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Abstract

Elaborating on an approach recently proposed by Mark van Hoeij,
we continue to investigate why creative telescoping occasionally
fails to find the minimal-order annihilating operator of a given
definite sum or integral. We offer an explanation based on the
consideration of residues.
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1 Introduction

Creative telescoping is the standard approach to definite summa-
tion and integration in computer algebra. Its purpose is to find an
annihilating operator for a given definite sum ) . f(n, k) or a given
definite integral fQ f(x,y)dy.
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Such operators are obtained from annihilating operators of the
summand or integrand that have a particular form. In the case of
summation, suppose that we have

(L= (Sk=1Q) - f(nk)=0 (1.1)

for some operator L that only involves n and the shift operator S,
but neither k nor the shift operator S, and another operator Q that
may involve any of n, k, S, Sx. Summing the equation over all k
yields

LY k) =[Q )]y ..
k

If the right-hand side happens to be zero, we find that L is an
annihilating operator for the sum.
In the case of integration, having

(L=DyQ) - f(xy) =0 (1.2)

for some operator L that only involves x and the derivation Dy but
neither y nor the derivation Dy, and some other operator Q that
may involve any of x, y, Dy, Dy, implies the equation

L-/Qf(x,y)dy= [0 Fxn)],,

If the right-hand side happens to be zero, we find that L is an
annihilating operator for the integral.

An operator L as in equations (1.1) and (1.2) is called a telescoper
for f, and Q is called a certificate for L. The degree of S, or Dy in
L is called the order of L. If L is such that there is no telescoper
of lower order, then L is called a minimal telescoper. The minimal
telescoper is unique up to multiplication by rational functions (from
the left).

Algorithms for testing the existence of telescopers and comput-
ing them if they exist meanwhile have a long history in computer
algebra, see [1, 2, 21, 30, 33, 34] for classical results and recent
developments on the matter. In his recent paper [32], van Hoeij
proposed a fresh view on creative telescoping. He explains why a
telescoper can often be written as a least common left multiple of
smaller operators, and why the minimal telescoper is sometimes
not the minimal-order annihilating operator for the sum or integral
under consideration.
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Let C be a field of characteristic zero and C(n, k) be the field
of rational functions in n, k over C. Let A, . = C(n,k)(Sp, Sg) be
the ring of all linear recurrence operators in Sy, Sy with rational
function coefficients, and A, = C(n)(Sp) be the subalgebra con-
sisting of all operators that do not involve k or Si. For a given
summand f(n, k), consider the A,-module Q := A, i - f(n, k) and
the quotient module M := Q/((S; — 1)Q). An operator L € Ay is
then a telescoper for H = f(n, k) if and only if it is an annihilating
operator of the image H of H in M.

In this setting, van Hoeij makes the following observations:

o If M can be written as a direct sum of submodules, say M =
M; ® M, then the minimal telescoper for H is the least
common left multiple of the minimal annihilating operators
of the projections 71 (H) and m3(H) of H in M; and Mj,
respectively.

o If, moreover, the definite sum whose summand corresponds
to 71 (H) happens to be zero identically, then every annihi-
lating operator of 75 (H) is already an annihilating operator
of the definite sum over H, even though it may not be a
telescoper for H.

In order to take advantage of the second observation, it is necessary
to understand under which circumstances a definite sum can be zero.
Such “vanishing sums” are themselves examples when a minimal
telescoper fails to be a minimal annihilator. For example, we have
Sr(-DF () =
minimal telescoper of (- l)k(2n+1) isL = (2n+3)S, + (8n + 8).
Note that since L is irreducible, the module M, which is isomorphic
to A, /(L), has no nontrivial submodules.

We propose an explanation of why certain sums are identically
zero which is based on the investigation of residues. Also based on
residues, we will explain why telescopers tend to be least common
left multiples. We are not the first to use residues in the context
of creative telescoping. For rational functions and algebraic func-
tions in the differential case, it was observed by Chen, Kauers, and
Singer [15] that telescopers and residues are closely related. Chen
and Singer also used residues in the context of summation prob-
lems [16]. Residues are also tied to creative telescoping through
the equivalence of extracting residues with taking diagonals and
positive parts and the computation of Hadamard products [10]. We
are also not the first to study the non-minimality of telescopers.
Besides van Hoeij’s recent work [32], the problem was investigated
by Paule [26] who proposed the method of creative symmetrizing.
This method was further developed [28, 29] and enhanced by incor-
porating contiguous relations [27]. An approach reminiscent to van
Hoeij’s ideas already appeared in a technical report by Chyzak [17].
By translating multiple binomial sums to rational integrals, Bostan,
Lairez, and Salvy [11] approach the non-minimality problem by a
technique they call geometric reduction.

0, so the minimal annihilator is 1. However, the

2 Residues and Telescopers for Rational
Functions
Residues have played an important role in rational integration and

summation [7, 8, 12, 16, 25]. In this section, we will first use residues
in the continuous setting to explain why minimal telescopers may
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not always lead to minimal annihilators for integrals and then use
residues in the discrete setting to explain some vanishing sums.

2.1 The integration case

Let F = C(x), so that the bivariate rational function field C(x, y) can
be viewed as a univariate rational function field F(y). An element
f of F(y) is said to be integrable in F(y) if f = Dy(g) for some
gEeF(y).

Any rational function f = a/b € F(y) with a,b € F[y] and
ged(a, b) = 1 can be uniquely written as

Z;‘Z (y- ﬁz)]

where p € Flyl,n,m; € N,a;j,pi € F, and the Pi’s are distinct
roots of b. Note that all the a; ;’s are in the field F(f1, ..., fn). The
value a;; € F is called the residue (in y) of f at f;, denoted by
resy(f, Bi). Let P,Q € F[y] be such that ged(P,Q) = 1 and Q is
squarefree and let § € F be a zero of Q. Then we have Lagrange’s
residue formula

res (£ ﬁ) = Lﬂ)
10" T Dy(Q)(B)

It is well-known that a rational function is integrable in F(y) if
and only if all its residues in y are zero (see [16, Proposition 2.2]).
So residues are the obstruction to the integrability in F(y). From
this fact and the commutativity between the derivation in x and
taking the residue in y, we have that the minimal telescoper of a
rational function in C(x, y) is the least common left multiple of
the minimal annihilating operators of its residues in y which are
algebraic functions in @ (see [15, Theorem 6]).

Now consider the integral

I(x) = /_mf(x, y)dy with f:= and x > 2.

y4+xy2+l

We have I(x) = /Vx + 2, so the integral has the minimal anni-
hilator (2x + 4)Dx + 1. The minimal telescoper for f however is
L = (4x?-16)D%+12xDy +3. Let us see why the minimal telescoper
overshoots in this example.

Leta,f € Q(x) be such that a, —a, B, —p are the poles of f and
B = a(a? + x). Then we have the residues

a(2 - x% — a?x)
2(x2 - 4)

0((20:2 +x)

resy(f, za) = 2(x2 D

and resy(f, +f) =

Note that each of the four residues has the telescoper L as its
minimal annihilator. This does not explain yet why the telescoper
factors and overshoots. To explain this, we need to observe that
the sum resy (f, @) + resy(f, ) is annihilated by (2x + 4)Dy + 1.
By the residue theorem, the sum of these residues is equal (up to a
multiplicative constant) to the following contour integral:
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By increasing the contour indefinitely, we see that it is also the
value of the real integral I(x) = 7/Vx + 2. As creative telescoping
does not know the contour but only the integrand, it must return
a telescoper that works for every contour, in particular one that
encircles only one of the poles. For such a contour, the minimal
telescoper is indeed the minimal annihilator.

In van Hoeij’s language of submodules, translated to the differen-
tial case, consider Q = C(x,y), M = Q/DyQ, and Ay = C(x){Dx).
The submodule generated by f in Mis N = spanc(,) (f+Dy <, Y2 f+
DyQ). Note that dim¢(,) N = ord(L) = 2. The module N admits a
decomposition N = N, & N— where N; = spanc () ((1 £ y)f +
DyQ), which suggests writing
1+ y

LR ﬂf.

f= 2

Indeed, the minimal telescoper of 1 — f is (2x + 4)Dy + 1, the

minimal telescoper of —f is (2x —4)Dx + 1, and L is the least
common left multiple of these operators. Because of

resy(f, a) = resy(yzf, p) and resy(f, p) = resy(yzf, a),
the residues of 1_2—yz f at a and f cancel each other, so

L5
—00

and that’s why the factor (2x —4)Dy + 1 of L is not needed for I(x).

2.2 The summation case

As a discrete analogue of residues for rational integration, discrete
residues are introduced to study the summability problem and the
existence problem of telescopers for rational functions in [16]. Effi-
cient algorithms for computing discrete residues and their variants
are given in [7-9].

Let Sy and Sy, denote the usual shift operators of C(x, y) with re-
spect to x and y, respectively. Let Ay, denote the difference operator
defined by Ay (r) = Sy(r) — r for any r € F(y). A rational function
f € F(y) is said to be summable in F(y) if f = Ay(g) for some
g € F(y). For any elements f € F, we call the set {f+i|i € Z} a
Z-orbit of § in F, denoted by [f]z. Any rational function f € F(y)
can be decomposed into the form

nom diy 051][
“,Z;]Z;[Z; — i+ 0

where p € F[y], m,n;,dij €N, a; e, Bi € F, and the Bi’s are in dis-

tinct Z-orbits. The sum Zji{) i j¢ is called the discrete residue in y of
f atthe Z-orbit [ f;]7 of multiplicity j, denoted by dresy (f, [Bi]z, j)-
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By Proposition 2.5 in [16], discrete residues are the precise obstruc-
tion for rational functions to be summable, i.e., f € F(y) is sum-
mable in F(y) if and only if all of the discrete residues of f are
Zero.

We recall a very old result due to Nicole [31] that describes a
family of summable rational functions and then use this result to
explain some vanishing sums. The idea behind this theorem has
become part of the classical summation folklore and also explained,
for example, in Section 5.3 of [19].

LEMMA 2.1 (NICOLE, 1717). Letn > 2 be an integer and P € F[y]
be such that degy(P) < n — 2. Then the rational function

f= P(y)
(y+p1)- (y+Bn)
is summable in F(y) for all B; € F with f; — B; € Z\ {0} fori # j.

ProoF. By partial fraction decomposition, we get

f= Z y+ﬁz where a; € F. (2.1)

Note that the f;’s are in the same Z-orbit. By Proposition 2.5 in [16],
f is summable in F(y) if and only if the sum .1 | @; is zero. By
normalizing f in (2.1), we get

= (@ +-+an)y"™!

Since deg, (P) < n—2, it holds that }\}_ | a; = 0. |

+ terms with degree lower than n — 1.

When F is the field of complex numbers, the vanishing-sum
identity .7 a; = 0 also follows from Cauchy’s residue theorem
since the residue of f at infinity is zero.

As a corollary of Nicole’s lemma, we obtain a class of vanishing
sums. For any polynomial P € F[y] with deg, (P) <
consider the rational function

n—1, we

_ P(y) -y 3
yly+D - (y+n)  Sy+k
which is summable in F(y) by Nicole’s lemma. Since the denomi-
nator of f is squarefree, Lagrange’s residue formula implies that
_ (=1FP(-k)
k= TRin—k)
Then we have the vanishing sum

Z( DkP(-k)
k!(n — k)

Example 2.1. To show the combinatorial identity
n n\
Z(—l)k(k)kf =0, wheren>2and0<j<n,

we consider the rational function

_P_ n!(-y)’ _ o a
U TR RO ,;)y”c'

By Lagrange’s residue formula, we have

o = (—1>’<(Z)kf
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Since 0 < j < n, we have degy(P) < degy(Q) —2. Then the identity
Zco % = 0 holds.

Example 2.2. To show the combinatorial identity

Z":zk 2n-2k) 1,
k)\n-k J2k-1" "

k=0

where n > 1,

we consider the rational function

f_g__z"H;’;f(Z(y+i)+1)_ O
Q0 ylyrD (g Hy+k

By Lagrange’s residue formula, we get

2k\ (2n — 2k 1
a = —_—
T kN n-k 21
Since degy(P) =n—1and degy(Q) = n+1, Nicole’s lemma implies
the identity )’ ax = 0.

We will see more applications of Nicole’s lemma in Section 3.3.

3 Residual Forms and Prescopers for
Hypergeometric Terms

We now focus on creative telescoping for hypergeometric terms.
We will use residual forms introduced in [14] to construct submod-
ules in order to find right factors of minimal telescopers and then
investigate the automorphisms and the non-minimality phenome-
non of minimal telescopers for hypergeometric sums. These studies
continue the development of the submodule approach initialized
by van Hoeij [32].

To be more compatible with the customary usage, we will now
use n and k instead of x and y, respectively. A sequence H(n, k)
is called a hypergeometric term over C(n, k) with respect to n and
k if the two shift quotients S, (H)/H and Si(H)/H are rational
functions in C(n, k). A hypergeometric term H is said to be hyper-
geometric summable in k if H = Ar(G) for some hypergeometric
term G. A nonzero linear operator L € C(n)(Sp) is called a tele-
scoper for H if there exists another hypergeometric term G(n, k)
such that

L(H(n,k)) = A (G(n, k). (3.1)

Recall that p € C(n)[k] is shift-free in k if gcd(p, S]i(p)) = 1 for
alli € Z\ {0}. A rational function f = a/b € C(n,k) is shift-
reduced in k if gcd(a, S]’C(b)) = 1foralli € Z. A nonzero polynomial
p € C(n)[k] is strongly prime with a rational function f = a/b if
ged(p, S];i(a)) = ged(p, Sli(b)) = 1for all i € N. By computing
rational normal forms as in [4], one can write f € C(n, k) as
Sk(S)
f="5
where S, K € C(n, k) such that K is shift-reduced in k. The rational
functions K and S are called kernel and shell of f, respectively. Let
f =Sk(H)/H.Then H = S-Hy with S, (Hp)/Hp = K. Write K = u/v
with u,v € C(n)[k] and ged(u,v) = 1. Let ¢ : C(n)[k] — C(n)[k]
be a C(n)-linear map defined by

K, (3.2)

Pk (p) = uSk(p) —op forall p € C(n)[k].
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Let Wk be the standard complement of the image im(¢x ) in C(n) [k]
such that C(n)[k] = im(¢x) & Wk. By the modified Abramov-
Petkovsek reduction [14] we can decompose H into

H=Ak(rvH0)+(g+§)Ho (3.3)

where r € C(n, k),p € Wk, and a, b € C(n)[k] such that deg; (a) <
degy (b), ged(a, b) = 1, and b is shift-free in k and strongly prime
with K. By Proposition 4.7 and Theorem 4.8 in [14], we have Wy is
finite-dimensional over C(n) and H is hypergeometric summable
in k if and only if a = 0 and p = 0. So the form (a/b + p/v)Hy is the
obstruction to the hypergeometric summability. For this reason, we
call (a/b + p/v)Hy a residual form of H with respect to Ag.

Let Q be the A,-module C(n, k) - H. Note that A (Q) is an A,-
submodule of Q. Let M denote the quotient module Q/A;(Q). An
operator L € A, isatelescoper for H if and only if L is an annihilator
of the image H of H in M.

LEmMA 3.1. Let Hy and v be defined as in (3.3) and let
N = {’iHO +AL(Q) )p c WK} .
v
Then N is an Ap-submodule of M.
Proor. By [20, Proposition 5.2] with by = 1, for any i € N,
si (EHO) = PL gy mod AL(Q)
v v
for some p; € Wk. The lemma follows. |
Note that N is independent of the choice of S and K in the rational
normal form (3.2). We will call N a kernel submodule of M which is
an Ap-submodule and a finite-dimensional vector space over C(n).
Recall that an operator L is a telescoper for H if it annihilates H
in M. Therefore, if N is any submodule of M, then for an operator
L to be a telescoper, it is necessary that L maps H into N, although
this condition is in general not sufficient for being a telescoper. This
observation motivates the following definition of prescopers for

hypergeometric terms. An analogous definition was introduced
in [18, Section 6.2] for hyperexponential functions.

DEFINITION 3.2. A nonzero operator R € C(n){S,) is called a
prescoper for H with respect to k if R(H) + A (Q) € N, i.e, there
exists p € Wi such that

R(H) = L Hy mod Ar(Q).
v
A prescoper is said to be minimal if it has minimal degree in Sy,.

By definition, it is clear that telescopers are prescopers. The next
lemma shows that the minimal prescoper for H is a right factor of
the minimal telescoper for H if they exist.

LEMMA 3.3. Let N C M be Ap-modules and m € M. Suppose that
R € Ay, is the minimal annihilator form + N € M/N and T is the
minimal annihilator for R(m), then T - R is the minimal annihilator
form e M.

Proor. We firstly observe that T - R is an annihilator for m € M.
Let L be any annihilator for m. Then L must be an annihilator
for m+ N € M/N, which implies that L is right divisible by R.
Let L = L - R, then L is an annihilator for R(m). By the minimality
of T, we have that L is right divisible by T and then L is right
divisible by T - R. Hence T - R is the minimal annihilator for m. B
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The following lemma will be used in the next sections to explore
the LCLM structure of annihilators of elements in A,-modules.

LEmMMA 3.4. Let M be an A, -module and M = @?:1 M; be adirect-
sum decomposition of M. For any elementm =mq +---+my € M,
the minimal annihilator for m is the least common left multiple of
the minimal annihilators for the m;’s.

PRrROOF. Let L; be the minimal annihilator for m; € M;. Suppose
L is an annihilator for m, then
L(m) = L(my) + -+

Since L(m;) € M;, we have L(m;) = 0, which implies that L is right-
divisible by L;. Thus L is right-divisible by lclm(Ly, ..., L,). Note
that Iclm(Ly, .. ., L) is an annihilator for m. The lemma follows. il

+ L(my) = 0.

3.1 Constructing minimal prescopers

We now present a method to construct minimal prescopers for hy-
pergeometric terms. We first recall some terminologies from [6,
Section 4] and [20, Section 3] about properties of polynomials
under shifts. Let F be a field of characteristic zero. Two polyno-
mials q1,q2 € F[z] are o-equivalent with respect to the F-auto-
morphism ¢ of F[z] if g1 = 0/(q2) for some j € Z \ {0}, de-
noted as q1 ~g ¢2. Two shift-free polynomials by, by € C(n)[k]
are shift-related (with respect to k) if for any nontrivial monic ir-
reducible factor g; of by, there exists a unique monic irreducible
factor g2 of by with the same multiplicity as g; in by such that g;
and gy are Sp-equivalent and vice versa. An irreducible polyno-
mial p € C[n, k] is integer-linear over C if there exist a univariate
polynomial P € C[z] and a nonzero vector (m,£) € Z? such that
p(n,k) = P(mn + tk). A polynomial p € C[n, k] is integer-linear if
all of its irreducible factors are integer-linear.

By the existence criterion on telescopers [2], a hypergeometric
term H as in (3.3) has a nonzero telescoper in A, if and only if b is
an integer-linear polynomial. From now on, we always assume that
the given hypergeometric term H has a nonzero telescoper. Since b
is integer-linear, shift-free in k, and strongly prime with K, we can
decompose b as

I -1
b= I_[l_[ 'u” Pl(m,n+t’,k+]))

i=1 j=
where each P; € C[z] is irreducible, A; ; € N and m;, 6, i j € Z
satisfying ¢ > 0, ged(m;, ) = 1, and Sz I (Pi(min + £k + j)) is
strongly prime with K. Moreover, one can ensure that for all i, i’ €
{1,...,I} with i # i’, at least one of the following three relations is
not satisfied:

m; =my, {; =y, and P; ~5_Py. (3.4)

Let A; :== max{Aj0,...,Adi¢—1} and set

i,j ~\Ai
Bi,j = SZ 7 (Pi(m,-n + lik + ]))

Then we can write a/b in the residual form of H as
a zI: ti-1 qij
ij
- = e (3.5)
= = R
where q; j € C(n)[k] such that degy (g;,;) < degy(B; ;). Let H=
a/b - Hy. By Definition 3.2, the minimal prescoper for H is equal to
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the minimal prescoper for H. From the above decomposition we

obtain
g

i—1
with ﬁi = Z ]q;_j - Hp.
i=1 j=0 ~bJ

M~

LEMMA 3.5. The minimal prescoper for H is the least common left
multiple of the minimal prescopers for the H;’s.

ProoF. Let V; C M/N be the set that consists of the elements
-1

aj
ZJHNN
Jj=0 Bij

with a; j € C(n)[k] and degy (a; ;) < degy (B ). By [20, Proposi-
tion 5.4], for any d € N, there exist a; ; € C(n)[k] with degy (a;;) <
degy (B;,j) and pg € Wi such that

-1
a5 o
Sn (Z Bi’j HO)

Jj=0

-1 ~
Z - pd Ho mod A(Q).
J=0 B

This implies that V; is an Ap-submodule of M/N.Let V = Z{:l Vi
Then H + N is an element of V. By Lemma 3.4, it remains to show
that V = EBLI V;. By [20, Proposition 3.2] the following holds: if
there exist p1, po € Wk such that

(bl il )H() = (Z—Z + p—)H() mod Ak(Q)

where by, by satisfy the conditions as in Equation (3.3), then b; and
by are shift-related to each other. As a consequence, we have that
ViNVj ={0} forany i # j. |

We next deal with the question how to compute the minimal
prescoper for each H;. For each d € N, the modified Abramov—
Petkovsek reduction [14] decomposes

S,‘f(ﬁl) = (rl-!d + M) HO mod Ak(Q),
0

where p; 4 € Wi and r; 4 € C(n, k), which are also contained in
a finite-dimensional C(n)-vector space. Take the minimal p; € N
such that ZZLO e;qriqd = 0 with e; 4 € C(n) and e; p, = 1. Then we

have
Pi

R; = Z ei’ng
d=0
is the minimal prescoper for H;.
For a rational function f € C(n, k) of the form

f=
(mn + tk)
where s is a positive integer and m, £ € Z with £ # 0 and ged(m, £) =
1, one can observe that S/ — 1 is the minimal telescoper for f. Based
on this observation, Le [24] gave a direct method for computing
minimal telescopers for rational functions which avoids the process
of item-by-item examination of the order of the ansatz operators
in Zeilberger’s algorithm. Motivated by van Hoeij’s example in [32,
Section 3], we partially extend Le’s direct method to special hyper-
geometric terms of the form

q(n, k)

=————— " H,, 3.6
(mn + tk + a)? 0 (3:)
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where o € C,deg;(q) < A, ged(g, mn+fk+a) = 1,and (mn+£k+a)
is strongly prime with K. For a nonzero operator R € C(n)(S,) and
a positive integer £ € N, we can write R as

R=Ry+---+Rp_q, (3.7)

with R; € S -C(n)(S%). This decomposition is called the £-exponent
separation of R, see [13, Section 4].

LEMMA 3.6. Let H be as in (3.6) and let R have the £-exponent
separation as in (3.7). If R is the minimal prescoper for H, then R = Ry.

Proor. Note that any two polynomials in {S;l (rrzn+{’k+oc)’1}f:_01
are not Sg-equivalent, but for all j € N we have that S{lf(mn +tk+
a)* and (mn+tk+a)” are Sk-equivalent. Then {Ri (H)+Ak(Q)}f;01
is linearly independent over C(n) modulo N. If R is the minimal
prescoper for H, then

-1

R(H) +Ar(Q) = )" (Ri(H) + A (Q)) € N,

i=0
which implies that R;(H) + Ap(Q) € N, i.e., each R; is a prescoper
for H. Since N is also closed under S, 1 the trailing coefficient of R
is nonzero, which leads to Ry # 0. For i # j, we have ord(R;) #
ord(R;), unless both are zero. We deduce that actually R; = 0
for eachi = 1,...,¢ — 1, because otherwise we could find some
prescoper R; with order less than ord(R). |

Using Lemma 3.6, we now present a recursive algorithm accord-
ing to the value A for computing the minimal prescoper for H as
in (3.6). Since Sf,S,;m fixes the linear form (mn + ¢k + o), we have

. SuSc™ (H) _ SpSic™ (qHo)
H qH()
Since ged(q, mn + ¢k + @) = 1 and (mn + £k + @) is strongly prime
with K, the evaluation of hat k = —mn/¢—a/¢, assigned tor € C(n),
is well-defined.
For A = 1, we have q € C(n). It can be decomposed into
r-q Il

Sh(H) = SpS; ™ (H) = (m + ;)Ho mod A (Q),

e C(n,k). (3.8)

for some p’ € Wi. Then (S, —r) - H+ Ap(Q) € N. By Lemma 3.6,
we have that R := S%, — r is the minimal prescoper for H.

For A > 1, we let A, := C(n) (S) which is a subring of A, and
let M; be the set consisting of the elements

a p
—————— + = | Hy + A (Q
((mn+£’k+a)‘ 0) 0+ Ak(6)
where a € C(n)[k] with degy (a) < i and p € Wg. We claim that
M; is a Ap-submodule of M. Indeed, for any H; + A (Q) € M;
and j € N,

al ’

SIHy) = SIS = [——2—— + 2 ) Hy mod A (Q),
n( l) n ( l) (mn+fk+a)’+v 0 Mo k( )
for some a’ € C(n)[k] with degy (a’) < i and p” € Wk. By defini-
tion, we have N € M; and M;_ is an A,-submodule of M;. By the
modified Abramov-Petkovsek reduction, we can decompose H into

r-q

4 —cte—m —
Sn(H) = $p5." (H) = ((mn +tk+a)t

) Hy + H mod A(Q),
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where H+A(Q) € M_;. Then (St —r)- H+Ar(Q) € M,_;. Since
R := S! —ris of order 1 in Ap and H + Ap(Q) ¢ M;_q, it is the
minimal annihilator for H + A (Q) + M)_; € My /M;_;. We can
recursively compute the minimal prescoper L for H. By Lemma 3.3,
we have L - R is the minimal prescoper for H.

The following example, sent to us by Hui Huang, indicates that
the above method outperforms the existing codes for Zeilberger’s
algorithm in Maple and the reduction-based method in [14].

ExampLE 3.7. Consider the hypergeometric term

1 (o)
H= mH@ with H() = (Z) .

Then the shift-quotient with respect to k is
Sk(Ho) _ (3k = 5n)%(3k — 5n+ 1)2(3k — 5n + 2)*
Hy  9(n—k)(k+1)(3k +1)2(3k + 2)2

which is already shift-reduced in k. Let v be the denominator of K
and

K=

s

N = {PHy + (@) | p € Wi € Q) KT}
Observe that H ¢ N. Evaluating SnS]:2 (H)/H atk = —2n yields
L 3(3n+1)(3n+2) [12_,(5n+ )2 [15_,(6n +i)?
2n(2n+1) [T, (11n +i)2 ’

Then R = Sy, —r is the minimal prescoper for H. It remains to compute
the minimal telescoper for

H:=(S,-r)- H,

which is of order 6. It takes 13 seconds on a Dell Optiplex 7090 (CPU
3.70GHz, RAM 128G) with the reduction-based method in [14], com-
pared with 31 seconds with the Maple code for Zeilberger’s algorithm.

Note that in this example, Hy is not defined for all integers. This
is a bit uncommon, but it is not so uncommon that the certificates
have poles at some integer points. This also happens in some of
the examples discussed below. Algorithms and theory for creative
telescoping typically ignore this issue and leave it to the user to
check that everything makes sense. Noteworthy exceptions include
the careful study of Abramov and Petkovsek [3, 5] as well as the
approach of Bostan, Lairez, and Salvy [11].

3.2 Automorphisms of the kernel submodule

In his paper [32], van Hoeij presents examples in which a symmetry
of a summation problem translates into an automorphism of the
submodule N. The eigenspaces of the automorphism give rise to
a decomposition of N into submodules, and this decomposition
explains why the minimal telescoper is not the minimal annihilating
operator of the sum.

Automorphisms of N can be found algorithmically. By Lemma 3.1,
the A,-module N has a finite dimension as C(n)-vector space.
Let {v1,...,04} be a vector space basis. Any Ap-automorphism
¢: N — N is in particular a C(n)-linear map. As such, it can be
written in the form

$(01) 01
o |=o| |, (3.9)
$(vg) g
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for a certain matrix ® € C(n)?*¢. The requirement for a linear
map to be an A,-module automorphism is that it is invertible and
compatible with the shift. If ¥ € C(n)¥* is defined by

Sn(v1) 01
S ) (3.10)
Sn(vq) od
then the latter requirement means that the commutation rule 2@ =
Sn (@)X must hold.

In order to find automorphisms, we can therefore make an ansatz
with undetermined coefficients for the entries of ®. The require-
ment @ = S, (P)X leads to a coupled system of linear recurrence
equations for the undetermined coefficients. This system can be
solved, for example, using the command SolveCoupledSystem of
Koutschan’s Mathematica package HolonomicFunctions [22]. The
result is a C-linear subspace of C(n)?*4. Automorphisms corre-
spond to all the matrices in this space whose determinant is nonzero.

ExAMPLE 3.8. For the hypergeometric term Hy := (2'2)2, the kernel
module N computed by the modified Abramov—Petkovsek reduction
is a C(n)-vector space of dimension 3, given by the following basis:

Ho + Ar(Q)

kl

{4(2k+1)2(k+1)2 1_0’1’2}'

The matrix 3 € C(n)>*3 is determined by N, but it is too large to
display it here. We make an ansatz for ® := (¢; j)1<i,j<3 with unde-
termined entries ¢; j. Then the condition 2O = S, ()X yieldsa 9 x 9
coupled first-order linear system of difference equations, whose ratio-
nal solutions are computed with the command SolveCoupledSystem.
It returns a two-dimensional solution space over the constant field C,
which is spanned by the identity matrix I and by the matrix

12n3+16n+64 —64n’+32n+192 128n+192
4n*-2n3+4n®-8n—48 —20n3+16n’-16n-128 32n?-16n-96
nP—2n*+4n3432  —4n*+16n®—16n>—32n+64 4n®—40n?—48n+32

4(n+2)3
The matrix ¥ corresponds to the automorphism (n, k) — (n,k+1/2),
and it satisfies W2 = I, as expected. By inspecting the symmetry of Ho,
one could anticipate the existence of another automorphism, namely
(n,k) — (n,n/2 — k). However, it turns out that this map is not
compatible with Sy, and hence is not an Ap-module automorphism.

Y =

3.3 Zero-sum submodules

The submodule approach introduced by van Hoeij [32] can not only
speed-up the computation of minimal telescopers, but also explain
(by examples) why the minimal telescoper for a hypergeometric
sum may not be its minimal recurrence. The explanation of the
non-minimality phenomenon by anti-symmetry has been given
in [17, 26-29] that leads to the method of creative symmetrizing [23].
A concrete example is the identity

2n+1 2
2n+1
> (—1)"( nk ) =0.
k=0
The summand H := (_l)k(anH)Z satisfies the anti-symmetry re-

lation H(n, k) = —H(n,2n+ 1 — k). So summing H for k from 0 to
2n + 1 leads to zero. The minimal telescoper for H is the first-order

ISSAC 25, July 28-August 01, 2025, Guanajuato, Mexico

operator S, + 8(n+ 1)/(2n + 3), but the minimal recurrence for the
above vanishing sum is any nonzero element of C(n).

As a research question, van Hoeij [32, Section 7] proposed to
study the zero-sum submodules, especially how to detect and find
such submodules. We call Z C N a zero-sum submodule if it only
contains terms whose summation with respect to k gives 0. Note
that every operator T with T(H) € Z is then an annihilating opera-
tor of ) ;. H, but not necessarily a telescoper.

The following two examples show how the techniques from the
previous sections, especially Nicole’s lemma, can be used to con-
struct zero-sum submodules and explain the non-minimality phe-
nomenon. In the first example, we find that the minimal prescoper R
maps H not only into N but even into Z. It is therefore an annihila-
tor of the sum. However, since R(H) # 0 € M, it is not a telescoper.
In the second example, the minimal prescoper is R = 1. Neverthe-
less, the minimal telescoper is not the minimal annihilator of the
sum because it turns out that there is an operator T with TH)eZ
but T(H) # 0.

EXAMPLE 3.9. The minimal telescoper for the hypergeometric term
3n+1\(3n - k\>

H:: (_l)k( . )( " )

k n

is of order 2, which is not the minimal recurrence satisfied by the sum

+00

Z H(n k) = 1.

k=—c0
To explain this non-minimality, we let Hy = (k — 3n — 1)H and let
_ Sk (Ho) _ (k- 21’1)3 _u
~ Hy  (k+1)(k-3n)2 o’

Then the algorithm in Section 3.1 can compute the minimal prescoper
R =S, — 1 for H so that R(H) + Ay (Q) is in the submodule

K:

N = {g - Ho + A (Q) ‘PEWK}’

where Wy, has a Q(n)-basis {1,k3}. We now use Nicole’s lemma in
Section 2.2 to show that for all p € Q(n)[k] with degy.(p) < 2, we
have the vanishing-sum identity

+00

Z %'H():O,

k=—00

wheren > 1.

Similar to Examples 2.1 and 2.2, we consider the rational function

P p(n,—x)(3n+1)!(x+3n— )2 (x+2n+1)2
0 (n)3(x — Dx(x+1) - (x +2n)

2n
- 2%
7
L k
Since Q is squarefree, Lagrange’s residue formula implies that

. = p(nk)Bn+)!Bn—k-1)2---(2n—k+1)? p o

T T3 (k- 1) (k) (—k+1)---(—k+2n) o U
By Lemma 2.1, f is summable in C(x) since degy(p) < 2. Then
the above vanishing-sum identity holds. By this identity, we have a
zero-sum submodule

f=

7= {f-’ - Ho + Ap(Q) | p € Wi with degy (p) = o}.
0
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Applying the prescoper R = S, — 1 to H yields

37n7 +96n° + 81n° + 22n* Hy
8(n+1)3(9n2 +10n+3) o
So Sp(H) — H + A (Q) € Z which contributes zero to the sum. Then

Sn — 1 is the minimal annihilator for the sum ZZ:’_OO H(n, k).

Sp(H)—H = mod Ap(Q).

EXAMPLE 3.10. We now explain why minimal telescopers overshoot
in the following combinatorial identity

Z(—l)"(Z)(if) = (-3y".
k=0

This is a special case of the identity in [29, Section 4.3] which was
originally used to show the non-minimality phenomenon with expla-
nations in [11, 27]. The minimal telescoper for the summand H :=
DR GG i
2 3(5n+7) 9(n+1)
"7 2(2n+3)" " 2(2n+3)
but this is not the minimal recurrence S, + 3 satisfied by the sum. In
this example, we let Hy = H and
Ko Sk(Ho) 3(k —n)(3k +1)(3k + 2) _u
“ Hy ~ Bk-n+1)Bk-n+2)3k-n+3) o

The corresponding kernel submodule is

N = {i-’ Ho + Ap(Q) ‘p c WK},

where Wy, has a Q(n)-basis {1, k3}. Since H + A (Q) € N, the mini-
mal prescoper of H is R = 1. Similar to the previous example, consid-
ering the rational function

Fe p(n,—x)(-3x)(-3x—1)--- (-3x —n+4)

x(x+1)---(x+n)
yields the vanishing-sum identity

n
ZQ -Hy =0, wheren >3,
v
k=0
for all p € Q(n)[k] with deg,(p) < 2. So we obtain the zero-sum
submodule
Z = {3 - Ho+Ap(Q) ‘p € Wi with deg (p) = o} :
v
We can verify that Z is closed under any operator in A,. In fact,
(Ho) -9n® — 21n% + 36n + 84 Hy
o e
v

= A s s Gnad o Mol A

The remaining task is to find an operator T € Q(n)(Sp) such that
T(H) + Ap(Q) € Z. The modified Abramov—Petkovsek reduction
decomposes Hy and Sp,(Hp) as

_ 81k%n — n* + 108k> + 4n® — 12n% + 12n+ 18

Hy =
0 (Bn+4) -0 0
mod Ap(Q).
Su(Ho) = —243k3n + n* — 324k3 — 9n® + 41n? — 42n - 54
niHor = (3n+4)-0 0
mod Ag(Q).

Note that T = S, + 3 brings Hy into the zero-sum submodule Z.
Therefore, T annihilates the sum, and since the sum evaluates to (—3)",
we find that T is actually its minimal annihilator.
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