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order, thereby turning a heuristic used for many years in several 
computer algebra systems into an algorithm. Our result can be 
viewed as a generalization of a classical result about apparent 
singularities of linear differential equations.
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1. Introduction

Consider a linear ordinary differential equation, like for example

x(1 − x) f ′(x) − f (x) = 0.

The leading coefficient polynomial x(1 − x) of the equation is of special interest because every point 
ξ which is a singularity of some solution of the differential equation is also a root of this polynomial. 
However, the converse is in general not true. In the example above, the root ξ = 1 indicates the 
singularity of the solution x/(1 − x), but there is no solution which has a singularity at the other 
root ξ = 0. To see this, observe that after differentiating the equation, we can cancel (“remove”) the 
factor x from it. The result is the higher order equation

(1 − x) f ′′(x) − 2 f ′(x) = 0,

E-mail addresses: schen@amss.ac.cn (S. Chen), manuel.kauers@jku.at (M. Kauers), singer@math.ncsu.edu (M.F. Singer).
1 Supported by NSFC grant 11501552 and a 973 project (2011CB302401) and the President Fund of Academy of Mathematics 

and Systems Science, CAS (2014-cjrwlzx-chshsh).
2 Supported by FWF grants Y464-N18, F5004.
3 Supported by National Science Foundation Grant CCF-1017217.
http://dx.doi.org/10.1016/j.jsc.2015.11.001
0747-7171/© 2015 Elsevier Ltd. All rights reserved.

http://dx.doi.org/10.1016/j.jsc.2015.11.001
http://www.ScienceDirect.com/
http://www.elsevier.com/locate/jsc
mailto:schen@amss.ac.cn
mailto:manuel.kauers@jku.at
mailto:singer@math.ncsu.edu
http://dx.doi.org/10.1016/j.jsc.2015.11.001
http://crossmark.crossref.org/dialog/?doi=10.1016/j.jsc.2015.11.001&domain=pdf


618 S. Chen et al. / Journal of Symbolic Computation 74 (2016) 617–626
whose solution space contains the solution space of the original equation. Such a calculation is called 
desingularization. The factor x is said to be removable.

Given a differential equation, it is of interest to decide which factors of its leading coefficient 
polynomial are removable, and to construct a higher order equation in which all the removable factors 
are removed. A classical algorithm, which is known since the end of the 19th century (Schlesinger, 
1895; Ince, 1926), proceeds by taking the least common left multiple of the given differential operator 
with a suitably constructed auxiliary operator. This algorithm is summarized in Section 2 below. At 
the end of the 20th century, the corresponding problem for linear recurrence equations was studied 
and algorithms for identifying removable factors have been found and their relations to “singularities” 
of solutions have been investigated (Abramov and van Hoeij, 1999, 2003; Abramov et al., 2006). Also 
some steps towards a unified theory for desingularization of Ore operators have been made (Chyzak et 
al., in preparation; Chen et al., 2013). Possible connections to Ore closures of an operator ideal have 
been noted in Chyzak et al. (in preparation) and within the context of order-degree curves (Chen 
et al., 2013, Chen and Kauers, 2012a; 2012b). These will be further developed in a future paper.

Our contribution in the present article is a three-fold generalization of the classical desingulariza-
tion algorithm for differential equations. Our main result (Theorem 6 below) says that (a) instead of 
the particular auxiliary operator traditionally used, almost every other operator of appropriate order 
also does the job, (b) also the case is covered where a multiple root can’t be removed completely but 
only its multiplicity can be reduced, and (c) the technique works not only for differential operators 
but for every Ore algebra. Code fragments in the Maple library (e.g., the function DEtools/Homomor-
phisms/AppCheck) indicate that some people have already observed before us that taking lclm with 
a random operator tends to remove removable factors and used this as a heuristic. We give here for 
the first time a rigorous justification of this phenomenon.

For every removable factor p there is a smallest n ∈ N such that removing p from the operator 
requires increasing the order of the operator by at least n. Classical desingularization algorithms com-
pute for each factor p an upper bound for this n, and then determine whether or not it is possible 
to remove p at the cost of increasing the order of the operator by at most n. In the present paper, 
we do not address the question of finding bounds on n but only discuss the second part: assuming 
some n ∈N is given as part of the input, we consider the task of removing as many factors as possible 
without increasing the order of the operator by more than n. Of course, for Ore algebras where it is 
known how to obtain bounds on n, these bounds can be combined with our result.

Recall the notion of Ore algebras (Ore, 1933). Let K be a field of characteristic zero. Let σ : K [x] →
K [x] be a ring automorphism that leaves the elements of K fixed, and let δ : K [x] → K [x] be a 
K -linear map satisfying the law δ(uv) = δ(u)v + σ(u)δ(v) for all u, v ∈ K [x]. The algebra K [x][∂]
consists of all polynomials in ∂ with coefficients in K [x] together with the usual addition and the 
unique (in general noncommutative) multiplication satisfying ∂u = σ(u)∂ + δ(u) for all u ∈ K [x] is 
called an Ore algebra. The field K is called the constant field of the algebra. Every nonzero element L
of an Ore algebra K [x][∂] can be written uniquely in the form

L = �0 + �1∂ + · · · + �r∂
r

with �0, . . . , �r ∈ K [x] and �r �= 0. We call deg∂ (L) := r the order of L and lc∂ (L) := �r the leading 
coefficient of L. Roots of the leading coefficient �r are called singularities of L. Prominent examples of 
Ore algebras are the algebra of linear differential operators (with σ = id and δ = d

dx ; we will write D
instead of ∂ in this case) and the algebra of linear recurrence operators (with σ(x) = x + 1 and δ = 0; 
we will write S instead of ∂ in this case).

We shall suppose that the reader is familiar with these definitions and facts, and will make free 
use of well-known facts about Ore algebras, as explained, for instance, in Ore (1933), Bronstein and 
Petkovšek (1996), Abramov et al. (2005). In particular, we will make use of the notion of least 
common left multiples (lclm) of elements of Ore algebras: L ∈ K (x)[∂] is a common left multiple of 
P , Q ∈ K (x)[∂] if we have L = U P = V Q for some U , V ∈ K (x)[∂], it is called a least common left mul-
tiple if there is no common left multiple of lower order. Least common left multiples are unique up to 
left-multiplication by nonzero elements of K (x). By lclm(P , Q ) we denote a least common left multi-
ple whose coefficients belong to K [x] and share no common divisors in K [x]. Note that lclm(P , Q ) is 
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unique up to (left-)multiplication by nonzero elements of K . Efficient algorithms for computing least 
common left multiples are available (Bostan et al., 2012).

2. The differential case

In order to motivate our result, we begin by recalling the classical results concerning the desingu-
larization of linear differential operators. See the appendix of Abramov et al. (2006) for further details 
on this case.

Let L = �0 + �1 D + · · · + �r Dr ∈ K [x][D] be a differential operator of order r. Consider the power 
series solutions of L. It can be shown that x � �r if and only if L admits r power series solutions with 
valuation α, for α = 0, . . . , r − 1. Therefore, if x | �r , then this factor is removable if and only if there 
exists some left multiple M of L, say with deg∂ (M) = s, such that M admits a power series solution 
with valuation α for every α = 0, . . . , s − 1. This is the case if and only if L has r linearly independent 
power series solutions with integer exponents 0 ≤ α1 < α2 < · · · < αr , because in this case (and only 
in this case) we can construct a left multiple M of L with power series solutions xα + · · · for each 
α = 0, . . . , max{α1, . . . , αr} −1, by adding power series of the missing valuations to the solution space 
of L.

These observations suggest the following desingularization algorithm for operators L ∈ K [x][∂]
with x | lc∂ (L). First find the set {α1, . . . , α�} ⊆ N of all exponents αi for which there exist power 
series solutions xαi + · · · . If � < r, return “not desingularizable” and stop. Otherwise, let m =
max{α1, . . . , α�} and let e1, e2, . . . , em−� be those nonnegative integers which are at most m but not 
among the αi . Return the operator

M = lclm(L, A),

where

A := lclm(xD − e1, xD − e2, . . . , xD − em−�).

Note that among the solutions of A there are the monomials xe1 , xe2 , . . . , xem−� , and that the solutions 
of M are linear combinations of solutions of A and solutions of L. Therefore, by the choice of the e j
and the remarks made above, M is desingularized.

Example 1. Consider the operator

L = (x − 1)(x2 − 3x + 3)xD2 − (x2 − 3)(x2 − 2x + 2)D

+ (x − 2)(2x2 − 3x + 3) ∈ K [x][D].
This operator has power series solutions with minimal exponents α = 0 and α = 3. Their first terms 
are

1 + x + 1
2 x2 − 1

8 x4 − 19
120 x5 − 119

720 x6 + · · · ,

x3 + x4 + x5 + x6 + · · · .

The missing exponents are e1 = 1 and e2 = 2. Therefore we take

A := lclm(xD − 1, xD − 2) = x2 D2 − 2xD + 2

and calculate

M = lclm(L, A) = (x5 − 2x4 + 4x3 − 9x2 + 12x − 6)D4

− (x5 − 2x4 + x3 − 12x2 + 24x − 24)D3

− (3x3 + 9x2)D2 + (6x2 + 18x)D − (6x + 18).

Note that we have x � lc∂ (M), as predicted.
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In the form sketched above, the algorithm applies only to the singularity 0. In order to get rid of 
a different singularity, move this singularity to 0 by a suitable change of variables, then proceed as 
described above, and after that undo the change of variables. Note that by removing the singularity 0
we will in general introduce new singularities at other points.

3. Removable factors

We now turn from the algebra of linear differential operators to arbitrary Ore algebras. In the 
general case, removability of a factor of the leading coefficient is defined as follows.

Definition 2. Let L ∈ K [x][∂] and let p ∈ K [x] be such that p | lc∂ (L) ∈ K [x]. We say that p is removable
from L at order n if there exist some P ∈ K (x)[∂] with deg∂ (P ) = n and some v, w ∈ K [x] with 
gcd(p, w) = 1 such that P L ∈ K [x][∂] and σ−n(lc∂ (P L)) = w

vp lc∂ (L). We then call P a p-removing
operator for L, and P L the corresponding p-removed operator. p is simply called removable from L if 
it is removable at order n for some n ∈N.

Example 3.

(1) In the example from the introduction, we have L = x(1 − x)D − 1 ∈ K [x][D]. An x-removing oper-
ator is P = 1

x D: we have P L = (1 − x)D2 −2D . Because of deg∂ (P ) = 1 we say that x is removable 
at order 1.
If P is a p-removing operator then so is Q P , for every Q ∈ K [x][∂] with

gcd(lc∂ (Q ),σ deg∂ (P )+deg∂ (Q )(p)) = 1.

In particular, note that the definition permits to introduce some new factors w into the leading 
coefficient while p is being removed. For instance, in our example also 2−3x

x D is an x-removing 
operator for L.

(2) The definition does not imply that the leading coefficient of a p-removed operator is coprime 
with σ n(p). In general, it only requires that the multiplicity is reduced. As an example, consider 
the operator

L = x2(x − 2)(x − 1)D2 + 2x(x2 − 3x + 1)D − 2 ∈ K [x][D]
and p = x. The operator P = x4−x3−4x2+2x−2

(x−2)x D − (x2 + 5x + 3) ∈ K (x)[D] is a p-removing operator 
because the leading coefficient of

P L = x(x − 1)(x4 − x3 − 4x2 + 2x − 2)D3

− (x6 − 4x5 − x4 + 22x3 − 18x2 + 18x − 6)D2

− 2(x5 − x4 − 8x3 + 8x2 − 3x + 6)D

+ 2(x2 + 5x + 3)

contains only one copy of p while there are two of them in L. This is called partial desingulariza-
tion. Observe that the definition permits to remove some factors v from the leading coefficient in 
addition to p.

(3) In the shift case, or more generally, in an Ore algebra where σ is not the identity, the leading 
coefficient changes when an operator is multiplied by a power of ∂ from the left. The application 
of σ−n in the definition compensates for this change. As an example, consider the operator

L = x(x + 1)(5x − 2)S2 − 2x(5x2 − 2x − 9)S

+ (x − 4)(x + 2)(5x + 3) ∈ K [x][S]
and p = x + 1. The operator P = 5x3+13x2−18x−24

(x+2)(5x+3)
S − 2(5x3+28x2+23x−24)

(x+2)(5x+3)
is a p-removing operator 

because the leading coefficient of
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P L = (x + 1)(5x3 + 13x2 − 18x − 24)S3

− 2(x + 1)(10x3 + 21x2 − 58x + 24)S2

+ (25x4 + 60x3 − 217x2 − 84x + 288)S

− 2(x − 4)(5x3 + 28x2 + 23x − 24)

does not contain σ(p) = x + 2. It is irrelevant that it contains x + 1.

As indicated in the examples, when removing a factor p from an operator L, Definition 2 allows 
that we introduce other factors w , coprime to p. We are also always allowed to remove additional 
factors v besides p. The freedom for having v and w is convenient but not really necessary. In fact, 
whenever there exists an operator P ∈ K (x)[∂] of order n such that σ−n(lc∂ (P L)) = w

vp lc∂ (L), then 
there also exists an operator Q ∈ K (x)[∂] of order n such that σ−n(lc∂ (Q L)) = 1

p lc∂ (L). To see this, 
note that by the extended Euclidean algorithm there exist s, t ∈ K [x] such that sw + tp = 1. Set Q =
σ n(sv)P + σ n(t)∂n . Then

σ−n(lc∂ (Q L)) = sv σ−n(lc∂ (P L)) + t σ−n(lc∂ (∂
n L))

= sv
w

vp
lc∂ (L) + tp

p
lc∂ (L) = 1

p
lc∂ (L),

as desired. This argument is borrowed from Abramov et al. (2006). The same argument can also be 
used to show the existence of operators that remove all the removable factors in one stroke:

Lemma 4. Let L ∈ K [x][∂], let n ∈N, and let lc∂ (L) = pe1
1 pe2

2 · · · pem
m be a factorization of the leading coefficient 

into irreducible polynomials. For each i = 1, . . . , m, let ki ≤ ei be maximal such that pi is removable from L at 
order n. Then there exists an operator P ∈ K (x)[∂] of order n such that σ−n(lc∂ (P L)) = 1

p
k1
1 p

k2
2 ···pkm

m

lc∂ (L).

Proof. By the remark preceding the lemma, we may assume that for every i there exists an operator 
Pi ∈ K (x)[∂] of order n with Pi L ∈ K [x][∂] and σ−n(lc∂ (Pi L)) = p−ki

i lc∂ (L) (i.e., w = v = 1).
Next, observe that when p and q are two coprime factors of lc∂ (L) which both are removable 

at order n, then also their product pq is removable at order n. Indeed, if P , Q ∈ K (x)[∂] are such 
that deg∂ (P ) = deg∂ (Q ) = n, P L, Q L ∈ K [x][∂], σ−n(lc∂ (P L)) = 1

p lc∂ (L), and σ−n(lc∂ (Q L)) = 1
q lc∂ (L), 

and if s, t ∈ K [x] are such that sq + tp = 1, then for R := σ n(s)P + σ n(t)Q we have σ−n(lc∂ (RL)) =
1
pq lc∂ (L), as desired.

The claim of the lemma now follows by induction on m, taking p = pe1
1 · · · p

em−1
m−1 and q = pem

m . �
4. Desingularization by taking least common left multiples

As outlined in Section 2, the classical algorithm for desingularizing differential operators relies on 
taking the lclm of the operator to be desingularized with a suitably chosen auxiliary operator. Our 
contribution consists in a three-fold generalization of this approach: first, we show that it works in 
every Ore algebra and not just for differential operators, second, we show that almost every operator 
qualifies as an auxiliary operator in the lclm and not just the particular operator used traditionally, 
and third, we show that the approach also covers partial desingularization. From the second fact it 
follows directly that taking the lclm with a random operator of appropriate order removes, with high 
probability, all the removable singularities of the operator under consideration and not just a given 
one.

Consider an operator L ∈ K [x][∂] in an arbitrary Ore algebra, and let p | lc∂ (L) be a factor of its 
leading coefficient. Assume that this factor is removable at order n. Our goal is to show that for almost 
all operators A ∈ K [∂] of order n with constant coefficients the operator lclm(L, A) is p-removed.

One way of computing the least common left multiple of two operators L, A ∈ K [x][∂] with 
deg∂ (L) = r and deg∂ (A) = n (and not necessarily with constant coefficients) is as follows. Make 
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an ansatz with undetermined coefficients u0, . . . , un , v0, . . . , vr and compare coefficients of ∂ i (i =
0, . . . , n + r) in the equation

(u0 + · · · + un−1∂
n−1 + un∂

n)L = (v0 + · · · + vr−1∂
r−1 + vr∂

r)A.

This leads to a system of homogeneous linear equations over K (x) for the undetermined coefficients, 
which has more variables than equations and therefore must have a nontrivial solution. For each 
solution, the operator on either side of the equation is a common left multiple of L and A.

For most choices of A the solution space will have dimension #vars − #eqns = 1, and in this 
case, for every nontrivial solution we have un �= 0. In particular the least common left multiple M =
lclm(L, A) has then order r + n. The singularities of M are then the roots of σ n(lc∂ (L)) plus the roots 
of un minus the common roots of u0, . . . , un , which are divided out because we defined the notation 
lclm(L, A) to refer to a least common left multiple with polynomial coefficients that share no common 
factors. It is not obvious at this point why removable factors should appear among these common 
factors of u0, . . . , un . To see that they systematically do, consider a p-removing operator P ∈ K (x)[∂]
of order n, and observe that the operators 1, ∂, . . . , ∂n−1, ∂n generate the same K (x)-vector space as 
1, ∂, . . . , ∂n−1, P . If we use the latter basis in the ansatz for the lclm, i.e., do coefficient comparison in

(u0 + · · · + un−1∂
n−1 + un P )L = (v0 + · · · + vr−1∂

r−1 + vr∂
r)A,

then every nontrivial solution vector (u0, . . . , un, v0, . . . , vr) of the resulting linear system gives rise 
to a common left multiple of L and A in K [x][∂] whose singularities are the roots of lc∂ (P L) =
σ n( 1

p lc∂ (L)) plus the roots of un minus the common roots of u0, . . . , un . This argument shows that 
the removable factor p will have disappeared in the lclm unless it is reintroduced by un . The main 
technical difficulty to be addressed in the following is to show that this can happen only for very 
special choices of A. For the proof of this result we need the following lemma.

Lemma 5. Let F be a field. Let n, m ∈ N, let v1, . . . , vn ∈ F n+m be linearly independent over F , and let 
w1, . . . , wm ∈ F [x1, . . . , xn]n+m be defined by

w1 =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

x1
...

xn

1
0
...
...

0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

, w2 =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0
x1
...

xn

1
0
...

0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

, . . . . . . , wm =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0
...
...

0
x1
...

xn

1

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

.

Then � := det(w1, . . . , wm, v1, . . . , vn) ∈ F [x1, . . . , xn] is not the zero polynomial.

Proof. Simultaneous induction on n and m: We show that the lemma holds for (n, m) if it holds for 
(n − 1, m) and for (n, m − 1).

As induction base, observe first that the lemma holds for n = 1, m arbitrary: proceeding from the 
bottom up, use the columns w1, . . . , wm to eliminate the nonzero entries of v1, of which there must 
be at least one. Each elimination of some coordinate of v1 introduces a multiple of x1 in the next 
coordinate. Since each coordinate except for the first can be reduced by some wi , this procedure 
turns v into a vector of the form (p, 0, . . . , 0)T , for some nonzero polynomial p ∈ F [x1]. We thus have 
� = ±p �= 0.

Observe secondly, still for the induction base, that the lemma also holds for n arbitrary and 
m = 1. To see this, note that the coordinates 1, x1, . . . , xn of w1 are linearly independent over F . 
By Laplace-expanding the determinant � along w1, we see that it is zero if and only if all the 
n × n-minors of (v1, . . . , vn) ∈ F (n+1)×n are zero. But in this case, by Cramer’s rule, v1, . . . , vn would 
be linearly dependent, which by assumption they are not. So � �= 0.
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Now let (n, m) ∈ N2 with n ≥ 2, m ≥ 2 be given. Let v1, . . . , vn ∈ F n+m be linearly independent. 
Write vi = (v1,i, . . . , vn+m,i) for the coefficients. For a vector u ∈ F n+m , we write ū for the vector in 
F n+m−1 obtained from u by chopping off the first coordinate.

Case 1. v1,1 = v1,2 = · · · = v1,n = 0. In this case, the vectors v̄ i ∈ F n+(m−1) must be linearly inde-
pendent. By expanding along the first row, we have

� = x1 det(w̄2, . . . , w̄m, v̄1, . . . , v̄n).

The determinant on the right is nonzero by applying the lemma with n and m − 1. Therefore the 
determinant on the left is also nonzero.

Case 2. If at least one of the v1, j is nonzero, then we may assume without loss of general-
ity that v1,1 = 1 and v1,2 = v1,3 = · · · = v1,n = 0, by performing suitable column operations on 
(v1, . . . , vn) ∈ F (n+m)×n . Then the vectors v̄2, . . . , ̄vn ∈ F (n−1)+m obtained from the vi by chopping 
the first coordinate are linearly independent. Expanding along the first row, we now have

� = x1 [[poly]] + v1,1 ×

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

x2 x1 0 · · · 0 v2,2 · · · v2,n

x3 x2
. . .

. . .
...

...
...

...
. . .

. . .
. . . 0

...
...

...
. . .

. . . x1
...

...

xn
. . . x2

...
...

1
. . . x3

...
...

0
. . .

. . .
...

...
...

...
. . .

. . .
. . .

...
...

...
...

. . .
. . . xn

...
...

0 · · · · · · 0 1 vn+m,2 · · · vn+m,n

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

.

By setting x1 = 0, the first term on the right hand side disappears, and so do the entries x1 in the 
determinant of the second term. By applying the lemma with m and n − 1, the determinant on the 
right with x1 set to zero is a nonzero polynomial in x2, . . . , xn . Since also v1,1 �= 0, the whole right 
hand side is nonzero for x1 = 0. Consequently, when x1 is not set to zero, it cannot be the zero 
polynomial. �
Theorem 6 (Main result). Let K [x][∂] be an Ore algebra, let L ∈ K [x][∂] be an operator of order r, and let n ∈N. 
Let p ∈ K [x] be an irreducible polynomial which appears with multiplicity e in lc∂ (L) and let k ≤ e be maximal 
such that pk is removable from L at order n. Let A = a0 + a1∂ + · · · + an−1∂

n−1 + ∂n in K [a0, . . . , an−1][∂], 
where a0, . . . , an−1 are new constants, algebraically independent over K . Then the multiplicity of σ n(p) in 
lc∂ (lclm(L, A)) is e − k.

Proof. Let P0, . . . , Pn ∈ K (x)[∂] be such that each Pi has order i and removes from L all the factors 
of lc∂ (L) that can possibly be removed by an operator of order i. Such operators exist by Lemma 4. 
Consider an ansatz

u0 P0L + u1 P1L + · · · + un Pn L = v0 A + v1∂ A + · · · + vr∂
r A

with unknown ui, v j ∈ K [a0, . . . , an−1][x]. Compare coefficients with respect to powers of ∂ on both 
sides and solve the resulting linear system using Cramer’s rule. This gives a polynomial solution vector 
with

un = det
([P0L], [P1L], · · · [Pn−1L], [A], [∂ A], · · · , [∂r−1 A]),

where the notation [U ] refers to the coefficient vector of the operator U (padded with zeros, if nec-
essary, to dimension r + n).
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If σ n(p) | un , then the columns of the determinant are linearly dependent when viewed as ele-
ments of F [a0, . . . , an−1] with F = K [x]/〈σ n(p)〉. Then Lemma 5 implies that already [P0 L], . . . ,[Pn−1L]
are linearly dependent modulo σ n(p). In other words, there are polynomials u0, . . . , un−1 ∈ K [x] of 
degree < deg(p), not all zero, such that the linear combination u0 P0L + · · · + un−1 Pn−1L has con-
tent σ n(p). If d ∈ {0, . . . , n − 1} is maximal such that ud �= 0, then this means that 1

σn(p)
(u0 P0 + · · · +

ud Pd) is an operator of order d which removes from L one factor σ n−d(p) more than Pd does, in 
contradiction to the assumption that Pd removes as much as possible.

This proves that σ n(p) � un , and in particular un �= 0. Since Pn is assumed to remove all removable 
factors, and in particular k copies of p, and since un does not re-introduce any copy of p, it follows 
that the multiplicity of σ n(p) in lc∂ (un Pn L) = lc(lclm(L, A)) is e − k, as claimed. �

The theorem continues to hold when the indeterminates a0, . . . , an−1 are replaced by values in K
which do not form a point on the zero set of the determinant polynomial un mod σ n(p), as discussed 
in the proof. As this is not the zero polynomial and we assume throughout that K has characteristic 
zero, it follows that almost all choices of A ∈ K [∂] will successfully remove all the factors of lc∂ (L)

that are removable at order deg∂ (A).
The theorem thus justifies the following very simple probabilistic algorithm for removing, with 

high probability, as many factors as possible from a given operator L ∈ K [x][∂] at a given order n:

• Pick an operator A ∈ K [∂] of order n at random.
• Return lclm(L, A).

This is a Monte Carlo algorithm: it always terminates but with low probability may return an incorrect 
answer. For a deterministic algorithm, don’t take the operators A at random but use an operator with 
symbolic constant coefficients a0, . . . , an−1, as in the theorem. The leading coefficient of lclm will then 
have all removable factors removed, and some additional factors involving the symbolic coefficients. 
Now instantiate these coefficients with some elements of K for which they don’t evaluate to one of 
the factors of σ n(lc∂ (L)). Almost any choice will do. By taking the choices from some enumeration 
of Zn , for example, it is guaranteed that we will encounter a choice that works after finitely many 
attempts.

The Monte Carlo version of the algorithm is included in the new ore_algebra package for 
Sage (Kauers et al., 2015), and works very efficiently thanks to the efficient implementation of least 
common left multiples also available in this package. This package has been used for the calculations 
in the following concluding examples. The computation time for all these examples is negligible.

Example 7.

(1) For L ∈Q[x][D] from Example 1 and the “randomly chosen” operator A = D2 + D + 1 we have

lclm(L, A) = (x7 − 4x6 + 6x5 − 4x4 + x3 + 6x − 6)D4

− (2x6 − 9x5 + 15x4 − 11x3 + 3x2 − 24)D3

− (x7 − 4x6 + 6x5 − 4x4 + x3 + 6x − 6)D

+ (2x6 − 9x5 + 15x4 − 11x3 + 3x2 − 24).

This is not the same result as in Example 1, but it does have the required property x �
lc∂ (lclm(L, A)).

(2) This is an example for the recurrence case. Let

L = 2(x + 3)2(59x + 94)S3 − (2301x3 + 15 171x2 + 32 696x + 22 876)S2

− 5(59x3 + 330x2 + 600x + 359)S − (59x + 153)(x + 1)2.
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Among the factors of (x + 3) and (59x + 94) of the leading coefficient, the latter is removable 
at order 1 and the former is not removable. Accordingly, for the “randomly chosen” operator 
A = S − 2 we have

lclm(L, A) = 2(x + 4)2(8909x3 + 57 087x2 + 119 629x + 81 711)S4

+ (· · ·)S3 + (· · ·)S2 + (· · ·)S + (· · ·),
where (· · ·) stands for some other polynomials. Note that the leading coefficient is coprime to 
σ(59x + 94) = 59x + 153.

(3) As an example for partial desingularization, consider the operator L = x3 D3 − 3x2 D2 − 2xD + 10 ∈
Q[x][D]. Of the three copies of x in the leading coefficient, one is removable at order 2, another 
one at order 4, and the third is not removable. In perfect accordance, we find for example

lc∂ (lclm(L, D + 2)) = x3(4x3 + 6x2 − 2x − 5),

lc∂ (lclm(L, D2 + 1)) = x2(x6 + 10x4 + 40x2 + 80),

lc∂ (lclm(L, D3 + 3D2 − 1)) = x2(x8 − 30x6 + · · · + 2160x + 1920),

lc∂ (lclm(L, D4 − D2 + 1)) = x(x10 − 10x8 + 120x6 − 720x4 − 3200),

lc∂ (lclm(L, D5 + D − 1)) = x(x12 − 3x11 + · · · + 25 600x − 22 400).

(4) There are unlucky choices for A. For example, consider

L = (x − 7)(x2 − 2x − 12)S2 − (3x3 − 23x2 − 23x + 291)S

+ 2(x − 6)(x2 − 13) ∈Q[x][S].
The factor x − 7 is removable, as can be seen, for example, from the fact that lc∂ (lclm(L, S − 1)) =
2x2 − x − 51 is coprime to σ(x − 7) = x − 6. However, if we take A = S − 9

4 , then

lclm(L, A) = 4(x − 7)(x − 6)(5x − 28)S3

− (x − 7)(3092 − 1138x + 105x2)S2

+ (x − 5)(6081 − 2080x + 175x2)S

− 18(x − 6)(x − 5)(5x − 23),

which has x − 6 in the leading coefficient. (It is irrelevant that also x − 7 appears as a factor.)
(5) Finally, as an example in an unusual Ore algebra, consider Q[x][∂] with σ : Q[x] → Q[x] defined 

by σ(x) = x2 and δ : Q[x] →Q[x] defined by δ(x) = 1 − x. Let

L = (2x + 1)∂2 + (x2 + 3x − 1)∂ − (2x4 + 2x3 + x2 + 1).

The factor 2x + 1 is removable at order 1. For example, for A = ∂ − 1 we find that lclm(L, A)

equals

(2x3 + 4x2 + 4x − 1)∂3 − (2x6 − x4 − 4x3 − 3x2 + x + 5)∂2

− (2x9 + 4x8 + 6x7 + 4x6 + 2x5 + 3x4 + 2x3 + 3x2 + 3x − 2)∂

+ (2x9 + 4x8 + 6x7 + 6x6 + 2x5 + 2x4 − 4x3 − 4x2 + 4).

As expected, the leading coefficient does not contain σ(lc∂ (L)) = 2x2 + 1.
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