
Additive Decompositions in Primitive Extensions∗

Shaoshi Chen, Hao Du, and Ziming Li

KLMM, Academy of Mathematics and Systems Science, Chinese Academy of Sciences, Beijing 100190, China

School of Mathematical Sciences, University of Chinese Academy of Sciences, Beijing 100049, China

schen@amss.ac.cn,duhao@amss.ac.cn,zmli@mmrc.iss.ac.cn

ABSTRACT
This paper extends the classical Hermite-Ostrogradsky reduction

for rational functions to more general functions in primitive exten-

sions of certain types. For an element f in such an extension K ,
the extended reduction decomposes f as the sum of a derivative

in K and another element r such that f has an antiderivative in K
if and only if r = 0; and f has an elementary antiderivative over K
if and only if r is a linear combination of logarithmic derivatives

over the constants when K is a logarithmic extension. Moreover, r
is minimal in some sense. Additive decompositions may lead to

reduction-based creative-telescoping methods for nested logarith-

mic functions, which are not necessarily D-finite.
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1 INTRODUCTION
Symbolic integration, together with its discrete counterpart sym-

bolic summation, nowadays has played a crucial role in building the

infrastructure for applying computer algebra tools to solve prob-

lems in combinatorics and mathematical physics [17, 18, 30]. The

early history of symbolic integration starts from the first tries of

developing programs in LISP to evaluate integrals in freshman cal-

culus symbolically in the 1960s. Two representative packages at the

time were Slagle’s SAINT [31] and Moses’s SIN [22], which were

both based on integral transformation rules and pattern recogni-

tion. The algebraic approach for symbolic integration is initialized

by Ritt [28] in terms of differential algebra [16], which eventu-

ally leads to the Risch algorithm for the integration of elementary

functions [26, 27]. The efficiency of the Risch algorithm is further
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improved by Rothstein [29], Davenport [13], Trager [32], Bron-

stein [7, 8] etc. Some standard references on this topic are Bron-

stein’s book [9] and Raab’s survey [25] that gives an overview of

the Risch algorithm and its recent developments.

The central problem in symbolic integration is whether the in-

tegral of a given function can be written in “closed form”. Its alge-

braic formulation is given in terms of differential fields and their

extensions [9, 16]. A differential field F is a field together with a

derivation
′
that is an additive map on F satisfying the product

rule (f д)′ = f ′д + f д′ for all f ,д ∈ F . A given element f in F is

said to be integrable in F if f = д′ for some д ∈ F . The problem
of deciding whether a given element is integrable or not in F is

called the integrability problem in F . For example, if F is the field of

rational functions, then for f = 1/x2 we can find д = −1/x , while
for f = 1/x no suitable д exists in F . When f is not integrable in F ,
there are several other questions we may ask. One possibility is

to ask whether there is a pair (д, r ) in F × F such that f = д′ + r ,
where r is minimal in some sense and r = 0 if f is integrable.

This problem is called the decomposition problem in F . Extensive
work has been done to solve the integrability and decomposition

problems in differential fields of various kinds.

Abel and Liouville pioneered the early work on the integrabil-

ity problem in the 19th century [28]. In 1833, Liouville provided a

first decision procedure for solving the integrability problem on

algebraic functions [20]. For an overview of Liouville’s work on

integration in finite terms, we refer to Lützen’s book [21, pp. 351–

422]. For other classes of functions, complete algorithms for solving

the integrability problem are much more recent: 1) the Risch algo-

rithm [26, 27] in the case of elementary functions was presented in

1969; 2) the Almkvist–Zeilberger algorithm [2] (also known as the

differential Gosper algorithm) in the case of hyperexponential func-

tions was given in 1990; 3) Abramov and van Hoeij’s algorithm [1]

generalized the previous algorithm to the generalD-finite functions
of arbitrary order in 1997.

The decomposition problem was first considered by Ostrograd-

sky [23] in 1845 and later by Hermite [15] for rational functions.

The idea of Ostrogradsky and Hermite is crucial for algorithmic

treatments of the problem, since it avoids the root-finding of polyno-

mials and only uses the extended Euclidean algorithm and square-

free factorization to obtain the additive decomposition of a rational

function. This reduction is a basic tool for the integration of rational

functions and also plays an important role in the base case of our

work. We will refer to this reduction as the rational reduction in this

paper. The rational reduction has been extended to more general

classes of functions including algebraic functions [10, 32], hyperex-

ponential functions [4, 14], multivariate rational functions [5, 19],

and more recently including D-finite functions [6, 12, 33]. Blending
reductions with creative telescoping [2, 34] leads to the fourth and
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most recent generation of creative telescoping algorithms, which

are called reduction-based algorithms [3–5, 10, 12].

The telescoping problem can also be formulated for elementary

functions [11, 24]. Two related problems are how to decide the exis-

tence of telescopers for elementary functions and how to compute

one if telescopers exist. Reduction algorithms have been shown to

be crucial for solving these two problems. This naturally motivates

us to design reduction algorithms for elementary functions.

In this paper, we extend the rational reduction to elements in

straight and flat towers of primitive extensions (see Definition 3.5).

Our extended reductions solve the decomposition problems in such

towers without solving any Risch equations (Theorems 4.8 and 5.15),

and determine elementary integrability in such towers when primi-

tive extensions are logarithmic (Theorem 6.1).

The remainder of this paper is organized as follows. We present

basic notions and terminologies on differential fields, and collect

some useful facts about integrability in primitive extensions in

Section 2. We define the notions of straight and flat towers, and

describe some straightforward reduction processes in Section 3.

Additive decompositions in straight and flat towers are given in

Sections 4 and 5, respectively. The two decompositions are used to

determine elementary integrability in Section 6. Examples are given

in Section 7 to illustrate that the decompositions may be useful to

study the telescoping problem for elementary functions that are

not D-finite.

2 PRELIMINARIES
Let (F , ′) be a differential field of characteristic zero. An element c
of F is called a constant if c ′ = 0. LetCF denote the set of constants

in F , which is a subfield of F . Let (E, D) be a differential field con-

taining F . We say that E is a differential field extension of F if the

restriction of D on F is equal to the derivation
′
. The derivation D

is also denoted by
′
when there is no confusion.

Let (E, ′) be a differential field extension of F . For S ⊂ E, we
use S ′ to denote the set { f ′ | f ∈ S}. If S is a CE -linear subspace,
so is S ′. For a,b ∈ E, we write a ≡ b mod S if a − b ∈ S .

An element z of E is said to be primitive over F if z′ ∈ F . If z
is primitive and transcendental over F with CF (z) = CF , then it is

called a primitive monomial over F , which is a special instance of

Liouvillian monomials according to Definition 5.1.2 in [9].

Let z be a primitive monomial over F in the rest of this section.

For p ∈ F [z], the degree and leading coefficient of p are denoted

by degz (p) and lcz (p), respectively. By Theorem 5.1.1 in [9], p is

squarefree if and only if gcd(p,p′) = 1. Form ∈ N, F [z](m)
stands

for {p ∈ F [z] | degz (p) < m}.

An element f ∈ F (z) is said to be z-proper if the degree of its
numerator in z is lower than that of its denominator. In particular,

zero is z-proper. It is well-known that f can be uniquely written as

the sum of a z-proper element and a polynomial in z. They are called
the fractional and polynomial parts of f , and denoted by fpz (f )
and ppz (f ), respectively.

An element of F (z) is simple if its denominator is squarefree. By

Theorem 5.3.1 in [9], for f ∈ F (z), there exists a simple element h
of F (z) such that f ≡ h mod F (z)′+F [z]. It follows that f ≡ fpz (h)
mod F (z)′ + F [z], which allows us to focus on simple and z-proper
elements. So we say that an element of F (z) is z-simple if it is both

simple and z-proper. For f ∈ F (z), Algorithm HermiteReduce in [9,

page 139] computes a z-simple element д in F (z) such that f ≡ д
mod F (z)′ + F [z]. This algorithm is fundamental for our additive

decompositions in primitive extensions.

Lemma 2.1. Let д ∈ F (z)′ + F [z]. Then д = 0 if it is z-simple.

Proof. Suppose that д , 0. Since д is z-proper, there exists a
nontrivial irreducible polynomial p ∈ F [z] dividing the denomina-

tor of д. Since д ∈ F (z)′ + F [z], there exist a ∈ F (z) and b ∈ F [z]
such that д = a′+b . The order of д at p is equal to −1. But the order

of a′ at p is either nonnegative or less than −1 by Lemma 4.4.2 (i)

in [9], and the order of b at p is nonnegative, a contradiction.

Every element f ∈ F (z) is congruent to a unique z-simple ele-

ment д modulo F (z)′ + F [z] by Theorem 5.3.1 in [9] and Lemma 2.1.

We call д the Hermitian part of f with respect to z, denoted by

hpz (f ). The map hpz isCF -linear on F (z). Its kernel is F (z)′ + F [z].
Thus, two elements have the same Hermitian parts if they are con-

gruent modulo F (z)′ + F [z]. This fact is frequently used later.

Example 2.2. Let F = C(x) with x ′ = 1 and z = log(x). Then z is
a primitive monomial over F . By Theorem 5.1.1 in [9], CF (z) = CF .
Applying Algorithm HermiteReduce, we have

f :=
z3 + 2xz2 + z − x3 − 1

z2 + 2xz + x2
=

( x

z + x

) ′
−

x2

z + x
+ z.

Then f ≡ −x2/(z +x) mod F (z)′+ F [z] and hpz (f ) = −x2/(z +x).

Now, we collect some basic facts about primitive monomials.

They are either straightforward or scattered in [9]. We list them

below for the reader’s convenience.

Lemma 2.3. If p belongs to both F [z] and F (z)′, then there exists c
in CF such that lcz (p) ≡ cz′ mod F ′.

Proof. Assume p = r ′ for some r ∈ F (z). Then r ∈ F [z] by
Lemma 4.4.2.(i) in [9]. Set d = degz (p) and ℓ = lcz (p). Then

degz (r ) ≤ d+1 by Lemma 5.1.2 in [9]. Assume that r ≡ azd+1+bzd

mod F [z](d ) for some a,b ∈ F . Then

r ′ ≡ a′zd+1 + ((d + 1)az′ + b ′)zd mod F [z](d ).

Since p = r ′, we have that a′ = 0 and ℓ = (d + 1)az′ + b ′. It follows
that ℓ ≡ cz′ mod F ′ with c = (d + 1)a.

The next lemma will be used to decrease the degree of a poly-

nomial modulo F (z)′. Its proof is a straightforward application of

integration by parts.

Lemma 2.4. For all f ∈ F and d ∈ N, we have

f ′zd ≡ 0 mod F (z)′+F [z](d ).

Recall that an element f in F is said to be a logarithmic derivative
in F if f = a′/a for some nonzero element a ∈ F .

Lemma 2.5. Let f be a logarithmic derivative in F (z). Then hpz (f )
is a logarithmic derivative in F (z), and f = hpz (f ) + r , where r is a
logarithmic derivative in F .

Proof. If f = 0, then we choose r = 0, which equals 1
′/1.

Otherwise, there exist twomonic polynomialsu,v ∈ F [z] andw ∈ F
such that f = u ′/u − v ′/v +w ′/w by the logarithmic derivative
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identity on page 104 of [9]. Note that u ′/u − v ′/v is z-simple by

Lemma 5.1.2 in [9] and w ′/w is in F . Thus, hpz (f ) = u
′/u −v ′/v

and r = w ′/w .

3 PRIMITIVE EXTENSIONS
Let (K0,

′) be a differential field of characteristic zero. Set C = CK0
.

Consider a tower of differential fields

K0 ⊂ K1 ⊂ · · · ⊂ Kn , (3.1)

where Ki = Ki−1(ti ) for all i with 1 ≤ i ≤ n. The tower given

in (3.1) is said to be primitive over K0 if ti is a primitive monomial

over Ki−1 for all i with 1 ≤ i ≤ n. The notation introduced in (3.1)

will be used in the rest of the paper.

The assumption CKn = C has a useful consequence.

Lemma 3.1. Let the tower (3.1) be primitive.
(i) t ′

1
, . . . , t ′n are linearly independent over C ;

(ii) IfK0 = C(t0)with t ′
0
= 1 and t ′i ∈ K0 for some i with 1 ≤ i ≤ n,

then hpt0 (t
′
i ) is nonzero.

Proof. (i) If c1t
′
1
+ · · · + cnt

′
n = 0 for some c1, . . . , cn ∈ C ,

then c1t1 + · · · + cntn ∈ C , which implies that c1 = · · · = cn = 0,

because t1, . . . , tn are algebraically independent over K0.

(ii) By the rational reduction, t ′i = u ′ + v for some u,v ∈ K0

with v being t0-simple. Then v is nonzero. For otherwise, ti − u
would be a constant outside C .

The following lemma tells us a way to modify the leading co-

efficient of a polynomial in Kn−1[tn ] via integration by parts and

Algorithm HermiteReduce.

Lemma 3.2. Let the tower (3.1) be primitive with n ≥ 1. Then, for
all ℓ ∈ Kn−1 and d ∈ N, there exist a tn−1-simple element д ∈ Kn−1
and a polynomial h ∈ Kn−2[tn−1] such that

ℓtdn ≡ (д + h)tdn mod K ′
n + Kn−1[tn ]

(d ).

Proof. By Algorithm HermiteReduce, there are f ,д ∈ Kn−1
withд being tn−1-simple, andh ∈ Kn−2[tn−1] such that ℓ = f ′+д+h.

Then ℓtdn = f ′tdn + (д+h)t
d
n . Applying Lemma 2.4 to the term f ′tdn ,

we prove the lemma.

Let ≺ be the purely lexicographic ordering on the set of monomi-

als in t1, t2, . . . , tn with t1 ≺ t2 ≺ . . . ≺ tn . For i ∈ {0, 1, . . . ,n−1}
and p ∈ Ki [ti+1, . . . , tn ] with p , 0, the head monomial of p, de-
noted by hmi (p), is defined to be the highestmonomial in ti+1, . . . , tn
appearing in p with respect to ≺. The head coefficient of p, denoted
by hci (p), is defined to be the coefficient of hmi (p), which belongs

to Ki . The head coefficient of zero is set to be zero.

Example 3.3. Let ξ = t2
1
t2t3 + t2t3. Viewing ξ as an element

of K0[t1, t2, t3], we have hm0(ξ ) = t2
1
t2t3 and hc0(ξ ) = 1, while,

viewing ξ in K1[t2, t3], we have hm1(ξ ) = t2t3 and hc1(ξ ) = t2
1
+ 1.

The next lemma will be used in Section 5. We present it below

because it holds for primitive towers.

Lemma 3.4. Let n ≥ 1. For a polynomial p ∈ Kn−1[tn ], there are
polynomials pi ∈ Ki [ti+1, . . . , tn ] such that p ≡

∑n−1
i=0 pi mod K ′

n ,
and that hci (pi ) is ti -simple for all i with 1 ≤ i ≤ n − 1. Moreover,
degtn (pi ) ≤ degtn (p) for all i with 0 ≤ i ≤ n − 1.

Proof. We proceed by induction on n. If n = 1, then it suffices

to set p0 = p. Assume that n > 1 and that the lemma holds for n − 1.

Let p ∈ Kn−1[tn ] and d = degtn (p). By Lemma 3.2,

p ≡ (д + h)tdn mod K ′
n + Kn−1[tn ]

(d ),

where д ∈ Kn−1 is tn−1-simple and h ∈ Kn−2[tn−1]. By the in-

duction hypothesis, there exist hj ∈ Kj [tj+1, . . . , tn−1] such that

h =
∑n−2
j=0 hj + u

′
for some u in Kn−1 and that hcj (hj ) is tj -simple

for all j with 1 ≤ j ≤ n − 2. Moreover, set hn−1 = д. By Lemma 2.4,

p ≡

n−1∑
j=0

hj t
d
n mod K ′

n + Kn−1[tn ]
(d ). (3.2)

We need to argue inductively on d . If d = 0, then it is sufficient

to set pj = hj for all j with 0 ≤ j ≤ n − 1, as Kn−1[tn ]
(0) = {0}.

Assume that d > 0 and that the lemma holds for all polynomials

in Kn−1[tn ]
(d )

. By (3.2) and the induction hypothesis on d , we have

p ≡

n−1∑
j=0

hj t
d
n +

n−1∑
j=0

p̃j mod K ′
n ,

where p̃j is in Kj [tj+1, . . . , tn ], hcj (p̃j ) is tj -simple when j ≥ 1, and

degtn (p̃j ) < d . Set pj = hj t
d
n + p̃j . Then p ≡

∑n−1
j=0 pj mod K ′

n .

Since hcj (pj ) is hcj (hj ) if hj , 0 and hcj (pj ) is hcj (p̃j ) if hj = 0, the

requirements on each hcj (pj )with j ≥ 1 are fulfilled. The induction

on d is completed, and so is the induction on n.

Definition 3.5. Let the tower (3.1) be primitive. Then it is said to
be straight if hpti−1 (t

′
i ) , 0 for all i with 2 ≤ i ≤ n. The tower is said

to be flat if t ′i ∈ K0 for all i with 1 ≤ i ≤ n.

Example 3.6. Let K0 = C(x) with x ′ = 1. Let

log(x) =

∫
x−1dx and Li(x) =

∫
log(x)−1dx .

Then the tower K0 ⊂ K0(log(x)) ⊂ K0(log(x), Li(x)) is straight,
while the tower K0 ⊂ K0(log(x)) ⊂ K0(log(x), log(x + 1)) is flat.
They contain no new constants by Lemma 5.1.1 in [9].

In this paper, we consider additive decompositions for elements

in either straight or flat towers, where K0 = C(t0) with t ′
0
= 1.

4 STRAIGHT TOWERS
In this section, we assume that the tower (3.1) is straight and

that K0 = C(t0) with t ′
0
= 1. The subfield C of constants is de-

noted by K−1 in recursive definitions and induction proofs to be

carried out.

Our idea is to reduce a polynomial in Kn−1[tn ] to another one of
lower degree via integration by parts, whenever it is possible. The

notion of tn -rigid elements describes r ∈ Kn−1 such that rt
d
n cannot

be congruent to a polynomial of degree lower than d modulo K ′
n .

Definition 4.1. An element r ∈ K−1 is said to be t0-rigid if r = 0.
Let r ∈ Kn−1, f = fptn−1 (r ) and p = pptn−1 (r ). We say that r is
tn-rigid if f is tn−1-simple, f , c hptn−1 (t

′
n ) for any nonzero c ∈ C ,

and lctn−1 (p) is tn−1-rigid.

Zero is tn -rigid because hptn−1 (t
′
n ) is nonzero. Furthermore, let r

be tn−1-simple. Then rtdn cannot be congruent to a polynomial of a

lower degree if and only if r is tn-rigid by Lemma 2.3.
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Example 4.2. Let t0 = x , t1 = log(x) and t2 = Li(x). Let

ℓ1 =
1

x + k1
and ℓ2 =

1

t1 + k2
+ ℓ1t

2

1
+ xt1 + x

2.

Then ℓ1 is t1-rigid if k1 , 0 and ℓ2 is t2-rigid if k1k2 , 0.

The next lemma, together with Lemma 2.3, reveals that a nonzero

polynomial p in Kn−1[tn ] with a tn -rigid leading coefficient has no

antiderivative in Kn .

Lemma 4.3. Let r ∈ Kn−1 be tn -rigid. If

r ≡ ct ′n mod K ′
n−1 (4.1)

for some c ∈ C , then both r and c are zero.

Proof. We proceed by induction on n. If n = 0, then r = 0

by Definition 4.1. Thus, ct ′
0
≡ 0 mod K ′

−1
. Consequently, c = 0

because K ′
−1
= {0} and t ′

0
= 1.

Assume that n > 0 and that the lemma holds for n − 1.

Set f = fptn−1 (r ). Then f = hptn−1 (r ), since f is tn−1-simple

by Definition 4.1. Applying the map hptn−1 to (4.1), we have f =
c hptn−1 (t

′
n ) by Lemma 2.1. Hence, c = 0 and f = 0 by Definition 4.1.

Set p = pptn−1 (r ). Then (4.1) becomes p ≡ 0 mod K ′
n−1, which,

together with Lemma 2.3, implies that lctn−1 (p) ≡ c̃t ′n−1 mod K ′
n−2

for some c̃ ∈ C . It follows from the induction hypothesis that

lctn−1 (p) is zero, and so is p. Thus, r is zero.

In Kn−1[tn ], we define a class of polynomials that have no an-

tiderivatives in Kn .

Definition 4.4. For n ≥ 0, a polynomial in Kn−1[tn ] is said to
be tn-straight if its leading coefficient is tn -rigid.

Zero is a tn-straight polynomial, because its leading coefficient

is zero, which is tn-rigid.

Proposition 4.5. Let p ∈ Kn−1[tn ] be a tn-straight polynomial.
Then p = 0 if p ∈ K ′

n .

Proof. By Lemma 2.3, lctn (p) ≡ ct ′n mod K ′
n−1 for some c ∈ C .

Then lctn (p) = 0 by Lemma 4.3. Consequently, p = 0.

Next, we reduce a polynomial to a tn-straight one.

Lemma 4.6. Forp ∈ Kn−1[tn ], there exists a tn -straight polynomial
q ∈ Kn−1[tn ] with degtn (q) ≤ degtn (p) such that p ≡ q mod K ′

n .

Proof. If p = 0, then we choose q = 0. Assume that p is nonzero.

We proceed by induction on n.
If n = 0, then p ≡ 0 mod K ′

0
, as every element of K−1[t0] has

an antiderivative in the same ring.

Assume that n > 0 and that the lemma holds for n − 1.

Let p ∈ Kn−1[tn ] with degree d and leading coefficient ℓ. We are

going to concoct a tn-rigid element r such that

ℓ ≡ r mod K ′
n . (4.2)

This congruence helps us decrease degrees.

ByAlgorithm HermiteReduce, there are tn−1-simple elementsд,u
in Kn−1 and polynomials h,v in Kn−2[tn−1] such that

ℓ ≡ д + h mod K ′
n−1 and t ′n ≡ u +v mod K ′

n−1.

By the induction hypothesis, for any c ∈ C , h−cv ≡ ˜hc mod K ′
n−1,

where
˜hc is a tn−1-straight polynomial in Kn−2[tn−1]. It follows

that ℓ ≡ д−cu + ˜hc mod K ′
n . If there exists c̃ ∈ C such that д = c̃u,

then let r = ˜hc̃ . Otherwise, let c = 0 and r = д + ˜h0. Then r ∈ Kn−1
is tn-rigid and (4.2) holds.

If d = 0, then p = ℓ. By (4.2), we have p ≡ r mod K ′
n . Let q = r ,

which is tn-straight by Definition 4.4.

Assume that d > 0 and each polynomial in Kn−1[tn ]
(d )

is con-

gruent to a tn -straight polynomial modulo K ′
n . It follows from (4.2)

and Lemma 2.3 that ℓ ≡ r + ct ′n mod K ′
n−1. By Lemma 2.4 and the

equality ct ′nt
d
n =

(
c

d+1 t
d+1
n

) ′
, we have p ≡ rtdn + q̃ mod K ′

n for

some q̃ ∈ Kn−1[tn ]
(d )

. If r , 0, then set q = rtdn + q̃. Otherwise,
applying the induction hypothesis on d to q̃ yields a tn-straight
polynomial q with p ≡ q mod K ′

n . The above reduction clearly

implies that degtn (q) < degtn (p).

Example 4.7. Let us consider
∫
log(x) Li(x)2 dx . Set t1 = log(x)

and t2 = Li(x). Then we reduce the integrand t1t
2

2
. We have that

lct2 (t1t
2

2
) = t1. Since t1 is not t2-rigid, t1t2

2
can be reduced. In fact,

t1t
2

2
= x ′t1t

2

2
. By Lemma 2.4 and a straightforward calculation, we

get that t1t2
2
≡ (2x/t1)t2 + (x

2/t1) mod C(x , t1, t2)
′. Since 2x/t1 is

t2-rigid, we have (2x/t1)t2 + (x2/t1) is t2-straight. Hence, t1t2
2
has no

antiderivative in C(x , t1, t2) by Proposition 4.5.

Below is an additive decomposition in a straight tower.

Theorem 4.8. For f ∈ Kn , the following assertions hold.
(i) There exist a tn-simple element д ∈ Kn and a tn-straight

polynomial p ∈ Kn−1[tn ] such that

f ≡ д + p mod K ′
n . (4.3)

(ii) f ∈ K ′
n if and only if both д and p in (4.3) are zero.

(iii) If f ≡ д̃ + p̃ mod K ′
n , where д̃ ∈ Kn is a tn-simple element

and p̃ ∈ Kn−1[tn ], then д = д̃ and degtn (p) ≤ degtn (p̃).

Proof. (i) By Algorithm HermiteReduce, there exist a tn -simple

element д ∈ Kn and a polynomial h ∈ Kn−1[tn ] such that

f ≡ д + h mod K ′
n .

By Lemma 4.6, h can be replaced by a tn-straight polynomial p.
(ii) Since f ∈ K ′

n , the congruence (4.3) becomes д + p ≡ 0

mod K ′
n . Applying the map hptn to the new congruence, we have

that д = 0, because д = hptn (д + p). Thus, p = 0 by Proposition 4.5.

(iii) Since д − д̃ ≡ p̃ − p mod K ′
n , we have д = д̃ by Lemma 2.1.

If degtn (p̃) < degtn (p), then p − p̃ is tn -straight, because lctn (p − p̃)

equals lctn (p). So p − p̃ = 0 by Proposition 4.5, a contradiction.

Example 4.9. Consider the integral∫
1

Li(x)2
+ log(x) Li(x)2 dx .

The integrand is equal to (− log(x)/Li(x))′+1/(x Li(x))+log(x) Li(x)2

by Algorithm HermiteReduce. Therefore, it has no antiderivative
in C(x , log(x), Li(x)) by Theorem 4.8 and Example 4.7.

5 FLAT TOWERS
In this section, we let the tower (3.1) be flat. The ground field K0

will be specialized to C(t0) later in this section. We are not able to

fully carry out the same idea as in Section 4, because hpti−1 (t
′
i ) = 0
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for all i = 2, . . . ,n. This spoils Lemma 4.3 and Proposition 4.5. So

we need to study integrability in a flat tower differently.

This section is divided into two parts. First, we extend Lemma 2.4

to the differential ring K0[t1, . . . , tn ]. Second, we present a flat

counterpart of the results in Section 4.

5.1 Scales
Let us denote K0[t1, . . . , tn ] by Rn . For a monomial ξ in t1, . . . , tn ,

the C-linear subspace {p ∈ Rn | p ≺ ξ } is denoted by R
(ξ )
n . The

notion of scales is motivated by the following example.

Example 5.1. Let n = 2, and ξ0 = 1, ξ1 = t1 and ξ2 = t2. And let
ℓ = t ′

1
+ t ′

2
. Using integration by parts, we find three congruences

ℓξ0 ≡ 0 mod K ′
2
, ℓξ1 ≡ −t ′

1
t2 mod K ′

2
, ℓξ2 ≡ −t ′

2
t1 mod K ′

2
.

The first and third congruences lead to monomials lower than ξ0
and ξ2, respectively. But the second one leads to t2, which is higher
than ξ1. The notion of scales aims to prevent the second congruence
from the reduction to be carried out.

Definition 5.2. For p ∈ Rn \ K0 with hm0(p) = te1
1

· · · tenn , the
scale of p with respect to n is defined to be s if e1 = 0, . . . , es−1 = 0

and es > 0. For p ∈ K0, the scale of p with respect to n is defined to
be n. The scale of p with respect to n is denoted by scalen (p).

Example 5.3. Let ξ0 = 1, ξ1 = t1t2 and ξ2 = t2
3
. Regarding ξ0, ξ1

and ξ2 as elements in R3, we have that scale3(ξ0) = 3, scale3(ξ1) = 1

and scale3(ξ2) = 3; while, regarding them as elements in R4, we have
that scale4(ξ0) = 4, scale4(ξ1) = 1 and scale4(ξ2) = 3.

Notably, if p ∈ K0, then scalen (p) = n, which varies as n does. On

the other hand, scalen (p) = scalem (p) if p ∈ Rm \ K0 withm ≤ n.
The next lemma extends Lemma 2.4 and indicates what kind of

integration by parts will be used for reduction.

Lemma 5.4. Let ξ be a monomial in t1, . . . , tn . Then the following
assertions hold.

(i) For all f ∈ K0, f ′ξ ≡ 0 mod K ′
n + R

(ξ )
n .

(ii) Let s = scalen (ξ ). Then, for all c1, . . . , cs ∈ C ,

(c1t
′
1
+ · · · + cs t

′
s )ξ ≡ 0 mod K ′

n + R
(ξ )
n .

Proof. (i) It follows from integration by parts and the fact that ξ ′

belongs to R
(ξ )
n .

(ii) Set L0 = 0 and Li =
∑i
j=1 c j tj for i = 1, . . . , n.

If ξ = 1, then s = n and L′nξ ∈ K ′
n . The assertion clearly holds.

Assume that ξ = tess · · · tenn with es > 0. Then L′s ξ = L′s−1ξ +cs t
′
s ξ .

Note that L′s−1ξ belongs toK
′
n+R

(ξ )
n by a direct use of integration by

parts. Set η = ξ/tess . Then the term cs t
′
s ξ is equal to

cs
es+1

(
tes+1s

) ′
η.

Integration by parts leads to

cs t
′
s ξ ≡

−cs
es + 1

tes+1s η′ mod K ′
n . (5.1)

If η = 1, then cs t
′
s ξ ∈ K ′

n by (5.1). Otherwise, we have ej > 0

for some j with s < j ≤ n. Then each monomial in tes+1s η′ is of

total degree

∑n
j=s ej and is of degree es + 1 in ts . So t

es+1
s η′ ≺ ξ .

Consequently, cs t
′
s ξ ∈ K ′

n + R
(ξ )
n by (5.1).

In the rest of this section, we let K0 = C(t0) with t ′
0
= 1. By

Lemma 3.1 (ii), we may further assume that t ′i is nonzero and t0-
simple for all i with 1 ≤ i ≤ n.

Definition 5.5. For every k with 1 ≤ k ≤ n, an element of K0 is
said to be k-rigid if either it is zero or it is t0-simple and not aC-linear
combination of t ′

1
, . . . , t ′k .

Proposition 5.6. For p ∈ Rn , there exists q ∈ Rn such that p ≡ q
mod K ′

n and that hc0(q) is s-rigid, where s = scalen (q). Moreover,
we have hm0(q) ⪯ hm0(p).

Proof. Set q = 0 if p = 0. Assume p , 0 and ξ = hm0(p). By
the rational reduction, hc0(p) = f ′ + д for some f ,д ∈ K0 with д

being t0-simple. Then p = f ′ξ + дξ mod R
(ξ )
n . By Lemma 5.4 (i),

p ≡ дξ + r mod K ′
n for some r ∈ R

(ξ )
n . Set s = scalen (ξ ). If д is

nonzero and s-rigid, then set q = дξ + r . Otherwise, p ≡ r̃ mod K ′
n

for some r̃ ∈ R
(ξ )
n by Lemma 5.4 (ii). The proposition follows from

a direct Noetherian induction on hm0(r̃ ) with respect to ≺.

Example 5.7. Let K0 = C(x), t1 = log(x), t2 = log(x + 1) and

p = t2
1
t2 + (2/x)t1t2 + ((2/(x + 1))t1.

Then hc0(p) = 1, which is not 1-rigid. Since t2
1
t2 = x ′t2

1
t2, we have

that p =
(
xt2

1
t2

) ′
+ q, where q =

(
2

x − 2

)
t1t2 −

x
x+1 t

2

1
+ 2

x+1 t1.We
can then reduce q further, because hc0(q) = (2t1 − 2x)′, which is not
1-rigid either. Repeating this reduction a finite number of times, we
see that

∫
p dx = (x + 1)t2

1
t2 − 2xt1t2 − xt2

1
+ (2x + 2)t2 + 4xt1 − 6x .

5.2 Reduction
A flat analogue of straight polynomials is given below.

Definition 5.8. A polynomial in C[t0] is said to be t0-flat if it
is zero. For n ≥ 1, p ∈ Kn−1[tn ] is called a tn-flat polynomial if
there exist pi ∈ Ki [ti+1, . . . , tn ] for all i with 0 ≤ i ≤ n − 1 such
that p =

∑n−1
i=0 pi , hci (pi ) is ti -simple for all i ≥ 1, and hc0(p0) is

s-rigid, where s = scalen (p0). The sequence {pi }i=0,1, ...,n−1 is called
a sequence associated to p.

Example 5.9. Let n = 3 and t0 = x , t1 = log(x), t2 = log(x + 1)
and t3 = log(x + 2). Consider p ∈ K2[t3]

p =
1

t2
t2
3︸︷︷︸

p2

+
1

t1
t2t3︸︷︷︸
p1

+
1

x + k
t3
3
+ xt2t3︸             ︷︷             ︸

p0

,

where k ∈ Z. Obviously, hc2(p2) is t2-simple and hc1(p1) is t1-simple.
Moreover, scale3(p0) = 3 and hc0(p0) is 3-rigid if k < {0, 1, 2}. So p
is t3-flat if k < {0, 1, 2}.

We are going to extend the results in Section 4 to the flat case,

based on the following technical lemma.

Lemma 5.10. Let n ≥ 1 and p be a tn -flat polynomial in Kn−1[tn ]
withd = degtn (p) and ℓ = lctn (p). Let {pi }i=0,1, ...,n−1 be a sequence
associated to p, and ℓi be the coefficient of tdn in pi . Then

(i) fptn−1 (ℓ) is tn−1-simple.
(ii) If ℓm , 0 for somem > 0, then ℓ < Km−1[tm , tm+1, . . . , tn−1].
(iii) If n > 1, then pptn−1 (ℓ) − ct ′n is tn−1-flat for all c ∈ C .
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Proof. The lemma is trivial if p = 0. Assume that p is nonzero.

Then ℓ =
∑n−1
i=0 ℓi , fptn−1 (ℓ) = ℓn−1 and pptn−1 (ℓ) =

∑n−2
i=0 ℓi .

(i) Note that ℓi = 0 if degtn (pi ) < d , and hci (ℓi ) = hci (pi )
otherwise, because ≺ is a purely lexicographic with ti+1 ≺ · · · ≺ tn .
Then fptn−1 (ℓ) is tn−1-simple by Definition 5.8.

(ii) Without loss of generality, assume that ℓn−1= · · ·=ℓm+1=0

and ℓm , 0 for somem > 0. Then we have fm := hcm (pm ) , 0. By

Definition 5.8, fm is tm-simple. So fm is not in Km−1[tm ], which

implies ℓm < Km−1[tm , . . . , tn−1]. Since ℓi ∈ Km−1[tm , . . . , tn−1]
for all i with 0 ≤ i ≤ m − 1, we see that ℓ = ℓm +

∑m−1
i=0 ℓi does not

belong to Km−1[tm , . . . , tn−1] either.
(iii) Assume that n > 1. Then

pptn−1 (ℓ) − ct ′n = ℓn−2 + · · · + ℓ1 + ˜ℓ0, (5.2)

where
˜ℓ0 = ℓ0 − ct ′n and hci (ℓi ) is ti -simple, i = 1, . . . ,n − 2.

Set s = scalen (p0) and s̃ = scalen−1( ˜ℓ0). It suffices to prove that

hc0( ˜ℓ0) is s̃-rigid by (5.2) and Definition 5.8.

Case 1. ℓ0 < K0. Then s < n.

hm0(p0) = tess · · · ten−1n−1 t
d
n and hm0(ℓ0) = tess · · · ten−1n−1 ,

where es > 0. Moreover, s = scalen−1(ℓ0), hm0(ℓ0) = hm0( ˜ℓ0)

and hc0(p0) = hc0(ℓ0) = hc0( ˜ℓ0). In particular, s̃ = s . Hence, hc0( ˜ℓ0)
is s̃-rigid, because hc0(p0) is s-rigid.

Case 2. ℓ0 ∈ K0 with ℓ0 , 0. Then hm0(p0) = tdn and s = n. More-

over, s̃ = n − 1, since
˜ℓ0 ∈ K0. Note that p is tn-flat. So hc0(p0) is

not a C-linear combination of {t ′
1
, . . . , t ′n−1, t

′
n }, and neither is ℓ0

because ℓ0 = hc0(p0). Consequently, ˜ℓ0 is not a C-linear combina-

tion of {t ′
1
, . . . , t ′n−1}, and neither is hc0( ˜ℓ0), because hc0( ˜ℓ0) = ˜ℓ0.

Thus, hc0( ˜ℓ0) is (n − 1)-rigid.

Case 3. ℓ0 = 0. Then s̃ = n − 1 and hc0( ˜ℓ0) = ˜ℓ0 = −ct ′n , which
is s̃-rigid by Lemma 3.1 (i).

The next lemma is a flat-analogue of Lemma 4.3

Lemma 5.11. Let n ≥ 1 and p ∈ Kn−1[tn ] be tn -flat. If

lctn (p) ≡ ct ′n mod K ′
n−1 (5.3)

for some c ∈ C , then both p and c are zero.

Proof. If n = 1, then the tower K0 ⊂ K1 is also straight, and p
is t1-straight by Definition 4.4 and Lemma 3.1 (ii). Both p and c are
zero by Lemma 4.3.

Assume n > 1 and the lemma holds for n − 1. Set ℓ = lctn (p).
Applying the map hptn−1 to (5.3), we have hptn−1 (ℓ) = 0. Then

fptn−1 (ℓ) = 0 by Lemma 5.10 (i) and Lemma 2.1. Consequently,

we have ℓ ∈ Kn−2[tn−1]. Let q = ℓ − ct ′n . Then q is tn−1-flat by
Lemma 5.10 (iii). On the other hand, q ∈ K ′

n−1 by (5.3). Then

lctn−1 (q) ≡ c̃t ′n−1 mod K ′
n−2 for some c̃ ∈ C by Lemma 2.3. Soq = 0

by the induction hypothesis. Accordingly,

ℓ = ct ′n ∈ K0. (5.4)

Let {pi }i=0,1, ...,n−1 be a sequence associated to p. Let d = degtn (p)

and ℓ0 be the coefficient of tdn in p0. By (5.4) and Lemma 5.10 (ii), we

have ℓ = ℓ0. Then ℓ0 ∈ K0, which implies that hm0(p0) = tdn . There-
fore, scalen (p0) = n. Accordingly, ct

′
n is n-rigid by Definition 5.8. It

follows form Definition 5.5 that c = 0. By (5.4), we conclude that ℓ

is zero, and so is p.

The following proposition corresponds to Proposition 4.5.

Proposition 5.12. Let n ≥ 1 and p be a tn-flat polynomial
in Kn−1[tn ]. If p ∈ K ′

n , then p = 0.

Proof. Since p ∈ K ′
n , we have lctn (p) ≡ ct ′n mod K ′

n−1 for

some c ∈ C by Lemma 2.3. Then p = 0 by Lemma 5.11.

The next lemma corresponds to Lemma 4.6.

Lemma 5.13. For p ∈ Kn−1[tn ], there exists a tn-flat polynomial
q ∈ Kn−1[tn ] such that p ≡ q mod K ′

n . Moreover, degtn (q) is no
more than degtn (p).

Proof. By Lemma 3.4, there exist pi ∈ Ki [ti+1, . . . , tn ] for all i
with 0 ≤ i ≤ n − 1 such that p ≡

∑n−1
i=0 pi mod K ′

n . More-

over, hci (pi ) ∈ Ki is ti -simple for all i ≥ 1, and degtn (pi ) ≤

degtn (p) for all i ≥ 0. By Proposition 5.6, there exists an ele-

ment r ∈ Rn such that p0 ≡ r mod K ′
n and that hc0(r ) is s-rigid,

where s equals scalen (r ). Furthermore, hm0(r ) ⪯ hm0(p0) implies

that degtn (r ) ≤ degtn (p0). Set q to be

∑n−1
i=1 pi + r . Then q is tn -flat,

p ≡ q mod K ′
n , and degtn (q) ≤ degtn (p).

Example 5.14. Let p be given in Example 5.9, where we set k = 1.
By integration by parts, we have

p ≡ p2 + p1 + −3t
′
3
t2t

2

3
+ xt2t3︸              ︷︷              ︸

q0

mod K ′
3
.

Then scale3(q0) = 2 and hc0(q0) = −3t ′
3
= −3/(x + 2), which is

2-rigid. Hence, p2 + p1 + q0 is t3-flat.

We are ready to present the main result of this section.

Theorem 5.15. For f ∈ Kn , the following assertions hold.

(i) There exist a tn-simple element д ∈ Kn and a tn-flat polyno-
mial p ∈ Kn−1[tn ] such that

f ≡ д + p mod K ′
n . (5.5)

(ii) f ≡ 0 mod K ′
n if and only if both д and p are zero.

(iii) If f ≡ д̃ + p̃ mod K ′
n , where д̃ ∈ Kn is tn-simple and p̃ ∈

Kn−1[tn ], then д = д̃ and degtn (p) ≤ degtn (p̃).

Proof. (i) Applying Algorithm HermiteReduce to f with re-

spect to tn , we get a tn-simple element д of Kn and an element h
of Kn−1[tn ] such that f ≡ д + h mod K ′

n .We can replace h with a

tn-flat polynomial p by Lemma 5.13.

(ii) Assume f ∈ K ′
n . Then (5.5) becomes д + p ≡ 0 mod K ′

n .

Applying the map hptn to the above congruence yields д = 0

by Lemma 2.1. Thus, p ≡ 0 mod K ′
n . Consequently, p = 0 by

Proposition 5.12.

(iii) Since (д − д̃) + (p − p̃) ≡ 0 mod K ′
n and д − д̃ is tn-simple,

we have д = д̃ by Lemma 2.1. So p − p̃ ≡ 0 mod K ′
n . By Lemma 2.3,

we have lctn (p − p̃) ≡ ct ′n mod K ′
n−1 for some c ∈ C . If degtn (p̃) is

smaller than degtn (p), then lctn (p) = lctn (p − p̃) ≡ ct ′n mod K ′
n−1.

By Lemma 5.11, we conclude p = 0, a contradiction.
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6 ELEMENTARY INTEGRABILITY
Let (F , ′) be a differential field. An element f ∈ F is said to be ele-
mentarily integrable over F if there exist an elementary extension E
of F and an element д of E such that f = д′ [9, Definition 5.1.4].

We study elementary integrability of elements in Kn given in (3.1)

built up by a straight or flat tower using Theorems 4.8 and 5.15.

Denote by Li the C-linear subspace spanned by the logarithmic

derivatives in Ki for all i with 0 ≤ i ≤ n.

Theorem 6.1. Let the tower given in (3.1) be either straight or flat,
in which C is algebraically closed, K0 = C(t0), t ′

0
= 1 and t ′i belongs

to Li−1 for all i with 1 ≤ i ≤ n. Assume that, for f ∈ Kn ,

f ≡ д + p mod K ′
n , (6.1)

where д ∈ Kn is tn-simple and p ∈ Kn−1[tn ] is either tn-straight
if (3.1) is straight or tn-flat if (3.1) is flat. Then f is elementarily
integrable over Kn if and only if д + p ∈ Ln

Proof. Clearly, f is elementarily integrable overKn ifд+p ∈ Ln .
Conversely, there exists r ∈ Ln such that f ≡ r mod K ′

n by

Liouville’s theorem [9, Theorem 5.5.1]. By (6.1),

д + p ≡ r mod K ′
n , (6.2)

Since hptn is C-linear, r = hptn (r ) + r̃ for some r̃ ∈ Ln−1 by

Lemma 2.5. On the other hand, hptn (д + p) = д, as д is tn-simple.

So д = hptn (r ) by (6.2) and Lemma 2.1. Hence, д ∈ Ln and

p ≡ r̃ mod K ′
n . (6.3)

Let d = degtn (p) and ℓ = lctn (p). If d > 0, then ℓ = lctn (p − r̃ ),
which, together with (6.3) and Lemma 2.3, implies that ℓ ≡ ct ′n
mod K ′

n−1 for some c ∈ C . Thus ℓ = 0 by Lemma 4.3 in the straight

case and by Lemma 5.11 in the flat case, a contradiction. So d = 0,

and, consequently, ℓ = p.
We show that (6.2) implies д + p ∈ Ln by induction. If n = 0,

then p is zero. The assertion holds. Assume that the assertion holds

for n−1. By the equality ℓ = p, the congruence (6.3) and Lemma 2.3,

ℓ ≡ r̃ + ct ′n mod K ′
n−1 for some c in C . It follows that

fptn−1 (ℓ) + pptn−1 (ℓ) ≡ r̃ + ct ′n mod K ′
n−1 (6.4)

Note that fptn−1 (ℓ) is tn−1-simple, and that pptn−1 (ℓ) is tn−1-straight
(resp. flat) by Definition 4.4 (resp. Lemma 5.10). Moreover, r̃ + ct ′n
belongs to Ln−1. By (6.4) and the induction hypothesis, we see

that ℓ belongs to Ln−1, and so does p. Accordingly, д + p ∈ Ln .

To determine whether an element r of Kn belongs to Ln , we
proceed as follows. First, we verify whether fptn (r ) is tn-simple

and pptn (r ) belongs to Kn−1. If so, we check whether the residues

of fptn (r ) with respect to tn are constants by the Rothstein–Trager

resultants (see Theorem 4.4.3 in [9]). Then we repeat the above

steps with pptn (r ) recursively.

Example 6.2. Let K0, t1 and t2 be given in Example 5.7. We com-
pute an additive decomposition for

f =
1

xt1
+

1

xt2 + t2
+ t2

1
t2 +

2

x
t1t2 +

2

x + 1
t1 +

1

x + 2
.

By Theorem 5.15 and Example 5.7, we have

f = a′ +
1

xt2 + t2︸   ︷︷   ︸
д

+
1

xt1
+

1

x + 2︸         ︷︷         ︸
p

,

where a = (x + 1)t2
1
t2 − 2xt1t2 − xt2

1
+ (2x + 2)t2 + 4xt1 − 6x . As the

Rothstein–Trager resultant of each fraction in д +p has only constant
roots, д+p is aC-linear combination of logarithmic derivatives in K2.
So f is elementarily integrable over K2 by Theorem 6.1. Indeed,∫

f dx = a + log(t2) + log(t1) + log(x + 2).

7 TELESCOPERS FOR ELEMENTARY
FUNCTIONS

The problem of creative telescoping is classically formulated for D-
finite functions in terms of linear differential operators [2, 34]. Raab

in his thesis [24] has studied the telescoping problem viewed as a

special case of the parametric integration problem in differential

fields. However, there are no theoretical results concerning the ex-

istence of telescopers for elementary functions. To be more precise,

let F be a differential field with two derivations Dx and Dy that

commute with each other and let F∂ be the set { f ∈ F | ∂(f ) = 0}

for ∂ ∈ {Dx ,Dy }. For a given element f ∈ F , the telescoping prob-

lem asks whether there exists a nonzero linear differential operator

L =
∑d
i=0 ℓiD

i
x with ℓi ∈ FDy such that L(f ) = Dy (д) for some д in

a specific differential extension E of F . We call L a telescoper for f
and д the corresponding certificate for L in E. Usually, we take E to

be the field F itself or an elementary extension of F . In contrast toD-
finite functions, telescopers may not exist for elementary functions

as shown in the following example.

Example 7.1. Let F = C(x ,y) and E = F (t1, t2) be a differential
field extension of F with t1 = log(x2 + y2) and t2 = log(1 + t1).We
first show that f = 1/t1 ∈ F (t1) has no telescoper with certificate in
any elementary extension of F (t1). Since t1 is a primitive monomial
over F , we have F (t1)Dy = C(x). We claim that for any i ∈ N, Di

x (f )

can be decomposed as Di
x (f ) = Dy (дi ) + ai/t1, where дi ∈ F (t1),

and ai ∈ F satisfies the recurrence relation

ai+1 = Dx (ai ) − Dy (xai/y) with a0 = 1.

For n = 0, the claim holds by taking д0 = 0. Assume that the claim
holds for all i < k . Applying the induction hypothesis and Algorithm
HermiteReduce to Dk

x (f ) yields

Dk
x (f ) = Dx (D

k−1
x (f )) = Dx

(
Dy (дk−1) +

ak−1
t1

)
=Dy

(
Dx (дk−1) +

ak−1x

yt1

)
+
Dx (ak−1)−Dy (

xak−1
y )

t1
.

This completes the induction. A straightforward calculation shows
that ai = Ai/y

2i for some Ai ∈ C[x ,y] \ {0} with degy (Ai ) < 2i .
Using the notion of residues in [9, page 118], we have

residuet1

(
ai
t1

)
=

ai
Dy (t1)

=
(x2 + y2)Ai

2y2i+1
,

which is not in C(x). Then Di
x (f ) is not elementarily integrable

over F (t1) for any i ∈ N by the residues criterion in [9, Theorem
5.6.1]. Assume that f has a telescoper L :=

∑d
i=0 ℓiD

i
x with ℓi ∈ C(x)

not all zero. Then L(f ) is elementarily integrable over F (t1). However,

L(f ) = Dy

( d∑
i=0
ℓiдi

)
+

∑d
i=0 ℓiai

t1
.
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Since all of the ℓi ’s are in C(x) and gcd(x2 + y2,ym ) = 1 for any
m ∈ N, the residue of

∑d
i=0 ℓiai/t1 is not in C(x), which implies

that L(f ) is not elementarily integrable over F (t1), a contradiction.
We now show that p = f t2 has no telescoper with certificate in any

elementary extension of F (t1, t2). Since t2 is also a primitive monomial
over F (t1), we have EDy = C(x). Assume that L :=

∑d
i=0 ℓiD

i
x with

ℓi ∈ C(x) not all zero is a telescoper for p. Then L(p) is elementarily
integrable over E. By a direct calculation, we get L(p) = L(f )t2+r with
r ∈ F (t1). The elementary integrability of L(p) implies that L(f ) =
cDy (t2)+Dy (b) for some c ∈ C(x) andb ∈ F (t1) by the formula (5.13)
in the proof of Theorem 5.8.1 in [9, page 157]. We claim that c = 0.
Since Di

x (f ) = ui/t
i+1
1

with ui ∈ F [t1] and degt1 (ui ) < i + 1 and
Dy (t2) = Dy (t1)/(1 + t1), the orders of Di

x (f ) and Dy (t2) at 1 + t1
are equal to 0 and 1, respectively. If c is nonzero, the order of cDy (t2)
at 1+ t1 is equal to 1, which does not match with that of L(f )−Dy (b)
by Lemma 4.4.2 (i) in [9], a contradiction. Then L(f ) = Dy (b), i.e., L
is a telescoper for f , which contradicts with the first assertion.

The next example shows that additive decompositions in Theo-

rems 4.8 and 5.15 are useful for detecting the existence of telescopers

for elementary functions that are not D-finite.

Example 7.2. Let F = C(x ,y) and E = F (t) be a differential
field extension of F with t = log(x2 + y2). Consider the function
f = t + 1 −

2y
(x 2+y2)t 2 . Since the derivatives D

i
x (1/t

2) = ai/t
i+2 with

ai ∈ F \ {0} are linearly independent over F , we see that 1/t2 is not
D-finite over F , and neither is f . Note that f can be decomposed as

f = Dy (1/t) + t + 1.

Since t + 1 is D-finite, it has a telescoper, and so does f .

8 CONCLUSION
In this paper, we developed additive decompositions in straight and

flat towers, which enable us to determine in-field integrability and

elementary integrability in a straightforward manner. It is natural

to ask whether one can develop an additive decomposition in a

general primitive tower. Moreover, we plan to investigate about

the existence and the construction of telescopers for elementary

functions using additive decompositions.
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