) to denote the monic operator of minimal order which
is divisible by both Q1 and Q2 on the right. We shall prove that if P is (x, t)-
separable and completely reducible then there is a nonzero L ∈ k(t)⟨∂t⟩ such
that P is the transformation of L by some Q with semisplit coefficients. To this
end, we need to introduce some notations from [36].

Definition 25. Assume that P,Q ∈ K⟨∂t⟩ \ {0}.

1. We say P̃ is the transformation of P by Q if P̃ is the monic operator
satisfying that P̃Q = λlclm(P,Q) for some λ ∈ K.

2. We say P̃ is similar to P (by Q) if there is an operator Q with gcrd(P,Q) =
1 such that P̃ is the transformation of P by Q, where gcrd(P,Q) denotes
the greatest common right-hand factor of P and Q.

Definition 26. 1. We say P ∈ K⟨∂t⟩ is completely reducible if it is the lclm
of a family of irreducible operators in K⟨∂t⟩.

2. We say Q ∈ K⟨∂t⟩ is the maximal completely reducible right-hand factor
of P ∈ K⟨∂t⟩ if Q is the lclm of all irreducible right-hand factors of P .

Given a P ∈ K⟨∂t⟩, Theorem 7 of [36] or Theorem 1.1 on page 4 of [38]
implies that P has the following unique decomposition called Loewy decompo-
sition,

P = λHrHr−1 . . . H1

where λ ∈ K and Hi is the maximal completely reducible right-hand factor of
Hr . . . Hi. For an L ∈ k(t)⟨∂t⟩, it has two Loewy decompositions viewed as an
operator in k(t)⟨∂t⟩ and an operator in K⟨∂t⟩ respectively. In the following, we
shall prove that these two decompositions coincide. For convenience, we shall
denote by Pxi=ci the operator obtained by replacing xi by ci ∈ k in P .

Lemma 27. Assume that P,L are two monic operators in K⟨∂t⟩. Assume
further that P ∈ k(t)[x, 1/r]⟨∂t⟩ with r ∈ k[x, t], and L ∈ k(t)⟨∂t⟩. Let c ∈ kn

be such that r(c) ̸= 0.

1. If gcrd(Px=c, L) = 1 then gcrd(P,L) = 1.

2. If gcrd(P,L) = 1 then there is a ∈ kn such that r(a) ̸= 0 and gcrd(Px=a, L) =
1.

Proof. 1. We shall prove the lemma by induction on n = |x|. Assume that n = 1,
and gcrd(P,L) ̸= 1. Then there are M,N ∈ k(t)[x1]⟨∂t⟩ with ord(M) < ord(L)
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such that MP +NL = 0. Write

M =

m−1∑
i=0

ai∂
i
t , N =

s∑
i=0

bi∂
i
t

where m = ord(L). If the ai’s have a common factor c in k(t1)[x1], then one
sees that c is a common factor of the bi’s. Thus we can cancel this factor
c. So without loss of generality, we may assume that the ai’s have no com-
mon factor. This implies that Mx1=c1 ̸= 0 and Mx1=c1Px1=c1 + Nx1=c1L = 0.
Since ord(Mx1=c1) < ord(L), gcrd(Px1=c1 , L) ̸= 1, a contradiction. For the
general case, set Q = Px1=c1 . Then Qx2=c2,...,xn=cn = Px=c. This implies that
gcrd(Qx2=c2,...,xn=cn , L) = 1. By the induction hypothesis, gcrd(Q,L) = 1. Fi-
nally, regarding P and L as operators with coefficients in k(t, x2, . . . , xn)[x1, 1/r]
and by the induction hypothesis again, we get gcrd(P,L) = 1.

2. Since gcrd(P,L) = 1, there are M,N ∈ K⟨∂t⟩ such that MP +NL = 1.
Let a ∈ kn be such that r(a) ̸= 0 and bothMx=a and Nx=a are well-defined. For
such a, one has that Mx=aPx=a +Nx=aL = 1 and then gcrd(Px=a, L) = 1.

Lemma 28. Let L ∈ k(t)⟨∂t⟩. The Loewy decompositions of L viewed as an
operator in k(t)⟨∂t⟩ and an operator in K⟨∂t⟩ respectively coincide.

Proof. We first claim that an irreducible operator of k(t)⟨∂t⟩ is irreducible in
K⟨∂t⟩. Let P be a monic irreducible operator in k(t)⟨∂t⟩ and assume that
Q is a monic right-hand factor of P in K⟨∂t⟩ with 1 ≤ ord(Q) < ord(P ).
Then P = Q̃Q for some Q̃ ∈ K⟨∂t⟩. Suppose that Q ∈ k(t)[x, 1/r]⟨∂t⟩. By
Lemma 23, Q̃ belongs to k(t)[x, 1/r]⟨∂t⟩. Let c ∈ kn be such that r(c) ̸= 0.
Then P = Q̃x=cQx=c and 1 ≤ ord(Qx=c) < ord(P ). These imply that P is
reducible in k(t)⟨∂t⟩, a contradiction. So P is irreducible in K⟨∂t⟩ and thus the
claim holds. Let L = λHrHr−1 . . . H1 be the Loewy decomposition in k(t)⟨∂t⟩.
The above claim implies that H1 viewed as an operator in K⟨∂t⟩ is completely
reducible. Assume that H1 is not the maximal completely reducible right-hand
factor of L in K⟨∂t⟩. Let M ∈ K⟨∂t⟩ \ K be a monic irreducible right-hand
factor of L satisfying that gcrd(M,H1) = 1. Due to Lemma 27, there is a ∈ kn

satisfying that gcrd(Mx=a, H1) = 1. Note that Mx=a is a right-hand factor
of L. Therefore Mx=a has some irreducible right-hand factor of L as a right-
hand factor. Such irreducible factor must be a right-hand factor of H1 and thus
gcrd(Mx=a, H1) ̸= 1, a contradiction. Therefore H1 is the maximal completely
reducible right-hand factor of L in K⟨∂t⟩. Using the induction on the order, one
sees that λHrHr−1 . . . H1 is the Loewy decomposition of L in K⟨∂t⟩.

Lemma 29. Assume that P is monic, (x, t)-separable and completely reducible.
Assume further that P ∈ k(t)[x, 1/r]⟨∂t⟩ with r ∈ k[x, t]. Let c ∈ kn be such
that r(c) ̸= 0. Then Px=c is similar to P .

Proof. Let L̃ be a nonzero monic operator in k(t)⟨∂t⟩ with P as a right-hand fac-
tor. Since P is completely reducible, by Theorem 8 of [36], P is a right-hand fac-
tor of the maximal completely reducible right-hand factor of L̃. By Lemma 28,
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the maximal completely reducible right-hand factor of L̃ is in k(t)⟨∂t⟩. Hence
we may assume that L̃ is completely reducible after replacing L̃ by its max-
imal completely reducible right-hand factor. Assume that L̃ = QP for some
Q ∈ K⟨∂t⟩. By Lemma 23, Q ∈ k(t)[x, 1/r]⟨∂t⟩. Then L̃ = Qx=cPx=c, i.e. Px=c

is a right-hand factor of L̃. We claim that for a right-hand factor T of L̃, there
is a right-hand factor L of L̃ satisfying that gcrd(T, L) = 1 and lclm(T, L) = L̃.
We prove this claim by induction on s = ord(L̃) − ord(T ). When s = 0, there
is nothing to prove. Assume that s > 0. Then since L̃ is completely reducible,
there is an irreducible right-hand factor L1 of L̃ such that gcrd(T, L1) = 1.
Let N = lclm(T, L1). We have that ord(N) = ord(T ) + ord(L1). Therefore
ord(L̃)− ord(N) < s. By induction hypothesis, there is a right-hand factor L2

of L̃ such that gcrd(N,L2) = 1 and lclm(N,L2) = L̃. Let L = lclm(L1, L2).
Then

L̃ = lclm(N,L2) = lclm(T, L1, L2) = lclm(T, L).

Taking the order of the operators in the above equality yields that

ord(lclm(T, L)) = ord(lclm(N,L2)) = ord(N) + ord(L2)

= ord(T ) + ord(L1) + ord(L2).

On the other hand, we have

ord(lclm(T, L)) ≤ ord(T ) + ord(L) ≤ ord(T ) + ord(L1) + ord(L2).

This implies that
ord(lclm(T, L)) = ord(T ) + ord(L).

So gcrd(T, L) = 1 and then L is a required operator. This proves the claim.
Now let Lc be a right-hand factor of L̃ satisfying that gcrd(Px=c, Lc) = 1 and
lclm(Px=c, Lc) = L̃. Let M ∈ k(t)⟨∂t⟩ be such that L̃ = MLc. Then Px=c is
similar to M . It remains to show that P is also similar to M . Due to Lemma 27,
gcrd(P,Lc) = 1. Then

ord(lclm(P,Lc)) = ord(P ) + ord(Lc) = ord(Px=c) + ord(Lc) = ord(L̃).

Note that lclm(P,Lc) is a right-hand factor of L̃. Hence lclm(P,Lc) = L̃ and
thus P is similar to M .

For the general case, the above lemma is not true anymore as shown in the
following example.

Example 30. Let y = x1 log(t+ 1) + x2 log(t− 1) and

P = ∂2
t +

(t− 1)2x1 + (t+ 1)2x2

(t2 − 1)((t− 1)x1 + (t+ 1)x2)
∂t.

Then P is (x, t)-separable since {1, y} is a basis of the solution space of P = 0
in U . We claim that P is not similar to Px=c for any c ∈ k2 \ {(0, 0)}. Suppose
on the contrary that P is similar to Px=c for some c = (c1, c2) ∈ k2 \ {(0, 0)},
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i.e. there are a, b ∈ k(x, t), not all zero, such that gcrd(a∂t + b, Px=c) = 1 and
P is the transformation of Px=c by a∂t+b. Denote Q = a∂t+b. As {1, yx=c} is
a basis of the solution space of Px=c, {Q(1), Q(yx=c)} is a basis of the solution
space of P = 0. In other words, there is C ∈ GL2(Ct) such that(

b, a

(
c1

t+ 1
+

c2
t− 1

)
+ byx=c

)
= (1, y)C.

Note that log(t+ 1), log(t− 1), 1 are linearly independent over k(x1, x2, t). We
have that b ∈ Ct \ {0} and bc1 = c̃x1, bc2 = c̃x2 for some c̃ ∈ Ct. This implies
that x1/x2 = c1/c2 ∈ k, a contradiction.

When the given two operators are of length two, i.e. they are the products
of two irreducible operators, a criterion for the similarity is presented in [32].
For the general case, suppose that P is similar to Px=c by Q. Then the operator
Q is a solution of the following mixed differential equation

Pz ≡ 0 mod Px=c. (9)

An algorithm for computing all solutions of the above mixed differential equation
is developed in [42]. In the following, we shall show that if P is (x, t)-separable
then Q is an operator with semisplit coefficients. Note that Q can be chosen
to be of order less than ord(Px=c) and all solutions of the mixed differential
equation with order less than ord(Px=c) form a vector space over k(x) of finite
dimension. Furthermore Q induces an isomorphism from the solution space of
Px=c(y) = 0 to that of P (y) = 0.

Proposition 31. Assume that P is monic and completely reducible. Assume
further that P ∈ k(t)[x, 1/r]⟨∂t⟩ with r ∈ k[x, t]. Let c ∈ kn be such that
r(c) ̸= 0. Then P is (x, t)-separable if and only if P is similar to Px=c by an
operator Q with semisplit coefficients.

Proof. Denote m = ord(Px=c) = ord(P ). Assume that {α1, . . . , αm} is a basis
of the solution space of Px=c(y) = 0 in Cx and P is similar to Px=c by Q. Write

Q =
∑m−1

i=0 ai∂
i
t where ai ∈ K. Then

(Q(α1), . . . , Q(αm)) = (a0, . . . , am−1)


α1 α2 . . . αm

α′
1 α′

2 . . . α′
m

...
...

...

α
(m−1)
1 α

(m−1)
2 . . . α

(m−1)
m


and Q(α1), . . . , Q(αm) form a basis of the solution space of P (y) = 0.

Now suppose that P is (x, t)-separable. Due to Lemma 29, P is similar to
Px=c by Q. By Corollary 21, the Q(αi) are semisplit. The above equalities then
imply that the ai are semisplit. Conversely, assume that P is similar to Px=c

by Q and the ai are semisplit. It is easy to see the Q(αi) are semisplit. By
Corollary 21 again, P is (x, t)-separable.
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Using the algorithm developed in [42], we can compute a basis of the solution
space over k(x) of the equation (9). It is clear that the solutions with semisplit
entries form a subspace. We can compute a basis for this subspace as follows.
Suppose that {Q1, . . . , Qℓ} is a basis of the solution space of the equation (9)
consisting of solutions with order less than ord(Px=c). We may identify Qi with
a vector gi ∈ Km under the basis 1, ∂t, . . . , ∂

m−1
t . Let q ∈ k(x)[t] be a common

denominator of all entries of the gi. Write gi = pi/q for each i = 1, . . . , ℓ, where
pi ∈ k(x)[t]m. Write q = q1q2 where q2 is split but q1 is not. Note that a rational
function in t with coefficients in k(x) is semisplit if and only if its denominator

is split. For c1, . . . , cℓ ∈ k(x),
∑ℓ

i=1 cigi is semisplit if and only if all entries of∑ℓ
i=1 cipi are divided by q1. For i = 1, . . . , ℓ, let hi be the vector whose entries

are the remainders of the corresponding entries of pi by q1. Then all entries of∑ℓ
i=1 cipi are divided by q1 if and only if

∑ℓ
i=1 cihi = 0. Let c1, . . . , cs be a basis

of the solution space of
∑ℓ

i=1 zihi = 0. Then {(Q1, . . . , Qℓ)ci | i = 1, . . . , s} is
the required basis. Consequently, the required basis can be computed by solving
the system of linear equations

∑ℓ
i=1 zihi = 0.

In the following, for the sake of notations, we assume that {Q1, . . . , Qℓ} is a
basis of the solution space of the equation (9) consisting of solutions with semi-
split coefficients. By Proposition 31 and the definition of similarity, P is (x, t)-
separable if and only if there is a nonzero Q̃ in the space spanned by Q1, . . . , Qℓ

such that gcrd(Px=c, Q̃) = 1. Note that Q̃ induces a homomorphism from the
solutions space of Px=c(y) = 0 to that of P (y) = 0. Moreover, one can easily see
that gcrd(Px=c, Q̃) = 1 if and only if Q̃ is an isomorphism i.e. Q̃(α1), . . . , Q̃(αm)
form a basis of the solution space of P (y) = 0 where {α1, . . . , αm} is a basis

of the solution space of Px=c(y) = 0. Assume that Q̃ =
∑m−1

i=0 a0,i∂
i
t with

a0,i ∈ K. Using the relation Px=c(αj) = 0 with j = 1, . . . ,m, one has that for
all j = 1, . . . ,m

Q̃(αj)
′ =

(
m−1∑
i=0

a0,iα
(i)
j

)′

=

m−1∑
i=0

a1,iα
(i)
j

for some a1,i ∈ K. Repeating this process, we can compute al,i ∈ K such that
for all j = 1, . . . ,m and l = 1, . . . ,m− 1,

Q̃(αj)
(l) =

m−1∑
i=0

al,iα
(i)
j .

Now suppose that Q̃ =
∑ℓ

i=1 ziQi with zi ∈ k(x). One sees that the al,i are
linear in z1, . . . , zℓ. Set A(z) = (ai,j)0≤i,j≤m−1 with z = (z1, . . . , zℓ). Then one
has that

A(z)

 α1 . . . αm

...
...

α(m−1) . . . α
(m−1)
m

 =

 Q̃(α1) . . . Q̃(αm)
...

...

Q̃(α1)
(m−1) . . . Q̃(αm)(m−1)

 . (10)
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It is well-known that Q̃(α1), . . . , Q̃(αm) form a basis if and only if the right-hand
side of the above equality is a nonsingular matrix and thus if and only if A(z)
is nonsingular. In the sequel, one can reduce the problem of the existence of
Q̃ satisfying gcrd(Q̃, Px=c) = 1 to the problem of the existence of a ∈ k(x)ℓ in
k(x) such that det(A(a)) ̸= 0.

Suppose now we already have an operator Q with semisplit coefficients such
that P is similar to Px=c by Q. Write Q =

∑m−1
i=0 bi∂

i
t where bi ∈ K is semisplit.

Write further bi =
∑s

j=1 hi,jβj where hi,j ∈ k(x) and βj ∈ k(t) \ {0}. Let
L0 = Px=c and let Li be the transformation of Li−1 by ∂t for i = 1, . . . ,m− 1.

Then Li annihilates α
(i)
j for all j = 1, . . . ,m and Li

1
βl

annihilates βlα
(i)
j for all

l = 1, . . . , s and j = 1, . . . ,m. Set

L = lclm

({
Li

1

βl
| i = 0, . . . ,m− 1, l = 1, . . . , s

})
.

Then L annihilates all Q̃(αi) and thus has P as a right-hand factor. We sum-
marize the previous discussion as the following algorithm.

Algorithm 32. Input: P ∈ K⟨∂t⟩ that is monic and completely reducible.

Output: a nonzero L ∈ k(t)⟨∂t⟩ which is divided by P on the right if it exists,
otherwise 0.

1. Write

P = ∂m
t +

m−1∑
i=0

ai
r
∂i
t

where ai ∈ k(t)[x], r ∈ k[x, t].

2. Pick c ∈ kn such that r(c) ̸= 0. By the algorithm in [42], compute a basis
of the solution space V of the equation (9).

3. Compute a basis of the subspace of V consisting of operators with semisplit
coefficients, say Q1, . . . , Qℓ.

4. Set Q̃ =
∑ℓ

i=1 ziQi and using Q̃, compute the matrix A(z) as in (10).

5. If det(A(z)) = 0 then return 0 and the algorithm terminates. Otherwise
compute a = (a1, . . . , aℓ) ∈ kℓ such that det(A(a)) ̸= 0.

6. Set bi to be the coefficient of ∂i
t in

∑ℓ
j=1 ajQj and write bi =

∑s
j=1 hi,jβj

where hi,j ∈ k(x) and βj ∈ k(t). Let L0 = Px=c and for each i =
1, . . . ,m− 1 compute Li, the transformation of Li−1 by ∂t.

7. Return lclm
({

Li
1
βj

| i = 0, . . . ,m− 1, j = 1, . . . , s
})

.

18



4.2 The general case

Assume that P is (x, t)-separable and P = Q1Q2 where Q1, Q2 ∈ K⟨∂t⟩. It is
clear that Q2 is also (x, t)-separable. One may wonder whether Q1 is also (x, t)-
separable. The following example shows that Q1 may not be (x, t)-separable.

Example 33. Let K = k(x, t) and let P = ∂2
t . Then P is (x, t)-separable and

∂2
t =

(
∂t +

x

xt+ 1

)(
∂t −

x

xt+ 1

)
.

The operator ∂t + x/(xt+1) is not (x, t)-separable, because 1/(xt+1) is one of
its solutions and it is not semisplit.

On the other hand, the lemma below shows that if Q2 is semisplit then Q1

is also (x, t)-separable.

Lemma 34. (1) Assume that Q1, Q2 ∈ K⟨∂t⟩ \ {0}, and Q2 is semisplit.
Then Q1Q2 is (x, t)-separable if and only if both Q1 and Q2 are (x, t)-
separable.

(2) Assume that P ∈ K⟨∂t⟩ \ {0} and L is a nonzero monic operator in
k(t)⟨∂t⟩. Then P is (x, t)-separable if and only if the transformation of P
by L is also.

Proof. Note that the solution space of lclm(P1, P2)(y) = 0 is spanned by those
of P1(y) = 0 and P2(y) = 0. Hence lclm(P1, P2) is (x, t)-separable if and only if
so are both P1 and P2.

(1) For the “only if” part, one only need to prove that Q1 is (x, t)-separable.
Assume that g is a solution of Q1(y) = 0 in U . Let f be a solution of Q2(y) = g
in U . Such f exists because U is the universal differential extension of K. Then
f is a solution of Q1Q2(y) = 0 in U . By Corollary 21, f is semisplit. Since Q2

is semisplit, one sees that g = Q2(f) is semisplit. By Corollary 21 again, Q1 is
(x, t)-separable.

Now assume that both Q1 and Q2 are (x, t)-separable. Let Q̃ ∈ K⟨∂t⟩ be
such that Q̃Q2 = L where L ∈ k(t)⟨∂t⟩ is monic. By Corollary 24 and the “only
if” part, Q̃ is semisplit and (x, t)-separable. Thus lclm(Q1, Q̃) is (x, t)-separable.
Assume that lclm(Q1, Q̃) = NQ̃ with N ∈ K⟨∂t⟩. Since Q̃ is semisplit, by the
“only if” part again, N is (x, t)-separable. Let M ∈ K⟨∂t⟩ be such that MN is
a nonzero operator in k(t)⟨∂t⟩. We have that

M lclm(Q1, Q̃)Q2 = MNQ̃Q2 = MNL ∈ k(t)⟨∂t⟩.

On the other hand, M lclm(Q1, Q̃)Q2 = MM̃Q1Q2 for some M̃ ∈ K⟨∂t⟩. Hence
P = Q1Q2 is (x, t)-separable.

(2) Since L is (x, t)-separable, we have that P is (x, t)-separable if and only
if lclm(P,L) is also. Let P̃ be the transformation of P by L. Then P̃L =
lclm(P,L). As L is semisplit, the assertion then follows from (1).
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Assume that P is a nonzero operator in K⟨∂t⟩. Let P0 be an irreducible
right-hand factor of P . By Algorithm 32, we can decide whether P0 is (x, t)-
separable or not. Now assume that P0 is (x, t)-separable. Then we can compute
a nonzero monic operator L0 ∈ k(t)⟨∂t⟩ having P0 as a right-hand factor. Let P1

be the transformation of P by L0. Lemma 34 implies that P is (x, t)-separable
if and only if P1 is also. Note that

ord(P1) = ord(lclm(P,L0))− ord(L0)

≤ ord(P ) + ord(L0)− ord(P0)− ord(L0) = ord(P )− ord(P0).

In other words, ord(P1) < ord(P ). Replacing P by P1 and repeating the above
process yield an algorithm to decide whether P is (x, t)-separable.

Algorithm 35. Input: a nonzero monic P ∈ K⟨∂t⟩.

Output: a nonzero L ∈ k(t)⟨∂t⟩ which is divided by P on the right if it exists,
otherwise 0.

1. If P = 1 then return 1 and the algorithm terminates.

2. Compute an irreducible right-hand factor P0 of P by algorithms developed
in [4, 41, 43].

3. Apply Algorithm 32 to P0 and let L0 be the output.

4. If L0 = 0 then return 0 and the algorithm terminates. Otherwise compute
the transformation of P by L0, denoted by P1.

5. Apply Algorithm 35 to P1 and let L1 be the output.

6. Return L1L0.

The termination of the algorithm is obvious. Assume that L1 ̸= 0. Then
L1 = Q1P1 for some Q1 ∈ K⟨∂t⟩. We have that P1L0 = lclm(P,L0). Therefore

L1L0 = Q1P1L0 = Q1lclm(P,L0) = Q1Q0P

for some Q0 ∈ K⟨∂t⟩. This proves the correctness of the algorithm.
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