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Rational integrals

Theorem. Let f ∈ C(x) be a rational function over C. Then∫
f (x)dx

is either rational or transcendental over C(x).

Theorem (van der Poorten, 1971). Let f ∈Q(x) be a rational

function over Q. Then∫ b

a
f (x)dx with a,b ∈Q

is either rational or transcendental over Q.

Remark. Proof by using Baker's theorem on linear forms in the

logarithms of algebraic numbers.

Chen, AMSS Rational-Transcendental Dichotomy Theorems 2/27



Polya-Cantor theorem

Problem. For f (x) ∈ C(x), when
∫

f (x)dx is rational?

Theorem (Polya, 1921, Cantor, 1965). Let

f =
+∞∑
n=0

anxn ∈ Z[[x]]∩Q(x)

be such that (n+1) | an for all n ∈ N. Then
∫

f (x)dx is rational.

Remark. This follows from the fact by Polya: For f ∈ Z[[x]], f is

rational i� f is globally bounded and df/dx is rational.

Theorem (André, 1989). Let K be a number �eld and f ∈ K[[x]].
Then f is algebraic i� f is globally bounded and df/dx is algebraic.
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Mahler's functions and automatic numbers

De�nition. A function F ∈ C[[x]] is k-Mahler if there exist d ∈ N
and a0, . . . ,ad ∈ C[x] with a0ad ̸= 0 s.t.

a0(x)F(x)+a1(x)F(xk)+ · · ·+ad(x)F(xkd
) = 0.

Theorem (Noshioka, 1996). A k-Mahler function is either rational

or transcendental.

De�nition. A real number α ∈ (0,1) is automatic if the digits of its

b-ary expansion can be generated by a �nite automata.

Theorem (Adamczewski, Bugeaud, Luca, 2004). An automatic

number is either rational or transcendental.
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Hadamard's problem on power series

In 1892, Hadamard in his thesis said that

�Indeed, the Taylor expansion does not reveal the properties

of the function represented, and even seems to mask them

completely. �

Hadamard then considered the following problem:

What relationships are there between the coe�cients of a power

series and the singularities of the function it represents?

Two special cases of the problem have been studied:

Power series with rational or integral coe�cients;

Power series with �nitely distinct coe�cients.

Chen, AMSS Rational-Transcendental Dichotomy Theorems 5/27



Power series with rational coe�cients

f (x) =
∑
n≥0

anxn, where an ∈Q.

Theorem (Eisenstein 1852, Heine 1853). If f (x) represents an
algebraic function over Q(x), then ∃ T ∈ Z, s.t.∑

n≥0

anTnxn ∈ Z[[x]].
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Power series with integral coe�cients

f (x) =
∑
n≥0

anxn, where an ∈ Z.

Fatou's Lemma. If f (x) represents a rational function, then

f (x) =
P(x)
Q(x)

, where P,Q ∈ Z[x] and Q(0) = 1.

Fatou's Theorem. If f (x) converges inside the unit disk, then it is

either rational or transcendental over Q(x).
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Power series with integral coe�cients

f (x) =
∑
n≥0

anxn, where an ∈ Z.

Pólya-Carlson Theorem. If f (x) converges inside the unit disk,

then either it is rational or has the unit circle as natural boundary.

Corollary (Fatou1906). If f (x) is algebraic, then it is rational.
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Power series with �nitely distinct coe�cients

f (x) =
∑
n≥0

anxn, where an ∈ ∆ ⊆ C with |∆ |<+∞.
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Power series with �nitely distinct coe�cients

f (x) =
∑
n≥0

anxn, where an ∈ ∆ ⊆ C with |∆ |<+∞.

Fatou's Theorem. A power series with �nitely distinct coe�cients

in C is either rational or transcendental over C(x).
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Power series with �nitely distinct coe�cients

f (x) =
∑
n≥0

anxn, where an ∈ ∆ ⊆ C with |∆ |<+∞.

Szegö's Theorem (1922)

A power series with �nitely distinct coe�cients in C is either rational

or has the unit circle as its natural boundary.
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Arithmetical aspects of power series

Problem. Decide whether a given power series is rational,

algebraic, transcendental, or hyper-transcendental?
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Arithmetical aspects of power series

Problem. Decide whether a given power series is rational,

algebraic, transcendental, or hyper-transcendental?

Project. Arithmetic theory of power series in several variables
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D-�nite power series

Let K be a �eld of characteristic zero.

De�nition. A series f (x1, . . . ,xd) ∈ K[[x1, . . . ,xd]] is D-�nite if
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D-�nite power series

Let K be a �eld of characteristic zero.

De�nition. A series f (x1, . . . ,xd) ∈ K[[x1, . . . ,xd]] is D-�nite if

all derivatives Di1
x1
· · ·Did

xd
(f ) form a �nite-dimensional vector space

over K(x1, . . . ,xd).
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D-�nite power series

Let K be a �eld of characteristic zero.

De�nition. A series f (x1, . . . ,xd) ∈ K[[x1, . . . ,xd]] is D-�nite if
for each i ∈ {1, . . . ,d}, f satis�es a LPDE:

pi,riD
ri
xi
(f )+pi,ri−1Dri−1

xi
(f )+ · · ·+pi,0f = 0.

Chen, AMSS Rational-Transcendental Dichotomy Theorems 11/27
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De�nition. A series f (x1, . . . ,xd) ∈ K[[x1, . . . ,xd]] is D-�nite if
for each i ∈ {1, . . . ,d}, f satis�es a LPDE:

pi,riD
ri
xi
(f )+pi,ri−1Dri−1

xi
(f )+ · · ·+pi,0f = 0.

R. P. Stanley. Di�erentiably Finite Power Series. European

Journal of Combinatorics, 1: 175�188, 1980.

L. Lipshitz. D-Finite Power Series. Journal of Algebra, 122:

353�373, 1989.

M. Kauers. D-Finite Functions. Springer, 2023, 664 pages.
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D-�nite power series

Let K be a �eld of characteristic zero.

De�nition. A series f (x1, . . . ,xd) ∈ K[[x1, . . . ,xd]] is D-�nite if
for each i ∈ {1, . . . ,d}, f satis�es a LPDE:

pi,riD
ri
xi
(f )+pi,ri−1Dri−1

xi
(f )+ · · ·+pi,0f = 0.

Algebraic Numbers ↭ D-�nite Functions
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Power series with integral coe�cients

(the multivariate case)

Multivariate extensions of the Pólya-Carlson Theorem:

Theorem (BellChen, 2016) If the multivariate power series

F =
∑

f (n1, . . . ,nd)x
n1
1 · · ·xnd

d ∈ Z[[x1, . . . ,xd]]

is D-�nite and converges on the unit polydisc, then it is rational.
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Power series with �nitely distinct coe�cients

(the multivariate case)

Theorem (van der Poorten & Shparlinsky, 1994).

Let an : N→ ∆ , where ∆ is a �nite subset of Q. If the generating

function f (x) =
∑

n anxn is D-�nite, then it is rational.

Remark. This follows from Szegö's theorem.

Theorem (BellChen, JCTA 2017). Let an1,...,nd :Nd → ∆ , where ∆ is

a �nite subset of K with char(K) = 0. If the generating function

f (x1, . . . ,xd) =
∑

an1,...,nd xn1
1 · · ·xnd

d

is D-�nite, then it is rational.
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Nonnegative integer points on algebraic varieties

Let V be an algebraic variety over an algebraically closed �eld K of

characteristic zero. We de�ne the listing generating function

FV(x1, . . . ,xd) :=
∑

(n1,...,nd)∈V∩Nd

xn1
1 · · ·xnd

d
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Nonnegative integer points on algebraic varieties

Let V be an algebraic variety over an algebraically closed �eld K of

characteristic zero. We de�ne the listing generating function

FV(x1, . . . ,xd) :=
∑

(n1,...,nd)∈V∩Nd

xn1
1 · · ·xnd

d

We may ask the following questions:

When FV is a rational function?

Remark. If FV is rational, then nonnegative integer points distribute

semi-linearly.
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Nonnegative integer points on algebraic varieties

Let V be an algebraic variety over an algebraically closed �eld K of

characteristic zero. We de�ne the listing generating function

FV(x1, . . . ,xd) :=
∑

(n1,...,nd)∈V∩Nd

xn1
1 · · ·xnd

d

We may ask the following questions:

When FV is a D-�nite function?

Corollary.

FV is D-�nite ⇔ FV is rational.
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Nonnegative integer points on algebraic varieties

Let V be an algebraic variety over an algebraically closed �eld K of

characteristic zero. We de�ne the listing generating function

FV(x1, . . . ,xd) :=
∑

(n1,...,nd)∈V∩Nd

xn1
1 · · ·xnd

d

We may ask the following questions:

When FV is a D-�nite function?

Theorem.

The problem of testing whether FV is rational is undecidable!
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Nonnegative integer points on algebraic curves

Theorem. Let p(x,y) ∈ C[x,y]. If the generating function

Fp(x,y) :=
∑

(n,m)∈V(p)∩N2

xnym

is rational. Then p = f ·g, where f ,g ∈ C[x,y] s.t.

f =
∏

i

(si · x+ ti · y+ ci) with si, ti ∈ Z and ci ∈ C

and g has only �nite zeros in N2.

Example. Let p = x2 − y. Since p is not a product of integer-linear

polynomials, the power series Fp(x,y) is not D-�nite.

Chen, AMSS Rational-Transcendental Dichotomy Theorems 15/27



Nonnegative integer points on algebraic curves

Theorem. Let p(x,y) ∈ C[x,y]. If the generating function

Fp(x,y) :=
∑

(n,m)∈V(p)∩N2

xnym

is rational. Then p = f ·g, where f ,g ∈ C[x,y] s.t.

f =
∏

i

(si · x+ ti · y+ ci) with si, ti ∈ Z and ci ∈ C

and g has only �nite zeros in N2.

Example. Let p = x2 − y. Since p is not a product of integer-linear

polynomials, the power series Fp(x,y) is not D-�nite.

Chen, AMSS Rational-Transcendental Dichotomy Theorems 15/27



Beyond D-�nite

De�nition. F ∈ K[[x1, . . . ,xd]] is di�erentially algebraic if the

transcendence degree of the �eld generated by the derivatives

Di1
x1
· · ·Did

xd
(F) with ij ∈ N over K(x1, . . . ,xd) is �nite.

Conjecture. Let V be an algebraic variety over C. Then the power

series ∑
(n1,...,nd)∈V∩Nd

xn1
1 · · ·xnd

d

is di�erentially algebraic if and only if it is rational.
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Open problems

Conjecture. Let V be an algebraic variety over C. Then the power

series ∑
(n1,...,nd)∈V∩Nd

xn1
1 · · ·xnd

d

is di�erentially algebraic if and only if it is rational.
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Open problems

Conjecture. Let V be an algebraic variety over C. Then the power

series ∑
(n1,...,nd)∈V∩Nd

xn1
1 · · ·xnd

d

is di�erentially algebraic if and only if it is rational.

Example. Let p = x2 − y. Then the power series

Fp(x,y) :=
∑
m≥0

xmym2

is not di�erentially algebraic, otherwise, Fp(x,2) =
∑

2m2
xm is dif-

ferentially algebraic. By Mahler's lemma, we get a contradiction

2m2 ≪ (m!)c for any positive constant c.
Chen, AMSS Rational-Transcendental Dichotomy Theorems 17/27



Open problems

Conjecture. Let V be an algebraic variety over C. Then the power

series ∑
(n1,...,nd)∈V∩Nd

xn1
1 · · ·xnd

d

is di�erentially algebraic if and only if it is rational.

Conjecture (Chowla-Chowla-Lipshitz-Rubel). The power series

f :=
∑
n∈N

xn3 ∈ C[[x]]

is not di�erentially algebraical, i.e., satis�es no ADE.

Remark. The power series
∑

xn2
is di�erentially algebraic.
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P-recursive sequences

De�nition. A sequence s : N−→ K is P-recursive over K if

pd · s(n+d)+pd−1 · s(n+d−1)+ · · ·+p0 · s(n) = 0,

where pi ∈ K[n]. If all pi are constants in K, we call s(n) C-�nite.

Theorem (Stanley, 1980). Let f (x) =
∑

n≥0 anxn ∈ K[[x]]. Then

an is P-recursive ⇔ f is D-�nite

Remark. This correspondence is not true for multivariate

sequences. ∑
n1,n2≥0

1
n2

1 +n2
2 +1

· yn1
1 yn2

2 is not D-�nite!
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Skolem-Mahler-Lech theorem: the C-�nite case

Let s : N→ K be C-�nite over K with char(K)=0. De�ne

Zs := {i ∈ N | s(i) = 0}.

Theorem. (Skolem 1934, Mahler 1935, Lech 1953) Zs is a union of

�nitely many arithmetic progressions, i.e.,

Zs =

(
t⋃

j=1

{djn+ cj | dj,cj,n ∈ N}

)
∪ {i1, . . . , is}, where s, t <+∞ .

Example. Let s(n) be the sequence de�ned by

s(n+6) = 6s(n+4)−12s(n+2)+8s(n)

with (s(0), . . . ,s(5))=(8,0,9,0,8,0). Then Zs={8}∪ {2n+1 | n ∈N}.
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Skolem-Mahler-Lech theorem: the P-recursive case

Let s(n) be a P-recursive sequence over K with

pd · s(n+d)+pd−1 · s(n+d−1)+ · · ·+p0 · s(n) = 0.

De�ne

Zs := {i ∈ N | s(i) = 0}.

Rubel's Conjecture (1983). Zs is a union of �nitely many

arithmetic progressions.

Remark. This conjecture is the linear case of Dynamical

Mordell-Lang Conjecture on algebraic dynamics.
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Skolem-Mahler-Lech theorem: the P-recursive case

Let s(n) be a P-recursive sequence over K with

pd · s(n+d)+pd−1 · s(n+d−1)+ · · ·+p0 · s(n) = 0.

De�ne

Zs := {i ∈ N | s(i) = 0}.

Rubel's Conjecture (1983). Zs is a union of �nitely many

arithmetic progressions.

Remark. This conjecture is the linear case of Dynamical

Mordell-Lang Conjecture on algebraic dynamics.

Theorem. (Bell�Burris�Yeats, 2012) If pd = 1 and pd−1 is nonzero

constant polynomial, then Rubel's Conjecture is true.
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Skolem-Mahler-Lech theorem: the P-recursive case

Let s(n) be a P-recursive sequence over K with

pd · s(n+d)+pd−1 · s(n+d−1)+ · · ·+p0 · s(n) = 0.

De�ne

Zs := {i ∈ N | s(i) = 0}.

Rubel's Conjecture (1983). Zs is a union of �nitely many

arithmetic progressions.

Remark. This conjecture is the linear case of Dynamical

Mordell-Lang Conjecture on algebraic dynamics.

Theorem. (Bézivin, 1989; Bell-Chen-Hossian, ANT2021)

Let G ⊆ K× be a �nitely generated abelian group. Then Rubel's

Conjecture is true if s(n) is P-recursive and s(n) ∈ G∪ {0}.
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Height

Height is a measure of average-complexity of algebraic numbers.

De�nition. For α ∈Q with its minimal polynomial

p(x) = ad(x−β1) · · ·(x−βd) ∈ Z[x],

we let

M(α) := |ad | ·
∏

i

max(1, |βi|).

Then the absolute logarithmic Weil height h(α) is log(M(α))/d.

Remark. For r = a/b ∈Q with a,b ∈ Z, we have

h(a/b) = max(log |a|, log |b|).
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Height pattern of D-�nite series I

Theorem (Bell-Nguyen-Zannier, 2019)

Let f (x) =
∑

n∈Nm
0

anxn ∈Q[[x]]. If f is D-�nite and

lim
∥n∥→∞

h(an)

log∥n∥
= 0. (1)

Then f is rational.

Remark. This result generalizes the rationality theorem of Bell and

Chen, helped to inspire Dimitrov's recent spectacular solution of

the Schinzel-Zassenhauss conjecture from the 1960s.

J. P. Bell, K. Nguyen and U. Zannier. D-�niteness, Rationality, and
Height. Trans. Amer. Math. Soc. 373 (2020), 7: 4889�4906.
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Height pattern of D-�nite series II

Theorem (Bell-Nguyen-Zannier, 2023). Let f (z) =
∑

n anzn ∈ Q[[z]]
be D-�nite and r be the radius of convergence of f .

(a) If r ∈ {0,∞} and f /∈Q[z] then h(an) = O(n logn) and
h(an)≫ n logn on a set of positive upper density.

(b) If r ̸∈ {0,∞} then one of the following holds:

(i) h(an)≫ n on a set of positive upper density;
(ii) den(an)≫ n, and hence h(an)>

1
[K:Q] logn+O(1), on a set of

positive upper density;
(iii) f (z) is a rational function .

J. P. Bell, K. Nguyen and U. Zannier. D-�niteness, Rationality, and
Height II: Lower bounds over a set of positive density. Adv. Math.
414, 1 February 2023, 108859.
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Height pattern of D-�nite series II

Problem (Height gaps). Let f (z) ∈Q[[z]] be D-�nite, is it true that

one of the following holds?

(i) h(an) = O(n logn) and h(an)≫ n logn for n in a set of positive

density;

(ii) h(an) = O(n) for every n and h(an)≫ n for n in a set of

positive density;

(iii) h(an) = O(logn) for every n and h(an)≫ logn for n in a set of

positive density;

(iv) h(an) = O(1) for every n.

Chen, AMSS Rational-Transcendental Dichotomy Theorems 23/27



Height pattern of D-�nite series III

Theorem (Bell-Chen-Nguyen-Zannier, 2023 )

Let m ∈ N and let F(x) =
∑
n∈Nm

0

f (n)xn ∈Q[[x]] be D-�nite. For

N ∈ N0, let hN = max{h(f (n)) : |n|≤ N} and

dN = lcm{den(f (n)) : |n|≤ N}

If hN = o(N) and logdN = o(N) as N →∞, then

(a) F is a rational function.

(b) Up to scalar multiplication, every irreducible factor of the

denominator of F has the form:

1−ζx
n

where ζ is a root of unity and n ∈ Nm
0 \ {0}.
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Hadamard product

De�nition. Let f =
∑

a(i)xi and g =
∑

b(i)xi be in K[[x]], where
xi = xi1

1 · · ·xin
n . The Hadamard product of f and g is

f ⊙g =
∑

a(i)b(i)xi.

n f g f ⊙g
1 rational rational rational

1 rational alg. alg.

1 alg. alg. maybe trans.

2 rational rational alg.

2 rational alg. maybe trans.

n > 2 rational rational maybe trans.

n ≥ 1 D-�nite D-�nite D-�nite
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Rationality theorems

In 1980, Stanley conjectured that for all k ≥ 2, the series

+∞∑
n=0

(
2n
n

)k

xn

is transcendental.

Remark. This conjecture was proved independently by Flajolet in

1987 and by Woodcock and Sharif in 1989.

Theorem (BenzaghouBézivin1992). If f (x) ∈Q[[x]] is D-�nite and

f (x)
⊙

f (x) is rational, then f (x) is rational.

Remark. With Singer and Zannier, we found two more proofs: one

is arithmetic and another one is Galois-theoretical.

Conjecture (Zannier 2023 ???). If f (x) ∈Q[[x]] is algebraic and

f (x)
⊙

f (x) is algebraic, then f (x) is rational.
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Summary

J. P. Bell and S. Chen. Power Series with Coe�cients from a Finite Set. Journal of Combinatorial Theory,

Series A., 151: pp. 241�253, 2017.

J. P. Bell, S. Chen, and E. Hossain. Rational Dynamical Systems, S-units, and D-�nite Power Series.

Algebra and Number Theory, 15(7): 1699�1728, 2021.

J. P. Bell, S. Chen, K. Nguyen and U. Zannier. D-�niteness, Rationality, and Height III: Multivariate

Pólya-Carlson Dichotomy. Mathematische Zeitschrift, 306(70), 2024.

Thanks!
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