抽象代数 II (第三次作业题) 授课老师: 陈绍示(中国科学院数学与系统科学研究院)

1. Let R be a ring without identity and set $S = \mathbb{Z} \times R$. We define the addition and multiplication in S as follows

$$(m, a) + (n, b) = (m + n, a + b)$$
 and $(m, a) \cdot (n, b) = (mn, mb + na + ab)$

for all $m, n \in \mathbb{Z}$ and $a, b \in R$. Show that

- (1) $(S, +, \cdot)$ forms a ring with identity (1, 0);
- (2) The map $\phi: R \to S$ defined by $\phi(r) = (0, r)$ for $r \in R$ is a injective homomorphism (单同态);
- (3) Let \bar{R} be a ring with identity \bar{e} and $\eta: R \to \bar{R}$ be a ring homomorphism. Then $\bar{\eta}: S \to \bar{R}$ defined by $\bar{\eta}((m,a)) = m\bar{e} + \eta(a)$ is also a ring homomorphism.
- 2. Let M be an R-module and let $\operatorname{Hom}_R(R,M)$ be the abelian group of all R-module homomorphisms from R to M. Define the action of R on $\operatorname{Hom}_R(R,M)$ by

$$(a \cdot f)(r) = f(ra)$$
 for $f \in \operatorname{Hom}_R(R, M)$ and $a, r \in R$.

Define the map η : $\operatorname{Hom}_R(R, M) \to M$ by $\eta(f) = f(1)$ for $f \in \operatorname{Hom}_R(R, M)$. Show that $\operatorname{Hom}_R(R, M)$ is an R-module and η is an R-module isomorphism (R-模同构).

- 3. Let V be the linear space of all smooth functions (光滑函数, 即无穷次可微函数) over $(0,+\infty)$ and $D:V\to V$ be the derivation (导数) on V. Then V is a $\mathbb{R}[z]$ -module via the action $p(z)\cdot f(x)=p(D)(f(x))$ for $p\in\mathbb{R}[z]$ and $f(x)\in V$.
- (1) Describe the submodule generated by $\sin(x)$ and the annihilator of $\sin(x)$;
- (2) Describe the submodule generated by 1/x and show that the annihilator of 1/x is (0).
- 4. Let M and M' be two \mathbb{Z} -modules. Show that M and M' are isomorphic (同构) as \mathbb{Z} -modules if they are isomorphic as abelian groups.
- 5. Let M be a finite abelian group and $M \neq 0$. Can M be a left Q-module?