How to generate all possible WZ-pairs algorithmically?

Shaoshi Chen

KLMM, AMSS Chinese Academy of Sciences

CMS 2018 Annual Conference Guiyang, Guizhou, October 21, 2018

Definition. A pair (F(x,y),G(x,y)) is called a WZ-pair if

$$\partial_x(F) = \partial_y(G),$$
 (WZ-equation)

where $\partial_x \in \{D_x, \Delta_x, \Delta_{q,x}\}$ and $\partial_y \in \{D_y, \Delta_y, \Delta_{q,y}\}$.

Example.

Definition. A pair (F(x,y),G(x,y)) is called a WZ-pair if

$$\partial_x(F) = \partial_y(G),$$
 (WZ-equation)

where $\partial_x \in \{D_x, \Delta_x, \Delta_{q,x}\}$ and $\partial_y \in \{D_y, \Delta_y, \Delta_{q,y}\}$.

Example.

Continuous WZ-pair:

$$(F,G) := \left(\sqrt{x} \cdot \exp(xy^2), \frac{y \cdot \exp(xy^2)}{2\sqrt{x}}\right)$$

satisfies the continuous WZ-equation

$$D_x(F) = D_y(G).$$

Definition. A pair (F(x,y),G(x,y)) is called a WZ-pair if

$$\partial_x(F) = \partial_y(G),$$
 (WZ-equation)

where $\partial_x \in \{D_x, \Delta_x, \Delta_{q,x}\}$ and $\partial_y \in \{D_y, \Delta_y, \Delta_{q,y}\}$.

Example.

Discrete WZ-pair:

$$(F,G) := \left(\frac{\binom{n}{k}^2}{\binom{2n}{n}}, \frac{2k-3n-3}{4n+2} \frac{\binom{n}{k-1}^2}{\binom{2n}{n}}\right)$$

satisfies the discrete WZ-equation

$$\Delta_n(F) = \Delta_k(G).$$

Definition. A pair (F(x,y),G(x,y)) is called a WZ-pair if

$$\partial_x(F) = \partial_y(G),$$
 (WZ-equation)

where $\partial_x \in \{D_x, \Delta_x, \Delta_{q,x}\}$ and $\partial_y \in \{D_y, \Delta_y, \Delta_{q,y}\}$.

Example.

Mixed WZ-pair:

$$(F,G) := \left(x^k \cdot \sqrt{1 - 4x} \cdot \binom{2k}{k}, \quad -\frac{x^{k-1}k}{\sqrt{1 - 4x}} \cdot \binom{2k}{k} \right)$$

satisfies the mixed WZ-equation

$$D_{x}(F) = \Delta_{k}(G).$$

Definition. A pair (F(x,y),G(x,y)) is called a WZ-pair if

$$\partial_x(F) = \partial_y(G),$$
 (WZ-equation)

where $\partial_x \in \{D_x, \Delta_x, \Delta_{q,x}\}$ and $\partial_v \in \{D_v, \Delta_v, \Delta_{q,v}\}$.

Example.

Herbert S. Wilf

Doron Zeilberger

$$\sum_{k=0}^{n} \binom{n}{k}^2 = \binom{2n}{n}$$

$$\sum_{k=0}^{n} F(n,k) = 1, \quad \text{where } F := \binom{n}{k}^{2} \binom{2n}{n}^{-1}.$$

$$\sum_{k=0}^{n} F(n,k) = 1, \quad \text{where } F := \binom{n}{k}^{2} \binom{2n}{n}^{-1}.$$

Using Gosper's algorithm, we find the discrete WZ-pair:

$$(F,G) := \left(\binom{n}{k}^2 \binom{2n}{n}^{-1}, \qquad \frac{2k-3n-3}{4n+2} \binom{n}{k-1}^2 \binom{2n}{n}^{-1} \right)$$

$$\sum_{k=0}^{n} F(n,k) = 1, \quad \text{where } F := \binom{n}{k}^{2} \binom{2n}{n}^{-1}.$$

Using Gosper's algorithm, we find the discrete WZ-pair:

$$(F,G) := \left(\binom{n}{k}^2 \binom{2n}{n}^{-1}, \frac{2k-3n-3}{4n+2} \binom{n}{k-1}^2 \binom{2n}{n}^{-1} \right)$$

Applying $\sum_{k=0}^{n}$ to the both sides of $\Delta_n(F) = \Delta_k(G)$ yields

$$\sum_{k=0}^{n} \Delta_n(F) = \Delta_n \left(\sum_{k=0}^{n} F \right) - \binom{2n+2}{n+1}^{-1}$$
$$\sum_{k=0}^{n} \Delta_k(G) = G(n, n+1) - G(n, 0) = -\binom{2n+2}{n+1}^{-1}$$

$$\sum_{k=0}^{n} F(n,k) = 1, \quad \text{where } F := \binom{n}{k}^{2} \binom{2n}{n}^{-1}.$$

Using Gosper's algorithm, we find the discrete WZ-pair:

$$(F,G) := \left(\binom{n}{k}^2 \binom{2n}{n}^{-1}, \frac{2k-3n-3}{4n+2} \binom{n}{k-1}^2 \binom{2n}{n}^{-1} \right)$$

Applying $\sum_{k=0}^{n}$ to the both sides of $\Delta_{n}(F) = \Delta_{k}(G)$ yields

$$\Delta_n \left(\sum_{k=0}^n F(n,k) \right) = 0 \quad \Rightarrow \quad \sum_{k=0}^n F(n,k) = c \quad \text{(a constant)}$$

$$\sum_{k=0}^{n} F(n,k) = 1, \quad \text{where } F := \binom{n}{k}^{2} \binom{2n}{n}^{-1}.$$

Using Gosper's algorithm, we find the discrete WZ-pair:

$$(F,G) := \left(\binom{n}{k}^2 \binom{2n}{n}^{-1}, \frac{2k-3n-3}{4n+2} \binom{n}{k-1}^2 \binom{2n}{n}^{-1} \right)$$

Applying $\sum_{k=0}^{n}$ to the both sides of $\Delta_n(F) = \Delta_k(G)$ yields

$$\Delta_n \left(\sum_{k=0}^n F(n,k) \right) = 0 \quad \Rightarrow \quad \sum_{k=0}^n F(n,k) = c \quad \text{(a constant)}$$

$$\sum_{k=0}^{n} \binom{n}{k}^{2} = \binom{2n}{n}$$

Applications of WZ-pairs: convergence accelerations

Theorem (Zeilberger, 1993) For any discrete WZ-pair (F(n,k),G(n,k)), we have

$$\sum_{n=0}^{\infty} G(n,0) = \sum_{n=1}^{\infty} \left(F(n,n-1) + G(n-1,n-1) \right).$$

Remark. The idea of using WZ-pairs for convergence accelerations goes back to Andrei Markov in 1890 for computing $\zeta(3)$.

Applications of WZ-pairs: convergence accelerations

Theorem (Zeilberger, 1993) For any discrete WZ-pair (F(n,k),G(n,k)), we have

$$\sum_{n=0}^{\infty} G(n,0) = \sum_{n=1}^{\infty} \left(F(n,n-1) + G(n-1,n-1) \right).$$

Remark. The idea of using WZ-pairs for convergence accelerations goes back to Andrei Markov in 1890 for computing $\zeta(3)$.

Example. Applying Theorem to the discrete WZ-pair

$$\left(F := \frac{(-1)^k k!^2 (n-k-1)!}{2(k+1)(n+k+1)!}, \quad G := \frac{(-1)^k k!^2 (n-k)!}{(n+1)^2 (n+k+1)!}\right)$$

yields the formula

$$\zeta(3) := \sum_{n=1}^{\infty} \frac{1}{n^3} = \frac{5}{2} \sum_{n=1}^{\infty} \frac{(-1)^n}{\binom{2n}{n} n^3}.$$

clues to a region or an area of verification. The central fact developed is that identities are both inexhaustible and unpredictable; the age-old dream of putting order in this chaos is doomed to failure.

John Riordan, Combinatorial identities

clues to a region or an area of verification. The central fact developed is that identities are both inexhaustible and unpredictable; the age-old dream of putting order in this chaos is doomed to failure.

John Riordan, Combinatorial identities

" WZ forms bring order to this chaos."

Ira M. Gessel, Wilf80-slides, 2011

Remark. WZ-forms are a multivariate generalization of WZ-pairs.

clues to a region or an area of verification. The central fact developed is that identities are both inexhaustible and unpredictable; the age-old dream of putting order in this chaos is doomed to failure.

John Riordan, Combinatorial identities

" WZ forms bring order to this chaos."

Ira M. Gessel, Wilf80-slides, 2011

Remark. WZ-forms are a multivariate generalization of WZ-pairs.

Problem.

1 How to discover binomial-coefficient identities algorithmically?

clues to a region or an area of verification. The central fact developed is that identities are both inexhaustible and unpredictable; the age-old dream of putting order in this chaos is doomed to failure.

John Riordan, Combinatorial identities

" WZ forms bring order to this chaos."

Ira M. Gessel, Wilf80-slides, 2011

Remark. WZ-forms are a multivariate generalization of WZ-pairs.

Problem.

- 1 How to discover binomial-coefficient identities algorithmically?
- 2 How to generate all possible WZ-pairs algorithmically?

Problem. Find all possible rational WZ-pairs, i.e., determine

$$\mathscr{P}_{(\partial_x,\partial_y)} := \{(f,g) \mid f,g \in \mathbb{C}(x,y) \text{ such that } \partial_x(f) = \partial_y(g)\}.$$

, 6/13

Problem. Find all possible rational WZ-pairs, i.e., determine

$$\mathscr{P}_{(\partial_x,\partial_y)} := \{(f,g) \mid f,g \in \mathbb{C}(x,y) \text{ such that } \partial_x(f) = \partial_y(g)\}.$$

Definition. A rational pair (f,g) is exact if $\exists h \in \mathbb{C}(x,y)$ s.t.

$$f = \partial_y(h)$$
 and $g = \partial_x(h)$.

Problem. Find all possible rational WZ-pairs, i.e., determine

$$\mathscr{P}_{(\partial_x,\partial_y)} := \{(f,g) \mid f,g \in \mathbb{C}(x,y) \text{ such that } \partial_x(f) = \partial_y(g)\}.$$

Definition. A rational pair (f,g) is exact if $\exists h \in \mathbb{C}(x,y)$ s.t.

$$f = \partial_y(h)$$
 and $g = \partial_x(h)$.

Remark. The set $\mathscr{P}_{(\partial_x,\partial_y)}$ forms a vector space over \mathbb{C} and all exact pairs form a subspace of $\mathscr{P}_{(\partial_x,\partial_y)}$.

Problem. Find all possible rational WZ-pairs, i.e., determine

$$\mathscr{P}_{(\partial_x,\partial_y)} := \{(f,g) \mid f,g \in \mathbb{C}(x,y) \text{ such that } \partial_x(f) = \partial_y(g)\}.$$

Definition. A rational pair (f,g) is exact if $\exists h \in \mathbb{C}(x,y)$ s.t.

$$f = \partial_y(h)$$
 and $g = \partial_x(h)$.

Remark. The set $\mathscr{P}_{(\partial_x,\partial_y)}$ forms a vector space over \mathbb{C} and all exact pairs form a subspace of $\mathscr{P}_{(\partial_x,\partial_y)}$.

Different types of WZ-pairs:

- ▶ Differential case: $\partial_x = D_x$ and $\partial_y = D_y$
- ▶ (q)-Shift cases: $\partial_x \in \{\Delta_x, \Delta_{q,x}\}$ and $\partial_y \in \{\Delta_y, \Delta_{q,y}\}$
- Mixed cases: $\partial_x \in \{\Delta_x, \Delta_{a,x}\}$ and $\partial_y = \partial/\partial y$

Structure of rational WZ-pairs: the differential case

Definition. A pair (f,g) is a log-derivative pair if $\exists h \in \mathbb{C}(x,y)$ s.t.

$$f = \frac{D_y(h)}{h}$$
 and $g = \frac{D_x(h)}{h}$.

Structure of rational WZ-pairs: the differential case

Definition. A pair (f,g) is a log-derivative pair if $\exists h \in \mathbb{C}(x,y)$ s.t.

$$f = \frac{D_y(h)}{h}$$
 and $g = \frac{D_x(h)}{h}$.

Theorem (Christopher, 1999). Let $f,g \in \mathbb{C}(x,y)$ be such that $D_x(f) = D_y(g)$. Then $\exists a,b_1,\ldots,b_n \in \mathbb{C}(x,y)$ and nonzero $c_1,\ldots,c_n \in \mathbb{C}$ s.t.

$$f = D_y(a) + \sum_{i=1}^n c_i \frac{D_y(b_i)}{b_i}$$
 and $g = D_x(a) + \sum_{i=1}^n c_i \frac{D_x(b_i)}{b_i}$.

Structure of rational WZ-pairs: the differential case

Definition. A pair (f,g) is a log-derivative pair if $\exists h \in \mathbb{C}(x,y)$ s.t.

$$f = \frac{D_{y}(h)}{h}$$
 and $g = \frac{D_{x}(h)}{h}$.

Theorem (Christopher, 1999). Let $f,g \in \mathbb{C}(x,y)$ be such that $D_x(f) = D_y(g)$. Then $\exists a,b_1,\ldots,b_n \in \mathbb{C}(x,y)$ and nonzero $c_1,\ldots,c_n \in \mathbb{C}$ s.t.

$$f = D_y(a) + \sum_{i=1}^n c_i \frac{D_y(b_i)}{b_i}$$
 and $g = D_x(a) + \sum_{i=1}^n c_i \frac{D_x(b_i)}{b_i}$.

Corollary. Any rational WZ-pair of type (D_x, D_y) is a linear combination of exact and log-derivative pairs.

Shift invariant rational functions

Notation. Let $\theta_x \in \{\sigma_x, \tau_{q,x}\}$ and $\theta_y \in \{\sigma_y, \tau_{q,y}\}$.

▶ Shift operators: σ_x, σ_y

$$\sigma_x(f(x,y)) = f(x+1,y)$$
 and $\sigma_y(f(x,y)) = f(x,y+1)$.

• q-shift operators: $\tau_{q,x}, \tau_{q,y}$ with $q \in \mathbb{C} \setminus \{0\}$

$$\tau_{q,x}(f(x,y)) = f(qx,y)$$
 and $\tau_{q,y}(f(x,y)) = f(x,qy)$.

Shift invariant rational functions

Notation. Let $\theta_x \in \{\sigma_x, \tau_{q,x}\}$ and $\theta_y \in \{\sigma_y, \tau_{q,y}\}$.

▶ Shift operators: σ_x, σ_y

$$\sigma_x(f(x,y)) = f(x+1,y)$$
 and $\sigma_y(f(x,y)) = f(x,y+1)$.

• q-shift operators: $\tau_{q,x}, \tau_{q,y}$ with $q \in \mathbb{C} \setminus \{0\}$

$$\tau_{q,x}(f(x,y)) = f(qx,y)$$
 and $\tau_{q,y}(f(x,y)) = f(x,qy)$.

Definition. A rational function $f \in \mathbb{C}(x,y)$ is (θ_x,θ_y) -invariant if $\exists m,n \in \mathbb{Z}$, not all zero, such that $\theta_x^m \theta_y^n(f) = f$.

Shift invariant rational functions

Notation. Let $\theta_x \in \{\sigma_x, \tau_{q,x}\}$ and $\theta_y \in \{\sigma_y, \tau_{q,y}\}$.

▶ Shift operators: σ_x, σ_y

$$\sigma_{x}(f(x,y)) = f(x+1,y)$$
 and $\sigma_{y}(f(x,y)) = f(x,y+1)$.

• q-shift operators: $\tau_{q,x}, \tau_{q,y}$ with $q \in \mathbb{C} \setminus \{0\}$

$$au_{q,x}(f(x,y)) = f(qx,y)$$
 and $au_{q,y}(f(x,y)) = f(x,qy)$.

Definition. A rational function $f \in \mathbb{C}(x,y)$ is (θ_x,θ_y) -invariant if $\exists m,n \in \mathbb{Z}$, not all zero, such that $\theta_x^m \theta_y^n(f) = f$.

Prop. Let $f \in \mathbb{C}(x,y)$ be (θ_x,θ_y) -invariant and $\bar{n} = n/\gcd(m,n)$ and $\bar{m} = m/\gcd(m,n)$. Then

- 1. if $\theta_x = \sigma_x$ and $\theta_y = \sigma_y$, then $f = g(\bar{n}x \bar{m}y)$ for some $g \in \mathbb{C}(z)$;
- 2. if $\theta_x = \tau_{q,x}$, $\theta_y = \tau_{q,y}$, then $f = g(x^{\bar{n}}y^{-\bar{m}})$ for some $g \in \mathbb{C}(z)$;
- 3. if $\theta_x = \sigma_x$, $\theta_y = \tau_{q,y}$, then $f \in \mathbb{C}(x)$ if m = 0, $f \in \mathbb{C}(y)$ if n = 0, and $f \in \mathbb{C}$ if $mn \neq 0$.

Cyclic pairs

Notation. For $n \in \mathbb{Z}, h \in \mathbb{C}(x,y)$ we define

$$\frac{\theta_{y}^{n}-1}{\theta_{y}-1} \bullet h = \begin{cases} \sum_{j=0}^{n-1} \theta_{y}^{j}(h), & n \geq 0; \\ -\sum_{j=1}^{-n} \theta_{y}^{-j}(h), & n < 0. \end{cases}$$

Cyclic pairs

Notation. For $n \in \mathbb{Z}, h \in \mathbb{C}(x,y)$ we define

$$\frac{\theta_{y}^{n}-1}{\theta_{y}-1} \bullet h = \begin{cases} \sum_{j=0}^{n-1} \theta_{y}^{j}(h), & n \geq 0; \\ -\sum_{j=1}^{-n} \theta_{y}^{-j}(h), & n < 0. \end{cases}$$

Definition. A pair (f,g) is a cyclic pair if $\exists h \in \mathbb{C}(x,y)$ s.t.

$$f = \frac{\theta_x^s - 1}{\theta_x - 1} \bullet h$$
 and $g = \frac{\theta_y^t - 1}{\theta_y - 1} \bullet h$,

where h is (θ_x, θ_y) -invariant, i.e., $\exists s, t \in \mathbb{Z}$, not all zero, s.t. $\theta_x^s(h) = \theta_y^t(h)$.

Cyclic pairs

Notation. For $n \in \mathbb{Z}, h \in \mathbb{C}(x,y)$ we define

$$\frac{\theta_{y}^{n}-1}{\theta_{y}-1} \bullet h = \begin{cases} \sum_{j=0}^{n-1} \theta_{y}^{j}(h), & n \geq 0; \\ -\sum_{j=1}^{-n} \theta_{y}^{-j}(h), & n < 0. \end{cases}$$

Definition. A pair (f,g) is a cyclic pair if $\exists h \in \mathbb{C}(x,y)$ s.t.

$$f = \frac{\theta_x^s - 1}{\theta_x - 1} \bullet h$$
 and $g = \frac{\theta_y^t - 1}{\theta_y - 1} \bullet h$,

where h is (θ_x, θ_y) -invariant, i.e., $\exists s, t \in \mathbb{Z}$, not all zero, s.t. $\theta_x^s(h) = \theta_y^t(h)$.

Example. Let p = 2x + 3y. Then the pair (f,g) with

$$f = \frac{1}{p} + \frac{1}{\sigma_x(p)} + \frac{1}{\sigma_x^2(p)}$$
 and $g = \frac{1}{p} + \frac{1}{\sigma_y(p)}$

is a cyclic WZ-pair with respect to (Δ_x, Δ_y) .

Structure of rational WZ-pairs: the (q)-shift case

Let $\theta_x \in \{\sigma_x, \tau_{q,x}\}$ and $\theta_y \in \{\sigma_y, \tau_{q,y}\}$.

Theorem. Let $f,g \in \mathbb{C}(x,y)$ be such that $\theta_x(f) - f = \theta_y(g) - g$. Then $\exists \ a,b_1,\ldots,b_n \in \mathbb{C}(x,y)$ s.t.

$$f = \theta_{y}(a) - a + \sum_{i=1}^{n} \frac{\theta_{x}^{s_{i}} - 1}{\theta_{x} - 1} \bullet b_{i} \quad \text{and} \quad g = \theta_{x}(a) - a + \sum_{i=1}^{n} \frac{\theta_{y}^{t_{i}} - 1}{\theta_{y} - 1} \bullet b_{i},$$

where the b_i 's are (θ_x, θ_y) -invariant, i.e., for each $i \in \{1, ..., n\}$ we have $\theta_x^{s_i}(b_i) = \theta_y^{t_i}(b_i)$ for some $s_i \in \mathbb{N}$ and $t_i \in \mathbb{Z}$ with s_i, t_i not all zero.

Structure of rational WZ-pairs: the (q)-shift case

Let $\theta_x \in \{\sigma_x, \tau_{q,x}\}$ and $\theta_y \in \{\sigma_y, \tau_{q,y}\}$.

Theorem. Let $f,g \in \mathbb{C}(x,y)$ be such that $\theta_x(f) - f = \theta_y(g) - g$. Then $\exists \ a,b_1,\ldots,b_n \in \mathbb{C}(x,y)$ s.t.

$$f = \theta_{y}(a) - a + \sum_{i=1}^{n} \frac{\theta_{x}^{s_{i}} - 1}{\theta_{x} - 1} \bullet b_{i} \quad \text{and} \quad g = \theta_{x}(a) - a + \sum_{i=1}^{n} \frac{\theta_{y}^{t_{i}} - 1}{\theta_{y} - 1} \bullet b_{i},$$

where the b_i 's are (θ_x, θ_y) -invariant, i.e., for each $i \in \{1, ..., n\}$ we have $\theta_x^{s_i}(b_i) = \theta_y^{t_i}(b_i)$ for some $s_i \in \mathbb{N}$ and $t_i \in \mathbb{Z}$ with s_i, t_i not all zero.

Corollary. Any rational WZ-pair of type $(\theta_x - 1, \theta_y - 1)$ is a linear combination of exact and cyclic pairs.

Structure of rational WZ-pairs: the mixed case

Let $\theta_x \in \{\sigma_x, \tau_{q,x}\}$ and $\partial_y = D_y$.

Definition. A pair (f,g) is a constant pair if $\partial_x(f) = \partial_y(g) = 0$.

, 11/13

Structure of rational WZ-pairs: the mixed case

Let $\theta_x \in \{\sigma_x, \tau_{q,x}\}$ and $\partial_y = D_y$.

Definition. A pair (f,g) is a constant pair if $\partial_x(f) = \partial_y(g) = 0$.

Theorem. Let $f,g\in\mathbb{C}(x,y)$ be such that $\theta_x(f)-f=D_y(g)$. Then $\exists \ h\in\mathbb{C}(x,y),\ u\in\mathbb{C}(y)$ and $v\in\mathbb{C}(x)$ s.t.

$$f = D_v(h) + u$$
 and $g = \theta_x(h) - h + v$.

Structure of rational WZ-pairs: the mixed case

Let $\theta_x \in \{\sigma_x, \tau_{q,x}\}$ and $\partial_y = D_y$.

Definition. A pair (f,g) is a constant pair if $\partial_x(f) = \partial_y(g) = 0$.

Theorem. Let $f,g\in\mathbb{C}(x,y)$ be such that $\theta_x(f)-f=D_y(g)$. Then $\exists \ h\in\mathbb{C}(x,y),\ u\in\mathbb{C}(y)$ and $v\in\mathbb{C}(x)$ s.t.

$$f = D_y(h) + u$$
 and $g = \theta_x(h) - h + v$.

Corollary. Any rational WZ-pair of type $(\theta_x - 1, D_y)$ is a linear combination of exact and constant pairs.

Problem. Given a WZ pair P := (F(x,y), G(x,y)) satisfying F(x+1,y) - F(x,y) = G(x,y+1) - G(x,y),

find a transformation ϕ such that $\phi(P)$ is also a WZ-pair?

Problem. Given a WZ pair P := (F(x,y), G(x,y)) satisfying

$$F(x+1,y) - F(x,y) = G(x,y+1) - G(x,y),$$

find a transformation ϕ such that $\phi(P)$ is also a WZ-pair?

Gessel's transformations:

$$(F(x,y),G(x,y)) \longrightarrow (F(-x,y),-G(-x-1,k)).$$

Problem. Given a WZ pair P := (F(x,y), G(x,y)) satisfying

$$F(x+1,y) - F(x,y) = G(x,y+1) - G(x,y),$$

find a transformation ϕ such that $\phi(P)$ is also a WZ-pair?

Gessel's transformations:

$$(F(x,y),G(x,y)) \longrightarrow (F(-x,y),-G(-x-1,k)).$$

Guillera's transformation:

$$(F(x,y),G(x,y)) \mapsto (F(x,x+y)+G(x+1,x+y),G(x,x+y)).$$

Problem. Given a WZ pair P := (F(x,y), G(x,y)) satisfying

$$F(x+1,y) - F(x,y) = G(x,y+1) - G(x,y),$$

find a transformation ϕ such that $\phi(P)$ is also a WZ-pair?

Gessel's transformations:

$$(F(x,y),G(x,y)) \mapsto (F(-x,y),-G(-x-1,k)).$$

Guillera's transformation:

$$(F(x,y),G(x,y)) \longrightarrow (F(x,x+y)+G(x+1,x+y),G(x,x+y)).$$

Mu's transformation:

$$(F(x,y),G(x,y)) \mapsto (F(x+y+1,y)+G(x+y,y),G(x+y,y)).$$

Summary

▶ Structure of rational WZ-pairs

, 13/13

Summary

- Structure of rational WZ-pairs
- ▶ Future work:
 - **1** The multivariate case: $f_1, \ldots, f_n \in \mathbb{C}(x_1, \ldots, x_n)$ satisfy

$$\Delta_{x_i}(f_j) = \Delta_{x_i}(f_i)$$
 for all i, j with $1 \le i < j \le n$.

2 The hypergeometric case: automatic discovery of binomial-coefficients identities

Summary

- Structure of rational WZ-pairs
- Future work:
 - **1** The multivariate case: $f_1, \ldots, f_n \in \mathbb{C}(x_1, \ldots, x_n)$ satisfy

$$\Delta_{x_i}(f_j) = \Delta_{x_i}(f_i)$$
 for all i, j with $1 \le i < j \le n$.

2 The hypergeometric case: automatic discovery of binomial-coefficients identities

Thank you!