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Abstract

Symbolic summation as an active research topic of symbolic computation provides efficient
algorithmic tools for evaluating and simplifying different types of sums arising from mathematics,
computer science, physics and other areas. Most of existing algorithms in symbolic summation
are mainly applicable to the problem with univariate inputs. A long-term project in symbolic
computation is to develop theories, algorithms and software for the symbolic summation of
multivariate functions. This paper will give complete solutions to two challenging problems in
symbolic summation of multivariate rational functions, namely the rational summability problem
and the existence problem of telescopers for multivariate rational functions. Our approach is
based on the structure of Sato’s isotropy groups of polynomials, which enables us to reduce
the problems to testing the shift equivalence of polynomials. Our results provide a complete
solution to the discrete analogue of Picard’s problem on differential forms and can be used to
detect the applicability of the Wilf-Zeilberger method to multivariate rational functions.

Keywords: Isotropy group; shift equivalence; symbolic summation; telescoper

MSC classes: 68W30, 12H05, 12H10

*S. Chen and H. Fang were partially supported by the National Key R&D Program of China (No.
2023YFA1009401), the NSFC grants (No. 12271511 and No. 11688101), CAS Project for Young Scientists in
Basic Research (Grant No. YSBR-034), and the CAS Fund of the Youth Innovation Promotion Association (No.
Y2022001). L. Du was supported by the Austrian FWF grant 10.55776/P31571.



Contents

1

2

Introduction 3
Preliminaries 4
2.1 Telescopers and summability of rational functions . . . . . . .. .. ... ... .... 4
2.2 Complexity estimates . . . . . . . . . L 6
Shift equivalence testing of polynomials 7
3.1 Overview of the general algorithm . . . . . ... ... ... ... ... ... ..., 8
3.2 Proof of correctness of Theorem 3.7 . . . . . . .. .. ... L. 11
3.3 Two special admissible covers . . . . .. .. .. L o 17
Isotropy groups and orbital decompositions 20
4.1 IsOtropy groupS . . « v v v v v vt e e e e e e e e e 20
4.2 Orbital decompositions . . . . . . . . . . e e e 22
The rational summability problem 24
5.1 Orbital reduction for summability . . . .. .. ... ... ... 000, 24
5.2 Summability criteria . . . . ..o Lo 26
The existence problem of telescopers 34
6.1 Orbital reduction for existence of telescopers . . . . ... ... ... ... .. ..., 35
6.2 Criteria on the existence of telescopers . . . . . . . . . ... ... L. 36
6.3 Examples and applications . . . . . . . . . ... 45
Implementations and timings 47
Conclusion and future work 50



1 Introduction

Symbolic summation is a classical and active research topic in symbolic computation [78], whose
central problem is evaluating and simplifying different types of sums arising from combinatorics [53,
55,65], computer science [38], theoretical physics [12,72] and other areas. Similar to the integration
case, there are two types of summation problems: one is the indefinite summation problem, and
the other is the definite summation problem. The two summation problems are connected by the
discrete Leibniz—Newton formula. In the early days, methods for symbolic summation were mainly
summarized in calculus of finite differences (for instance one can see the books [13,49]). Since
the early 1970s, efficient symbolic algorithms have been developed for symbolic summation [78,
Chapter 23]. Abramov’s algorithm [1-3] solves the indefinite summation problem for univariate
rational functions. The classical Hermite reduction for symbolic integration of rational functions
was extended to the summation case by Paule via greatest factorial factorizations in [64] with more
developments in [10,61,69]. The indefinite summation problem for hypergeometric terms is handled
by Gosper’s algorithm [37]. For sequences in a general difference field, the corresponding problem
was studied by Karr in [51,52] with significant improvements by Schneider [71] and recent fruitful
applications in quantum field theory [12,74]. Most of the existing complete algorithms are mainly
applicable to the problem with univariate inputs. A long-term project in symbolic computation
proposed by Andrews and Paule in [8] is to develop theories, algorithms and software for symbolic
summation of multivariate functions. Along this way, some algorithms have been developed to deal
with a special class of double sums [29] and binomial multiple sums [15]. One of the long standing
open problems in this project is developing the multivariate version of Gosper’s algorithm (see
Problem 5.1 in [24]).

In the multivariate setting, a more intrinsic way for formulating the summation problem is
to use the language of difference forms, which is a discrete analogue of differential forms. The
combinatorial theory of difference forms was first developed by Zeilberger in [84] with applications
in computer-generated proofs of combinatorial identities and series convergence acceleration [85].
Motivated by problems in geometric integration, the geometric theory of difference forms was
properly developed by Mansfield and Hydon in [60] with a discrete analogue of de Rham cohomology.
In both theories, it is a fundamental problem to decide whether a given closed difference form is
exact or not. The corresponding problem in the differential case was first proposed by Picard
in 1889 (see Note III in [67, pp. 475-479]), which is deciding whether a given rational function
F(z,y,2z) € C(z,y, 2) can be written as F(x,y,z) = % + % + % for some rational functions
P,Q,R € C(x,y,z). In the language of differential forms, Picard’s problem is equivalent to deciding
whether a differential 3-form w = F(x,y, z)drdydz is exact or not in the field of rational functions.
Picard’s problem can be naturally extended to the case of multivariate rational functions. Picard
himself solved the problem for bivariate rational functions but it is still not completely solved in
the general multivariate case. Some fundamental and significant work had been done by Griffiths
in the 1960s in his papers on periods of rational integrals [39,40] and later by Dimca [31] and more
recently by Lairez [57]. As the first main result of our paper, we will solve the discrete analogue of
Picard’s problem by generalizing Gosper’s algorithm to the case of multivariate rational functions.

From the indefinite summation problem to the definite one, creative telescoping [83] is a crucial
tool for computing definite sums with applications in computer-generated proofs of combinatorial
identities [65,80,81]. One of fundamental problems related to creative telescoping is the existence
problem of telescopers for special functions which is equivalent to the termination of Zeilberger’s
algorithm [82,83] and can be used to detect the hypertranscendence and algebraic independence
of functions defined by indefinite sums or integrals [45,73]. A sufficient condition, namely holo-
nomicity, on the existence of telescopers was first given by Zeilberger in 1990 using Bernstein’s



theory of holonomic D-modules [11]. Wilf and Zeilberger in [81] proved that telescopers exist for
proper hypergeometric terms. However, holonomicity and properness are only sufficient conditions.
Abramov and Le [6] solved the existence problem of telescopers for rational functions in two dis-
crete variables. This work was soon extended to the hypergeometric case by Abramov [5], the
g-hypergeometric case in [28], the mixed rational and hypergeometric case in [18,26], and most re-
cently the P-recursive case in [33]. The criteria on the existence of telescopers for rational functions
in three variables were given in [19,20,22]. In arbitrary number of variables, there is no available
algorithm for deciding the existence of telescopers for rational functions. As the second main result
of our paper, we will solve the existence problem of telescopers for multivariate rational functions
by reducing the problem to the computation of Sato’s isotropy groups and the testing of the shift
equivalence of multivariate polynomials.

The rest of this paper is organized as follows. In Section 2, we define the existence problem of
telescopers and the summability problem precisely and recall some basic complexity estimates for
later use. We present a general scheme for designing algorithms to solve the shift equivalence testing
problem in Section 3, and compare our new algorithms with the other known algorithms in Section 7.
In Section 4, we first recall the notion of isotropy groups of polynomials and their basic properties,
and then introduce orbital decompositions for rational functions. We apply orbital decompositions
in Section 5 to reduce the rational summability problem for general rational functions to that for
simple fractions. After this, we present a criterion on the summability of such simple fractions.
We not only decide the summability of a rational function but also construct the indefinite sums
explicitly if it is summable. In Section 6, we again use the structure of isotropy groups and orbital
decompositions to derive a criterion for the existence of telescopers for rational functions in variables
t and x. Moreover, we present an algorithm for computing a telescoper if it exists.

2 Preliminaries

In this section, we will recall some basic terminologies of symbolic summation and creative tele-
scoping and overview some complexity results for later use.

2.1 Telescopers and summability of rational functions

Through out the paper, let K be a field of characteristic zero and K(¢,x) be the field of rational
functions in ¢ and x = {z1,...,z,} over K. For each v € v = {t,x1,..., 2.}, the shift operator
o, with respect to v is defined as the K-automorphism of K(v) such that

oy(v) =v+1 and o,(w) = w for all w € v \ {v}.

Let R := K(v){S¢, Szy,---,S%,,) denote the ring of linear recurrence operators over K(v), in
which Sy, Sy, = Sy, Sy, for all v, v; € vand S, f = a,(f)S, for any f € K(v) and v € v. The action
of an operator L =
defined as

o . gilogit ,,, Qi i i i
iosit i >0 @ioityim St Sah - Sy € R on a rational function f € K(v) is

L(f)= D g, im0 0l 0l (f).
§050150e0y8m >0
For each v € v, the difference operator A, with respect to v is defined by A, = S, — 1, where 1
stands for the identity map on K(v).
We now introduce the notion of telescopers for rational functions in K(¢, x).



Definition 2.1 (Telescoper). Let n be a positive integer such that 1 < n < m and let f € K(¢,x)
be a rational function. A nonzero linear recurrence operator L € K(t)(S;) is called a telescoper of
type (04,02, -..,0z,) for f if there exist g1,...,gn € K(t,x) such that

L(f) = AII (gl) +oeee Aazn(gn)'

The rational functions g1, ..., gn are called the certificates of L.

Problem 2.2 (Existence Problem of Telescopers). Given a rational function f € K(t,x) and an
integer n with 1 < n < m, decide whether or not f has a telescoper of type (o4;04,,...,04,). If so,
find a telescoper L and its certificates g1, ..., gn.

In order to decide the existence of telescopers for f € K(¢,x), one may first use the shortcut to
decide whether L = 1 is a telescoper for f. This is equivalent to the following summability problem
of f in F(x) with F = K(¢).

Definition 2.3 (Summability). Let F be a field of characteristic zero and n be a positive integer
such that 1 < n < m. A rational function f € F(x) is called (04,,...,0s,)-summable in F(x) if
there exist g1, ..., gn € F(x) such that

f=28z(91) -+ Az, (gn)

The rational functions g1, ..., gn, if they exist, are called the certificates of f.

Problem 2.4 (Rational Summability Problem). Given a rational function f € F(x) and an inte-
ger n with 1 < n < m, decide whether or not f is (04,,...,0s,)-summable in F(x). If so, find a
tuple (g1, ...,9n) such that the g;’s are the certificates of f.

In terms of arithmetic size, the certificate tends to be much larger than the telescoper but
certificates are often not needed in applications. Similar to the case of univariate rational summa-
tion [36], we also output the certificate as a sum of the products of several rational functions applied
by shift operations and difference isomorphisms (see the definitions in the specific algorithms). Such
a certificate is called an unnormalised certificate.

The main idea of solving the summability problem is using mathematical induction to reduce the
number of difference operators in this problem. To say explicitly, we shall reduce the (o4,,...,04,)-
summability problem for f € F(x) to the (o4, ..., 0, )-summability problem for another rational
function a € F(x), where r is smaller than n and the base field F(x) in the summability problem is
unchanged. Similarly, we shall reduce the existence problem of telescopers of type (o¢; 04y, .-+ ,0%,)
for f € K(¢,x) to the existence problem of telescopers of type (oy;04,,...,0s,) for some rational
function a € K(¢,x).

We introduce below a general definition of the summability problem and existence problem of
telescopers, which plays a central role to set up the reduction process for solving Problems 2.4
and 2.2. Let Gy = (04,04,,...,04,) be the group generated by the shift operators oy, 04,,...,04,
under the operation of composition of functions. Then G} is a free abelian group. For any 7 € Gy,
the difference operator A, is defined by

__ Qio Qi1 % s _ %0 11 7
Ar =808 -8 =1 ifr =00 ---0;".

x1 Tn
For short, we use A, to denote A, for each v € v. A finite subset {71,..., 7.} of G; is said to be
Z-linearly independent if for all aq,...,a, € Z, we have
T T = ifand only if a1 =ay=---=a, =0.



Let G = (04,,-..,04,) be the subgroup of G; generated by shift operators og,,...,04,. Let

{m1,...,7}(1 <r < n) be a family of Z-linearly independent elements in G. In general, a rational
function f € F(x) is called (1, ..., 7 )-summable in F(x) if

f=2An(g1) + -+ Ar(gr)

for some g1,...,g, € F(x). Choose an element 79 = Ufoaé‘j} .

Then 79, 71,...,7, are Z-linearly independent in G;. Let Ty = SfOSi“} -~-S§: € R be the oper-
ator corresponding to 1p. We say that a nonzero operator L € K(¢)(Tp) is a telescoper of type
(ro;71,...,7r) for f € K(¢,x) if L(f) is (71,...,7,)-summable in K(¢,x).

Let R be a ring and 0: R — R be a ring automorphism of R. The pair (R,0) is called a
difference ring. If R is a field, we call the pair (R, o) a difference field. Let (R1,01) and (R, 02)
be two difference rings and ¢: R; — Ry be a ring homomorphism. If ¢ satisfies the property that
¢ o001 = 09 0 ¢, that means the following diagram

-UI;Z € Gy such that ky is nonzero.

Ry LRQ

Ry — Ry

commutes, then ¢ is called a difference homomorphism. If in addition ¢ is a bijection, then its
inverse ¢! is also a difference homomorphism. In this case, we call ¢ a difference isomorphism. The
notion of difference isomorphisms will be used to state our summability criteria and the existence
criteria of telescopers.

An operator L € K(t)(S;) is called a common left multiple of operators Ly, ..., L, € K(t)(S) if
there exist Ry, ..., R, € K(t)(S;) such that

L=RI11=-=RL,.

Since K(¢)(S¢) is a left Euclidean domain, such an operator L always exists. Among all of such
multiples, the monic one of smallest degree in S; is called the least common left multiple (LCLM).
Efficient algorithms for computing LCLM have been developed in [7,14,16].

Remark 2.5. Let f = fi + -+ + fr with f; € K(t,x). If each f; has a telescoper L; of type
(04302, ..,0%,) fori=1,...,r, then the LCLM of L;’s is a telescoper of the same type for f. This
fact follows from the commutativity between operators in K(t)(St) and the difference operators Ay, ’s.

2.2 Complexity estimates

All complexity estimates of the algorithms in this paper are in terms of arithmetical operations in K,
denoted by “ops”. The notation O indicates the complexity estimates with hidden polylogarithmic
factors.

Let y = {y1,92,...,yr} be a subset of v = {t,x1,...,2,} and d = (di,ds,...,d,) be a vector
in N". Let K[y]q denote the set of polynomials in K[y] whose degrees in y; are no more than d; for

i=1,2,...,r. Let K(y)q denote the set of rational functions in K(y) with numerators and denomi-
nators in K[y]q. In particular, we denote K[ylq (resp. K(y)a) by K[y]q (resp. K(y)q) for simplicity
if di =dy =--- =d, = d. For a rational function f(y) = p(y)/q¢(y) € K(y), where p(y) and q(y)

are coprime polynomials, the degree of f(y) in y; is defined as max{deg,, (p(y)),deg,,(¢(y))}. In
particular, for f(y) € Q(y), let ||f|| denote the maz-norm of f, i.e., the maximal absolute value
of the integer coefficients appearing in the numerator and denominator of f with respect to y.



Similarly, for a matrix or vector M over Z, the maz-norm of M, denoted by ||[M]|, is defined as the
maximal absolute value of its entries.

We first recall some complexity estimates of the basic operations on univatiate polynomials and
rational functions (see the books [17,78] for their proofs).

Fact 2.6. Let d be an integer in N. The following operations can be performed in O(d) ops in K:
(1) addition, multiplication and differentiation of elements in K[x]g and K(x)q4;
(2) computing the greatest common divisor of two elements in K|x]4;

(3) partial fraction decomposition of an element in K(x)q with a given factorization of its denom-
inator.

Efficient algorithms for basic operations on multivariate polynomials have been developed in [63,
77). We summarize the needed results as follows.

Fact 2.7. For a vector d = (dy,...,dy) € N, it takes O(md, - --dp,) ops in K for multipoint
evaluation or interpolation in K[x|q from the given values on O(d; ---dy,) points which form an
m-dimensional tensor product grid.

We recall the complexity estimates of factoring multivariate polynomials from [58, Theorem
3.26] and [59, Equation (II)].

Fact 2.8. For a vector d = (dy,...,dy) € N™ and an integer M € NV, let f be a polyno-
mial in Z[x]q with |f|| = M. Then it takes O((min(d))™ ' (dy - - dm)>(dy - - - dp + log(M))) ops
i Q to factor f into the product of irreducible factors and the maz-norms of these factors are
2dittdn S(dy + 1) -+ (dy, + 1) M.

Let w € (2,3] be a feasible exponent of matrix multiplication in K, i.e., two square matrices
of order r can be multiplied using O(r*) ops. Solving a system of linear equations is almost
as hard as multiplying two matrices, see [17] for more details. In particular, one approach to
solve a linear system over QQ for integer solutions is computing the Hermite normal form of its
corresponding matrix, see [30]. Combining the algorithms for computing Hermite normal forms
developed in [30,32,43,44,48, 50,75, 76], we obtain the following result.

Fact 2.9. (See [17, Theorem (16.18)], [44, Proposition 2.3 and its proof]) A K-linear system L
of size r can be solved in O(r*) ops in K. Furthermore, if K = Q and the absolute values of the
coefficients of L are integers bounded by M, then one can find a special solution of L with a Q-basis
for the corresponding homogeneous linear system over Z" using O(r““ log(M)) bit ops and the
maz-norms of these vectors are O(r"/2MT).

3 Shift equivalence testing of polynomials

In this section, we first state the problem of Shift Equivalence Testing (SET) and give an overview
of our algorithm for solving the SET problem in Section 3.1. The idea of our algorithm is inspired
by the DOS algorithm [34,35]. Then we develop a general scheme for designing algorithms to solve
the SET problem, whose proof is given in Section 3.2. More precisely, we introduce admissible
covers of the associated polynomial system with the SET problem and prove that every admissible
cover corresponds to an algorithm for solving the SET problem. In Section 3.3, we give two special
admissible covers in practice, one of which corresponds to the DOS algorithm.



3.1 Overview of the general algorithm

Let F be a field of characteristic zero and let F[x]| be the ring of polynomials in x = {z1,...,2,}
over F. Two polynomials p, ¢ € F[x] are said to be shift equivalent if there exist sq,...,s, € F such
that

p(x1+ 81, ... @y + 8p) = q(x1, ..., Tp).

The set {s € F" | p(x + s) = ¢(x)} is called the dispersion set of p and ¢ over F, denoted by Fj,,.
Recall basic properties of the dispersion set in [35].

Lemma 3.1. (See [35, Observation 4.2 and Lemma 4.4]) Let p,q € F[x]|. Then
(1) Fp,p is a linear subspace of F™ over F.
(2) Fpq=s+F,, for anys € F,q if F,, 4 # .
The problem of Shift Equivalence Testing can be stated as follows.

Problem 3.2 (Shift Equivalence Testing Problem). Given p,q € Flxi,...,x,]|, decide whether
there exists s = (s1,...,8,) € F™ such that

p(x +s) = ¢(x).

If such a vector s exists, compute the dispersion set F,, of p and q over F. In this case, by
Lemma 3.1, it suffices to find a special solution s in F, , and a basis of Fj,, over F.

A related problem is testing the shift equivalence over integers, i.e. deciding whether there
exists a vector s € Z™ such that p(x + s) = ¢(x). We denote the set {s € Z" | p(x +s) = q¢(x)}
by Z, 4. The computation of Z,, will play an important role in the next sections where we study
the rational summability problem and the existence problem of telescopers. By Lemma 3.1, we
know F}, 4 is a linear variety over F. Once the computation of F,, boils down to solving linear
systems, we can also compute Z,, by combining the same methods for the SET problem over F
and any algorithm for computing integer solutions of linear systems.

In the univariate case, the SET problem was solved by computing the resultant of two polyno-
mials [1]. In the multivariate case, there are three different methods for solving the SET problem
in the literature. In 1996, Grigoriev first gave a recursive algorithm (G) for the SET problem
in [41,42]. In 2010, motivated by solving linear partial difference equations, another algorithm
(KS) for computing Z, , via the Grobner basis method was given by Kauers and Schneider in [54].
In 2014, a new algorithm with better complexity was given by Dvir, Oliveira and Shpilka (DOS)
in [34,35]. We have implemented all of the three algorithms in Maple and the experimental com-
parison is tabulated in Section 7. The timings indicate that the DOS algorithm is the most efficient
one among the three methods in practice.

In this section, we introduce n new variables a = {aq,...,a,}. The SET problem is equivalent
to finding the zeros of the polynomial p(x + a) — ¢(x) € F[a,x] with respect to a. Collecting its
coefficients in x, we obtain a polynomial system. A direct approach to the SET problem is solving
this polynomial system. Without exploring the hidden structure of the polynomial system, this
naive approach could be very in-efficient. The common idea of the above three methods is to find
the defining linear system of F}, ;, which avoids solving the polynomial system directly. To do this,
the DOS algorithm finds an appropriate finite cover of the polynomial system. Then it reduces
the SET problem to solving several linear systems successively by evaluating the non-linear part
of polynomials. This kind of evaluation is called the linearization of polynomials, whose definition
will be strictly stated below.



We first introduce some notations for later use. For any two vectors a = (a1, a,..., ), 8 =
(B1,B82,---,0n) € N*, we say a« > (3 if and only if a; > (; for all 1 < i < n. This defines a
partial order on N™. For a subset y = {y1,%2,...,ym} of x = {z1,29,...,2,} with y := x\ y,
let f(x)=>,c¢ca(¥)y* € Flylly]. Let Hg‘,l (f(x)) denote the homogeneous component of f(x) of
degree d in y and let Supp,(f) denote the set {y® | ca(y) # 0}. For simplicity, when y = x, we
write Hfi(f(x)) as H'(f(x)) and Suppy,(f) as Supp(f). For a subset S C F[x], let Vg(S) be the
zero set {s € F" | f(s) =0, Vf € S}.

Definition 3.3 (Linearization). Let f(x) = HJ(f)(y) + HL(f)(y) + -+ + HI(f)(y) be the ho-
mogeneous decomposition of f € Fx] = Fly]ly]. For a vector s € F™, we call the linear polyno-
mial HY(f)(y) + Hy(f)(y) + Z?:z H(f)(s) the linearization of f at s with respect to y, de-
noted by Ly—s(f). Note that Ly—s(f) = f if d < 1. For a polynomial set S C F[x], let
Ly—s(S) :={Ly=s(f) | f € S} be the linearization of S.

In the following we present the main idea of algorithm DOS [34,35] and our new algorithm
ADC in a general framework.
In order to compute F}, 4, we first write

plx+a) —q(x) = 3 cala)x®,

acA

where cq(a) € Fla] and A is a finite subset of N". Let
S :={ca(a) € Fla] | ca(a) is a nonzero coefficient of x* in p(x +a) — q(x)}. (3.1)

Then Fp,, = Vr(S) is the zero set of S in F”. First, we classify all polynomials in S according to
their total degrees in a and write S = SP U--- U S, where d’ = deg, (p(x + a) — ¢(x)) and

SP = {ca(a) € 5 | degy(ca(a)) =i}

for i = 0,...,d. Then Vg(S) = VF(U?IZOSZ-D). We may assume that SP = @, otherwise p, ¢ are
not shift equivalent and return F,, = @. If SP U SP has no solution in F?, return Fp = @.
Otherwise take an arbitrary solution s(©) € Vr(SPUSP). Note that all polynomials in S USP are
linear and thus such an element s(¥) can be computed straightforwardly. We shall prove that the
nonlinear system S§ U SP U SP has the same solutions as its linearization S USP U L,_ ) (SP)
at the point s(9. If the latter linear system has no solution, return F,, = @. Otherwise, take an
arbitrary solution s(!) e Vr(SP U SP U L,_0)(SP)) by solving the linear system. Then consider
the linearization of U3 ;S at s(!) and we shall prove that Vp(U?_, SP) = Ve(Uy Lo_o) (SP)).
Continuing the above process, we will finally find an equivalent linear system of the polynomial
system S = Uf:OSiD by linearization.

Example 3.4. Let p = x> + 2xy + y? + 22 + 6y and q = 22 + 2zy + 3% + 42 + S8y + 11 be two
polynomials in Q[z,y]. Decide whether p,q are shift equivalent with respect to x,y. Since

p(x+a,y+b) —qlz,y) = (2a+2b—2) -z + (2a + 2b — 2) - y + (a® + 2ab + b + 2a + 6b — 11),

we have S = SP U SY, where SP = {2a + 2b — 2} and SP = {a® + 2ab + b* + 2a + 6b — 11}. Take
an arbitrary solution (a,b) = (1,0) of SP. The linearization of S¥ at (1,0) is

Lian)=1,0)(89) ={1>+2-1-04 0>+ 2a + 6b — 11} = {2a + 6b — 10}.

In this example, the linear system SIDUL(a7b):(1,O)(52D) 18 indeed equivalent to the polynomial system
SPUSY. 8o Fpg=Vr(SP U Lwp=00(53)) = {(-1,2)}.

9



Since shift operations do not change the total degree in x, the homogeneous components of
both sides of p(x 4+ a) = ¢(x) with respect to x must be equal. The homogeneous decomposition of
p(x+a)—q(x) yields another cover {S&, S, ... S} of S, where d = max{deg, (p(x)), degy(q(x))}
and

SH .= {cq(a) € S| ca(a) is the coefficient of x* in HI ™! (p(x + a)) — H ¥ (q(x))}

fori =0,1,...,d. In the DOS algorithm, they first introduced the above method of linearization to
solve the polynomial system S = ng U S{{ u---us f and proved the correctness of their algorithm
by using formal partial derivatives. In Example 3.4, S = SP USP = SH U SH where S = SP for
i = 1,2. In general, these two covers are different. A natural question is for which cover, we can
use the method of linearization to compute the dispersion set. One answer is the admissible cover
defined below. In fact, the above two covers {SP,SP, ..., S0} and {S{,SH,...,SH}, called by
a-degree cover and x-homogeneous cover respectively, are both admissible, which will be proved in
Section 3.3.

Definition 3.5 (Admissible cover). Let S C F[a] be as in (3.1). A collection {Sy, S1,...,Sm} of
subsets is called a cover of S if S is the union of Sg, S1,...,Sm. Such a cover {Sp,S1,...,Sm} is
called an admissible cover of S if it satisfies the following two conditions:

(1) The degree of any polynomial in Sy is at most one.

(2) For every £ =1,2,...,m, if ca(a) € Sy, then cg(a) € UZLS; for all B € N* with B > a and
xP € Suppy (p(x + a) — g(x)).

A general algorithm for solving the SET problem via the method of linearization is as follows.
This algorithm inherits one feature of the DOS algorithm: it could be early terminated when p, ¢
are not shift equivalent. If two nonzero polynomials p(x) and g(x) are shift equivalent, then they
have the same degree d in = and H%(p(x)) = H%(q(x)), which means deg(p(x) — q(x)) < deg(p(x)).
Therefore, we can check the degree condition at the beginning of the algorithm for better efficiency.

Algorithm 3.6 (Shift Equivalence Testing). ShiftEquivalent(p, ¢, [z1,...,%y]).
INPUT: two multivariate polynomials p,q € F[x];
OUTPUT: a special solution of F,, and an F-basis of F,, if p and q are shift equivalent; {}
otherwise.
if p(x) = q(x) =0, return 0 and the standard basis of F".
if deg(p(x) — q(x)) > deg(p(x)), return {}.
set S := Coefficients(p(x + a) — ¢(x),x) C Fla].
let {So,S1,...,Sm} be an admissible cover of S.
set s(0) := 0.
for /=0,...,m do
set L) := Uf:o L,_.0 (SZ)
solve the linear system in a defined by LY.

N N T N VO S

if the linear system L9 has no solution, return {}.

~
S

else there is a special solution s' € F"™ by evaluating each free variable at 0, set s+ =g’ .

~
~

return s(™ Y and an F-basis of the solution space of the homogeneous linear equations induced

by L),

The correctness of Algorithm 3.6 is guaranteed by the following theorem.
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Theorem 3.7. If the cover {Sy, S1,...,Sm} of S is admissible, then for all ¢ = 0,1,...,m, we
have either Vg <Uf;é Si> = or

4 ¢ -1
Vg (U Si> =Vr <U La:S(e) (Sz)> fOT‘ any S(g) € Vg <U SZ).
=0

=0 1=0
The proof of Theorem 3.7 will be given in the next subsection.

Theorem 3.8. For a vector d € N", let p(x) and q(x) be two multivariate polynomials in F[x]q.
Then Algorithm 3.6 can test whether p and q are shift equivalent and output a special solution of
F, o with an F-basis of F),, if )4 # D using O~(d1” ~-d¥) ops in F. Furthermore, combining the
algorithms for computing the integer solutions of linear systems, Algorithm 3.6 can test whether
p and q are shift equivalent over Z and output a special solution of Z,, with an Q-basis of Z
in the case of Z,, # @; if n is fivzed and p(x), ¢(x) € Z[x]; with maz-norms bounded by the

positive integer M, then the maz-norms of the output vectors are O(M‘So(l)) and the algorithm
costs O(6™“ D) log(M)) ops.

Proof. The first three steps take O(Qnd% ---d?) ops by Fact 2.7. Since both a-degree cover and
x-homogeneous cover can be obtained by traversing elements in S, Step 4 can be performed in
O(d% ---d?) ops. By the definitions of a-degree covers and x-homogeneous covers, we have that m
is of the size O(dy + - - - +d,,). Note that by Lemma 3.16 below, Step 7 in the loop can be replaced
by setting L) to be the union of L1 and L,__ (Sy) if £ > 1, and hence the size of the linear
system in Step 8 is no more than |Sy| + n. As a result, the cost of Step 7 is O(|S¢|nd; - - - dy,) ops
and that of Step 8 is O((|S¢| +n)®) ops in each iteration. This implies that the loop takes no more
than O(C) ops, where

¢= i ((1Sel +n)* + [ Selndy - - dn) < (i(\se\ +n)> + (i \Se\> ndy - dy

=0 =0 =0
= (|S| +mn)* +n|S|d; - - - dp.

Since |S| is no more than dids - - - d,,, the loop needs O(d{ - --d¥) ops that dominates the whole
costs. This completes the proof of the first claim.

Now we turn to the case of computing Z, , by Algorithm 3.6. The cost of the algorithm follows
from Fact 2.9 since the timing is dominated by Step 8 in the loop. For the max-norms of the
output vectors, note that the solution sets of L®) would be updated at most n + 1 times, so the
unavoidable coefficient explosions would occur in at most n + 1 iterations of the loop. Then we
obtain the desired estimate of these max-norms by Fact 2.9. |

From the above complexity analysis, we can not distinguish the algorithms with a-degree cover
and x-homogeneous cover. In Section 7, we have implemented both algorithms to compare the
practical efficiency. The experiments show that our ADC algorithm is more efficient than the DOS
algorithm for sparse polynomials.

3.2 Proof of correctness of Theorem 3.7

Before proving Theorem 3.7, we need several lemmas to explore the inner structure of polynomials
co(a) in S. First we give an explicit expression of the non-constant homogeneous components of
co(a) and find a recurrence relation among the homogeneous components. Then we explain the
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role of the admissible cover and the magic of linearization in Algorithm 3.6. Finally, we prove
Theorem 3.7 by induction on £. '

For a vector a = (a1, a2,...,a,) € N, let |a| := >, a; and ('0") = % Let 0,
denote the partial derivative with respect to z; and 9% denote (0g,)*'(03,)*? -+ (0, )*". For n
variables a = {a1, as,...,a,}, we use D, to denote the directional derivative in the direction of a,

ie., Dy := Y 1" aiO,. Fors = (s1,...,s,) € F", the notation Ds means Dy|a=s. Then for any

ke NT,
Dy :=(Da)f = ) (£)ad"
|a|=k
by the multinomial theorem since 9,; and d,; commute.
By the directional derivative and Taylor’s expansion, the homogeneous components of polyno-
mials in Sf can be expressed as follows.

Lemma 3.9. (See [35, Lemma 3.5]) Let d := max{deg,(p(x)), degy(q(x))}. For any k € N and
e {0,1,...,d}, we have

l
HE(p(x +2)) ~ HE (g =Z},D (HE ) ~ B a00)  (32)
and
Dk () k1
HE (HE~ (p (x + ) — Hi (g (x))) = { k172 ’ U 63)
HE (p(x) ~ B (g (x), il k=

Moreover, for any ca(a) € S and k > 1, HY(ca(a)) is the coefficient of x* in ;DX (H,LaHk (p))

Proof. Note that cq(a) is exactly the coefficient of x* in jadal (p(x+a)) — jadal (¢ (x)), so it is
sufficient to prove Equations (3.2) and (3.3). By Taylor’s expansion, we have

d 1 d d 1
p(x+a) :ZED ZZ*'D ))(x).

i=0 i=0 j=0

.

Note that if D (HZ(p)) is not equal to zero, then it is homogeneous of degree j—i in x. Consequently,
we obtain Equation (3.2). Moreover, note that DZ(HZ*%(p))(x) is homogeneous of degree i with
respect to a, so we get Equation (3.3), which completes the proof. |

Since

LDk (HE (p60)) = 1 3 (52707 (0.
|Bl=k

in the both sides of the equality, we have

extracting the terms H”(cq(a)) - x*

M ea(a) - x® = 1 37 (5)a%0? (X (p(x)) - x+7) (3.4)
18|=k

where [x**8](p(x)) denotes the coefficient of x**# in p(x). Therefore, for any f(x) € F[x], we can
write D; (f(x) = Xig= k( )aPaP ([x**P](f(x)) - x**P) and use Dia to denote D’;’a‘azs for
s € F". The following lemma is derived straightforwardly.
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Lemma 3.10. Let k € NT and co(a) € S. Then we have H¥(cq(a)) - x* = %Dlg,a(p(x)).

For the directional derivative, we know DE(f(x)) = (D})*(f(x)). However D% (f(x)) may be
different from (D}ia)k( f(x)), as the following example shows.

Example 3.11. LetF = Q, p(z,y),q(z,y) € Qlz, y] with p(z,y) = 2° +y* and q(x,y) = p(x, y)+1.
Ezxpanding p(x + a,y +b) — q(x,y), we have p(x + a,y +b) — q(x,y) = 3a- 2% +3b-y?> + 3a® - x
3b? -y + (a® 4+ b* — 1). Then we have c(; py(a,b) = 3a?,

Dl aoy@X) = Y ()t - 0209 ([ 1y (p(w, ) - 2y 1)
i+j=1

=(lop) a0 ([2°)(p(z,)) - 2%) + ((o11))0 - By ([wy](p(2, y)) - 2y) = 0,
Dl 0 @) = D () at’ - 9505 ([« "] (p(x, y)) - 2 Hy"H)

i+j=2
= ()@’ - & () p(,)) - 2%) + () ab- 820, (&) (p(w. ) - 2°y)
((0 2))b2 85 ([95212]( (m y)) - ﬂfy2)
O?;' -02(2%) = 6a’x

2
and (D(la,b),(l,o)) (p(x)) = D(1a7b)7(170)(0) = 0. Therefore, we can check that H* (cao(a,b)) -z is
2
equal to %D?a,b),(l,o) (p(z,y)) for k=1,2, but D(Qa,b),(l,o) (p(x)) is not equal to (D(la,b),(l,o)) (p(x)).
Now we rewrite the expression of Dﬁﬂa( f) and derive a recurrence relation for D’;,a( f)-

Lemma 3.12. Let « € N, k, 0 € NT and f € F[x|. Let e; € N denote a unit vector with the i-th
component being one and others being zero. Then we have:

(1) Dho(F(x)) = S5,y -+ Yoy alimr 0%t o ([ Eien | (£(x)) - x@ i)

(2) DEH(F) = Sipe (5)a%0P (Dk o p(F())) -

Proof. (1) Note that for any 8 € N" with |3| = k, B can be expressed as a sum of k unit vectors.
Moreover, there are (Z) different k-tuples (j1,j2,...,jx) such that B = Zle ej,. Then the

claim follows from the definition of Dga( f(x)).
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(2) Applying (1) twice, we have
Dyt (f(x))

n n n n
k k+¢ k k+¢
— E - E E L. E aZz‘:l €5, +Zi:k+1 €j; 321’:1 €j; +Zi=k+1 €j;

J1=1 Jk=1Jjr+1=1 Jk+e=1

k k+2¢ k k42
( |:Xa+2i=1 € T2 itk 41 ejz} (f(x)) - XOT i € itk eji)

n n
ke ke
= E . E aloimk 1% §2ik 1%

Jr+1=1 Je+e=1

k+2

i L Z ISP ([Xam o] (7)) - xt EE o)
a=l jr=1

Jr+1=1 Je+e=1

Then as the proof of (1), we can finally obtain (2) by setting 8 = Zf+,f+1 €j,.

Example 3.13. LetF = Q and p = x* +22y+1y> € Qlx,y]. After expanding, we get p(x+a,y+b) =
vt +da- 23+ 22y + 3 + (60 +b) - 2%+ 2a- 2y +3b-y? + (4 + 2ab) - 2+ (a® +30) -y + (a* + a?b+b3).
All terms of p(x + a,y + b) are listed in Figure 3.1.

0-zy

/\/

2a - xy by

a@\ / bd,

(a® +3b%) -y

(4a® + 2ab) - x

(a*+a%b+0%) 1

Figure 3.1: Terms of the polynomial p(x + a,y + b)

Taking q(z,y) = 0 in Lemma 3.10, we get Dfa,b),(i,j) (p(z,y)) = k! H(ka b)([xiyj](p(x +a,y+0b)))-
xty? for all k > 1. So we can read off Dé“a b),(i j)(p(x,y)) from Figure 3.1. For instance,

D, 0.0 (P(@,9) = 21+ (a® +36%) -y, Doy 1.0y (P(x,9)) = 2a- 2y and Diy 4 2 (p(x, 1)) = 3b- .

Taking k = ¢ =1 in Lemma 3.12 (2), we obtain a recurrence relation among these three terms:

D(Qa,b)7(0,1)(p(l’,y))= Z ((m)) Zbﬂaza ( (ab)7(i71+j)(p(x,y)))

it+j=1
= (1)) 0% (D(la,b),(l,l)(p(x’y))) ((01)) 00y (D(la,b),(0,2) (p(a:,y))) -
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This implies
2(a® + 3b*)y = ad, (2azy) + b, (3by?) . (3.5)

By the definition of nga(p) and Lemma 3.10, we get
2(a* + 3b*)y = a*9%(x%y) + 2abd,0,(0 - xy?) + 628§(y3). (3.6)

Note that the term z* does not involve in the above two equations (3.5) and (3.6) because y t x*.
In this example, the term x* only affects all terms in the blue branch, such as 3!-4a’x = a302(z?).

Without introducing the notation D% ., by Lemma 3.9 (or Lemma 8.5 in [35]) we only get
“global” relations, such as

20 HE, (o (olo +a,y+0))) = D2,y (B2 (0(2,9)
This implies two relations among the rows (instead of the points) in the figure:

2(2abx + a*y + 3b*y) = (ady + b0y)*(z%y + 0 - zy* + ¢°)
= (ady + b9y,) (bx?* + 2azxy + 3by?).

From Observation 3.4 in [35], we know if D}(f(x)) = D{(f(x)), then DE(f(x)) = Df(f(x)) for
all k > 1. Now we show that for any s € F”, D ,(f(x)) can be determined by D;B(f(x)) for all
B € N* with 8 > o and |3| = |a| + k — 1. This is why we introduce the second condition in the
definition of an admissible cover.

Lemma 3.14. Letr,s € F", a € N*, k € N* and f(x) € F[x]. If Di”@(f(x)) = D;ﬁ(f(x)) for all
B € N" with 3 > a and |B| = |a| + k — 1, then we have D ,(f(x)) = D¥ ,(f(x)).

Proof. The proof is by induction on k. It is clear to see that the lemma is true for k¥ = 1. Now
assume the equality holds for k. For k + 1, assume that Diﬁ(f(x)) = D;ﬁ(f(x)) for all B € N”
with 8 > a and |8] = |af + (k+1) — 1. We have DIFN(f(x)) = 321, r%8%(Df g e, (f(x))) by
Lemma 3.12 (2). Note that for all v € N” with v > a + e; and |y| = |a + ;| + k — 1, we have
¥ > a and |y| = |a| + (k+ 1) — 1. Thus by assumption we have Dy (f(x)) = Di,(f(x)). It
follows from the inductive hypothesis that D¥ . (f(x)) = D§7a+ei(f(x)). So

DEEN(F(x)) = 3010 (D e, (F(x)))
=1

= Z r& §e Z (f;) s797 ([xa—&-ez‘-i-“/] (f(x)) - Xa+ei+‘7)

|v|=Fk

SPOCET PR It

Ivl=k i=1
=" (1707 D; s (f(%)).
IvI=k

Because a+7 > a and a7 = ||+ 7] = [a|+(k+1)~1, we have D} o (f(x)) = D} o (£(x))
by assumption. Applying Lemma 3.12 (2) again, the proof is completed. |

Combining Lemma 3.10 and the above lemma, we get the following lemma immediately.
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Lemma 3.15. Let cq(a) € S, k € N with k > 2 and r,s € F". If
H'(cg)(r) = H'(cg)(s) for all B € N" with B > o and |B| = || + k — 1,

then we have

H*(ca)(r) = H (ca)(s)-

Now we are ready to show that for an admissible cover, the linearization does not change the
zero set of the polynomial system S.

Lemma 3.16. Let {S0,51,...,Sm} be an admissible cover of S and ¢ € {0,1,...,m}. If there
exist r,s € Vp(UZLS)), then for all co(a) € ULy S; we have

La=r(ca)(a) = La=s(ca)(a). (3.7)
Furthermore, we have cq(r) = La—s(cq)(r).

Proof. Since cq(r) = La=r(ca)(r), it is sufficient to prove Equation (3.7) by induction on ¢.

For ¢ = 0, we have deg(cq(a)) < 1 by Definition 3.5, 0 La—r(ca)(a) = co(a) = La=s(ca)(a).

For ¢ > 0, suppose the lemma holds for smaller £. Then it is sufficient to show that H*(ca)(r) =
HF*(cy)(s) for all k € N with & > 2. By Lemma 3.15, we know the proof is completed by showing
that H'(cg)(r) = H'(cg)(s) for B € N" with B > a and |,3\ |a| + k — 1. Because |3] >
la|+2—1 > |a|, we have B > . Then we get either cg(a) € U'Z —38; or cg(a) = 0 by Definition 3.5.
For { —k+1<{—2+1</—1, wehaver,s € Vp(U'Z}S;) C Vp(U/ZF™S;). This means r and s
are zeros of all polynomials cg(a) € Sy_g4+1. Then we have

La—r(cg)(r) =cg(r) =0 and La—s(cg)(s) =0. (3.8)

On the other hand, r,s € VF(U(E: k)= 'S;) because Vp(UIZELS) C V(U l(é hHl)- 'S;). By the
inductive hypothesis with £ — k + 1, we get La—r(cg)(a) = La s(cg)(a). So

H(La=x(cg)) = H’(La=s(cg))- (3.9)
Note that H'(cg)(a) = H'(Lazr(cg))(a) = H'(Las(cg))(a). Combining the equations (3.8)
and (3.9), we have

H'(cp)(r) = H' (La=r(cp))(r) = —H"(La=x(cp))
= —H"(La=s(cp)) = H'(La=s(cp))(s) = H' (cp)(s),

which completes the proof. |

Proof of Theorem 3.7. We shall prove the theorem by induction on £.

For ¢ = 0, we know that any cq(a) in Sy satisfies deg(cq(a)) < 1 by Definition 3.5. Thus we
have La:s(o) (S()) = So and VF(So) = VF(La:S(O) (So))

For £ > 0, assume the theorem holds for £—1, i.e., Vg(U'Z3S;) = Vp(U'Z L -1 (S;)). Taking
r,s =s~1 s ¢ VF(Uf;SSi) in Lemma 3.16, we know that the hnearlzatlons of cg(a) at s(¥) and
s~1) are equal for all cg(a) € Uf;(l)Si. This means Uf;éLa:S(e)(Si) = Uf;éLa:S(Z—l)(Si). Then we
have

Vr ( i—0La—s0 (Si )) C Vg (Uf;éLa:s(m(Si)> = Vp (Uf;éLa:s(e—m(Si)) = Vg (Uf;ési) ,
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where the last equality follows from the inductive hypothesis. Note that V]F(UfZOSZ-) is also a subset
of Vp(USZ3S:). So we only need to prove that for all r € Vp(U'Z}S)),

re Vg (ufzosi) if and only if r € Vg (UfZOLa:Su) (SZ-)) . (3.10)

Because st € Vg(UZ1S;), we have cq(r) = L_g (ca)(r) for all cq(a) € US_,S; by Lemma 3.16.
Then the claim (3.10) follows immediately. 1

The main distinction between the reasoning of our general scheme and the DOS algorithm can be
shown in Lemma 3.15. In [35], Lemma 3.5 proves Equation (3.2) which we extend to Lemmas 3.9
and 3.10. Observation 3.4 in [35] is generalized by Lemma 3.14. The subsequent proof for the
correctness of the DOS algorithm can be summarized by the lemma below. Then the remaining
steps for proving Theorem 3.7 and the correctness of the DOS algorithm are similar.

Lemma 3.17. Let d := max{deg,(p(x)),deg.(¢(x))}, i € {0,1,...,d}, k € N with k > 2 and
r,s € F*. If

H'(c)(r) = H'(cp)(s) for all cg(a) € ST, .,

then we have

H*(co)(r) = H*(ca)(s) for all cq(a) € S

Given two points r and s in F”, we use diagrams in Figures 3.2 and 3.3 to explain how
Lemma 3.15 makes the statement more precise than this lemma for the case where d = deg,(p) =
deg,(q) = 4 and n = 2. Let p(z + a,y +b) — q(z,y) = X0 g)en c(a,[g)(a,b)xo‘yﬁ. For the k-th
homogeneous component of ¢, g), if its values at r and s are equal, we draw a point at position
(a, B,k) in the space. Furthermore, if H*(c(4,5))(r) = H*(c(o,5))(s) for all (a, 8) € N? such that
the sum of a and § is a fixed constant 7, which means there are points (o, 3, k) on the same line,
then we draw a segment to connect them to each other. Note that the degree of any polynomial in
Sf_ ; 1s no more than 7, which will be proved exactly in Lemma 3.19. Lemma 3.17 implies that the
dark green segment on one triangle face can conclude all the segments on this face with £ > 2 in
Figure 3.2. More precisely, Lemma 3.15 tells us that in Figure 3.3, on one triangle face, every point
with k£ > 2 can be deduced from the part of dark green segment which is cut out by two dotted
line from this point. For example, Point A can be inferred from Segment .

3.3 Two special admissible covers

By Theorem 3.7, we see that any admissible cover of the polynomial system S corresponds to an
algorithm for solving the SET problem via linear system solving. We now present two special
admissible covers. The first admissible cover defined below classifies the polynomials in the set S
according to their degrees in a.

Theorem 3.18 (a-degree cover). Let d' be the degree of p(x + a) — q(x) with respect to a. Let
SP = {ca(a) € S | deg(cala)) =i}. Then the cover {SP,SP,..., S} of S is admissible.

Proof. We will check that this cover satisfies the two conditions mentioned in Definition 3.5. The
condition (1) can be checked directly by definition. As for (2), assume that cq(a) € SP and
B is an arbitrary vector in N” with 8 > a and x? € Supp, (p(x + a) — ¢(x)). We will argue by
contradiction that deg(cq(a)) > deg(cg(a)). By assumption, we know that deg(cq(a)) = ¢. If there
is a monomial a¥ € Supp(cg(a)) with |y| > ¢, then by Equation (3.4), we have x7*# € Supp(p(x)).

17



~
IN

Figure 3.2: Graph for Lemma 3.17 Figure 3.3: Graph for Lemma 3.15

Since |y 4+ B8 — a| > |8| — |a| > 0, we obtain a8~ ¢ Supp(HI"*8~<l(¢,(a))) € Supp(ca(a)) by
Equation (3.4). However, note that 8 > « implies |3| > |a|, so |y + B — a| = |v|+ 18| — || > ¢,
which leads to a contradiction to the fact that ¢ is the degree of cq(a). 1

Note that 3 > « implies |3| > |a|. This inspires the second admissible cover called the
x-homogeneous cover. Before we prove it, we first present a useful lemma.

Lemma 3.19. Let d := degy(p(x)). For any a € N with cq(a) € S, we have deg,(ca(a)) < d—|a.

Proof. Note that [x**P](p(x)) # 0 yields |a+ 8| < d, so k = |3| < d— || in Equation (3.4). That
is to say, H"(cq(a)) -x® =0 if k£ > d — |a|. Then the conclusion follows. 1

Theorem 3.20 (x-homogeneous cover). Let d be the mazimal degree of p(x) and q(x). Let SH =
{cala) € S||a|=d—i} fori=0,1,...,d. Then the cover {SH,S,...,SH} of S is admissible.

Proof. We first show that {S{T, SH, ..., ST} is exactly a cover of S. It is sufficient to show that S
is a subset of UL ,SH . This is true because we have x® € Supp,(p(x + a) — ¢(x)) € Supp(p(x)) U
Supp(g(x)) for arbitrary cq(a) € S and then 0 < |a| < d.

Then we check this cover is admissible. If there exists co(a) € ST with a nonlinear monomial
aP, then we have x*# ¢ Supp(p(x)) by Equation (3.4). For |3| > 2, there is a unit vector
e; € N" such that e; < a + 3. Thus a®xth—e ¢ Suppan(D;’aJrﬂ_ej (p(x))). By Lemma 3.10,
x*+P=¢j ¢ Supp, (p(x +a) — q(x)). However, |+ 3 —e;| = |a| +|8| — |ej| > d+2—1 > d, which
leads to a contradiction to the fact that deg, (p(x+a) —¢q(x)) < max{deg,(p(x))), deg,(q¢(x))} = d.
So the condition (1) in Definition 3.5 is satisfied. Finally, for any £ = 1,2,...,d, let cq(a) € Sf.
Then for all 3 € N with 8 > a and x? € Supp, (p(x + a) — ¢(x)), we have |B| > |a| = d — ¢, so
cg(a) € Sf—lﬁ\ C UZJSH. Therefore, the cover {S, SH,... SH} also satisfies the condition (2)
in Definition 3.5 and the proof is complete. |

The cover {S{T,SH,..., SCIl{} is exactly the one defined in the DOS algorithm and we call it
x-homogeneous cover. As a consequence, we reproved the correctness of the DOS algorithm in our
general framework of admissible covers.

After introducing two special admissible covers, we would like to compare them and explain
their connection. For simplicity, we always assume HZ(p(x + a)) = HZ(q(x)) with deg(p(x)) =
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deg(q(x)) = d in the following discussion. For this special case, S = @. We get deg,(p(x + a) —
q(x)) = d by Equation (3.4). Lemma 3.19 yields S C Uf_,SP. Hence the connection between two
different covers is like the following figure.

S SD
|
|
|
; l
S sp
‘ |
|
o Sy
T
| | |
1 1 1 So’
SH SH e Scllf

Now we give some examples to illustrate the two algorithms induced by the two elaborated
admissible covers.

Example 3.21. Let F = Q, pi(z,y,2), ¢i(z,y,2) € Q[z,y,2] for i = 1,2 with pi(z,y,2) = z* +
.T2y + y2? (11(%?!,2’) = pl(xvy + 172 + 2) + 2, p?(xay’z) = lA + xSy + $y2 + Z2 and QQ(%%Z) =
pe(x,y+ 1,2+ 2) + xy.

(1) Compute Fy, 4. We expand p1(z+ a,y+ b,z +¢) — qi(x,y,2) and get that
pl(x +a,y+ ba Z+ C) - QI(:U>y7Z)
=(4a-2%) + ((6a® +b—1) - 22 + 2a - zy)
+ ((4a® +2ab) -z + (a®> + 20— 2) -y — 2) + (a* + a®b + b? — 1).

Then we can separate the coefficients of p1(x + a,y + b,z + ¢) — q1(x,y, z) with respect to x,
y and z in two different methods as following.

S at+a?b+v?2 -1 SP
4a® + 2ab 3 sp
6a% +b— 1 i a? +2b — 2 i SP
4a : 2a i 3 Sp
-1 ¢

st si i i
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So we can get Fp, 4, = @ at once if we use the a-degree cover, while by the x-homogeneous
cover, we will calculate until we get S:g{.

(2) Compute Fp, 4,. We expand pa(x+a,y +b,z+¢) — q2(x,y,2) and get that
p2(z +a,y+b,z+c) - q(z,y,2)
=((4a+b—1) 2%+ 3a - 2%y)
+ ((6a® + 3ab) - 2® + (3a* + 20— 3) - 2y + a - y*)
+ ((4a® +3a*b + 0% — 1) - + (a® +2ab) -y + (2c — 4) - 2)
+ (a* + @b+ ab?® + ¢* — 4).

Then we can separate the coefficients of p2(x + a,y + b,z + ¢) — q2(x, y, z) with respect to x,
y and z in two different methods as following.

S at+adb+ab:+c2 -4 S4D
4a® + 3a%b+ > — 1 :
| SP
a® + 2ab |
I
6a® + 3ab | !
| | P
302 +2b—3 } |
I |
4da+b—1 ! | ‘
: a | 2c—4 : sp
e | |
| | |
! | | D
|
! | ; S
| | |
st st st i

So we can get Fp, 4, = @ if we use x-homogeneous cover and calculate SH while by a-degree
cover, we have to solve 2c —4 = 0 needlessly.

4 Isotropy groups and orbital decompositions

In this section, we first recall the notion of isotropy groups under shifts, which plays a central role
in the summability criteria and existence criteria of telescopers. Then we present different types
of partial fraction decompositions of F(x) with respect to different orbital factorizations as in [19].
These decompositions can be computed via algorithms for the SET problem over integers and
will be used in the next sections for reducing the rational summability problem and the existence
problem of telescopers to simpler cases.

4.1 Isotropy groups

Let G = (04,,...,04,) be the free abelian group generated by shift operators o,,...,0,, and A
be a subgroup of G. Let p be a multivariate polynomial in F[x]. The set

[pla:={o(p) |0 € A}
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is called the A-orbit of p. Two polynomials p,q € F[x]| are said to be A-shift equivalent or A-
equivalent if [p|a = [q]a, denoted by p ~4 ¢q. The relation ~ 4 is an equivalence relation.

Definition 4.1 (Sato’s Isotropy Group [70]). Let A and p be defined as above. The set
A, :={oce€A|oa(p) =p}
is a subgroup of A, called the isotropy group of p in A.

If two polynomials p, ¢ in F[x| are A-shift equivalent, then A, = A,. The following remark says
that we can test the A-equivalence of polynomials and compute a basis of A, by algorithms for the
SET problem over integers in Section 3.

Remark 4.2. (1) Two polynomials p,q € F[x| are G-equivalent if and only if there exists a
o € G such that o(p) = q. Therefore, the G-equivalence relation of p,q can be obtained via
the computation of Z, 4 in Section 5. When p = q, the group G, is isomorphic to Z, . Both
of them are free abelian groups and a basis of G, can be given by a basis of Zy,.

(2) When A= (0g,,...,05,) with1 <1 <mn, we can view p,q as polynomials in x1,...,z, and
the other variables are parameters. Then the A-equivalence relation of p,q and a basis of the
isotropy group A, are also available by algorithms in Section 5.

(3) In general, let A = (11,...,7p), where {T1,...,7}(1 <1 <n) are Z-linearly independent. We
will utilize Proposition 5.12 below to construct a difference isomorphism between (F(x),7;)
and (F(x),04,) such that ¢ o7, = o4, 0¢ for 1 < i < r. Let B = (04,,...,04,). Then p
and q are A-equivalent if and only if ¢(p) and ¢(q) are B-equivalent. Furthermore, we have
T € Ay if and only if oy -+ 047 € By for any ay, ..., a, € Z.

A structure property of the quotient group G/G), is given by Sato [70, Lemma A-3] as follows.
Lemma 4.3. G/G, is a free abelian group.

If p € F[x] \ F is a non-constant polynomial, then G), is a proper subgroup of G. By Lemma
4.3, we have rank(G,) < rank(G), where rank(G) denotes the rank of the free abelian group G.
This property about the rank of isotropy groups plays a key role in the reduction method of solving
rational summability problem and the existence problem of telescopers.

Ifn>1,let H= (04,...,0gz, ,) be the subgroup of G generated by o4,,...,04, ,. The
isotropy group of p in H is H, = {r € H | 7(p) = p}. By Lemma 4.3, both G/G, and H/H, are
free abelian groups. So the ranks of G, and H,, are strictly less than those of G and H respectively
if p has positive degree in x;.

Lemma 4.4. G,/H, is a free abelian group of rank(G)/H,) < 1.

Proof. Define a group homomorphism ¢ : Gp/H, — Z by

O'];i = 'O'I;:Hp — k.

It can be verified that ¢ is well-defined. For any 71,7 € G,, if they are in the same coset of H,
in G, then 77, ' € H,. This implies 717, ' € H and hence ¢(m H,) = ¢(m9H,). Moreover, the
converse is true since G, N H = Hp. So ¢ is injective. Then we have G,/H), = im ¢ = kZ for some

integer k € Z. So G,/H) is a free abelian group generated by o 1(k). |
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Remark 4.5. Let p be a polynomial in F[x|. By Remark 4.2.(1), one can compute a basis
{r,m,...,7} of Gp. If ; € H for all i = 1,...,r, then G, = H, and Gp/H, = {1}. So
rank(Gp/H,) = 0 and {m,m,..., 7} is a basis of Hy,. If v ¢ H for some ¢ € {1,...,r},
then rank(Gp/Hp) = 1. Write 1, = oot gl with bij € Z for each i = 1,...,r. Let
B = (bi;) € Z"". Since ¢ ¢ H, we have by,, # 0. Using unimodular row reduction, one
can compute a unimodular matriz U € Z™" such that C = UB, where C = (¢; ;) € Z™" satisfies
c1n = ged(bim, bapn, ... brpn) #0 and ¢ip =0 for alli =2,...,r. Let 0; = ogt o™ for each
i=1,...,r. Then {o1,...,0.} is another basis of Gy, because U is an invertible matriz over 7.
Moreover, G,/H, = (1) and {o2,...,0.} is a basis of H,.

Example 4.6. Consider polynomials in Q[x,y, z]. Let G = (04,0y,0,) and H = (04, 0y).
(1) For p = x? + 2xy + 2%, we have G, = H, = {1}.

(2) For p = (z — 3y)*(y + 2) + 1, we have G, = (1) and H, = {1}, where T = o3o,0,1. So
Gp/H, = (T), where T = TH,, denotes the coset in G),/H, represented by T € G,,.

o, and oy = 0926051.

(3) Letp = x+2y+z, we have Gy = (11, 72) and H, = (12), where 1y = 0,0,

So Gp/H = <7_'1>.

4.2 Orbital decompositions

A polynomial p € F[x] is said to be monic if the leading coefficient of p is 1 under a fixed monomial
order. Let Xx; denote the m — 1 variables xo, ..., zy,. For any subgroup A of G = (04,,...,04,)
and any polynomial @ in F(%1)[z1], one can classify all of the monic irreducible factors in 1 of @
into distinct A-orbits which leads to a factorization

I

Ji
Q=c-[[][7.(d),

i=1j=1

where ¢ € F(x1), I, J;,e;; € N, 7 ; € A, d; € F[x] being monic irreducible polynomials in distinct A-
orbits, and for each 4, 7; j(d;) # 7 j7(d;) if 1 < j # j' < J;. With respect to this fixed representation,
we have the unique irreducible partial fraction decomposition for a rational function f = P/Q €
F(x) of the form

I J; €ij
aiy ‘7€
f:p+ZZZT. (d)0 (4.1)
i=1 j=1¢=1 “I\"

where p,a;j, € F(X1)[r1] with deg, (a;j¢) < deg,, (d;) for all i,j,£. Note that the representa-
tion in (4.1) depends on the choice of representatives d; in distinct A-orbits. However, the sum
Z;]; ) Ti(l].iﬁiif)[ only depends on the multiplicity ¢ and the orbit [d;]4 instead of its representative d;.
Based on this fact, we shall formulate a unique decomposition of a rational function with respect
to the group A. In this sense, we can decompose F(x) as a vector space over E = F(x7).

Given an irreducible polynomial d € F[x] with deg, (d) > 0 and j € NT, we define a subspace

of F(x)

a
Vidla,j = Spang { W a € Elzq],7 € A, deg,, (a) < degxl(d)} . (4.2)

For any fraction in Vigy, ;, the irreducible factors of its denominator are in the same A-orbit as
d. Let Vo = E[x;1] denote the set of all polynomials in z7. By the irreducible partial fraction
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decomposition, any rational function f € F(x) can be uniquely written in the form

F=Fo+>.> fiaa (4.3)

J [da

where fo € Vo and fg), ; are in distinct Vg, ; spaces. Let T4 be the set of all distinct A-orbits of
monic irreducible polynomials in F[x], whose degrees with respect to x; are positive. Then F(x)
has the following direct sum decomposition

Fx) =D (D D Vi, |- (4.4)

JENT [d]a€Ta

Definition 4.7. The decomposition (4.4) of F(x) is called the orbital decomposition of F(x) with
respect to the variable 1 and the group A. If f is written in the form (4.3), we call fo and fiq, ;
orbital components of f with respect to x1 and A.

A key feature of subspaces V|q), ; is the A-invariant property. In the field of univariate rational
functions, the orbital decomposition of F(z;) with respect to the group A = (o,,) was first given
in [51] by Karr.

Lemma 4.8. If f € Vg, ; and P € F(x1)[A], then P(f) € Vig, ;-

Proof. Let f =Y a;/7i(d)? and P =Y p,0 with p, € F(X;) and o € A. For any o € A, we have
that o is still in A, because A is a group. Since the shift operators do not change the degree and
multiplicity of a polynomial, we have deg,, (c(a;)) < deg,,(d) and then % is in Vig, ;. So
P(f) € Vig,,; by the linearity of the space. 1

Example 4.9. Let F = Q, E = Q(y, 2) and G = (04,0y,0:). Consider the rational function fi in
Q(z,y, 2z) of the form

x — 22 r—y—2z y + 22
fr=— 5t 3 5t 3 2 :
x° 4 2zy + 2 o+ 22y + 22+ 2 r°+ 22y +8r+2y+2°—22+8
dli;;h,l di2 di,3

If A = (o), then the orbital partial fraction decomposition of fi is

2 2

. Tr—z r—y—2z y+z

fi=fii+ fig+ figwith fi1 = ———, fi2=———— and fi3= ,
dy di,2 di3

where f1; € Vig, j,1 fori=1,2,3 and dy,d12,d1 3 are in distinct (o;)-orbits. If A= (0, 0y), then
the orbital partial fraction decomposition of f1 is

x—22+x—y—2z _y+22
d1 O‘y(dl) ’ d13,

fi=fix+ fig with fi1 =

where f1,1 € Viga1, J1,2 € Viay 5141 and di,dy 3 are in distinct (02, 0y)-orbits. If A= (04,0y,0),
then f1 € Vig,),,1 i one component in the orbital decomposition because

r—22 r—y—2z Y+ 22

— + .
h d1 ay(d1) opodos (dy)
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Example 4.10. Let F = Q and G = (04,0y,0,). Consider the rational function f = fi + fo+ f3
in Q(x,y, z) with fi given in Example /.9,

o= T4z andf—( N z 1 > 1
S PR T P e e A e A 2 R
————

da ds

If A =G, then the orbital partial fraction decomposition of f is

f=h+fa+fs with fi€ Vg, fori=1,2and f3 € Vigy 2,

where di,dy, d3 are in distinct (04, 0y, 0,)-orbits.

5 The rational summability problem

In this section, we solve the rational summability problem for multivariate rational functions and
design an algorithm for rational summability testing. In Section 5.1 we use a special orbital de-
composition in Section 4.2 to reduce the summability problem of a general rational function to its
orbital components and then further to simple fractions by Abramov’s reduction. In Section 5.2, we
use the structure of isotropy groups to reduce the number of variables in the summability problem
inductively.

5.1 Orbital reduction for summability

Let f be a rational function in F(x), where x = {x1,..., 2y, }. Recall that x; = {z2,..., 2 }. Let
n be an integer such that 1 < n < m. We consider the (o4,,...,0,,)-summability problem of
fin F(x). Let G = (04,,...,04,). Taking E = F(x;) and A = G in equality (4.2), we get the

subspace Vg, ; of F(x)

Vidg,j = Spang { a € Elz1],7 € G,deg,, (a) < degxl(d)} .

a
7(d)I
where j € N* and d € E[x] is irreducible with deg, (d) > 0. According to Equation (4.3), f can

be decomposed into the form
F=F+>.> faes (5.1)
J e
where fy € Vo = E[z1] and Jlde,; are in distinct Vig, ; spaces. Then we obtain the orbital
decomposition (4.4) of F(x) with respect to the group A = G.

Lemma 5.1. Let f € F(x). Then f is (04, ..,0x,)-summable if and only if fo and each fiq,, ;
are (0gy, - .., 0z, )-summable for all [d]g € Tg and j € NT.

Proof. The sufficiency is due to the linearity of difference operators A,,. For the necessity, suppose
f=>" A (g") with g@) € F(x). By the orbital decomposition of rational functions (5.1), we
can write f, ¢ in the form

f=Jfo+ sz[d}cd and ¢ = g(()i) + ZZg[(é])GJ for 1 <i <n.
i lde

J lde
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By the linearity of A,,, we see

S () E8 (S ()

J ldle \i=1

By Lemma 4.8, it is another expression of f with respect to Vg, ;. Such a decomposition is unique,
so fo=> i1 Az (g(()z)) and fig.; = Doie1 Da; (g[(;])GJ), which are (o4,,...,04,)-summable. ]

Using Lemma 5.1, we can reduce the summability problem of a rational function to its orbital
components. Note that polynomials in x; are always (0, )-summable. Thus Problem 2.4 can be

reduced to that for rational functions in Vg, ;, which are of the form

f= ZT: %, (5.2)

where 7 € G, a; € F(x1)[z1], d € F[x]| with deg,, (a-) < deg,, (d) and d is irreducible in z; over
F(%1).

Let o be an automorphism on F(x) and a,b € F(x). Then for any integer k € Z, we have the
reduction formula

—k
a o "(a)
——=o(h)—h 5.3
iy = o =+ T, (53)
. — i—k . —k— i .
where h = 0if k = 0, h = Y020 T if k> 0 and h = =357 ZH8S if k < 0. For any
T= UI;} . -a’jz € G, applying the reduction formula (5.3) with o = o, for i =1,...,n, we get
n —k1 —kn
a o o (a)
— o (h;) — h;) + -2 Tn , 5.4
e = 20 o) =) . (5.4)
where
0, if k=0,
ki_l éfki _.ki—l . —k1 a
Z O'xi O—QZ_I Zz‘l ( )7 if k‘l > 0’
hi =< =0 Uﬁi%iii o (b)
—ki—1 Uﬁio_x_ik_?il—l . a;1k1 (a) .
— Z P — . , if ki < 0.
=0 Oz ZUIH»l Oy, (b)
for i =1,...,n. The equation (5.4) is called the (o, ..., 04, )-reduction formula. Rewriting every
fraction of f in (5.2) by the reduction formula (5.4), we get the following lemma.
Lemma 5.2. Let f € Vi, ; be in the form (5.2). Then we can decompose it into the form
- a
= Ds(gi)+r withr = - (5.5)

=1

where g; € F(x), a = Y. 77 (a;) with deg, (a) < deg, (d). In particular, f is (04,,...,04,)-
summable if and only if r is (04, ..., 04, )-summable.
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Example 5.3. Consider the rational function fi € Q(z,y,2) given in Example 4.9. Then f; €
Vidie1 and it can be written as

r—22 r—y—22 y + 22

+ + ,
dy Uy(dl) Uxagaz_l(dl)

fi=

where di = 2% + 2xy + 2%. By applying the (o, oy, 0z)-reduction formula, we have

2 — 1
f1=Dp(ur) + Ay(v1) + Az (wr) + 11 with ry = xd ,
1
where
y + 22 r—y+1-—2z y+£—3+ y— 3+ 22
wm=—— =" "+ Z—, wy ==
olo Y(dy) dy = Ty (dy) oz (di)

Then fi is (04, 0y, 0;)-summable if and only if r1 is (0, 0y,0,)-summable.

The results in Lemmas 5.1 and 5.2 are summarized as follows. The following lemma reduces
the rational summability problem from general rational functions to simple fractions.

Corollary 5.4. Let f € F(x). Then we can decompose f into the form

f= Z Ay, (gi) +r with r = Z Z am’ (5.6)

=1 j=1

where g; € F(x), a;; € F(X1)[z1], d; € F[x] with deg, (a;;) < deg,, (d;) and the d;’s are monic
irreducible polynomials in distinct G-orbits. Furthermore, f is (04, ..., 0z,)-summable if and only
if each a;j/d} is (04, ...,04,)-summable for all i,j with 1 <i<1T and1 < j < J;.

5.2 Summability criteria

By Corollary 5.4, we reduce the rational summability problem to that for simple fractions
f =

a

= (5.7)

where j € Nt, a € F(X1)[z1] and d € F[x] is irreducible with deg,, (a) < deg,, (d). In this section,
we shall present a criterion on the summability for such simple fractions.

For the univariate summability problem, we recall the following well-known result in [2,4, 10,
61,64,69]. Since the univariate case is the base of our induction method, we give a proof for the
sake of completeness.

Lemma 5.5. Let f € F(x) be of the form (5.7). Then f is (04, )-summable in F(x) if and only if
a=0.

Proof. The sufficiency is trivial since f = A, (0). To show the necessity, suppose f is (o, )-
summable but a # 0. Since f = a/d’ € Vidjs.j» by the proof of Lemma 5.1 we can further assume

[ =A4(g) for some g € Vig,, ;. Write g in the form g = flzgo ai/ol (d)? with ag,ae, # 0. Then

{1+1 a
— A, (g) = i
1=£to
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where a; = 04, (ai—1) —a; for by +1 < i < 0y, ay, = —ay, and ay, 41 = 04, (ay, ). Note that ay,
and ag, +1 are nonzero. For any integer ¢ € Z, ‘7;1 (d) is still an irreducible polynomial. However,
there is only one irreducible factor in the denominator of f = a/d’. So we must have o}, (d) = d
for some nonzero integer ¢. It implies that d is free of x1. This is a contradiction because d has
positive degree in x;. |

For the multivariate summability problem with n > 1, let G = (04y,...,04,) and H =
(0gyy---y0z,_,). The isotropy groups of the polynomial d in G and H are denoted by G4 and
H,, respectively, i.e.,

Gi={r€G|7(d)=d} and Hy;={re H|7(d)=d}.

By Lemma 4.4, we know either rank(G4/Hg) = 0 or rank(Gy4/Hy) = 1.
When rank(G4/Hg) = 0, the summability problem in n variables can be reduced to that in
n — 1 variables.

Lemma 5.6. Let f = a/d’ € F(x) be of the form (5.7). If n > 1 and rank(Gq/Hg) = 0, then f is
(Onys -y 0g,)-summable in F(x) if and only if f is (04y,...,0%,_,)-summable in F(x).

Proof. The sufficiency is obvious by definition. For the necessity, suppose f is (04y,...,04,)-
summable but not (og,,...,04, ,)-summable. By the orbital decomposition of f in (5.1) and
Lemma 5.1, we get

f=2z(q1)++ Az, (gn) (5.8)

with g1,...,gn in the same subspace V]
T1,...,Tp_1, we can decompose g, as

dg,j @ f. As an analogue to (5.5) in n — 1 variables

n—1 P

= = Tan ()7

where u; € F(x), p € N, Ay € F(%1)[z1], p € F[x] with deg,, (\¢) < deg,,(d) and p is in the same
G-orbit as d.

Furthermore, we can assume Ao), # 0 and each nonzero Ag/ct ()7 is not (o4y,...,04, ,)-
summable. Substituting g, in (5.9) into (5.8), we get

p+1 3 n—1

F+>° - A(éﬂ)j =" Ap,(ha), (5.10)
=0 T

=1

where \g = Ao, 5\p+1 = —04,(N\p), A= N\ — 0z, (A—1) for all 1 < ¢ < pand h; = g; + Ay, (u;) for
all 1 <i<n—1.

Since rank(Gq/Hq) = 0 and Gq = G, it follows that all o, (u) with ¢ € Z are in distinct H-
orbits. In particular, [1]g, [04, ()] - - -, [0hd (1)] g are distinct H-orbits. On the other hand, the
left hand side of (5.10) is (04,,...,0s,_,)-summable, but Xg/p is not (o4,,...,0s, ,)-summable
according to the assumption. By Lemma 5.1 (in n — 1 variables), the only choice is that u ~p d.
Similarly, o2 (1) ~g d and hence p ~pg & (). This leads to a contradiction since p is a
non-negative integer. |

Lemma 5.7. Let f € F(x) and K be a subgroup of G = (04,,...,04,) with rank r (1 < r < n).
If {oi}_, and {m;}i_, are two bases of K, then f is (o1,...,0,)-summable if and only if f is
(T1,...,7)-summable.
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To prove the basis change property of the summability problem in Lemma 5.7, we first show
the following lemma. It can be seen as a variant of the reduction formula (5.4). Since it is useful
in computation, we give a detailed proof by induction.

Lemma 5.8. Let 01,...,0, be elements in G and K = (01,...,0,) be the subgroup of G generated
by o1,...,0.. Then for every T € K,

T—1= (01 —1)61+ -+ (0, — 1)5,,
for some 6; € FK].

Proof. We prove this lemma by induction on the number of ¢;. If r = 1, then 7 = Jlfl for some
ki € Z. We have alfl —1= (01 —1)pu, where p = 0if ky =0, p = Zf;al ol if k1 > 0 and
0= —Z;:k(}*l cr]frk1 it k4 < 0. If r > 2, assume that the conclusion holds for r — 1. Write

T—Glfl--'af’“ for some ki,...,k, € Z. Then

T—1= (olfl—1)052‘--054”4-<a§2-~a,]fr—1).

If 012” -..okfr = 1, then we are done. Otherwise, by the inductive hypothesis, we get 7 — 1 =

(01 —1)61 + -+ + (o — 1), for some &1,...,6, € F[K]. In fact, the above argument gives the
following explicit expression

( 0 if k; =0,
Zaf Bl g if k; > 0,
G =
—ki—l
= Y oltRiolat ok itk <,
\ (=0
fori=1,...,7. |
Proof of Lemma 5.7. Suppose f is (71, ..., 7,)-summable. This means
f=An(h1)+ + Ar(hr) (5.11)
for some hi,...,h, € F(x). Foreachi=1,...,r, since 7; € (01,...,0,), it follows from Lemma 5.8

that ; — 1 = (61 — 1)G;1 + -+ + (0 — 1)5;, for some ;; € F[K] with K being the subgroup
generated by o1, ...,0,.. Applying this operator to h; yields that

Aﬁ(hl) - AU1(hi,1) +eee Aar (hz’,r)7 (5.12)
where h; ; = ¢;;(h;) for j =1,... 7. Combining Equations (5.11) and (5.12), we have
ISR WSUPED 910 n |
i=1 j=1 7j=1 i=1

where the last equality follows from the linearity of A, . Thus f is (o1, ..., 0;)-summable. Similarly,
the other direction is also true. |
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Theorem 5.9. Let f = a/d’ € F(x) be of the form (5.7). Let {r;}I_{(1 <7 < n) be a basis of G4
(take 71 =1, if Gg = {1}). Then f is (04y,...,0q,)-summable if (md only if

a=Ar(b1)+ -+ Ar(b)
for some b; € F(x1)[x1] with deg, (b;) < deg, (d) for all1 <i<r.

Proof. The sufficiency follows from the fact that f = >\ A, (b;/d’) and Lemma 5.8. For the
necessity, we proceed by induction on n. If n = 1, then Gy is a trivial group and the univariate case
follows from Lemma 5.5. If n > 1, suppose the inductive hypothesis is true for n — 1 as follows.

If {0;};_, is a basis of Hg, then f is (0g,,...,04, ,)-summable if and only if a =>";_; Ag,(bi)
for some b; € F(x1)[z1] with deg,, (b;) < deg,, (d) for all 1 <i <s.

Now we proceed by a case distinction according to the rank of G4/ H, which is either 0 or 1 by
Lemma 4.4. If rank(G4/Hy) = 0, then Hy; = G4. The conclusion follows from Lemma 5.6 and the
inductive hypothesis. If rank(G4/Hg) = 1, by Lemma 5.7, we may assume that {7;}/_, is a basis
of G4 such that Hy = (ry,...,7,—1) and Gd/ H; = (7). Here 7, represents the element 7, H; with
7 € G4. Then we can choose T, = 0 ]’“ . amnk 1 O‘k" such that &, is a positive integer. Otherwise,
replace 7, by 7, ~1 Since 7, is a generator of Gy4/Hyg, we have that k,, is the smallest positive integer
such that aﬁz(d) ~p d.

By the decomposition (4.4), we can assume f = Ay, (g1) + -+ + Ay, (gn) with g; € Vg, ;- In
here, using Lemma 5.2, g, can be decomposed as

n—1 kn—1

A
gn = ZAmz(uz) + Z f&)jv

i=1 (=0 " %In

where u; € F(x) and A\, € F(xy)[z1] with deg, (\¢) < deg,, (d). Then we have

kn—1 \ n—1
=1

(=0 ~*n

where h; = g;+ A, (u;). Note that ok (d) = ok - . O'I;n 1(d) and apply the reduction formula (5.4)

to simplify (5.13). We get
a1

-5

/=0 zn

where f; € F(x), Ao = a+Ao—035 -+ 05" op (A, —1) and A = Ag—0g, (A1) for 1 < £ < ky—1.

Note that [d], [0, ()], - ,[ kz Y(d)]y are distinct H-orbits due to the minimality of k.

From the equation (5.14), f is (04,,...,04, ,)-summable. So by Lemma 5.1, each

Ty 8
(0zyy- -0z, ,)-summable for 0 < ¢ < k,, — 1. Let W denote the vector subspace of F(x) over F
con31st1ng of all elements in the form of 3X7_1 A, (b;) with b; € F(%;)[x1] and deg,, (b;) < deg,, (d).
(If r = 1, take W = {0}.) If two rational funct1ons g, h € F(x) satisfy the property that g—h € W,
we say g, h are congruent modulo W, denoted by g = h (mod W). Since Hy = Hgﬁn(d), we apply

the inductive hypothesis to conclude that

0=a+X—o - U;nkfflazn()\kn_l) (mod W)
0= A —0g,(No) (mod W)
0= Akn—l — O'xn()\kn_g) (mod W)
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Since W is G-invariant, it follows from the equations that

”J—kznqalx@'n (M) — Ao =A, (N) (mod W).

1 Tn—1 n

This completes the proof. |

Remark 5.10. For the bivariate case with n = 2, Theorem 5.9 coincides with the known criterion
in [47, Theorem 3.3] and [27, Theorem 3.7]. In this case, rank(Gy4) < 1 and Hy = {1}. If
rank (Gg) = 0, then a/d’ is (04, , 04, )-summable in F(x) if and only if a = 0. If rank (G4) =1 and
Gq is generated by T = o102 € G for some Uy # 0, then a/d is (04,,04,)-summable if and only

ifa= 0ol o f2(b) — b for some b € F(X1)[z1] with deg,, (b) < deg,, (d).

z1Y 2o
Example 5.11. Let f = 1/(z{ + -+ 25) € Q(x1,...,z,) with s,n € N\ {0}. Let Gy be the
isotropy group of d = x5 + -+ + x5 in G = (0g4,,...,04,). Then we can decide for all cases the
(Onys- -y 0, )-summability of f in Q(z1,...,zy).

(1) If s=1 and n > 1, then d is irreducible. The rank of G4 is n — 1 and one basis is given by
Tlyenny Tno1 With 7; = awia;il fori=1,...,n—1. Since 1 = 1(x1) — x1, it follows that f is
(Ogys---y0g,)-summable. In fact, we have

1 T —x1— 1
[ — Azl <1> _|_A12 <1> .
T+t Ty, T4+ Ty, x4ty
This means f is (04,0, )-summable, so is (0, ...,04,)-summable.

(2) If s > 1 and n = 1, then f = 1/xj. Since the isotropy group of x1 in (o) is {1}, by
Theorem 5.9, we get that f is not (o4, )-summable.

(3) If s> 1 andn =2, then f = 1/(25 +x3) = >, a;/(x1 — Bjza), where B;’s are distinct roots
of 2 = =1 and a; = 1/(s(Bjz2)*"1). There exists j € {1,...,s} such that B; ¢ Z. Then for
dj = 21 — Bjr2, we have Gq; = {1}. So a;/d; is not (04, 04,)-summable in C(x1,x2) and by
Lemma 5.1, neither is f. Hence f is not (04, ,04,)-summable in Q(x1,x2). This result has
appeared in [27, Example 3.8].

(4) If s > 1 and n > 2, then d is irreducible. Since G4 = {1}, by Theorem 5.9, it follows that f
is not (g, ...,04,)-summable.

Now we transfer the (71,...,7)-summability problem to the (o,,..., 0y, )-summability prob-
lem.

Proposition 5.12. Let {r}/_;(1 < r < n) be a family of linearly independent elements in
G = (03,,...,0z,). Then there exists an F-automorphism ¢ of F(x) such that ¢ is a difference
isomorphism between the difference fields (F(x),7;) and (F(x),04,) for alli =1,...,r. Therefore,
for any f € F(x), f is (11,...,7)-summable in F(x) if and only if ¢(f) is (0z,,...,0z,)-summable
in F(x).

Proof. Assume 7; = ai{"l---aﬁ:‘,;m with o ; = 0 if j > n and write o; = (q41,...,5m) € Z™
viewed as a vector in Q™ for ¢ = 1,...,r. Then ay,...,«, are linearly independent over Q. So
we can find the other vectors ay.41,...,a,, such that {aq,...,a;,} forms a basis of Q™. Let
a; = (01,...,0m) fori=r+1,...,mand A= (a;;) € Q™. Then A is an invertible matrix.

Thus we define an F-automorphism ¢ : F(x) — F(x) by
(p(x1), ..., d(xm)) == (z1, ..., 2m)A.

Let uj := ¢(xj) = >ty o ja; for all 1 < j < m. Then ¢ satisfies the relation ¢ o 7; = 0, 0 ¢ for
all  =1,...,r, which means the following diagrams
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F(x) — > F(x) F(x) —~ F(x)

F(x) —~ F(x) F(x) —~ F(x)

are commutative. This is true since for any f € F(z1,...,zy,,), we have

O (ri(flxr,...,zm)) =0 (fler + g,y Tm + Qim))

= flur + i1, U + Q)

and

0ui (O(f (21, ) = 00, (f (w1, um))

= flur+ i, um + i)

It follows that

F=Y An(g) ifandonlyif ¢(f) = As(6(g:)
=1 =1

whenever f,g1,..., g, € F(x). This proves our assertion. |

Combining Theorem 5.9 and Proposition 5.12, the summability problem 2.4 in n variables
can be reduced to that in fewer variables. So we can design the following recursive algorithm for
testing (04, .. ., 04, )-summability of multivariate rational functions. Furthermore, the (7,...,7,)-
summability problem can also be solved via the transformation in Proposition 5.12.

Recall that a map ¢ : F(x) — F(x) is called a Q-affine map if ¢(f(x)) = f(x- A+ b), where A
is an invertible matrix in GL,,(Q) and b is a vector in Q™. Note that the identity map, all shift
operations and all difference isomorphisms constructed in Proposition 5.12 are Q-affine maps. The
composition of two Q-affine maps is still a Q-affine map. If f is (o4, ..., 0z, )-summable in F(x),
Algorithm 5.13 will output unnormalised certificates for f in the form

p Ky
ZH 0,k uﬁk

=1
where ug;, € F(x) and the vy ;’s are Q-affine maps.

Algorithm 5.13 (Constructive Testing of the Rational Summability).

IsSummable(f, [z1,...,zy]).

INPUT: a multivariate rational function f € F(x) and a list [x1,...,xy,] of variable names;

OUTPUT: unnormalised certificates gi,...,qgn for f if f is (0xy,...,04,)-summable in F(x); false

otherwise.

1 using shift equivalence testing and partial fraction decomposition, decompose f into f = fo +
Dojent 2ofdle Jlde, s in Equation (5.1).

2 apply the reduction to fo and each nonzero component fiq ., ; such that

F=00(g1) 4+ A (gn) +7 wzthr_zza”,

=1 j=1
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where ai,j/dg is the remainder of fiq,),.; described in Lemma 5.2.

3 ifr=0, then return ¢1,...,gn.
4 fori=1,...,1 do
5 by Remark 4.2, one can compute a basis 7;1,...,T;r, for the isotropy group Gg, of d;.
6 for j=1,...,J; do
7 ifn=1 or Gg, = {1} then
8 return false if a; ; # 0.
9 else
10 find an F-automorphism ¢; of F(x) given in Proposition 5.12 such that ¢;o7; g = 04,0¢;
forl=1,...,r;
11 set CNLZ‘J‘ = <Z>Z~(ai,j).
12 execute IsSummable(a; j, [z1,...,2y,]).
18 if Gij 18 (05 .., Og,, )-summable in F(x), let
= (1) - ()
return false otherwise.
14 applying ¢i_1 to the previous equation yields that
Qij = ATi,l (bg,lj)> +ot ATi,ri <b§3)> )
where (0,0 = (671 (0), ... o7 B,
15 using Lemma 5.8, compute hg ]), ... ,hg) € F(x) such that
0 ri b(f)
2y _
3o () - e (19).
7 =1
16 updategg:gwrhg?forﬂzl,...,n
17 return gi,...,9n.

We now analyse the complexity of Algorithm 5.13 for F = Q. The following theorem shows that
the rational summability problem can be solved in polynomial time.

Theorem 5.14. Let 6 and M be two positive integers and f(x) be a multivariate rational function
in Q(x)s with ||f|| = M. If m and M are fized, i.e., m,M € O(1), then the total runtime of
Algorithm 5.13 is O(6°M) ops in Q.

Proof. In each recursion, the input rational function a;; in Step 12 is in Q(x)o(éo(l)) with max-

norm O((M 6)50(1)) by Theorem 3.8 and the timing of the first three steps is dominated by that of
the irreducible factorization of the denominator of the input, which is O(6°()) ops in Q according
to Fact 2.8. Since there are at most m recursive calls and m € O(1), the total runtime is O(5°(1)

ops in Q. |

Example 5.15. Let G = (0,,0y,0,) and f = fi + fo + f3 € Q(x,y,2) be the same as in Exam-
ple 4.10.
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(1) After the (0, 0y,0,)-reduction for fi, see Example 5.3, we get

2 —1

f1=080(u1) + Ay(v1) + Az (wr) +r1 withry = o
1

(5.15)

where uy,v1, w1 € Q(z,y, 2) and di = x> + 22y + 22. By Ezample .6 (1), the isotropy group
Gq, = {1} is trivial. By Theorem 5.9, we see that 1 is not (04, 0y, 0,)-summable because its
numerator a; = 2x — 1 is not zero. Hence fi is not (04,0y,0,)-summable.

(2) For fo = as/dy with as = x + 2 and ds = (v — 3y)?(y + 2) + 1, we know from Ezample 4.6 (2)
that a basis of G, is {o30y0;1}. For any {u,v} C {z,y,2}, since the isotropy group of ds in
(ou,0v) is trivial, we get that fy is not (o, 0,)-summable in Q(x,y, z). By Theorem 5.9, we
see that fo is (04, 0y, 0,)-summable in Q(z,y, 2) if and only if as is (7)-summable in Q(z,y, 2)
with T = agayaz_l. Choose one Q-automorphism ¢2 of Q(x,y, z) given in Proposition 5.12 as
follows

¢2(h(maya Z)) = h(gl',.f +y,—x+ Z)’

for any h € Q(x,y,z). Then ¢ 0T = 0, 0 ¢pa. Hence ay is (T)-summable in Q(x,y, z) if and
only if ¢2(a2) is (0g)-summable in Q(x,y, z). Since

pa(az) =2+ 2z =Az((x — 1)(z + 2)) (5.16)

is (o)-summable, it follows that fo is (04, 0y,0)-summable. In fact, applying d);l to Equa-
tion (5.16) yields that

1
ay =x + z = A-(b) with b= §(x —3)(2z + 32).

By Lemma 5.8, we have

b
fo= () = Alun) + 8y (e) + () (5.17)
where ug = Y5, obayo? (d—bQ), vy =0} (%) and wy = —o ! (d%)'

(3) For f3 = ag/d? withaz =y+2/(y*> +2—1)—1/(y> + 2) and d3 = z + 2y + z, we know from

Ezxample 4.6 (2) that a basis of Gg, is {71, 72}, where 11 = 020, and 7y = 0,0, To decide

the (04, 0y,02)-summability of f3, we construct a Q-automorphism ¢3 of Q(x,y,z) such that
¢$3 0T = 0,0 @3 and ¢3 0Ty = oy 0 ¢3 as follows

¢3(h($7 Y, Z)) = h(2$ +y,—x, -y + Z),
for any h € Q(z,y, z). Then it remains to decide the (o, 0y)-summability of

z—y 1

as) = —r + —
¢3(as) P —y+z2-1 22 —y+z

~~

oy(d) d

in Q(x,y,2). So we use the (0, 0y)-reduction to reduce ¢3(as) and obtain

3(as) = A, (51) +A, (62) + xf_;yiz (5.18)
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z—y+1

x2—y+z°
¢3(as) is not (o4, 0y)-summable. Hence f3 is not (05, 0y,0)-summable. Even so, in this case,
using the above calculation, we can further decompose fs3 into a summable part and a remain-
der. We now show how to do this. Starting from the decomposition (5.18) of ¢s(as) with
respect to the (04, 0y)-summability problem, we apply ¢§1 to both sides of this decomposition

to obtain that

where by = —%x(w —1) and by = Since the isotropy group of d in (0z,0y) is trivial,

z
az = Aﬁ (bl) + ATQ (bQ) =+ m:
where by = ¢3Tl(l~72) = —%y(y +1) and by = ¢§1(l~32) = yZQ—:IZ. By Lemma 5.8 with T = 11, 79,
we have
as b1 bz) z
B A () (2) 5y
== () 2 (3) e
—_———
T3
= Ay(uz) + Ay(vs) + Az (ws) + 73, (5.19)
where uz = ZLO oiay_l (%) +o;! (Z—%), vg = —O'y_l (%) and wy = —o; ! (Z—%).

(4) For f = fi+ fo+ f3, from Example 4.10 we know that f1, fa, f3 are in distinct Vidjg,j spaces.
Since fi is not (04, 0y,0)-summable, it follows from Lemma 5.1 that f is not (04,0y,0;)-
summable. Moreover, combining Equations (5.15), (5.17) and (5.19), we decompose f into

2 — 1 n z
dq (y2 + 2)d3’

f=20x(u)+ Ay(v) + A (w) +r with r =

where u = 37 ug, v =32 v; and w = Y7, w; are rational functions in Q(z,y, z).

As we discussed in the above example, given a rational function f € F(x), we can compute
rational functions g, ..., gn,r € F(x) such that

f=208z(91)++ Az, (gn) +7 (5.20)

satisfying the property that f is (o4, ..., 0y, )-summable if and only if » = 0. This process can be
achieved by induction on n. However, this remainder 7 is not unique, which depends on the choice
of the difference isomorphisms ¢;’s. It remains an open problem to make the remainder » minimal
in terms of degrees and arithmetic sizes. Moreover, better choices of the isomorphism might also
lead to more efficient reductions.

6 The existence problem of telescopers

Similar to the summability problem, there are mainly two steps of solving the existence problem 2.2
of telescopers. First we use the orbital decomposition and Abramov’s reduction to simplify the
existence problem in Section 6.1. Then in Section 6.2, we use the exponent separation introduced
in [22] to further reduce the existence problem to simple fractions and use the summability criteria
in Section 5.2 to derive the existence criteria.
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6.1 Orbital reduction for existence of telescopers

Let f be a rational function in K(¢,x), where x = {z1,...,2,,}. Let n be an integer such that
1 < n < m. We consider the existence problem of telescopers of type (o4;04,,...,04,) for the
rational function f in K(¢,x). Let G; = (04,04,,...,04,) be the free abelian group generated by

the shift operators oy, 04, ...,04,. Taking E = K(¢,%;) and A = G; in Equality (4.2), we get

a
Vide, i = Spang { W a € E[z1], 7 € Gy, deg,, (a) < degwl(d)} ,

where j € N and d € E[x] is irreducible with deg, (d) > 0. Then f can be decomposed as
F=H+>.Y" fae, (6.1)
J lde,

where fy € Vo = E[x1] and fig G,j are in distinet Vg G,.j spaces. It induces the following orbital
decomposition of K(¢,x) with respect to the group G

K(t,x):Vo@ @ @ V[d]ct,j

jENt [d}Gt GTGt

as a vector space over K(¢,%1). This orbital decomposition is G-invariant. Moreover, for any L
in K(¢)(St), if f € Vi, j, then L(f) € Vg, ;- Note that such an operator L commutes with the
difference operator A, for i =1,...,n. So by Remark 2.5 and the similar argument as in the proof
of Lemma 5.1, we arrive at the following lemma.

Lemma 6.1. Let f € K(¢t,x). Then f has a telescoper of type (o4;04y,--.,04,) if and only if fo
and each f[d}ct j have a telescoper of the same type for all [d]g, € Tg, and j € N*.

Since fo € Vo = K(t,%1)[z1] is always (04, )-summable, it follows that L = 1 is a telescoper
for fy. For f € V[d]ct j» it can be written as

f= Z: %, (6.2)

where 7 € Gy, a; € K(t,%x1)[z1], d € K[t,x] with deg,, (a-) < deg,,(d) and d is irreducible in z;

over K(t,x1). Each 7 € G; is in the form of 7 = af"o’;} .- -UI;Z for some kg, k1,...,k, € Z. Using
the (04, .., 04, )-reduction formula (5.4), we get the following decomposition.

Lemma 6.2. Let f € V[d]c;t j be in the form (6.2). Then we can decompose it into the form

ag

n p
/= Ay, (gi) +r with r = -,
; ézg ot (1)

where p € N, g; € K(t,x), ay € K(t,%1)[x1], p € K[t,x], deg,, (ag) < deg,, (d), p is in the same Gy-
orbit as d, and of(u), Uf/(,u,) are not G-equivalent for 0 < £ # ¢’ < p. Therefore f has a telescoper
of type (04;0%,,...,04,) if and only if v has a telescoper of the same type.

Example 6.3. Let K= Q, Gy = (04,04,0y,0,) and G = (04,0y,02).
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(1) Consider the rational function f in Q(t,x,y, z) of the form

2x71+ Y n 1
d oi(d)  ofo,0y0.(d)

f=

where d = x? +2xy+ 22 +t. Then f € V[d}at,l and applying the (04, 0y, 0,)-reduction formula

to f yields
2e—1 g 1
N A Al 7 6.3
f (uo) + Ay (vo) + Az (wo) + a o¢(d) - o} (d) (02
where
1 1 d 1
U =35/ V0= 3 5 0ncwy= —3—-
o30,0.(d) opo.(d) o} (d)

Since there is no nonzero integer s such that o (d) and d are G-equivalent, the equation (6.3)
gives a required decomposition for f in Lemma 6.2.

(2) Consider the rational function f in Q(t,x,y, z) of the form

1 y+z—1 Y+ z

I =ty t29d T G 32)mld)  (t132)m0dol(d)

where d = 3y + (x +2)2 +t. Then f € V[d]c;t,l and applying the (04, 0y, 0,)-reduction formula
to f yields that

1 1
N A A , 6.4
f (uo) + Ay(vo) + Az(wo) + tt+y + 22)d + (t+ 32)o4(d) 04
where ) 1
w—— and wy = 0.
" ; (t + 3z)orotol( Z% t+32) JWy(al) ’

Since the isotropy group of d in Gy is G q = <U§ay_1, 0.0, 1Y), the minimal positive integer s

such that o7 (d) and d are G-equivalent is s = 3. So d and o4(d) are not G-equivalent. Thus
the equation (6.4) gives a required decomposition for f in Lemma 6.2.

6.2 Criteria on the existence of telescopers

Combining Lemmas 6.1 and 6.2, we reduce the existence problem (2.2) to that for rational functions

in the form ,
W
f= —, (6.5)
; o;(d)?

where j € N*, a; € K(t,%1)[z1], d € K[t,x], deg,, (a;) < deg,, (d) and d is irreducible such that
oi(d) and o} (d) are not G-equivalent for 0 < i # i’ < 1.

Let G; = (04,04,,...,0z,) and G = (04, ..., 0g,) be a subgroup of G;. Let G4 and Gy 4 be the
isotropy groups of the polynomial d in G and Gy, respectively. By Lemma 4.4, the quotient group
G',4/Gq is free and of rank 0 or 1.

In the case of rank(G:4/Gq) = 0, the existence problem of telescopers is equivalent to the
summability problem.

Lemma 6.4. Let f € K(t,x) be in the form (6.5). If rank(Gyq/Gq) = 0, then f has a telescoper
of type (04;04,,...,04,) if and only if each a;/oi(d) is (04,,...,04,)-summable in K(t,x) for
0<i <

36



Proof. Suppose that each a;/ai(d)’ is (04, ...,0.,)-summable for 0 < i < I. By the linearity of
the difference operators A, , we see that L = 1 is a telescoper for f. Conversely, assume that
L = >0 _,ecSf with e, € K(t) is a telescoper of type (04504, ...,05,) for f. Without loss of
generality, we may suppose that ey # 0. Then we have

L(f) = em<izl>: i=0 6i0t\de—i
; i=0 ' oy(d)? ; of(d)?
is (0z,,...,00,)-summable where e, = 0 if £ > p and a; = 0 if i > I. Since rank(G;q/Ga) = 0,

all of(d) with ¢ € Z are in distinct G-orbits. By Lemma 5.1, for any ¢ with 0 < ¢ < p, there exist
9o, -5 9en € K(t,x) such that

g eioi(ar—;)
ol(d)i

= Ay (Qé,l) + Ay, (gé,n)‘ (6'6)

To show that each a;/oi(d)’ is (04, .. .,04,)-summable for 0 < i < I, we proceed by induc-
tion. For i = 0, substituting £ = 0 into (6.6), we get ao/d’ = Ay, (go1/€0) + -+ + Az, (gon/€0)-
Suppose that a;/oi(d)’ is (04,,...,0s, )-summable for i = 0,...,s — 1 with s < I. Taking ¢ = s in
Equation (6.6) yields that

as gs,1 Gsn 1 > ; Qs—j
() ()L )
i (d)! ' ( €o ) €0 €o ; "\oyi(d)

By the inductive hypothesis, we have as_;/0f *(d)? is (04y,...,0z,)-summable for 1 < i < s.
Note that e; € K(t) is free of x. Due to the commutativity between o; and o, for i = 1,...,n,
we get é o eio; (U;—T(;)J‘) is (04, -.,04,)-summable. Hence as/o3(d)? is also (o4, ..., 0z, )-
summable. |

Example 6.5. We continue Exzample 6.5 (1) and write f € Q(t,x,y,z) as

- _ 2z —1 Y 1
J = Baluo) + By(vo) + Aslwo) + 1 with r = —7—+ Ty + S5

where ug,vo, wo € Q(t,z,y,2) and d = x? + 2xy + 2% +t. Note that the isotropy groups Giaq and
Gq are trivial. The first term (2x — 1)/d of r is not (0, 0y,0;)-summable in Q(t,x,y,z) by the
similar reason as in Example 5.15 (1). Since rank(Gyq/Gq) = 0, we know from Lemma 6./ that r
does not have any telescoper of type (04;04,0y,0,) and neither does f.

Lemma 6.6. Let f = ZLO ai/oi(d)? € K(t,x) be in the form (6.5). If rank(Gyq/Gq) =1, then f
has a telescoper of type (04;0xys- - -, 0z, ) if and only if each a;/ci(d)? has a telescoper of the same
type for 0 <¢ < I.

Proof. Sufficiency follows from Remark 2.5. The proof of necessity is a natural generalization from
the trivariate case [22, lemma 5.3] to the multivariate case. Suppose L = Zf:(] e:Si € K(t)(S)
is a telescoper for f. Since rank(Gyq/Gq) = 1, there is a minimal positive integer ko such that
ot (d) = oki...gkn(d) for some integers ki, ..., k,. In the expression (6.5), we require that of(d)
and a%/(d) are not G-equivalent for any 0 < i # ¢/ < I. By the minimality of kg, we may assume
f= Zfial a;/ci(d)?. The ko-exponent separation of L (see [22, Section 4]) is defined as follows

L=Lo+Li+-+ Lg,—1,
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where L; = Zﬁ:o ejkOHStjkOH and e; = 0 if ¢ > (. Since L(f) is (0g,,-.-,0z,)-summable, by
Lemma 5.1 each orbital component of L(f) is summable. So we have

( a ai Qlg—1

0
Loy—+Lyy1—+ - +L1———— =0
07 + L, 1at(d)ﬂ + -+ lafo_l(d)ﬂ'
aop a Ay —1 _
Li— L -+ Lgo—m— =0
A ) R T Yy (6.7)
agp a Aky—1
Ly 1—+Lyyo——++Lop——>— =0
(ot T gy T R g T
where f = 0 means that f is (04,,..., 0y, )-summable in K(¢,x). Taking
T
v % @ (ko —1

)

T d o(d)i T Rt (g

then Equation (6.7) can be written as

Lko V= 0,
where -~ ~
Lo Liy1 Lgy—2 -+ In
Ly Lo Lgg—1 -+ Lo
Ly, = | L2 Ly Ly -+ L3
| Lko—1 Lgg—2 Likg—3 -+ Lo

According to [22, Proposition 4.3], there exist nonzero operators Tp,...,Ty,—1 € K(t)(S¢) and a
matrix M over K(¢)(S;) such that

M- Lko = diag(To, e ,Tko_l).

For each 0 < i < kg — 1, we know that T} is a telescoper of type (04;04,,...,04,) for a;/oi(d),
because the operators in T; € K(¢)(S;) commute with the difference operators A, ,...,A,, . 1

Now we consider the existence problem of telescopers for simple fractions in the form
f=— (6.8)

where j € N*, a € K(t,%;)[z1], d € K[t,x], deg,, (a) < deg,, (d) and d is irreducible such that
rank(G q/Gq) = 1.

Theorem 6.7. Let f € K(t,x) be as in (6.8). Let {19,71,...,7}(1 < r < n) be a basis of
Gy such that Gy q/Gq = (To) and {r1,..., 7.} is a basis of G4 (take 1 = 1, if G4 = {1}). Let

T = UfOO';lkl e J;nk" for some k; € Z and set Ty = SfOSx_lkl e S;nk". Then f has a telescoper of

type (04,02, ... ,04,) if and only if there exists a nonzero operator L € K(t)(Ty) such that
L(a) = Az (b1) + - Ar, (br)

for some b; € K(t,%x1)[x1] with deg,, (b;) < deg,, (d) for 1 <i<r.
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Proof. Firstly, suppose that Ly = >.7_, e,T§ € K(t)(Tp) is a nonzero operator such that Lo(a) =
S Ay (by) for some b; € K(t,%1)[x1] with deg,, (b;) < deg,, (d). Set L = 320_,e,S*. Then

P Zkoa 4 eo.@koa
L(f)zzefo-t () LO0¢ ()

= oy Mﬁlﬂww
n Zko —tk1, ., g—lkn
= Z Ay, (gi) + Lizo ©et 92]. G for some g¢; € K(t,x)
i=1
- Lo(a)
= Z Ag,(9i) + i (6.9)
i=1

= 3" Al + 55 D (b)) — b))
i=1 =1

- ZAM(%) + ; (” (2]) - Zﬂ)

n
= Z Az, (gi + hi)  for some h; € K(t, x). (6.10)
i=1
The last equality follows from Lemma 5.8.
Conversely, let L be a telescoper of type (o4;04,,...,04,) for f. By the ko-exponent sep-

aration (see [22, Section 4]) of L and Lemma 5.1, without loss of generality, we may assume
L=>%"7, erSk0 € K()(S,) is a telescoper for f. Then

50

() =3 et =S

=0 971

for some hy, ..., h,, h € K(t,x) with

h= Zega““o R Zeﬂo (6.11)

Since L(a/d’) is (04,,---,04,)-summable and {71,...,7.} is a basis of Gy, by Theorem 5.9 with
F = K(t) we get

h=A001)+ -+ A (br) (6.12)
for some b; € K(t,%1)[x1] with deg,, (b;) < deg,,(d) for 1 < i < r. Combining Equations (6.11)
and (6.12) yields that a has a telescoper Lo = >_7_, e/T§ of type (1o; 71, ..., Tr). 1

Proposition 6.8. Let 7 € G, \ G and f = a/b with a,b € K[t,x] and ged(a,b) = 1. Then there
exist eq, . .., e, € K(t), not all zero, such that >\, e;7'(f) = 0 if and only if b = biby with by € K]t]
and by € K[t,x] satisfying that 7(b2) = ba.

Proof. First we suppose b = b1by with b1, by satisfying the above conditions. Then for any 7 € N,

m(a) _ (@) _7'(a/b)

Tz(f) - Ti(blbz) - Ti(bl)bQ - b2

(6.13)

Note that b; € K[t] and the total degrees of the polynomials 7/(a) in x are the same as that
of a. Thus all shifts of a/b; lie in a finite dimensional linear space over K(¢). So there exist
€o, €1, - -, e € K(t), not all zero, such that > ._;e;7%(a/by) = 0. This implies > ._,e;7'(f) = 0.

39



Conversely, suppose Y ., e;7'(f) = 0. Let by and by be the content and primitive part of b as
a polynomial in x over K(t). If by € K, then we are done. Now we assume that by ¢ K. Then all
of its irreducible factors have positive total degrees in x. Assume that there exists an irreducible
polynomial p such that 7(p) # p. By Lemma 4.3, the quotient group G;/Gy, is free, so is torsion
free. So for any integer i # 0, 7¢(p) # p. Among all of such irreducible factors of by, we can find one
factor p such that 7¢(p) { by for any integer i < 0. Let s be the largest integer such that 75(p) | ba.
Then the irreducible polynomial 77+4(p) divides 77 (by), but 77+5(p) { 7¢(by) for any 0 < i < r — 1.
Otherwise 77757%(p) | bz, which contradicts the choice of s. Therefore we have Y \_, ;7' (f) # 0,
since p depends on x and the coefficients e; are in K(¢). This leads to a contradiction. So every
irreducible factor p of by satisfies the property that 7(p) = p. This implies that 7(by) = bo. |

Lemma 6.9. Let 7 € Gy \ G and f = a/(biba2) with by € K[t], a,bs € K[t,x]| and 7(b2) = ba. Then
we can compute e, ..., e, € K[t], not all zero, such that Y i_,e;m'(f) = 0.

Proof. By Proposition 6.12 below, we can construct a difference isomorphism between (K(¢,x), 7)
and (K(t,x),0¢) such that ¢ o7 = 0, 0 ¢ and p(K[t]) C K[t]. Then o¢(p(b2)) = ©(7(b2)) = v(b2)
and for all e;(t) € K]t],

T

> et)T(f) =0 ifandonly if > ei(p(t)ai(p(f)) = 0.

=0 i=0

So we only need to consider the case 7 = o¢. Now suppose that f = a/(bib2) with b; € K[t],
a, by € K[t,x] and o¢(b2) = by. It suffices to find a nonzero operator L € K[t](S;) such that L(f) = 0.
We write a = Y7, a;t' with a; € K[x]. For each 0 < i <s, let L; = t'0y(b1)S; — (t + 1)"b1. Then
L; is an operator in K[t](S;) such that L;(#/b;) = 0. Since 04(b2) = by and o4(a;) = a;, we have
Li(aiti/(bleD = (az‘/bg)Li(ti/bl) =0. Let L € K[t]<8t> be the LCLM of Li for all 1 = O, ey S and
write L = R;L; with R; € K[t](S;). Then L is a nonzero operator and

(Zb1b2> Z: <blb2> ;RL (bb2> "

This completes the proof. |

Remark 6.10. For the bivariate case with m = n = 1, our existence criterion coincides with the
known result in [6, Theorem 1] and [26, Theorem 4.11]. Let f = a/d’ € K(t,x), where j € NT,
a € K(t,%1)[x1], d € K[t,x], deg,, (a) < deg,, (d) and d is irreducible. Let Gy = (0y;0,,) and
G = (04,). Since the degree of d in x1 is positive, we have Gq = {1}. If rank(G:q/Gq) = 0,
then by Lemma 6.4 and Theorem 5.9, f has a telescoper of type (01,04, ) if and only if a = 0. If
rank(Gyq/Gq) = 1, then there exists T = JfJI;I € Giq with s > 0 such that Gy q/Gq = (T). By
Theorem 6.7 and Proposition 6.8, f has a telescoper of type (o4;04,) if and only if a = ¢/b with
c € K[t,x|, b € K[t,x1], ged(b,c) = 1, where b can be written as b = biby with by € K[t] and
by € K[t,x1] such that T(by) = by. Since m = n = 1, we have b € K[t] and hence f always has a
telescoper of type (o4;04,)-

Example 6.11. Let f = 1/(t* + 2] +--- + z;) € Q(t,x1,...,2,) with s,n € N\ {0}. Then
d=1t*+x] + -+ x; is irreducible over Q if n > 1. Let Gy q and Gy be the isotropy groups of d
in Gy = (04,02,,...,05,) and G = (04,,...,04,), respectively. Then we can decide the existence
of telescopers of type (o4;04,,...,04,) for all cases of f.
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(1) If s = 1, then d is irreducible. Since Gyq = () with 7 = oo, and Gq = {1}, we have
Gta/Gaq = (T) and rank(Gy 4/Gq) = 1. Observing that T—1 is an annihilator of the numerator
of f, by Theorem 6.7 we get f has a telescoper. In fact, L(f) = Ay, (f)+Az,(0)+---+A, (0),
where L = S; — 1.

(2) If s >1 andn =1, then f =1/(t* + 1) = >°7_; a;/(t — Bjz1), where B;’s are distinct roots
of 2 = —1 and a; = 1/(s(Bjx2)*"t). There exists j € {1,...,s} such that 37 ¢ Z. Then for
dj =t — Bjx1, we have Gyq, = Ga; = {1}. So a;j/d; is not o, -summable in C(t,x1) and
neither is f. By Lemma 6.4, we get that f does not have any telescoper of type (o¢,04,) in
C(t)(S). Hence f does not have any telescoper of the same type in Q(t)(S).

(3) If s > 1 and n > 1, then d is irreducible. Since Gq = {1}, f is not (04, ..,04,)-summable
by Theorem 5.9. Since Gyq = {1} and rank(Gyq/Gq) = 0, by Lemma 6.4, we conclude that
f does not have any telescoper.

Proposition 6.12. Let {19, 71,...,7}(1 < r < n) be a family of Z-linearly independent elements in
Gy such that 1o € G\G and {11,...,7.} C G. Then there exists a K-automorphism ¢ of K(t,x) such
that ¢ is a difference isomorphism between the difference fields (K(t,x), 1) and (K(t,x),0¢), and
simultaneously a difference isomorphism between (K(t,x),7;) and (K(t,x),04,) for alli=1,...,r.
Furthermore, p(K(t)) C K(t) and hence for any f € K(t,x), f has a telescoper of type (10; 71, ..., Tr)
if and only if (f) has a telescoper of type (04;02,,...,0z,).

Q4.m

Proof. Let 7, = o, apy" -+ 0p™, where a;j = 0 if j > n. Define a; = (0,1, Qi) €
Zm+ for ¢ = 0,1,...,7. Since ag,aq,...,q, are linearly independent over Q, we can find
vectors Qui1,...,, € QMM such that {ag,au,...,,} is a basis of Q" over Q. Write
a; = (@0, i1, .., Qi) for i =r+1,...,m. Since 19 € G¢ \ G and {7y,...,7.} C G, we have
apo 7# 0 and o;0 =0 for i =1,...,r. So we can further assume that ;0 =0 fori =r+1,...,m.
Let A = (a;;) € QUrH*(m+1) which is invertible. Let ¢ be a K-automorphism of K(t,x) defined
by
(), p(x1)y. . o(xm)) == (L, 21, .., Tm)A.

Then ¢(t) = apo -t and @(z;) = oo -t + > oy ij-x; for 5 = 1,...,m. It can be checked
that pomg = oy opand poT; = 05, 0 p for 1 <4 < r. This means the following diagrams are
commutative.

K(t,x) ——= K(t, x) K(t,x) ——= K(t, x)
K(t,x) ——= K(t, x) K(t,x) —— K(t, x)

Note that p(K(t)) C K(t). It follows that

p r P r
Y e®)ms(f) = An(g) ifand only if > er(aoot)of(p(f) =D As(e(g:)),
=0 i=1 =0 i=1
whenever ey(t) € K(¢) and f, g; € K(¢,x). This completes our proof. 1

The way of constructing a difference isomorphism in Proposition 6.12 is almost the same as that
in Proposition 5.12. The only difference is that in Proposition 6.12, we require ¢(K(¢)) C K(t).

Let f = a/d’ be in the form (6.8) with rank(G;4/Gq) = 1. By Theorem 6.7, there are two
cases according to whether Gy is trivial or not. If G4 = {1}, then a/d’ has a telescoper of type
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(04; 044, .,0z,) if and only if there exists a nonzero operator L € K(¢)(7p) such that L(a) = 0.
This problem is solved by Proposition 6.8. If G4 is nontrivial, we can apply the transformation in
Proposition 6.12 to reduce the existence problem of telescopers to that of fewer variables. Moreover,
the general existence of telescopers of type (79; 71, . .., 7,,) for rational functions has also been solved.

Similar to the treatment in Algorithm 5.13, if f has a telescoper of type (0¢;04,,...,04,),
Algorithm 6.13 will output unnormalised certificates for f in the form

p Ky
9=>_ T] vexlver),

=1 k=1
where v, € F(t,x) and the 1y 1’s are Q-affine maps.

Algorithm 6.13 (Constructive Testing of the Existence of Telescopers).

IsTelescoperable(f, [z1,...,Zy], t).

INPUT: a multivariate rational function f € K(t,x), a set {x1,...,z,} of variable names and a

variable name t for telescoping;

OQUTPUT: a telescoper L and its unnormalised certificates gi,...,gn if f has a telescoper of type

(04;02,,...,0z,); false otherwise.

1 using shift equivalence testing and irreducible partial fraction decomposition, decompose f into
f=Jo+ Xjen+ 2, fdla, s as in Equation (6.1).

2 apply the reduction to fy and each nonzero component f[d]G j such that

Ji Sij

F=Duy(g1) 4+ Ay (gn) +7 wzthT—ZZZ W

i=1 j=1¢=0 7

where Zs” ?(55] is the remainder of fia,),, ; described in Lemma 6.2.

3 ifr=0, thenreturn L =1 and g1,...,gn-

4 fori=1,...,1 do
5 using Remark 4.5, one can find elements 7,0, Ti1, ..., Tix; € Gra, such that Gy q,/Gqa, = (Ti0)
and {7;1,...,Tir,} forms a basis for Gy, .
6 fOI‘jzl,...,Ji,0:1,...,81'73'dO
7 if rank(Gyq,/Ga;) = 0 then
8 execute Algorithm 5.13 with IsSummable(r; j¢, [x1,...,2,]), where r; = %
9 if Tije 15 (Oxys - - Ox, )-summable in F(x), let
ri,j,f = Am1 <hz(,1]),£) —+ .- A:rn (h(ﬂ)é)
and set L; j o = 1; return false otherwise.
10 if rank(Grq,/Ga;) = 1 then
11 choose 19 = Ufi’oa;;ki’l e a;nki’" with k; o > 0.
12 set T o = Sfi’o ;fi’l e Sf;"
13 ifn=1 or Gg, = {1} then
1 using Proposition 6.8, check whether there exists a nonzero operator EiJ’g(t,Ti’o) €

K(t)(Ti0) such that [_/ijg(t Tio)(aije) = 0. If so, use Lemma 6.9 to find such an op-
erator L; jo(t,T;0) and set L; jo(t, Sy) = L jo(t,S; 10) By Equation (6.9) we obtain

—_———

Oy

=0



15
16

17
18
19

20

21

22

return false otherwise.

else
find a K-automorphism ¢; of K(t,x) given in Proposition 6.12 such that @; o T, 0 =
ot 0@ and ©; 0 T; \ = 0y, 0 ; for X\=1,...,1;.
set aijo = pi(aije)-
ezecute IsTelescoperable(a; j¢, (%1, .., %), 1).
if @i jo has a telescoper of type (01;04y,...,04,.), let
E,M(t Se)(@ije) = ZA$)\< ,]Z)
return false otherwise.
apply (pi_l to both sides of the previous equation to get
Lij(t, Tio)(aije) ZAM( ,Je)
= A
where L; ; o(t, T;0) = Li js (t/k:zo, Tio) and b( )Z = ;! z(,j?f) forallAx=1,...,r;
set Ly jo(t,St) = L”g(t, “%) and by Equations (6.9) and (6.10) we obtain
Liiolaiir)
L. i, A ( ) AN )
1,5,¢ < > Z T z]Z O'f(dl)]
- ™
- Z Aa) (hz‘,j,e>
A=1
for some UEE)Z, hEAj)Z € K(¢, x).
let L € K(t)(S) be the LCLM of L; j, for all i,j,¢ and write
L= RijeLije

for some R; ;o € K(t)(S;).

23 update gx = (g)\) + Zz 1 Z] 1 ZSZ] 1,5,¢ ( z]f) fOT’ all A = 1

24 return L and g1,...,gn-

Example 6.14. Let K = Q and f € Q(t,z,y,z). We will decide constructively the existence
of telescopers of type (oy;04,0y,0.) for various cases of f. Let Gy = (0t,04,0y,0;) and G =
(O2,0y,02).

(1) For f = m with d = (t —3y+x)2(t+y)(t + 2) + 1, a basis of the isotropy group G4

is {10}, where 1o = Ut0;4ay_10;1. Then Gt q/Gq = (To). Since rank(Gyq/Gq) =1 and Gq =
{1} is a trivial group, we know from Theorem 6.7 that f has a telescoper of type (o; 0y, Uy, 02)
if and only if there exists a nonzero operator Lo € Q(t)(To) with Ty = SiSy 45’ 1S such

that
1

(t+1)(t+22)

Note that the prime part of the denominator b = (t + 1)(t + 2z) of a with respect to the
variables {x,y,z} is ba = t + 2z and 79(b2) # ba. By Proposition 0.8, there does not exist
any operator Ly € Q(t)(To) such that Lo(a) = 0. So f does not have any telescoper of type
(04;02,0y,0%).

Lo(a) =0, where a = fd =
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(2) For f = m with d being the same as in Example 6.1/ (1), it is easy to check that for
1

(I—T

t+1

t42

where Ty = S1S; 45 1S-1. So by Theorem 6.7, f has a telescoper L of type (04;02,0y,02).
In fact, we can take L=25—5YL Then

Lo(a) = 0 with Lo = To —

t+2
L= 2@ _ttl e ofe) _t+l a
Cod) t+2 d oloyou(d) t+2 d
- (@t t+2
= Au(u) + Ay(0) + Asw) + 2@ = o1 )/(t+2)a
=Lo(a)/d=0
= Ay (u) + Ay (v) + Az (w),
where u = Ze 0 ng,tf,“ @ V= Z:((‘;)), and w = O'tc(la)' Additionally, this is a non-trivial

example in two respects. Firstly, since Gq = {1}, this rational function f is not (o4,0y,0,)-
summable in Q(t,x,y,z). Secondly, for any {u,v} C {x,y,z}, since the isotropy group of d
in (0¢,04,0,) is trivial and f is not (o,,0,)-summable, by Lemma 6.4, f does not have any

telescoper in Q(t)(St) of type (o4;0,,0,).
(8) We continue Example 6.3 (2) and write f in the form
f=Aqz(uo) + Ay(vo) + Az(wo) + 71 + 72,

where ug, vy, wo € Q(t,x,y,2) and r; = with d = 3y + (x + 2)% + t.

1 ro — 1
tt+y+22)d’ ' 2 = ([t+32)0u(d)

(a) For ry = a1/d with a1 = 1/(t(t + y + 2z)), we find that a basis of Giq is {10, 71},
where 9 = 0’?0’;1 and 71 = 0,0, Then by Theorem 6.7, v1 has a telescoper of
type (oy;04,0y,0:) if and only if a1 has a telescoper of type (19;71). Choose one Q-

automorphism ¢1 of Q(t,x,y, z) given in Proposition 6.12 as follows
¢1(h(t, z,Y, Z)) = h(3t’ x, —t+ Yy, —x + Z),

forany h € Q(x,y,2). Then ¢p10m9 = 0r0p1 and ¢p10T1 = gz0¢1. So ay has a telescoper
of type (1o;11) if and only if ¢1(a1) has a telescoper of type (o4;04). A direct calculation

yields that
1

32t +y — 22 +22)

d

$1(a1) =

Again consider the isotropy group ofcz in {0y, 04), which is generated by 7o = oy02. Since
(To — t-i-Ll)(St) 0, by similar arguments used in Example 6.1/ (2), we see that ¢1(a1)

has a telescoper Ly € Q(t)(S;) of type (0v;0,) and in particular we find

Li(t, 8¢)(¢1(a1)) = Ay(br) (6.14)
with L1 = S — —1 and b1 = —3(t+1)(2t+yl_2x+2+22). So by Theorem 6.7, r1 has a

telescoper L € Q(t)(S:) of type (04; 04, 0y,02). In fact, we can find an explicit expression
for L. Applying ¢1_1 to Equation (6.14) yields that

El (ta TO)(al) = A (b1)>
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(b)

(¢)

where TO = S?Sy_l, I/l(t,TO) = .Z/l(%,TO) = T() — H_%, bl = qbl_l(gl) = —m
Let Lyi(t,S;) = L1(t, S}) = S} — -L=. Then we have

T3
03(0,1) t al 03(a1) t al
L = t _——_—— . — = t —_—_—_—_— . —
) =5 " t53 d " oyd) 143 d
L oo (a
= Az(0) + Ay(v1) + A,(0) + 15;”) with v; = — yd( )

and using Lemma 5.8 with T = 1, we get

withuy = o ! (%) and wy = —o; ! (%). Hence Ly is a telescoper of type (o4; 04, 0y,02)

for r1 and

Li(r1) = Ag(ur) + Ay(v1) + Az (w).

Similarly, for ro = as/o(d) with ag = 1/(t+3z), we apply the algorithm IsTelescoperable
to ro. The result is true and we obtain

Lo(re) = Ag(u2) + Ay(v2) + Az (w2),

3 _—1
where Ly = Sf’ — 1, up = O'Z_l (%@), Vg = %w()@) and wy = —az_l <gtb(2d)) with
_ 1
by = T t+3243"

For r =ry + ro, using the LCLM algorithm to compute the least common multiple L of
Ly and Ly in Q(t)(S:), we obtain

2(t+3) 3 t

L=Rily=RoLy =5 = ——=5' + =

with Ry = S} — ng and Ry = S} — 15-%6' Then
L(r) = Az(u) + Ay(v) + Az (w),

where u = 37| Ri(ug), v =2, Ri(vi) and u = S2_| R;(w;) are rational functions in
Q(t,z,y,2). Updating u =u+ L(ug), v =v + L(vg) and w = w + L(wy), we get

L(f) = Am(u) + Ay(v) + Az(w)'

So L is a telescoper of type (04;04,0y,02) for f.

6.3 Examples and applications

Creative telescoping is a powerful tool for proving combinatorial identities algorithmically [65]. The
following example shows an application of telescopers for multivariate rational functions.

Example 6.15. We show that

t t t

F(t):ZZZf(t,CC,y,Z):O,

=0 y=0 z=0
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where
(2y —t)(2z —t)(22 — t)
Wttt D)(2+y—D@+t+r)(—2+az—Dz+t+)(-2+z—1)

f(t’ x? y7 Z) =
Applying Algorithm 6.13 to f, we find that f has a telescoper L = Sy — 1 of type (o4;04,0y,0)
with certificates (u,v,w), where

B (—2y +t+1)(—22 +t + 1)(8¢% — 2tz — 2% + 19t — 22 + 11)
St D)2t +2)2t -2+ 3)(y+t+2)(2t —y+3)(z+t+2)(2t — 2+ 3)’

B (—2z +t) (=22 +t + 1)(8t2 — 2ty — y? + 19t — 2y + 11)
(z+t+ D)2t -+ D)(y+t+1)2t—y+2)2t —y+3)(z+t+2)(2t — 2+ 3)

and

B (=22 +t)(—2y +t)(8t2 — 2tz — 22 + 19t — 22 + 11)
St D2t -+ D)yt D)2t —y+ D)zt + 1) (2t — 2+ 2)(2t — 2+ 3)

Thus we have

Mw
Mw
M“

(f(t+ 1,£C,y,2) - f(t,SU,y,Z))

=0 y=0 z=0
t t t
=TS (A fu) + Ay ) + )
=0 y=0 2=0
t t t t
= (u(t,t+1,y,2) —u(t,0,y,2)) + Z Z(U(t,x,t +1,2) —v(t,z,0,2))
y=0 z=0 =0 2=0

t

ZZ (t,z,y,t +1) —w(t,x,y,0)).

Then applying L to F(t) yields

g1

=0
t
+Y Y (wtzt+1,2) —v(t,2,0,2) + f(t+ 1,2,t + 1, 2))

g2

t t
YO (w(t,z,y, t+ 1) —w(t,2,y,0) + f(t,z,y,t + 1))

=0 y=0 g3
t t t

Y f+ Lot L+ )+ Y fE+ Lt Ly t+ 1)+ ) fE+ 1t 1t +1,2)
=0 y=0 z=0

+ft+1,t+1,t+1,t+1).

So we reduce the triple sum to double sums and single sums. One can check that g = 0. By
Algorithm 5.13, one can find that go is ox-summable and g3 is (04, 0y)-summable. Similarly, we
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further reduce the double sums to the single sums. Applying the Algorithm 5.13 (specialized to the
univariate case) again, we simplify the single sums and finally obtain that F(t + 1) — F(t) = 0.
Since the initial value of F(t) is F(0) = £(0,0,0,0) = 0, we conclude that F(t) = 0. This completes
the proof.

Under some assumptions, there are several packages to compute the creative telescoping in more
than two variables. The Mathematica package “HolonomicFunctions” developed by Koutschan con-
tains two functions “CreativeTelescoping” and “FindCreativeTelescoping” to construct telescopers
for holonomic functions in different ways [56]. Another Mathematica function “FindRecurrence”,
the core of the Mathematica package “MultiSum” by Wegschaider, is designed to find telescopers
for proper hypergeometric functions [79]. For rational functions in three variables, an effective
algorithm has been presented in [21] to compute their minimal telescopers.

Experiments show that Algorithm 6.13 is more efficient to test the existence of telescopers and
construct one telescoper. For example, for the rational function

At 42
(45t + 5a + 10y + 47) (45t + 52 + 10y + 2)(63t — 5z + 2y + 58) (63t — ba + 2y — 5)’

ft,z,y) =

Algorithm 6.13 tells us that it has a telescoper of type (o; 04, 0,) and outputs a telescoper and its
corresponding certificates within two seconds in Maple, while the algorithm in [21] takes about three
minutes and the other three functions of the two Mathematica packages use much more timings as
shown in [21]. Given a rational function, one could use our algorithm to pre-check the existence of
its telescopers and find a telescoper if such a telescoper exists. After that one may apply the other
efficient methods to find a telescoper with lower degree in S;.

7 Implementations and timings

We have implemented Algorithms 3.6, 5.13 and 6.13 in the computer algebra system Maple 2020. In
this section, we compare the efficiency of the algorithms for solving the SET problem and illustrate
the usage of our package “Rational WZ” by several examples. Our maple code and more examples
are available for download at

http://www.mmrc.iss.ac.cn/~schen/RationalWZ-2022.html

We have implemented the G algorithm, the KS algorithm, the DOS algorithm, and the algorithm
applying a-degree cover to Algorithm 3.6 (ADC) in Maple 2020 with F = Q.

Fixing one admissible cover, there are two methods to calculate it and then to implement
Algorithm 3.6. A direct method is expanding p(x + a) — ¢(x) with 2n variables to get the set of
its coefficients in x and then the admissible cover, while another is obtaining the members of the
admissible cover successively by computing partial derivatives dynamically. For efficiency, the DOS
algorithm and the ADC algorithm are realized by partial derivatives and expansion respectively.

The test suite was generated as follows.

Let n,d,pu,d € N and d' < d. Let x = {x1,29,...,2,}. We first generated randomly a u-
term polynomial p(x) of degree d, as well as a polynomial dis(x) of degree d’. Then we generated
randomly a vector s = (s1,52,...,5,) € Z" and let ¢(x) = p(x + s) + dis(x). Therefore, the
calculation is most likely to terminate after computing VF(Uf:_OI_d/ SZ-H ). By setting 0 < s; < 99, we
can avoid the case where the memory is not enough to complete the computation.

Note that, in all the tests, the algorithms take the expanded forms of examples given above as
input. All timings are measured in seconds on a macOS Monterey (Version 12.0.1) MacBook Pro
with 32GB Memory and Apple M1 Pro Chip.
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For a selection of random polynomials and vectors for different choices of n, i, d, d’ as above, we
first tabulate the timings of the G algorithm, the KS algorithm, the DOS algorithm and the ADC
algorithm. Note that d’ = —oco means dis = 0, implying that p is shift equivalent to q.

n d_d G KS DOS ADC
10 15 13 | 5476  2.090 0.014 0.008
10 15 10 | 0.243 1124 0.023 0.020
10 15 5 | 21.719  1.809 0.050 0.032
10 15 0 | 573.178 2.576 0.068 0.039
10 15 —oo | 18491  0.714 0.043 0.036
100 15 13 | 0.205  10.025 0.044 0.028
100 15 10 | 0482  9.997 0.046 0.046
100 15 5 | 22114 11.317 0.061 0.062
100 15 0 |2152.378 19.470 0.083 0.069
100 15 —oo | 1200.473 13.640 0.085 0.068

W W W WWWwWwwwww3

The experimental results illustrate that the DOS algorithm and the ADC algorithm outperform
the other two algorithms. Furthermore, we conducted experiments in more complicated cases.

@ d d | DOS ADC
100 40 35 | 199.177 59.889
100 40 30 | 24.684  90.159
100 40 20 | 379.835 95.761
100 40 10 | 681.189 665.885
100 40 0 | 182.671 67.261
100 40 —oo | 709.223  77.880
10000 20 18 | 2.724  122.744
10000 20 15 | 3.088  163.258
10000 20 10 | 5.290  139.685
10000 20 5 | 10.755 125.359
10000 20 0 | 23.949 151.010
10000 20 —oo | 24.562  136.187

OU OUU O O O O Ot O Ot Ot Ot oY 3

The experimental results indicate that the ADC algorithm outperforms the other for most of
non-dense testing examples, while the DOS algorithm has a clear advantage for dense ones. It may
be because the timing of expansion grows fast with the number of terms in the input polynomial.
In conclusion, we present an algorithm, the ADC algorithm, which is complementary to the DOS
algorithm for solving the SET problem.

From the runtime comparison, we implemented the ADC algorithm in the package Rational WZ.
In our setting, the base field F can be Q or the field of rational functions Q(uy, ..., us). The following
instructions show how to load the modules.

read "RationalWZ.mm";
with(ShiftEquivalenceTesting) :
with(OrbitalDecomposition):
with(RationalReduction):
with(RationalSummation) :
with(RationalTelescoping) :

V V V V V V
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Example 7.1. Compute the dispersion set (over Z) of two polynomials.
(1) Forp,q € Q[x,y] in Example 3./, we type

> ShiftEquivalent (x°2 + 2¥x*y + y 2 + 2%z + 6%y, T 2 + 2%y + Yy 2 + 4*x +
Sxy + 11, [z, y])

[_172]
which implies Z, ; = {(—1,2)}. So p(x —1,y+2) = q(x,y).
(2) For p,q € Q[z,vy, 2] in Ezample 3.21 (1) , we type

> ShiftEquivalent (™4 + T 3%y + xo*xy ™2 + 272, ©°4 + z"3*(y + 1) + x*x(y + 1)°2
+ (z +2)°2 + zxy, [z, y, 2])

[]
which implies Z, 4 = &. So p,q are not shift equivalent.

Example 7.2. Decide the (04, 0y, 0.)-summability of a rational function f € Q(x,y,2). Let f3, r3
be the same as in Example 5.15 (3).

(1) Applying the function “IsSummable” to f = f3, we see that f is not (04,0, 0,)-summable.
> IsSummable((y + 2/(y°2 + 2z - 1) - 1/(y°2 + 2))/(xz + 2xy + 2)°2, [z, y, z])
false

(2) Applying the function “IsSummable” to f = f3 —r3, we see that f is (04, 0y,0;)-summable
and its certificates are as follows:

> IsSummable((y + 2/(y 2 + 2z - 1) - 1/(y 2+ 2))/(x + 2%y + 2)°2 - 2/((y"2 +
z)x(x + 2%y + 2)°2), [z, y, 2])

true. | ——yw=1 _ y(y=1) + z y(y=1) _ z
’ 2 (z—2+2y+2)2 2 (z—14+2y+2)> (Y2 +2—1)(z—14+2y+2)? 2 (z—2+2y+2)2" (y2+2—1)(z—1+2y+2)>

Example 7.3. Decide the existence of telescopers of type (o4;04,0y,0,) for a rational function

f E Q(t’ x? y? Z)'

(1) Applying the function “IsTelescoperable” to f in Example 6.1/ (1), we see that f does not
have a telescoper in Q(t)(Sy) of type (04;04,0y,0).

> IsTelescoperable(1/((t + 1)*(t + 2*2)*((t - 3*y + x) "2%(t + y)*(t + z) +
1)), [z, y, 2], t, ’St’)

false

(2) Applying the function “IsTelescoperable” to f =11 in Example 6.1/ (3), we see that f has a
telescoper L = —H_% + S} of type (o1; 04, oy,0;) and its certificates are as follows:

> IsTelescoperable(1/(t*(t + y + 2%2)*(3*y + (z + 2)°2 + t)), [z, y, 2], t,
)St;)

__t 3 = 1
brue, —gs + St 6(5+442)(L+1)(a2+2a(2—1)+ (2—1)*+ t+3y)’

1 1
(t+3)(t+2+y+22) (@ +2 22422 +t43Y) " 6(L+1) (L +4+2) (a2+22(2—1)+ (2—1)°+ t+3y)
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8 Conclusion and future work

In this paper, we constructively solve the summability problem and the existence problem of tele-
scopers for multivariate rational functions, and present a new efficient algorithm for solving the
shift equivalence testing (SET) problem of multivariate polynomials.

Our algorithm can compute a telescoper for a given multivariate rational function if the existence
of telescopers is guaranteed, but the computed telescoper may not be of minimal order. So a natural
question is how to compute the minimal telescoper (which is unique if it is monic) for multivariate
rational function if it exists. Similar to the trivariate case [21], we may first need an additive
decomposition to decompose a rational function f as a sum of a summable function and a remainder
r, as shown in Example 5.15, such that f is summable if and only if the remainder r is zero. Then
we need to deal with the problem that the sum of two remainders in the additive decomposition
may not be a remainder. The similar problem appears and has been solved in the case for trivariate
rational functions [21, Section 4] and the case for bivariate hypergeometric terms [23, Section 5.

For the efficiency, we may need to consider how to choose a “minimal” remainder, which may
depend on the choices of difference isomorphisms. Choosing a “good” admissible cover may help us
to discover a more efficient SET algorithm. In theory, we use an irreducible partial fraction decom-
position in summation algorithms, but in practice, an incomplete partial fraction decomposition
would be enough, like in the univariate case [9,64].

In the future research, we hope to explore more summation algorithms for other classes of
functions, like multivariate hypergeometric terms [79]. This would be an extension of Gosper’s
algorithm [37] which only works for the summation of univariate hypergeometric terms and has
many applications in proving combinatorial identities [65]. Some algorithms have been developed
for special bivariate hypergeometric terms [29] and for multiple binomial sums [15].

In the differential case, telescopers always exist for D-finite functions [82]. One interesting
problem is how to find a telescoper [15,25], especially the minimal one. Another problem is the
integrability problem proposed by Picard [66-68], which is a continuous analogue of the summability
problem. Given a rational function f € F(z1,...,x,,), the integrability problem is deciding whether
there exist rational functions g1, ..., gm € F(x1,...,2,,) such that

f=0:(01) + -+ 01, (9m),

where 0., is the usual partial derivative with respect to z;. When m = 1, it can be solved by
Ostrogradsky-Hermite reduction [46,62]. When m = 2, it was solved by Picard [67, p. 475-479].
In more than two variables, there is no complete algorithm for deciding the integrability of rational
functions. Under a regularity assumption, some related results are listed in [15].
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