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What is a Wilf—Zeilberger pair?

Definition. A pair (F(x,y),G(x,y)) is called a WZ-pair if
ok(F) =9,(G), (WZ-equation)
where d; € {Dy, A, Ay} and 0, € {Dy, Ay, A, )

Example.
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Definition. A pair (F(x,y),G(x,y)) is called a WZ-pair if
ok(F) =9,(G), (WZ-equation)
where d; € {Dy, A, Ay} and 0, € {Dy, Ay, A, )

Example.

Continuous WZ-pair:

y-exp(xy2)>
2V5

(F,G) = (ﬁ-exp(xyz),

satisfies the continuous WZ-equation

D\(F) =D,(G).
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What is a Wilf—Zeilberger pair?

Definition. A pair (F(x,y),G(x,y)) is called a WZ-pair if
ok(F) =9,(G), (WZ-equation)
where d; € {Dy, A, Ay} and 0, € {Dy, Ay, A, )

Example.

Discrete WZ-pair:

T T 1A
(F,G) -=< ey 4n+2 (zn”)>

n

satisfies the discrete WZ-equation

An(F) = A(G).
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What is a Wilf—Zeilberger pair?

Definition. A pair (F(x,y),G(x,y)) is called a WZ-pair if
ok(F) =9,(G), (WZ-equation)
where d; € {Dy, A, Ay} and 0, € {Dy, Ay, A, )

Example.
Mixed WZ-pair:
2k * e 2k
F,G):= | xf-v/1—4x. ,
o= (= () e (8)

satisfies the mixed WZ-equation

D(F) = A(G).
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What is a Wilf—Zeilberger pair?

Definition. A pair (F(x,y),G(x,y)) is called a WZ-pair if
ok(F) = 0y(G), (WZ-equation)
where d; € {Dy, A, Ay} and 0, € {Dy, Ay, A, )

Example.

=
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Herbert S. Wilf Doron Zeilberger
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Applications of WZ-pairs: proving identities
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Applications of WZ-pairs: proving identities

n n 2 n —1
ZF(n,k)zl, where F::< ) ( ) .
prs k n

Using Gosper's algorithm, we find the discrete WZ-pair:

n\220\"" 2k—=3n—3( n \2(2n\ "
(F,G)Z: <(k> <n> ) 4n_|_2<k—1> (7’1> )
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Applications of WZ-pairs: proving identities

‘ n\? (2n\ !
ZF(n,k)zl, where F::< ) ( )
prs k n

Using Gosper's algorithm, we find the discrete WZ-pair:
2 —1 2 —1
2 2k —3n— 2
(F.G) — n n , k—3n—3/( n n
k n 4n+2 k—1 n
Applying > ;_, to the both sides of A,(F) = Ay(G) yields
. . on+2\""
A (F) = A, F|—
> a0 (§ )- (i)

-1
ZAk G(n,n+1)— G(n,O):—<2n+2>

n+1
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‘ n\? (2n\ !
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prs k n

Using Gosper's algorithm, we find the discrete WZ-pair:
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Applying > ;_, to the both sides of A,(F) = Ay(G) yields
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k=0

k=0
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Applications of WZ-pairs: convergence accelerations

Theorem (Zeilberger, 1993)  For any discrete WZ-pair
(F(n,k),G(n,k)), we have

Y G(n,0)=) (Fln,n—1)+G(n—1,n—1)).
n=0 n=1

Remark. The idea of using WZ-pairs for convergence accelerations
goes back to Andrei Markov in 1890 for computing {(3).
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Applications of WZ-pairs: convergence accelerations

Theorem (Zeilberger, 1993)  For any discrete WZ-pair
(F(n,k),G(n,k)), we have

Y G(n,0)=) (Fln,n—1)+G(n—1,n—1)).
n=0 n=1

Remark. The idea of using WZ-pairs for convergence accelerations
goes back to Andrei Markov in 1890 for computing {(3).

Example. Applying Theorem to the discrete WZ-pair
(F a (—D*k12(n—k—1)! G (—D)* k12 (n—k)! )
O 2(k+1D)(n+k+1)7 " (n+1)2(n+k+1)!
yields the formula

o0

1 5 (—1)"
£(3):= ZE = EZ (Zn)ns'

n=1 n=1 \n
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Bringing order to chaos

clues to a region or an area of verification. The central fact developed is that
identities are both inexhaustible and unpredictable; the age-old dream of
putting order in this chaos is doomed to failure.

John Riordan, Combinatorial identities
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Bringing order to chaos

clues to a region or an area of verification. The central fact developed is that
identities are both inexhaustible and unpredictable; the age-old dream of
putting order in this chaos is doomed to failure.

John Riordan, Combinatorial identities
" WZ forms bring order to this chaos.”

Ira M. Gessel, Wilf80-slides, 2011

Remark. WZ-forms are a multivariate generalization of WZ-pairs.
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" WZ forms bring order to this chaos.”
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Remark. WZ-forms are a multivariate generalization of WZ-pairs.

Problem.

1 How to discover binomial-coefficient identities algorithmically?
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Bringing order to chaos

clues to a region or an area of verification. The central fact developed is that
identities are both inexhaustible and unpredictable; the age-old dream of
putting order in this chaos is doomed to failure.

John Riordan, Combinatorial identities

" WZ forms bring order to this chaos.”
Ira M. Gessel, Wilf80-slides, 2011

Remark. WZ-forms are a multivariate generalization of WZ-pairs.

Problem.

1 How to discover binomial-coefficient identities algorithmically?

2 How to generate all possible WZ-pairs algorithmically?
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Rational WZ-pairs

Problem. Find all possible rational WZ-pairs, i.e., determine

P(o.0,) ={f,8) /. € Clx,y) such that d(f) = dy(g)}-
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Problem. Find all possible rational WZ-pairs, i.e., determine

P(o.0,) ={f,8) /. € Clx,y) such that d(f) = dy(g)}-

Definition. A rational pair (f,g) is exact if 3 h € C(x,y) s.t
f=09y(h) and g=0(h).
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Remark. The set &, ;) forms a vector space over C and all
exact pairs form a subspace of Z(; 5 ).
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Rational WZ-pairs

Problem. Find all possible rational WZ-pairs, i.e., determine

P(o.0,) ={f,8) /. € Clx,y) such that d(f) = dy(g)}-

Definition. A rational pair (f,g) is exact if 3 h € C(x,y) s.t
f=0dy(h) and g=0d.(h).

Remark. The set &, ;) forms a vector space over C and all
exact pairs form a subspace of Z(; 5 ).

Different types of WZ-pairs:
» Differential case: dy =Dy and dy =D
» (g)-Shift cases: d; € {Ay, Ay} and 9y, € {Ay,A,,}
» Mixed cases: d, € {A, Ay} and d, =d/dy
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Structure of rational WZ-pairs: the differential case

Definition. A pair (f,g) is a log-derivative pair if 3 h € C(x,y) s.t.

D, (h) D,(h)

_ Dyl _
f—h andg—h
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Structure of rational WZ-pairs: the differential case

Definition. A pair (f,g) is a log-derivative pair if 3 h € C(x,y) s.t

h D.(h
f:DyIE) and g= fE)

Theorem (Christopher, 1999). Let f,g € C(x,y) be such that

D.(f) =D,(g). Then 3 a,by,...,b, € C(x,y) and nonzero
Cl,...,c, €C st

b

: Dy(bi) = D,(b)
FeD@+ Lo and g=Dia)+ 3 o
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Structure of rational WZ-pairs: the differential case

Definition. A pair (f,g) is a log-derivative pair if 3 h € C(x,y) s.t.

h D.(h
f:DyIE) and g= }E)

Theorem (Christopher, 1999). Let f,g € C(x,y) be such that

D.(f) =D,(g). Then 3 a,by,...,b, € C(x,y) and nonzero
Cl,...,c, €C st

= Dy(b;
f:Dy(a)+ZCi ylE- )
i=1 !

" D(b;
and g:Dx(a)—i—Zc,- IE ).
i=1 i

Corollary. Any rational WZ-pair of type (D,,Dy) is a linear
combination of exact and log-derivative pairs.
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Shift invariant rational functions

Notation. Let 6, € {0y, 7,.} and 6, € {0}, 7, }.
» Shift operators: o,,0y

o:(f(x,y)) =f(x+1y) and oy(f(x,y)) =f(xy+1).
» g-shift operators: 7, ., 7, with g € C\{0}

Tox(f(x,¥)) =flgx,y) and  7,,(f(x,y)) =f(x,qy).
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dm,n € Z, not all zero, such that Q;"G;}(f) =f.
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Shift invariant rational functions

Notation. Let 6, € {0y, 7,.} and 6, € {0}, 7, }.
» Shift operators: o,,0y
ox(f(x,y)) =f(x+1,y) and oy(f(x,y)) =f(x,y+1).
» g-shift operators: 7, ., 7, with g € C\{0}

Tox(f(x,¥)) =flgx,y) and  7,,(f(x,y)) =f(x,qy).

Definition. A rational function f € C(x,y) is (6., 6,)-invariant if
dm,n € Z, not all zero, such that 6_:.”6\’,’(f) =f.

Prop. Let f € C(x,y) be (6, 6,)-invariant and 7 = n/ gcd(m,n)
and m =m/ ged(m,n). Then
1. if 6, =0y and 8, = oy, then [ = g(iix—imy) for some g € C(z);
2. if 6, =14, 6, =1,,, then f = g(x"y™™) for some g € C(z);
3. if 6, =0y, O, =14,, then fc C(x) if m=0, fcC(y) if n=0,
and f € C if mn#0.
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Cyclic pairs

Notation. For n € Z,h € C(x,y) we define

-1, _ Y o 8ln) n>0;
6, — 1 -y e—f(h), n<0.
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Cyclic pairs

Notation. For n € Z,h € C(x,y) we define

Gy"—l.h Z"IGI n>0;
6—-1 | —X G_J(h), n<o.
Definition. A pair (f,g) is a cyclic pair if 3 h € C(x,y) s.t
B lep and g= 271,
9—' e ETg 1t

where £ is (6, 6,)-invariant, i.e., 3 5, € Z, not all zero, s.t.
6;(h) = 6;(h).

f=
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Cyclic pairs

Notation. For n € Z,h € C(x,y) we define

Gy"—l.h Z"IGI n>0;
6,—1 —Z];"I O_J(h), n<0.
Definition. A pair (f,g) is a cyclic pair if 3 h € C(x,y) s.t

6! —1

f= Ceh

G—I.h and gzey_

where £ is (6, 6,)-invariant, i.e., 3 5, € Z, not all zero, s.t.

6;(h) = 6;(h).
Example. Let p =2x+3y. Then the pair (f,g) with

L N T
p oulp) | o2(p) 8= o)

is a cyclic WZ-pair with respect to (Ay,A,).
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Structure of rational WZ-pairs: the (g)-shift case

Let 6, € {0y, 7.} and 6, € {0y, T, ).

Theorem. Let f,g € C(x,y) be such that 6,(f) —f = 6,(g) —g.
Then 3 a,by,...,b, € C(x,y) s.t.

— 0y —1 -~ 0 —1

fz@(a)—a—l—Zl 9);_1 eb; and ngx(a)—a—i—Z Y eb;,
=

where the b;'s are (6, 6, )-invariant, i.e., for each i €{1,...,n} we

have 0} (b;) = G;f(bi) for some s; € N and 1; € Z with s;,t; not all

zero.
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Structure of rational WZ-pairs: the (g)-shift case

Let 6, € {0y, 7.} and 6, € {0y, T, ).

Theorem. Let f,g € C(x,y) be such that 6,(f) —f = 6,(g) —g.
Then 3 a,by,...,b, € C(x,y) s.t.

n 05 —1 . 9}{:_1
X
szy(a)—a—l—; 6.1 eb; and ngx(a)—a—l—; 6,1 eb;,
where the b;'s are (6, 6, )-invariant, i.e., for each i €{1,...,n} we

have 0} (b;) = O;f(bi) for some s; € N and 1; € Z with s;,t; not all
zero.

Corollary. Any rational WZ-pair of type (6,—1,6,—1) is a linear
combination of exact and cyclic pairs.
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Structure of rational WZ-pairs: the mixed case

Let 6, € {0y, T,.} and d, = D,.

Definition. A pair (f,g) is a constant pair if dy(f) = dy(g) =0.
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Structure of rational WZ-pairs: the mixed case

Let 6, € {0y, T,.} and d, = D,.
Definition. A pair (f,g) is a constant pair if dy(f) = dy(g) =0.

Theorem. Let f,g € C(x,y) be such that 6,(f) —f = D,(g). Then
FheClx,y), ue C(y) and v € C(x) s.t.

f=Dy(h)+u and g=06,(h)—h+v.
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Structure of rational WZ-pairs: the mixed case

Let 6, € {0y, T,.} and d, = D,.
Definition. A pair (f,g) is a constant pair if dy(f) = dy(g) =0.

Theorem. Let f,g € C(x,y) be such that 6,(f) —f = D,(g). Then
FheClx,y), ue C(y) and v € C(x) s.t.

f=Dy(h)+u and g=06,(h)—h+v.

Corollary. Any rational WZ-pair of type (6, —1,D,) is a linear
combination of exact and constant pairs.
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Stable transformations of WZ-pairs

Problem. Given a WZ pair P:= (F(x,y),G(x,y)) satisfying
F(X+ 1>y) —F(X,Y) = G(x7y+ 1) _G(xvy)a
find a transformation ¢ such that ¢(P) is also a WZ-pair?
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Problem. Given a WZ pair P:= (F(x,y),G(x,y)) satisfying
F(X+ 17)’) —F(X,)’) = G(xay+ 1) —G(x»)’);
find a transformation ¢ such that ¢(P) is also a WZ-pair?

b Gessel's transformations:

(F(xuy))G(x7y)) = (F(_xuy))_G(_x_17k))
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Stable transformations of WZ-pairs

Problem. Given a WZ pair P:= (F(x,y),G(x,y)) satisfying
F(X+ 17)’) —F(X,)’) = G(xay+ 1) —G(x»)’);
find a transformation ¢ such that ¢(P) is also a WZ-pair?

b Gessel's transformations:

(F(xuy))G(-xLy)) = (F(_xuy))_G(_x_17k))

» Guillera’s transformation:

(F(x,5),G(x,y)) = (Flx,x+y)+Glx+1,x+y), Glx,x+y)).
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Stable transformations of WZ-pairs

Problem. Given a WZ pair P:= (F(x,y),G(x,y)) satisfying
F(X+ 1,_)’) —F(X,)’) = G(xay+ 1) —G(x»)’);
find a transformation ¢ such that ¢(P) is also a WZ-pair?

b Gessel's transformations:

(F(x,y),Glx,y)) = (F(=x,y),=G(—x—1,k)).
» Guillera's transformation:
(F(x,y),G(x,y)) — (Flx,x+y)+Gx+1,x+y),G(x,x+y)).
» Mu’s transformation:

(F(x,y),G(x,y)) — (Flx+y+1,)+G(x+y,y),Gx+y,y)).
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Summary

b Structure of rational WZ-pairs
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Summary

b Structure of rational WZ-pairs
» Future work:

1 The multivariate case: fi,...,f; € C(x1,...,x,) satisfy
Ay (fi)) = Ay (fi)  forall iyj with 1 <i<j<n.

2 The hypergeometric case: automatic discovery of
binomial-coefficients identities
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Summary

b Structure of rational WZ-pairs
» Future work:

1 The multivariate case: fi,...,f; € C(x1,...,x,) satisfy
Ay (fi)) = Ay (fi)  forall iyj with 1 <i<j<n.

2 The hypergeometric case: automatic discovery of
binomial-coefficients identities

Thank you!
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