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Combinatorial sequences

Counting combinatorial objects leads to sequences s : N → K.

Example: s(n) =
(10

n

)
is finitely supported.
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Combinatorial sequences

Counting combinatorial objects leads to sequences s : N → K.

Example: The Fibonacci sequences s(n) := Fn satisfying

s(n+2)− s(n+1)− s(n) = 0 with s(0) = 0 and s(1) = 1

is C-finite.
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Combinatorial sequences

Counting combinatorial objects leads to sequences s : N → K.

Example: The factorial sequences s(n) := n! satisfying

s(n+1)−(n+1)s(n) = 0 with s(0) = 1

is hypergeometric.
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Combinatorial sequences

Counting combinatorial objects leads to sequences s : N → K.

Example: The harmonic sequences s(n) :=
∑n

k=1
1
k satisfying

(n+2)s(n+2)−(2n+3)s(n+1)+(n+1)s(n) = 0

is P-recursive.
, 2/16



Generating functions

The generating function of a sequence s : N → K is

f (x) =
+∞∑
n=0

s(n)xn ∈K[[x]].

“Generating functions are a bridge between discrete mathe-
matics, on the one hand, and continuous analysis (particularly
complex variable theory) on the other. ”

from «Generatingfunctionology» by H. S. Wilf

Example. Bell numbers bn count the number of partitions of a set
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Generating functions

The generating function of a sequence s : N → K is

f (x) =
+∞∑
n=0

s(n)xn ∈K[[x]].

“Generating functions are a bridge between discrete mathe-
matics, on the one hand, and continuous analysis (particularly
complex variable theory) on the other. ”

from «Generatingfunctionology» by H. S. Wilf

Proposition.

s(n) is P-recursive ⇔ f (x) =
+∞∑
n=0

s(n)xn is D-finite

Example. Bell numbers bn count the number of partitions of a set

1,1,2,5,15,52,203,877,4140, . . . (sequence A000110 in OEIS)
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Generating functions

The generating function of a sequence s : N → K is

f (x) =
+∞∑
n=0

s(n)xn ∈K[[x]].

“Generating functions are a bridge between discrete mathe-
matics, on the one hand, and continuous analysis (particularly
complex variable theory) on the other. ”

from «Generatingfunctionology» by H. S. Wilf

Proposition.

s(n) is P-recursive ⇔ f (x) =
+∞∑
n=0

s(n)xn is D-finite

Example. Bell numbers bn count the number of partitions of a set

+∞∑
n=0

bnxn

n!
= exp(exp(x)−1).
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Generating functions

The generating function of a sequence s : N → K is

f (x) =
+∞∑
n=0

s(n)xn ∈K[[x]].

“Generating functions are a bridge between discrete mathe-
matics, on the one hand, and continuous analysis (particularly
complex variable theory) on the other. ”

from «Generatingfunctionology» by H. S. Wilf

Proposition.

s(n) is P-recursive ⇔ f (x) =
+∞∑
n=0

s(n)xn is D-finite

Example. Bell numbers bn count the number of partitions of a set

exp(exp(x)−1) is not D-finite!
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Generating functions

The generating function of a sequence s : N → K is

f (x) =
+∞∑
n=0

s(n)xn ∈K[[x]].

“Generating functions are a bridge between discrete mathe-
matics, on the one hand, and continuous analysis (particularly
complex variable theory) on the other. ”

from «Generatingfunctionology» by H. S. Wilf

Proposition.

s(n) is P-recursive ⇔ f (x) =
+∞∑
n=0

s(n)xn is D-finite

Example. Bell numbers bn count the number of partitions of a set

bn is not P-recursive!
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D-finite functions

Let K be a field of characteristic zero (e.g. Q, R, C).
Definition. A function f (x1, . . . ,xd) is D-finite over K(x1, . . . ,xd) if
for each i ∈ {1, . . . ,d}, f satisfies a LPDE:

pi,ri

∂ ri f
∂xri

i
+pi,ri−1

∂ ri−1f

∂xri−1
i

+ · · ·+pi,0f = 0,

where pi,j ∈K[x1, . . . ,xd].
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Let K be a field of characteristic zero (e.g. Q, R, C).
Definition. A function f (x1, . . . ,xd) is D-finite over K(x1, . . . ,xd) if
for each i ∈ {1, . . . ,d}, f satisfies a LPDE:

pi,ri

∂ ri f
∂xri

i
+pi,ri−1

∂ ri−1f

∂xri−1
i

+ · · ·+pi,0f = 0,

where pi,j ∈K[x1, . . . ,xd].

R. P. Stanley. Differentiably Finite Power Series. European
Journal of Combinatorics, 1: 175–188, 1980.

L. Lipshitz. D-Finite Power Series. Journal of Algebra, 122:
353–373, 1989.
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Algebraic properties

Let n = n1, . . . ,nd, x = x1, . . . ,xd, and xn = xn1
1 · · ·x

nd
d .

Definition. Let f =
∑

a(n)xn and g =
∑

b(n)xn be in K[[x]]. The
Hadamard product of f and g is

f �g =
∑

a(n)b(n)xn.

The diagonal of f is defined as diag(f ) =
∑

a(n, . . . ,n)xn ∈K[[x]].

Theorem (Lipshitz1989). Let D := {f ∈K[[x]] | f is D-finite}. Then

(i) if f ,g ∈D , then f +g, f ·g, and f�g are in D ;

(ii) if f ∈D , diag(f ) is D-finite in K[[x]];

(iii) if f ∈D , and α1, . . . ,αd ∈K[[y]] are algebraic over K(y) and
the substitution makes sense, then f (α1, . . . ,αd) is D-finite.
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Analytic properties

Theorem. If f (x) =
∑+∞

n=0 a(n)xn is D-finite, then f (x) has only
finitely many singularities and

a(n) ∼ ζ
−n · exp(P(n1/r)) ·nθ · (logn)`,

where θ ∈Q, r, ` ∈ N and ζ is a singularity of f (x).

Example. Both 1/sin(x) and
∑+∞

n=0 log(log(n))xn are not D-finite.
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Classification problems

Problem. For a class of combinatorial sequences, decide whether
their generating functions are rational, algebraic, or D-finite?

Remark. This correspondence is not true for multivariate
sequences. ∑

n1,n2≥0

1
n2

1 +n2
2 +1

· yn1
1 yn2

2 is not D-finite!

Problem. How to decide the D-finiteness for multivariate
P-recursive sequences?
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Mixed hypergeometric terms

Let K be a field of char. zero and algebraically closed.

x = (x1, . . . ,xp), n = (n1, . . . ,nq)

Di : ∂/∂xi︸ ︷︷ ︸
derivations

, Sj : nj → nj +1︸ ︷︷ ︸
shifts

Definition. h(x,n) is mixed hypergeometric over K(x,n) if

all
Di(h)

h
and

Sj(h)
h

are rational functions in K(x,n).

Remark. Mixed hypergeometric terms are solutions of systems of
first-order homogeneous differential and difference equations.

, 8/16



Examples

Rational functions:

x1 + x2 +n1,
1

(x1 + x2)
,

x1 +n1 +1
x1 + x2 +n2

1 +3
, . . .

Hyperexponential functions:

exp(x1 + x2
2), (x2

1 + x2 +1)
√

5
, exp

(∫
1

x1 + x2

)
, . . .

Symbolic powers:

xn1
1 , (x1 + x2)

n1 · (x2 + x2
3)

n2 , . . .

Hypergeometric terms:

2n1 , n1!, (n1 +2n2 +
√

3)!, . . .
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Structure theorem

Theorem. Any mixed hypergeometric term h(x,n) is of the form

f (x,n) ·
q∏

j=1

βj(x)nj · exp(g0(x)) ·
L∏

`=1

g`(x)c` ·
∏

λ

(vλ ·n+pλ )!
eλ

where f is a rational function in K(x,n).

Proper terms. A mixed hypergeometric term h(x,n) is proper if it
is of the form

P(x,n) ·
q∏

j=1

βj(x)nj · exp(g0(x)) ·
L∏

`=1

g`(x)c` ·
∏

λ

(vλ ·n+pλ )!
eλ

where P is a polynomial in F[x,n].
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βj(x)nj · exp(g0(x)) ·
L∏

`=1

g`(x)c` ·
∏

λ

(vλ ·n+pλ )!
eλ

where P is a polynomial in F[x,n].

Remark. Properness can be verified algorithmically :-)
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Example. 1/(n2
1 +n2

2 +1) is not proper.
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Wilf–Zeilberger conjecture: D-finite ⇔ Proper

In the fundamental paper by Wilf and Zeilberger:

In Page 585, they said:
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Wilf–Zeilberger conjecture: D-finite ⇔ Proper

Previous work:

Continuous case

Bernstein1971, Kashiwara1978, Takayama1992, Christopher1999, . . .

Ingredients: Bernstein-Kashiwara equivalence, Structure of
multivariate hyperexponential functions

Discrete case

Payne1997, Hou(2001, 2004), Abramov–Petkovšek(2001, 2003), . . .

Ingredients: Lipshitz’s theorem, struture of multivariate
hypergeometric terms (Ore-Sato theorem)
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Proof of the WZ conjecture: the general case

Ingredients:

Structure theorem for mixed hypergeometric terms;

Algebraic properties of D-finite functions;

Elimination theory in algebraic D-modules.
, 12/16



Rationality theorems on D-finite power series

Problem. When a D-finite power series is rational?
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Rationality theorems on D-finite power series

Problem. When a D-finite power series is rational?

f (x) =
∑
n≥0

anxn, where an ∈ ∆ with |∆ |<+∞.

Fatou’s Theorem (1906).
A power series with coefficients from a finite set is either rational or
transcendental over C(x).
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Rationality theorems on D-finite power series

Problem. When a D-finite power series is rational?

f (x) =
∑
n≥0

anxn, where an ∈ ∆ with |∆ |<+∞.

Corollary.
An algebraic power series with coefficients from a finite set is ratio-
nal.
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Rationality theorems on D-finite power series

Problem. When a D-finite power series is rational?

f (x) =
∑
n≥0

anxn, where an ∈ ∆ with |∆ |<+∞.

Szegö’s Theorem (1922)
A power series with coefficients from a finite set is either rational or
has the unit circle as its natural boundary.

, 13/16
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Rationality theorems on D-finite power series

Problem. When a D-finite power series is rational?

f (x1, . . . ,xd)=
∑

an1,...,nd xn1
1 · · ·x

nd
d , where an1,...,nd ∈ ∆ with |∆ |<+∞.

Theorem. A multivariate D-finite power series with coefficients form
a finite set is rational.

, 13/16



Nonnegative integer points on algebraic varieties

Let V be an algebraic variety over an algebraically closed field K of
characteristic zero. We define the listing generating function

FV(x1, . . . ,xd) :=
∑

(n1,...,nd)∈V∩Nd

xn1
1 · · ·x

nd
d

, 14/16



Nonnegative integer points on algebraic varieties

Let V be an algebraic variety over an algebraically closed field K of
characteristic zero. We define the listing generating function

FV(x1, . . . ,xd) :=
∑

(n1,...,nd)∈V∩Nd

xn1
1 · · ·x

nd
d

We may ask the following questions:

When FV is zero?

Remark. This is Hilbert Tenth Problem when K is Q. In 1970,
Matiyasevich proved that this problem is undecidable.

, 14/16



Nonnegative integer points on algebraic varieties

Let V be an algebraic variety over an algebraically closed field K of
characteristic zero. We define the listing generating function

FV(x1, . . . ,xd) :=
∑

(n1,...,nd)∈V∩Nd

xn1
1 · · ·x

nd
d

We may ask the following questions:

When FV is a polynomial?

Remark. In 1929, Siegel proved that a smooth algebraic curve C
of genus g≥ 1 has only finitely many integer points over a number
field K.

, 14/16



Nonnegative integer points on algebraic varieties

Let V be an algebraic variety over an algebraically closed field K of
characteristic zero. We define the listing generating function

FV(x1, . . . ,xd) :=
∑

(n1,...,nd)∈V∩Nd

xn1
1 · · ·x

nd
d

We may ask the following questions:

When FV is a rational function?

Remark. If V is defined by linear polynomials over Q, then FV is
rational.
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nd
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When FV is a D-finite function?

Corollary.
FV is D-finite ⇔ FV is rational.
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Nonnegative integer points on algebraic varieties

Let V be an algebraic variety over an algebraically closed field K of
characteristic zero. We define the listing generating function

FV(x1, . . . ,xd) :=
∑

(n1,...,nd)∈V∩Nd

xn1
1 · · ·x

nd
d

We may ask the following questions:

When FV is a D-finite function?

Theorem.

The problem of testing whether FV is rational is undecidable!
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Nonnegative integer points on algebraic varieties

Let V be an algebraic variety over an algebraically closed field K of
characteristic zero. We define the listing generating function

FV(x1, . . . ,xd) :=
∑

(n1,...,nd)∈V∩Nd

xn1
1 · · ·x

nd
d

We may ask the following questions:

When FV is a differentially algebraic function?

Definition. F ∈ K[[x1, . . . ,xd]] is differentially algebraic if the
transcendence degree of the filed generated by the derivatives
Di1

x1
· · ·Did

xd
(F) with ij ∈ N over K(x1, . . . ,xd) is finite.

, 14/16



Open problems

Conjecture. Let V be an algebraic variety over C. Then the power
series ∑

(n1,...,nd)∈V∩Nd

xn1
1 · · ·x

nd
d

is differentially algebraic if and only if it is rational.

, 15/16



Open problems

Conjecture. Let V be an algebraic variety over C. Then the power
series ∑

(n1,...,nd)∈V∩Nd

xn1
1 · · ·x

nd
d

is differentially algebraic if and only if it is rational.

Example. Let p = x2 − y. Then the power series

Fp(x,y) :=
∑
m≥0

xmym2

is not differentially algebraic, otherwise, Fp(x,2) =
∑

2m2
xm is dif-

ferentially algebraic. By Mahler’s lemma, we get a contradiction

2m2 � (m!)c for any positive constant c.
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Open problems

Conjecture. Let V be an algebraic variety over C. Then the power
series ∑

(n1,...,nd)∈V∩Nd

xn1
1 · · ·x

nd
d

is differentially algebraic if and only if it is rational.

Conjecture (Chowla-Chowla-Lipshitz-Rubel). The power series

f :=
∑
n∈N

xn3 ∈ C[[x]]

is not differentially algebraical, i.e., satisfies no ADE.

Remark. The power series
∑

xn2
is differentially algebraic.

Igor Pak. Complexity problems in enumerative combinatorics.
Proceedings of ICM2018, 3:3139–3166, 2018.
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Summary

Proof of the Wilf–Zeilberger conjecture

S. Chen, C. Koutschan. Proof of the Wilf-Zeilberger Conjecture
for Mixed Hypergeometric Terms. Journal of Symbolic
Computation (Available online 15 June 2018).

Rationality theorems on D-finite power series

J. P. Bell, S. Chen. Power Series with Coefficients from a Finite
Set. Journal of Combinatorial Theory, Series A, 151, pp.
241–253, 2017.

Thank you!
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