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Abstract—Hybrid sets are generalizations of sets and multisets,
in which the multiplicities of elements can take any integers.
This construction was proposed by Whitney in 1933 in terms
of characteristic functions. Hybrid sets have been used by
combinatorists to give combinatorial interpretations for several
generalizations of binomial coefficients and Stirling numbers and
by computer scientists to design fast algorithms for symbolic
domain decompositions. We present in this paper some combi-
natorial results on subsets and partitions of hybrid sets.

I. INTRODUCTION

Set theory has been the logic foundation of mathematics

since Cantor’s work [1] in the 1870s. Boole in his book [2]

initialized the algebraic study of set theory and this study

was continued by Whitney in the 1930s [3], [4]. Multisets are

generalization of sets in which elements can appear a positive

finite number of times, which have many applications in

mathematics, computer science, and molecular computing [5],

[6]. The word multiset was first coined by de Bruijn in

the 1970s and many other names, such as bags [7] and

heaps are also used for this construction (see the note by

Knuth in [8, p. 551]). Blizard in [9], [10] investigated this

construction from the logical and historical point of view.

More recently, Syropoulos wrote a nice survey [11] on the

mathematics of multisets. Hybrid sets naturally generalizes

multisets by allowing their elements to occur any integer num-

ber of times. This construction was first proposed by Whitney

in 1933 via characteristic functions [4]. In 1992, Loeb and

his collaborators presented a combinatorial interpretation for

the generalized binomial coefficients and generalized Stirling

numbers in [12], [13], [14].

Recently, hybrid sets have been used to simplify the treat-

ment of expressions defined by cases in symbolic computation.

They allow expressions to be constructed without regard to the

relationship between regions, by allowing irrelevant inclusions

to be later excluded. This reduces the complexity of the

number of cases in symbolic expressions to be linear in the

number of operations rather than exponential [15]. These ideas

can be applied equally to the arithmetic of structured matrices

with parts of symbolic dimension or piece-wise functions with

subdomains with boundaries defined symbolically. In addition,

the use of hybrid sets allows inclusion-exclusion to be handled

as such, rather than introducing concepts such as negative area

or oriented regions in integration [16].

This paper is motivated by the question: can we further

extend the enumerative combinatorial results on sets and

multisets to the hybrid setting? We first present a more direct

characterization of all possible subsets of hybrid sets (Theo-

rem 11), where subsets are defined by Loeb in a non-trivial

way. In contrast, our idea is to define a special class of such

subsets, called natural subsets (Definition 10), and we solve

the enumeration problem on natural subsets (Proposition 12).

In the last part of this paper, we define the notion of partitions

and recursive partitions of hybrid sets (Definitions 13 and 15).

The enumeration of recursive partitions is reduced to that of

multisets, for which we sketch a generating-function based

method by Devitt and Jackson [17] and then use it to derive

an elegant formula of Bender in [18].

II. HYBRID SETS

A unified way to define sets, multisets and hybrid sets is

using characteristic functions over a universal set as did by

Whiteney in [4]. Let Z denote the set of integers and N denote

the set of all nonnegative integers. Let U be the universal set

(the universe of discourse). A classical set S is defined as a

function S : U → {0, 1} and a multiset M is defined as a

function M : U → N. The notion of sets and multisets is

generalized as follows.

Definition 1: A hybrid set H is defined as a function H :
U → Z. For any u ∈ U, we denote by u ∈ H if H(u) �= 0
and u /∈ H otherwise.

Example 2: Let U := {a, b, c}. Then S : U → {0, 1} with

S(a) = S(b) = 1 and S(c) = 0 is a set, classically denoted by

{a, b}; M : U→ N with M(a) = 1,M(b) = 2, and M(c) = 3
is a multiset, usually denoted by {a, b2, c3}; H : U→ Z with

H(a) = −1, H(b) = 2, and H(c) = 0 is a hybrid set, which

will be later denoted by {b2 | a}.
The zero function from U to Z is called the empty hybrid

set over U, denoted by ∅. Let H be a hybrid set over U. For

any u ∈ U, we call the number H(u) the multiplicity of u
in H and the set SH := {u ∈ U | H(u) �= 0} the supporting
set of H . Let S+

H := {u ∈ U | H(u) > 0} and S−H := {u ∈
U | H(u) < 0}. We define two hybrid sets H+ and H− by

H+(u) =

{
H(u), u ∈ S+

H ;

0, u /∈ S+
H

and

H−(u) =
{

H(u), u ∈ S−H ;

0, u /∈ S−H
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for all u ∈ U and we call them the positive part and negative
part of H , respectively. If SH is a finite set, we call the sums∑

u∈U H(u) and
∑

u∈U |H(u)| the cardinality and weight
of H , respectively. For a finitely supported hybrid set H , we

will write it as

H = {am1
1 , . . . , ams

s | bn1
1 , . . . , bnt

t },
where the ai’s are elements with positive multiplicity and the

bj’s are elements with negative multiplicity in H . A hybrid set

of the form {a1, . . . , as |} or {| b1, . . . , bt} is called a new
set [12, Definition 2.2]. A hybrid set is said to be proper if

its negative part is not empty.

Example 3: Let U = {a, b, c, d}. The hybrid sets {a, b, c |}
and {| b, c, d} are new sets, {a, b | c} is not a new set but a

proper hybrid set. The hybrid set {a2, b |} is neither new nor

proper.

As in the case of classical sets, we can introduce some basic

operations on hybrid sets.

Definition 4 ([15]): Let H1, H2 be two hybrid sets over the

universal set U. The sum H1 ⊕H2 of H1 and H2 is defined

by

(H1 ⊕H2)(u) = H1(u) +H2(u) for all u ∈ U.

Similarly, the product H1 ⊗H2 and the difference H1 �H2

of H1 and H2 can also be defined pointwise.

Remark 5: The set ZU of all hybrid sets over U inherits the

Z-module structure from Z (This fact was proved in [15]). For

any hybrid set H , we have H = H+ ⊕H−.

III. SUBSETS

In order to be useful in combinatorics, Loeb in [12] gave

an intriguing definition of the inclusion relation among hybrid

sets. To present this, we first recall a partial ordering in Z.

Definition 6 ([12]): For integers a, b ∈ Z, we say that a� b
if a � b and either both a and b are nonnegative or both a
and b are negative.

The relation � defined above is a partial ordering in Z but

not total, since two integers a, b with a < 0 and b ≥ 0 are not

comparable.

A. Loeb’s subsets of hybrid sets

We now recall the notion of subsets of a hybrid set as

follows.

Definition 7 ([12]): Let G and H be two hybrid sets over U.

We say that G is a subset of H , denoted by G ⊆ H , if either

G(u)�H(u) for all u ∈ U, or H(u)−G(u)�H(u) for all

u ∈ U.

By [12, Proposition 5.1], the inclusion relation ⊆ defined

above is a well-defined partial ordering in ZU.

Example 8: Let U = {a, b, c, d} and H = {a2, b | c}. Then

{a, b | c2} and {a, c |} are subsets of H , but G := {b, c |
a} is not, since −1 and 2 are not comparable w.r.t. � and

H(a)−G(a) � H(a).
Unlike the case of classical sets, a hybrid set may have

infinitely many subsets if the negative part is not empty.

Indeed, for all i ∈ N, {a, b | ci} are subsets of H . It may also

happen that H = H1 ⊕H2, but neither H1 nor H2 is subset

of H . For example, let H = {a, b | c3}, H1 = {a, b | c}
and H2 = {| c2}. Then H = H1 ⊕ H2, but H1 and H2 are

not subsets of H .

Proposition 9: Let G,H be two hybrid sets over U with G ⊆
H . Then SG ⊆ SH and H �G is also a subset of H .

Proof. Suppose that there exists u ∈ U such that u ∈ SG

but u /∈ SH . Thus G(u) �= 0 and H(u) = 0. This implies

that either G(u) > H(u) if G(u) > 0, or G(u) and H(u)
are not comparable or H(u) − G(u) > H(u) if G(u) < 0,

which contradicts with the assumption that G ⊆ H . Therefore,

we get SG ⊆ SH . Let L = H � G. Since G ⊆ H and

G(u) = H(u)−L(u) for all u ∈ U, we get either L(u)�H(u)
for all u ∈ U or H(u) − L(u) � H(u) for all u ∈ U. Thus

L ⊆ H .

The classical binomial coefficients
(
n
k

)
counts the number

of k-element subsets of a set of n elements. Several general-

izations of binomial coefficients were proposed in [19], [12].

One such generalizations is called Roman binomial coefficients
in [12], defined by the formula(

n

k

)
R

:= lim
ε→0

Γ(n+ 1 + ε)

Γ(k + 1 + ε)Γ(n− k + 1 + ε)
,

where Γ(z) denotes the classical Gamma function. In terms of

subsets of hybrid sets, Loeb gave a combinatorial interpreta-

tion of such binomial coefficients by showing that
(
n
k

)
R

counts

the number of k-element hybrid sets which are subsets of a

new set H of cardinality n [12, Theorem 5.2].

B. Characterization and enumeration of Loeb’s subsets

Definition 10: Let G and H be two hybrid sets over U. We

call G a natural subset of H if SG ⊆ SH and 0 ≤ G(u) ≤
H(u) for all u ∈ S+

H and G(u) ≥ 0 if u ∈ S−H . The difference

H �G is called the complement of G in H .

Note that all natural subsets of a hybrid set H are subsets of

H and they are also multisets. We now can characterize all

of the possible subsets of a hybrid set via its natural subsets,

which is the main theorem in this section.

Theorem 11 (Hybrid subset characterization): Let G and H
be two hybrid sets over U. Then G is a subset of H if and only

if either G is a natural subset of H or G is the complement

of some natural subset of H .

Proof. The sufficiency follows immediately from Defini-

tion 10 and Proposition 9. For the other direction assume that

G ⊆ H . Suppose G(u) � H(u) for all u ∈ U. We claim

that L = H � G is a natural subset of H . For any u ∈ S+
H ,

H(u) > 0. Since G(u) and H(u) are comparable, G(u) ≥ 0.

By the inequality G(u) ≤ H(u), we have

0 ≤ L(u) = H(u)−G(u) ≤ H(u).

For any u ∈ S−H , H(u) < 0. Since G(u) and H(u) are

comparable, G(u) < 0. Then G(u) ≤ H(u) implies that

L(u) = H(u)−G(u) ≥ 0.
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So L is a natural subset of H . By the symmetry, we can show

that G is a natural subset of H if H(u) − G(u) �H(u) for

all u ∈ U. This completes the proof.

Let H be a finitely supported hybrid set of the form

H = {am1
1 , . . . , ams

s | bn1
1 , . . . , bnt

t }.
Let λH(k) denote the number of all natural subsets of car-

dinality k of H . Let [P ] denote the Iverson bracket for a

statement P , defined by [P ] = 1 if P is true and [P ] = 0
otherwise. We derive an explicit formula for λH(k) in the

following proposition.

Proposition 12:

λH(k) = k!
∑

i1+i2+···+is+1=k

(
t+ is+1 − 1

t− 1

) s∏
j=1

[ij ≤ mj ].

Proof. By definition, any natural subset of H consists of the

ai’s with multiplicity nonnegative and at most mi and the bj’s

with any nonnegative multiplicity. By an old idea of Euler,

we get the crude generating function (which was coined by

MacMahon [20, Vol. II, p. 93]) for λH(k) of the form

f(x) :=
∑
k≥0

λH(k)x
k =

s∏
i=1

(1 + x+ · · ·+ xmi) · 1

(1− x)t
.

By the multinomial theorem for iterated derivatives of a prod-

uct of functions, we have for all kth differentiable functions

f1(x), . . . , fs(x),

(f1 · f2 · · · fs)(k) =
∑

i1+i2+···+is=k

(
k

i1, i2, . . . , is

) s∏
j=1

f
(ij)
j ,

where (
k

i1, i2, . . . , is

)
=

k!

i1!i2! · · · is! .

Then it is easy to verify that p(k)(0) = pkk![k ≤ d] for any

polynomial p =
∑d

i=0 pix
i and for any i ∈ N, we have

((1− x)−t)(i)|x=0 = t(t+ 1) · · · (t+ i− 1) � t(i).

Since λH(k) = f (k)(0)/k!, we then obtain the formula

λH(k)=
∑

i1+···+is+1=k

(
k

i1, . . . , is+1

) s∏
j=1

(ij ![ij ≤ mj ])t
(is+1)

=
∑

i1+···+is+1=k

k!
t(is+1)

is+1!

s∏
j=1

[ij ≤ mj ]

= k!
∑

i1+···+is+1=k

(
t+ is+1 − 1

t− 1

) s∏
j=1

[ij ≤ mj ].

This completes the proof.

By Theorem 11, an explicit formula for the number of all

subsets of cardinality k of H can also be derived in a similar

way.

IV. PARTITIONS

Partitions of sets and integers have been studied since

Euler and now form an active research area which connects

number theory and combinatorics. Comprehensive surveys on

partitions have been given in [21], [22], [23]. The partitions

of multisets was first investigated by Barón, Comtet, and de

Bruijn in the 1960s, and later was studied more systematically

by Bender and his collaborators in [18], [24]. A generating-

function based approach for the enumeration of partitions of

multisets was presented by Reilley in [25] and by Devitt and

Jackson in [17]. For more recent works, one can also see [26],

[23]. In this section, we generalize the partition problems to

the case of hybrid sets.

A. Partitions and recursive partitions
Definition 13 (Partition): Let H be a hybrid set

over U. A collection of nonempty hybrid sets over U, say

{H1, H2, . . . , Hs}, is called a partition of H if for all i
with 1 ≤ i ≤ s, Hi ⊆ H and

H = H1 ⊕H2 ⊕ · · · ⊕Hs.

The Hi’s are called the components or blocks of H and we

will also say s-partition to specify the number of parts.
Remark 14: (i) when H is a classical set, we obtain (for free)

the disjointness property among the Hi’s. That is Hi⊗Hj = ∅
for all 1 ≤ i < j ≤ s. (ii) A general hybrid set may have

infinitely many partitions, since it may have infinitely many

subsets and H = G ⊕ (H � G) is a partition for any subset

G of H .
Definition 15 (Recursive partition): A partition H = H1 ⊕

· · · ⊕ Hs of H is said to be recursive if for any subset

{i1, . . . , it} of {1, . . . , s}, the sum Hi1 ⊕ · · · ⊕Hit also form

a partition, i.e., all Hij ’s are subsets of Hi1 ⊕ · · · ⊕Hit .
Example 16: Let H = {a2, b | c}. Then the partition

H = {a |} ⊕ {c |} ⊕ {a, c3 |} ⊕ {b | c5}
is recursive but the partition

H = {a |} ⊕ {c2 |} ⊕ {a, b | c} ⊕ {| c2},
since {a, b | c} and {| c2} are not subsets of the hybrid set

{a, b | c} ⊕ {| c2}.
For any recursive partition, we can construct a binary tree

as follows. If H = H1 ⊕ · · · ⊕ Hs is a recursive partition,

then Theorem 11 implies that either Hi is natural or H �Hi

is natural. We set H as root of the tree and split it into

two branches with the unnatural subsets always left to the

natural ones. It may happen that both parts are natural in

which case any order is allowed. We can continue this splitting.

For example, a tree associated with the recursive partition in

Example 16 can be represented as follows.

{a2, b | c}

{a, c |}
{a |} {c |}

{a, b | c2}

{a, c3 |} {b | c5}
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B. Counting partitions and recursive partitions

In order to make the counting problems meaningful, we

assume from now on that the hybrid sets in our discussion are

all finitely supported and we also impose some constraints on

the components of a partition.

Definition 17 (Deviation): Let G be a subset of the hybrid

set H . For an element u ∈ H , we call the value

δu(G,H) =

⎧⎨
⎩

H(u)−G(u), if H(u) ≥ 0;

H(u)−G(u), if H(u) < 0&G(u) < 0;

G(u), if H(u) < 0&G(u) ≥ 0.

the deviation of G at u from H . The value

δ(G,H) := max{δu(G,H) | u ∈ H}
is called the deviation of G from H .

Remark 18: For a multiset H , the deviations of its subsets

from H are finite and bounded by the largest multiplicity of

elements in H . But the deviation can be arbitrary large if H
has a non-trivial negative part.

We let [zk]f(z) denote the coefficient of the term zk in the

formal power series f ∈ K[[z]].
Problem 19: For a given hybrid set H , compute the number

of k-partitions of H with the deviations of all components

bounded by d. We denote this number by μH(k, d).
It is still an open problem to find a closed form or find the

generating funstions for μH(k, d), even for the the case of

multisets. There are some special cases of this problem that

have been solved. When H = {a1, . . . , an|}, the numbers

μH(k, 1) are the Stirling numbers of the second kind, S(n, k),
and their generating function ((see [27, p. 74])) is

f(x, y) :=
∑
n≥0

∑
k≥0

S(n, k)xk y
n

n!
= exp(x(exp(y)− 1)).

When H = {am1 , . . . , ams |}, i.e., a multiset in which all

elements are of the same multiplicity, four kinds of different

partition problems have been studied in [18], [25], [17], [24].

We now show that the recursive partitions with components

having bounded deviation can be reduced to partitions of

multisets. Indeed, If H = H1⊕· · ·⊕Hs is a recursive partition,

then only one component of H is not natural. Suppose there

are two components Hi and Hj are not natural. Then both Hi

and Hj are subsets of Hi ⊕Hj . By Theorem 11, at least one

of Hi and Hj is natural, which is an contradiction. Therefore,

the counting of recursive partitions of H splits into two steps:

1) count the number of unnatural subsets of H; 2) for each

such subset G, count the number of partitions of the multiset

H � G. Then the number of recursive partitions is obtained

by the product rule for counting.

C. Multiset partitions: an example

We now illustrate an example for multiset partitions which

applies the method in [17] to derive Bender’s formula [18]

on the numbers v∗H(k) of k-partitions of H with multiset

components.

Let [s] := {1, 2, . . . , s} and we associate each element ai ∈
H with a recording variable zi. Let W be the set of admissible

components. For partitions with multiset components, we take

W =

{
s∏

i=1

zmi
i | mi ≥ 0 and mi’s are not all zero

}
,

and
∏

w∈W wt =
∏s

i=1
1

1−zt
i
−1 for all t ∈ N. Then the crude

generating function for k-partitions with components in W is

g(x, z1, . . . , zs) =
∏

w∈W

1

1− xw
.

By the same argument as in [17], we have

fs,m(x) =
∑
k≥0

v∗H(k)x
k = [zm1 · · · zms ](g(x, z1, . . . , zs)).

We now start the computation of fs,m(x) and Bender’s for-

mula for the generating function

Fm(x, y) =
∑
s≥0

fs,m(x)
ys

s!
.

Let z = (z1, . . . , zs) and u = (u1, . . . , us). Then

fs,m(x) = [zm] exp

( ∑
w∈W

log
1

1− xw

)

= [zm] exp

( ∑
w∈W

( ∞∑
i=1

(xw)i

i

))

= [zm] exp

( ∞∑
i=1

xi

i

( ∑
w∈W

wi

))

= [zm] exp

⎛
⎝ ∞∑

i=1

xi

i

⎛
⎝ s∏

j=1

1

1− zij
− 1

⎞
⎠
⎞
⎠

We now truncate the infinite sum at i = m since only the

previous m terms matter.

fs,m(x) = [zm] exp

⎛
⎝ m∑

i=1

xi

i

⎛
⎝ s∏

j=1

1

1− zij
− 1

⎞
⎠
⎞
⎠

= exp

(
−

m∑
i=1

xi

i

)
[zm] exp

⎛
⎝ m∑

i=1

xi

i

s∏
j=1

1

1− zij

⎞
⎠ .

By the Taylor expansion of the exponential function, we have

[zm] exp

⎛
⎝ m∑

i=1

xi

i

s∏
j=1

1

1− zij

⎞
⎠

=
∑

u1,...,um≥0

xu1+···+mum

u1! · · ·um!
2−u1 · · ·m−um [zm]Lm(u),

where

Lm(u) =

⎛
⎝ s∏

j=1

1

1− zj

⎞
⎠

u1

· · ·
⎛
⎝ s∏

j=1

1

1− zmj

⎞
⎠

um

.
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Moreover, we note that

[zm1 · · · zms ]Lm(u)

=
s∏

j=1

(
[zmj ]

(
1

1− zj

)u1

· · ·
(

1

1− zmj

)um
)

= (χm(u))
s,

where

χm(u) := [zm]

((
1

1− z

)u1

· · ·
(

1

1− zm

)um
)
.

Then we have

[zm] exp

⎛
⎝ m∑

i=1

xi

i

s∏
j=1

1

1− zij

⎞
⎠

=
∑

u1,...,um≥0

xu1+···+mum

u1! · · ·um!
2−u1 · · ·m−um(χm(u))

s.

This implies that

Fm(x, y) =
∑
s≥0

fs,m(x)
ys

s!

= exp

(
−

m∑
i=1

xi

i

) ∑
u1,...,um≥0

xu1+···+mum

u1!· · ·um!
G(y,u),

where

G(y,u) = 2−u1 · · ·m−um exp(yχm(u)).

In particular, the generating function for m = 2 is

F2(x, y)= exp

(
x2(ey−1)−2x

2

)∑
u≥0

xu

u!
exp

(
y

(
u+ 1

2

))
.

V. CONCLUSION

We have seen how some of the enumerative combinatorics

of classical sets and multisets may be extended to the hybrid

setting. These generalizations are interesting because we can

get a unified treatment of some classical results shown in [12].

The on-going work in this direction would be finding combina-

torial proofs of some generalizations of classical combinatorial

identities in term of hybrid sets. We also anticipate that these

techniques might be useful in the analysis of algorithms, by

allowing flexibility in the order of operations.
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