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Sequences

Sequences are fundamental objects in mathematics:
s: N — K, where K is any ring or field.

Examples:
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Sequences are fundamental objects in mathematics:
s: N — K, where K is any ring or field.

Examples:

NICE SEQUENCES!
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OEIS. The On-Line Encyclopedia of Integer Sequences (N.J.A. Sloan)
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Power series as generating functions

The generating function of a sequence a, is

+o00
F00):= ) a" € K.
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Defn. A function f(x) € K[[x]] is D-finite (or holonomic) if
all derivatives of f form a finite-dimensional vector space over K(x).
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Power series as generating functions
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+o00
f@):=> anx" e KIN.
n=0
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Correspondence:

[C—finite sequences] “ [rational functions]
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Power series as generating functions

The generating function of a sequence a, is
+o00
f@):=> anx" e KIN.
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Defn. A function f(x) € K[[x]] is D-finite (or holonomic) if

D) 4+ pr 1D (F(x) -+ pof(x) =0 for p; € Klx].

Correspondence:

hypergeometric hypergemetric
sequences “ functions
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Power series as generating functions

The generating function of a sequence a, is
+o00
f@):=> anx" e KIN.
n=0

Defn. A function f(x) € K[[x]] is D-finite (or holonomic) if

PDYf (X)) +pr 1D (F(x) + -+ paf(x) =0 for p; € Klxl.

Correspondence:

[ P-recursive ]“[ D-finite ]

Sequences Power Series

Example. Bell numbers b, count the number of partitions of a set

1,1,2,5,15,52,203,877,4140, ... (sequence A000110 in OEIS)
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Power series as generating functions

The generating function of a sequence a, is

+o00
=) an" € K[x]
n=0

Defn. A function f(x) € K[[x]] is D-finite (or holonomic) if

PDYf (X)) +pr 1D (F(x) + -+ paf(x) =0 for p; € Klxl.

Correspondence:

[ P-recursive ]“[ D—finitt.e ]

Sequences Power Series

Example. Bell numbers b, count the number of partitions of a set

>

n

=exp(exp(x) —1).
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Power series as generating functions

The generating function of a sequence a, is
+o00
f@):=> anx" e KIN.
n=0

Defn. A function f(x) € K[[x]] is D-finite (or holonomic) if

PDYf (X)) +pr 1D (F(x) + -+ paf(x) =0 for p; € Klxl.

Correspondence:

[ P-recursive ]“[ D-finite ]

Sequences Power Series

Example. Bell numbers b, count the number of partitions of a set

exp(exp(x) —1) is not D-finite!
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Power series as generating functions

The generating function of a sequence a, is
+o00
f@):=> anx" e KIN.
n=0

Defn. A function f(x) € K[[x]] is D-finite (or holonomic) if

PDYf (X)) +pr 1D (F(x) + -+ paf(x) =0 for p; € Klxl.

Correspondence:

Sequences Power Series

[ P-recursive ]“[ D-finite ]

Example. Bell numbers b, count the number of partitions of a set

b, is not P-recursive!
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Power series as generating functions

Let @y, », : N — K be a sequence. Then the formal power series
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is called the generating function of a,, _n,.
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Power series as generating functions

Let @y, », : N — K be a sequence. Then the formal power series
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[C—finite sequences] * [rational functions]

4/15



Power series as generating functions

Let @y, », : N — K be a sequence. Then the formal power series

400
f(.)C],...,Xd) = Z anl,...,ndx?l "'de EK[[X17"'xd]]

ny,...,ng=0

is called the generating function of a,, _n,.

Defn. A function f(xq,...,x4) € Kllx1,...,x4]] is D-finite if
foreach i €{1,...,d},

Pir D (f () +pirma DI () 4+ +piaf (x) =0 for pij € Klxy,...,xql.

Sequences

P-recursive — D-finite
[ ] [ Power Series ]
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Arithmetic aspects of power series

Problem. Decide whether a given power series is rational,

algebraic, or D-finite?

CLASSICS IN MATHEMATICS
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Power series with rational coefficients

flx)= Za,,x", where a, € Q.

n>0
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Eigenschaft der Reihenentwicklungen

aller algebraischen Funcktionen, Belin,
Sitzber, 441-443, 1852

ATREBZFRBRAN LK
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Gotthold Hisenstein (1823-1852)

Theorem (Eisenstein 1852, Heine 1853). If f(x) represents an
algebraic function over Q(x), then 3T € Z, s.t.

> a,I"x" € Zllx]).

n>0
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Power series with integral coefficients

flx)= Za,,x", where a, € Z.

n>0
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Power series with integral coefficients

flx)= Za,,x", where a, € Z.

n>0

Pierre Fatou, Séries trigonométriques et séries de Taylor,

Acta Math. 30 (1906), no. 1, 335-400.

P

Pierre Fatou (1878-1929)

Fatou's lemma. If f(x) represents a rational function, then

_PW
10 = 5o

where P,Q € Z[x] and Q(0) = 1.
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Power series with integral coefficients

flx)= Za,,x", where a, € Z.

n>0

Pierre Fatou, Séries trigonométriques et séries de Taylor,

Acta Math. 30 (1906), no. 1, 335-400.

— o 1

Pierre Fatou (1878-1929)

Fatou's lemma. If f(x) represents a rational function, then

_PW
10 = 5o

Theorem. If f(x) converges inside the unit disk, then it is either
rational or transcendental over Q(x).

where P,Q € Z[x] and Q(0) = 1.
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Power series with integral coefficients

flx)= Zanx", where a, € Z.

n>0
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Power series with integral coefficients

flx)= Zanx”, where a, € Z.

n>0

George Pdlya, Uber Potenzreihen mit ganzzahligen Koeffizienten,
Math. Ann. 77 (1916), no. 4, 497-513.

Fritz Carlson, Uber Potenzreihen mit ganzzahligen Koeffizienten,
Math. Z. 9(1921), no. 1-2, 1-13.

George Polya (1887-1985)

Polya-Carlson Theorem. If f(x) converges inside the unit disk,
then either it is rational or has the unit circle as natural boundary.
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Power series with integral coefficients

flx)= Zanx”, where a, € Z.

n>0

George Pdlya, Uber Potenzreihen mit ganzzahligen Koeffizienten,
Math. Ann. 77 (1916), no. 4. 497-513.

Fritz Carlson, Uber Potenzreihen mit ganzzahligen Koeffizienten,
Math. Z. 9(1921), no. 1-2, 1-13.

George Polya (1887-1985)

Polya-Carlson Theorem. If f(x) converges inside the unit disk,
then either it is rational or has the unit circle as natural boundary.

Corollary. If f(x) is algebraic or D-finite, then it is rational.
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Power series with integral coefficients

(the multivariate case)

Multivariate extensions of the Pélya-Carlson Theorem:
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Power series with integral coefficients

(the multivariate case)
Multivariate extensions of the Pélya-Carlson Theorem:

@ André Martinean,  Extension en n-variables d’un théoréme de Pdlya-
Carlson concernant les séries de puissances a coefficients entiers, C. R.
Acad. Sci. Paris Sér. A-B 273 (1971). A1127-A1129. MR 0291495

@ V. P. Seiov, Transfinite diameter and certain theorems of Polya in the

case of several complex variables, Sibirsk. Mat. 7. 12 (1971), 1382-1389.

@ Emil J. Straube. Power series with integer cocfficients in several variables,
Comment. Math. Helv. 62 (1987), no. 4, 602-615. MR 920060
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Multivariate extensions of the Pélya-Carlson Theorem:

@ André Martinean,  Extension en n-variables d’un théoréme de Pdlya-
Carlson concernant le. ies de puissances d coefficients entiers, C. R.
Acad. Sci. Paris Sér. A-B 273 (1971). A1127-A1129. MR 0291495

@ V. P. Seiov, Transfinite diameter and certain theorems of Polya in the

case of several complex variables, Sibirsk. Mat. 7. 12 (1971), 1382-1389.

@ Emil J. Straube. Power series with integer cocfficients in several variables,
Comment. Math. Helv. 62 (1987), no. 4, 602-615. MR 920060

Theorem (BellChen, 2016) If the multivariate power series

F:Z‘f(nh'”’nd)xrlll '”'x;ld € Z[[X],...,Xd]]

is D-finite and converges on the unit polydisc, then it is rational.
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Power series with finitely distinct coefficients

flx)= Zanx", where a, € A with |A] < +co.

n>0

10/15



Power series with finitely distinct coefficients

fx) = Zanx", where a, € A with |A] < +00.

n>0

From 1917 to 1922, there are four papers with the same title:

Cher Potenzreihen mit endlich vielen verschiedenen
Koeffizienten.

Power Series with Finitely Distinct Coefficients

1. G. Polya in 1917, Math. Ann.

2. R. Jentzsch in 1918, Math. Ann.
3. F. Carlson in 1919, Math. Ann.
4. G. Szego in 1922, Math Ann.

Gibor Szegd (1895-1985)

Szegd's Theorem (1922)
A power series with finitely distinct coefficients in C is either
rational or has the unit circle as its natural boundary.
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Power series with finitely distinct coefficients

(the multivariate case)

Theorem (van der Poorten & Shparlinsky, 1994).

Let a,: N — A, where |A] is a finite subset of Q. If the generating
function f(x) =Y, a,x" is D-finite, then it is rational.

Remark. This follows from Szegd's theorem by the fact that a
D-finite power series can only have finitely many singularities.
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Power series with finitely distinct coefficients

(the multivariate case)

Theorem (van der Poorten & Shparlinsky, 1994).

Let a,: N — A, where |A] is a finite subset of Q. If the generating
function f(x) =Y, a,x" is D-finite, then it is rational.

Remark. This follows from Szegd's theorem by the fact that a
D-finite power series can only have finitely many singularities.

Theorem (BellChen, 2016). Let ay, . », :N? — A, where |A| is a
finite subset of Q. If the generating function

nq
x17 <y X Qny,.. Jldxl ]

is D-finite, then it is rational.
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Nonnegative integer points on algebraic varieties

Let V be an algebraic variety over an algebraically closed field K of
characteristic zero. We define the listing generating function

. n n
Fy(xi,...,xq) = Z xihexy
(n1,...,ng) EVNNE
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Nonnegative integer points on algebraic varieties

Let V be an algebraic variety over an algebraically closed field K of
characteristic zero. We define the listing generating function

Fy(xi,...,xq) = Z XXl
(ny,...,ng) EVNN4
We may ask the following questions:
When Fy is zero?

Remark. This is Hilbert Tenth Problem when K is Q. In 1970,
Matiyasevich proved that this problem is undecidable.
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Nonnegative integer points on algebraic varieties

Let V be an algebraic variety over an algebraically closed field K of
characteristic zero. We define the listing generating function

Fy(xi,...,xq) = Z XXl
(ny,...,ng) EVNN4
We may ask the following questions:
When Fy is a polynomial?

Remark. In 1929, Siegel proved that a smooth algebraic curve C
of genus g > 1 has only finitely many integer points over a number
field K.
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Nonnegative integer points on algebraic varieties

Let V be an algebraic variety over an algebraically closed field K of
characteristic zero. We define the listing generating function

Fy(xi,...,xq) = Z XXl
(n1,...,ng) EVNNE
We may ask the following questions:
When Fy is a rational function?

Remark. If V is defined by linear polynomials over Q, then Fy is
rational.

12/15



Nonnegative integer points on algebraic varieties

Let V be an algebraic variety over an algebraically closed field K of
characteristic zero. We define the listing generating function

o n n
Fy(xi,...,xq) = Z xihexy
(n1,...,ng) EVNNE

We may ask the following questions:

When Fy is a D-finite function?

Corollary.
Fy is D-finite & Fy is rational.
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Nonnegative integer points on algebraic varieties

Let V be an algebraic variety over an algebraically closed field K of
characteristic zero. We define the listing generating function

o n n
Fy(xi,...,xq) = Z xihexy
(n1,...,ng) EVNNE

We may ask the following questions:

When Fy is a D-finite function?

Theorem.

The problem of testing whether Fy is rational is undecidable!
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Nonnegative integer points on algebraic varieties

Let V be an algebraic variety over an algebraically closed field K of
characteristic zero. We define the listing generating function

Fy(xi,...,xq) = Z XXl
(ny,...,ng) EVNN4
We may ask the following questions:
When Fy is a differentially algebraic function?

Definition.  F € Kl[xy,...,x4]] is differentially algebraic if the
transcendence degree of the filed generated by the derivatives
ngl ‘--Dj';;(F) with i; € N over K(xy,...,xg4) is finite.
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Nonnegative integer points on algebraic curves

Theorem. Let p(x,y) € Clx,y]. If the generating function

Fplxy)i= Y X"

(n,m)€V(p)NN2

is rational. Then p =f-g, where f,g € C[x,y] s.t.

f:H(si-x+ti-y+c,') with s;,t; € Z and ¢; € C
i

and g has only finite zeros in N.
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Nonnegative integer points on algebraic curves

Theorem. Let p(x,y) € Clx,y]. If the generating function

Fpley)= > xy"

(n,m)€V(p)NN2

is rational. Then p =f-g, where f,g € C[x,y] s.t.

f:H(si-x+ti-y+c,') with s;,t; € Z and ¢; € C
i
and g has only finite zeros in N

Example. Let p =x?>—y. Since p is not a product of integer-linear
polynomials, the power series F,(x,y) is not D-finite.
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Conjecture: differential algebraic & rational

Conjecture. Let V be an algebraic variety over C. Then the power

Series
ni na
E xl R

(nl,..‘,nd)EVﬂNd

is differentially algebraic if and only if it is rational.
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Conjecture: differential algebraic & rational

Conjecture. Let V be an algebraic variety over C. Then the power

SerieS
ni na
E xl R

(n17...,nd)€VﬂNd

is differentially algebraic if and only if it is rational.

Example. Let p =x>—y. Then the power series

— Z Ky

m>0

is not differentially algebraic, otherwise, F,(x,2) = ZZ’" X" is
differentially algebraic. By Mahler's Iemma, we get a contradiction

< (m!)¢  for any positive constant c.
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Summary

Multivariate Polya-Carlson Theorem If the power series

F=Y fln,...ng)x} i € Zllxy, ... x]

is D-finite and converges on the unit polydisc, then it is rational.

Multivariate Szégo Theorem If the power series
flx1,...,x Zanh Xy X an g € A with |A] < o0

is D-finite, then it is rational.
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Summary

Multivariate Polya-Carlson Theorem If the power series

F=Y fln,...ong)x} X0 € Zlx, ..., xql]

is D-finite and converges on the unit polydisc, then it is rational.

Multivariate Szégo Theorem If the power series
@) =) XX dnya, € A with [A] < 400

is D-finite, then it is rational.

Thank you!
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