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Sequences

Sequences are fundamental objects in mathematics:

s : N → K, where K is any ring or field.

Examples:

OEIS. The On-Line Encyclopedia of Integer Sequences (N.J.A. Sloan)
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Power series as generating functions

The generating function of a sequence an is

f (x) :=
+∞∑
n=0

anxn ∈K[[x]].

Defn. A function f (x) ∈K[[x]] is D-finite (or holonomic) if

Correspondence:

Example. Bell numbers bn count the number of partitions of a set
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prDr
x(f (x))+pr−1Dr−1

x (f (x))+ · · ·+p0f (x) = 0 for pi ∈K[x].

Correspondence:

Example. Bell numbers bn count the number of partitions of a set

1,1,2,5,15,52,203,877,4140, . . . (sequence A000110 in OEIS)
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Power series as generating functions

The generating function of a sequence an is

f (x) :=
+∞∑
n=0

anxn ∈K[[x]].

Defn. A function f (x) ∈K[[x]] is D-finite (or holonomic) if

prDr
x(f (x))+pr−1Dr−1

x (f (x))+ · · ·+p0f (x) = 0 for pi ∈K[x].

Correspondence:

Example. Bell numbers bn count the number of partitions of a set

+∞∑
n=0

bnxn

n!
= exp(exp(x)−1).
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Power series as generating functions
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exp(exp(x)−1) is not D-finite!
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Power series as generating functions

The generating function of a sequence an is

f (x) :=
+∞∑
n=0

anxn ∈K[[x]].

Defn. A function f (x) ∈K[[x]] is D-finite (or holonomic) if

prDr
x(f (x))+pr−1Dr−1

x (f (x))+ · · ·+p0f (x) = 0 for pi ∈K[x].

Correspondence:

Example. Bell numbers bn count the number of partitions of a set

bn is not P-recursive!

, 3/15



Power series as generating functions

Let an1,...,nd : Nd →K be a sequence. Then the formal power series

f (x1, . . . ,xd) :=

+∞∑
n1,...,nd=0

an1,...,nd xn1
1 · · ·x

nd
d ∈K[[x1, . . .xd]]

is called the generating function of an1,...,nd .
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Arithmetic aspects of power series

Problem. Decide whether a given power series is rational,
algebraic, or D-finite?
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Power series with rational coefficients

f (x) =
∑
n≥0

anxn, where an ∈Q.

Theorem (Eisenstein 1852, Heine 1853). If f (x) represents an
algebraic function over Q(x), then ∃ T ∈ Z, s.t.∑

n≥0

anTnxn ∈ Z[[x]].
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Power series with integral coefficients

f (x) =
∑
n≥0

anxn, where an ∈ Z.

Fatou’s lemma. If f (x) represents a rational function, then

f (x) =
P(x)
Q(x)

, where P,Q ∈ Z[x] and Q(0) = 1.

Theorem. If f (x) converges inside the unit disk, then it is either
rational or transcendental over Q(x).
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Power series with integral coefficients
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Power series with integral coefficients
(the multivariate case)

Multivariate extensions of the Pólya-Carlson Theorem:

Theorem (BellChen, 2016) If the multivariate power series

F =
∑

f (n1, . . . ,nd)x
n1
1 · · ·x

nd
d ∈ Z[[x1, . . . ,xd]]

is D-finite and converges on the unit polydisc, then it is rational.
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Power series with finitely distinct coefficients

f (x) =
∑
n≥0

anxn, where an ∈ ∆ with |∆ |<+∞.

Szegö’s Theorem (1922)
A power series with finitely distinct coefficients in C is either
rational or has the unit circle as its natural boundary.
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Power series with finitely distinct coefficients
(the multivariate case)

Theorem (van der Poorten & Shparlinsky, 1994).
Let an : N→ ∆ , where |∆ | is a finite subset of Q. If the generating
function f (x) =

∑
n anxn is D-finite, then it is rational.

Remark. This follows from Szegö’s theorem by the fact that a
D-finite power series can only have finitely many singularities.

Theorem (BellChen, 2016). Let an1,...,nd : Nd → ∆ , where |∆ | is a
finite subset of Q. If the generating function

f (x1, . . . ,xd) =
∑

an1,...,nd xn1
1 · · ·x

nd
d

is D-finite, then it is rational.
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Nonnegative integer points on algebraic varieties

Let V be an algebraic variety over an algebraically closed field K of
characteristic zero. We define the listing generating function

FV(x1, . . . ,xd) :=
∑

(n1,...,nd)∈V∩Nd

xn1
1 · · ·x

nd
d
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Nonnegative integer points on algebraic varieties

Let V be an algebraic variety over an algebraically closed field K of
characteristic zero. We define the listing generating function

FV(x1, . . . ,xd) :=
∑

(n1,...,nd)∈V∩Nd

xn1
1 · · ·x

nd
d

We may ask the following questions:

When FV is zero?

Remark. This is Hilbert Tenth Problem when K is Q. In 1970,
Matiyasevich proved that this problem is undecidable.
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Nonnegative integer points on algebraic varieties

Let V be an algebraic variety over an algebraically closed field K of
characteristic zero. We define the listing generating function

FV(x1, . . . ,xd) :=
∑

(n1,...,nd)∈V∩Nd

xn1
1 · · ·x

nd
d

We may ask the following questions:

When FV is a polynomial?

Remark. In 1929, Siegel proved that a smooth algebraic curve C
of genus g≥ 1 has only finitely many integer points over a number
field K.
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Nonnegative integer points on algebraic varieties

Let V be an algebraic variety over an algebraically closed field K of
characteristic zero. We define the listing generating function

FV(x1, . . . ,xd) :=
∑

(n1,...,nd)∈V∩Nd

xn1
1 · · ·x

nd
d

We may ask the following questions:

When FV is a rational function?

Remark. If V is defined by linear polynomials over Q, then FV is
rational.
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Let V be an algebraic variety over an algebraically closed field K of
characteristic zero. We define the listing generating function

FV(x1, . . . ,xd) :=
∑

(n1,...,nd)∈V∩Nd

xn1
1 · · ·x

nd
d

We may ask the following questions:

When FV is a D-finite function?

Corollary.
FV is D-finite ⇔ FV is rational.
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Nonnegative integer points on algebraic varieties

Let V be an algebraic variety over an algebraically closed field K of
characteristic zero. We define the listing generating function

FV(x1, . . . ,xd) :=
∑

(n1,...,nd)∈V∩Nd

xn1
1 · · ·x

nd
d

We may ask the following questions:

When FV is a D-finite function?

Theorem.

The problem of testing whether FV is rational is undecidable!
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Nonnegative integer points on algebraic varieties

Let V be an algebraic variety over an algebraically closed field K of
characteristic zero. We define the listing generating function

FV(x1, . . . ,xd) :=
∑

(n1,...,nd)∈V∩Nd

xn1
1 · · ·x

nd
d

We may ask the following questions:

When FV is a differentially algebraic function?

Definition. F ∈ K[[x1, . . . ,xd]] is differentially algebraic if the
transcendence degree of the filed generated by the derivatives
Di1

x1
· · ·Did

xd
(F) with ij ∈ N over K(x1, . . . ,xd) is finite.
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Nonnegative integer points on algebraic curves

Theorem. Let p(x,y) ∈ C[x,y]. If the generating function

Fp(x,y) :=
∑

(n,m)∈V(p)∩N2

xnym

is rational. Then p = f ·g, where f ,g ∈ C[x,y] s.t.

f =
∏

i

(si · x+ ti · y+ ci) with si, ti ∈ Z and ci ∈ C

and g has only finite zeros in N2.

Example. Let p = x2 − y. Since p is not a product of integer-linear
polynomials, the power series Fp(x,y) is not D-finite.
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Conjecture: differential algebraic ⇔ rational

Conjecture. Let V be an algebraic variety over C. Then the power
series ∑

(n1,...,nd)∈V∩Nd

xn1
1 · · ·x

nd
d

is differentially algebraic if and only if it is rational.

Example. Let p = x2 − y. Then the power series

Fp(x,y) :=
∑
m≥0

xmym2

is not differentially algebraic, otherwise, Fp(x,2) =
∑

2m2
xm is

differentially algebraic. By Mahler’s lemma, we get a contradiction

2m2 � (m!)c for any positive constant c.
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Summary

Multivariate Pólya-Carlson Theorem If the power series

F =
∑

f (n1, . . . ,nd)x
n1
1 · · ·x

nd
d ∈ Z[[x1, . . . ,xd]]

is D-finite and converges on the unit polydisc, then it is rational.

Multivariate Szëgo Theorem If the power series

f (x1, . . . ,xd) =
∑

an1,...,nd xn1
1 · · ·x

nd
d , an1,...,ad ∈ ∆ with |∆ |<+∞

is D-finite, then it is rational.

Thank you!
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