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Recall: • A (radical/prime) differential ideal I of a differential ring (R, δ) is a (radical/prime)
ideal I of R with δ(I) ⊂ I.
• Let I be a proper radical differential ideal of R. Then

I = ∩I⊂P primeP.

• If R is a Ritt algebra (i.e., Q ⊂ R), then {S} =
√
[S] for any S ⊂ R, and a maximal differential

ideal of R is always prime.
• The differential polynomial ring K{y1, . . . , yn} := K[δkyj : k ∈ N; j = 1, . . . , n].

In this chapter, we shall prove the Ritt-Raudenbush basis theorem, which is the differential analog
of the Hilbert basis theorem for the differential polynomial ring. Hilbert’s basis theorem states that
the polynomial ring k[x1, . . . , xn] over a field k is Noetherian. That is, every ideal of k[x1, . . . , xn]
is finitely generated (every ascending chain of ideals in k[x1, . . . , xn] is finite.) One might hope that
the ACC condition holds for differential ideals in K{y1, . . . , yn}. However, this is not true and we
do not have an exact analog of Hilbert’s basis theorem for differential ideals.

Non-example: Consider Q{y} and write δ(y) = y′, δ2(y) = y′′, δ3(y) = y′′′, δk(y) = y(k)(k ≥ 4).
Then the differential ideal J generated by

y2, (y′)2, (y′′)2, . . . , (y(k))2, . . .

is not finitely differentially generated.

Proof. Suppose that J is finitely differentially generated. Then there exists h ∈ N such that

J = [y2, (y′)2, (y′′)2, . . . , (y(h))2].

We will show that
(y(h+1))2 /∈ [y2, (y′)2, (y′′)2, . . . , (y(h))2]

which will yield a contradiction.
Suppose the contrary. Obseve that when we consider y, y′, . . . as usual variables over K, then

all the δm((y(k))2) are homogenous of degree 2. Also, if we define the weight of y(i)y(j) to be i+ j,
then the p-th derivative of y(i)y(j) will be isobaric, with each term of weight i + j + p. Now if
(y(h+1))2 =

∑h
i=0

∑m
j=0Ai,jδ

j((y(i))2), by the degree property, Ai,j ∈ Q. Again considering the
weights of the various forms, we find that

(y(h+1))2 = C1δ
2(h+1)(y2) + C2δ

2h((y′)2) + · · ·+ Chδ
2((y(h))2)

with Ci ∈ Q. Now δ2(h+1)(y2) contains a term y(2h+2)y and none of the other derivatives yield such
a term. We conclude that C1 = 0. Continuing, we find each Ci = 0. This proves our statement.

Obviously the differential ideal J in the above example is not radica. So, we can still hope that
K{y1, . . . , yn} satisfies the ascending chain condition on radical differential ideals. That this is true
is the content of the Ritt-Raudenbush basis theorem.

As a preparation, we first introduce characteristic set method, which is the main computational
tool in differential algebra and also could provide some theoretical insights. For example, the use
of characteristic sets makes the proof of the Ritt-Raudenbush basis theorem (Theorem 2.3.3) more
transparent. The idea behind characteristic sets is similar to the notion of Gröbner basis.
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2.2 Differential characteristic sets

Motivated Example (Ideal membership problem):

1○ In Q[x], every ideal is of the form I = (f) for some f ∈ Q[x]. By the Euclidean division
algorithm, g = qf + r with r = rem(g, f). Then g ∈ I ⇔ r = 0.

2○ In Q[x1, . . . , xn], given an ideal I = (f1, . . . , fs) ⊆ Q[x1, . . . , xn], we use Gröbner basis to test
whether g ∈ I.

3○ How about the differential ideal membership problem? (differential characteristic sets)

Let (K, δ) be a differential field of characteristic zero. The differential polynomial ring
K{Y } ≜ K{y1, . . . , yn} in the differential variables Y = {y1, . . . , yn} can be viewed as a polynomial
ring in the algebraic variables Θ(Y ) ≜ {δi(yj) | i ∈ N, j = 1, . . . , n}. (i.e., K{Y } = K[Θ(Y )])

A differential ranking on Θ(Y ) is a total ordering on Θ(Y ) satisfying

(1) u < δ(u) for all u ∈ Θ(Y ) and

(2) if u, v ∈ Θ(Y ) with u < v, then δ(u) < δ(v).

Example:

• The set Θ(y) = {δi(y) : i ∈ N} has a unique ranking y < δ(y) < δ2(y) < δ3(y) < · · · .

• Two important rankings on Θ(Y ) are the following:

1) Elimination ranking: yi > yj ⇒ δk(yi) > δl(yj) for any k, l ∈ N.
2) Orderly ranking: k > l⇒ δk(yi) > δl(yj) for all i, j ∈ N.

Lemma 2.2.1. Every ranking is a well-ordering (i.e., every nonempty subset of Θ(Y ) has a least
element).

Proof. Let U ⊆ Θ(Y ) and U ̸= ∅. For each j ∈ {1, . . . , n}, if ∃ i ∈ N s.t. δi(yj) ∈ U , then set
kj = min{i | δi(yj) ∈ U} and set uj = δkj (yj). Then the least element of U is the least element in
the finite set of uj ’s.

Until the end of this subsection, we assume a ranking R is fixed. And by convention, 1 < δi(yj).

Definition 2.2.2. Let f ∈ K{y1, . . . , yn}\K. The leader of f is the largest element of Θ(Y ) with
respect to R which appears effectively in f , denoted by uf or ld(f). By the two conditions in the
definition of ranking, for each i ∈ N, ld(δi(f)) = δi(ld(f)). We write f as a univariate polynomial
of uf , then f = Id(uf )

d + Id−1(uf )
d−1 + · · · + I1uf + I0, where Ii is free of uf and d = deg(f, uf ).

The leading coefficient Id is called the initial of f and denoted by If . The pair rk(f) := (uf , d) is
called the rank of f .

Example: Let f = (y′)2 − 4y ∈ Q{y}. Then uf = ld(f) = y′ and If = 1. Apple δ to f , then we
have δ(f) = 2y′y′′ − 4y′. So we get uδ(f) = y′′ = δ(uf ) and Iδ(f) = 2y′ = ∂f

∂y′ .

Note that in the above example, deg(δ(f), uδ(f)) = 1 and Iδ(f) =
∂f
∂uf

.

Definition 2.2.3. Let f ∈ K{y1, . . . , yn}\K. We call ∂f
∂uf

the separant of f , denoted by Sf .

Remark:
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1) f =
∑d

i=0 Iiuf
i =⇒ δ(f) =

∑d
i=1 Iiδ(uf

i) +
∑d

i=0 δ(Ii)uf
i = (

∑d
i=1 Ii · i · uf i−1)δ(uf )+∑d

i=0 δ(Ii)uf
i = Sf · δ(uf ) +

∑d
i=0 δ(Ii)uf

i.

Note that uδ(f) = δ(uf ), Iδ(f) = Sf and deg(δ(f), uδ(f)) = 1. (char(K) = 0)

Also, for k > 0, δk(f) = Sf · δk(uf ) + tail polynomial involving derivatives less than δk(uf ).

So uδk(f) = δk(uf ), Iδk(f) = Sf , deg(δk(f), uδk(f)) = 1.

((K, δ) is a δ-field, c is algebraic over K ⇒ there is a unique way to make (K(c), δ) a δ-field.)

2) By convention, for f ∈ K\{0}, uf = 1.

Definition 2.2.4. Let f, g ∈ K{Y }, we say that f is partially reduced with respect to g if none
of the proper derivatives of ug (i.e., δi(ug) with i > 0) appears effectively in f .

Example:

1) Let f = y2, g = y + 1. Since ug = y and none of the proper derivatives of y appears in f , f is
partially reduced with respect to g.

2) Let f = 2yδ(y)2 + y and g = y + 1. Since δ(ug) = δ(y) appears in the first term of f , f isn’t
partially reduced with respect to g.

Definition 2.2.5. We say f is reduced with respect to g if

1) f is partially reduced with respect to g, and

2) deg(f, ug) < deg(g, ug).

Definition 2.2.6. A subset A ⊆ K{y1, . . . , yn} is called an autoreduced set if any element of A
is reduced with respect to any other element of A.

Remark: If an autoreduced set A contains an element A ∈ K\{0}, then A = {A}.

Lemma 2.2.7. Every autoreduced set of K{y1, . . . , yn} is finite.

Proof. Let A be an autoreduced set. For each i = 1, . . . , n, there exists at most one differential
polynomial A ∈ A such that ld(A) = δk(yi) for some k ∈ N, for two differential polynomials A1, A2

with ld(Aj) = δkj (yi) couldn’t be reduced with respect to each other. Thus |A| ≤ n.

Remark: The partial differential analogues of Lemma 2.2.1 and Lemma 2.2.7 are also valid and
can be proved by Dickson’s lemma.

Definition 2.2.8. Let f, g ∈ K{y1, . . . , yn}\K. We say f has lower rank than g if rk(f) <lex rk(g)2,
denoted by f < g. By convention, each element of K\{0} has lower rank than elements of K{Y }\K.

Notation: We use f ≤ g to denote either f < g or f and g have the same rank. Note that “ ≤ ” is
a pre-order among K{y1, . . . , yn}, that is, a binary relation that is reflexive and transitive.

In the following, we write an autoreduced set in the order of increasing rank, i.e., A = A1, . . . , Ap

with rk(A1) <lex rk(A2) <lex · · · <lex rk(Ap). In the following, we shall define an ordering on
autoreduced sets.

Let A = A1, . . . , Ap and B = B1, . . . , Bq be two autoreduced sets. We say A has lower rank
than B and write A < B if either

2<lex is a well-ordering of Θ(Y )× N∗.
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1) ∃ k (≤ min{p, q}) such that ∀ i < k, rk(Ai) = rk(Bi) and Ak < Bk, or

2) p > q and for each i ≤ q, rk(Ai) = rk(Bi).

If neither A < B nor B < A, we say A and B are of the same rank. Clealry, A and B have the same
rank if and only if p = q and ∀ i ≤ p, rk(Ai) = rk(Bi). Say A ≤ B iff A < B or A and B have the
same rank. (“ ≤ ” is a pre-order.)

Example: Consider K{y1, y2} and take the orderly ranking with y1 < y2. Let A = {A1 = (y2
′)2 +

1, A2 = y1
′′ + y2}, B = {B1 = y2

′ + 2} and C = {C1 = (y2
′)2 + 2}. Since rk(A1) > rk(B1),B < A.

Since rk(A1) = rk(C1) and |A| > |C|,A < C.

Proposition 2.2.9. Any nonempty set of autoreduced sets in K{Y } = K{y1, . . . , yn} contains an
autoreduced set of lowest rank.

Proof. Let U be any nonempty set of autoreduced sets of K{Y }. Define by induction a sequence of
subsets of U as follows: U0 ≜ U , and for i > 0, we define Ui = {A ∈ Ui−1 | card(A) ≥ i , the i-th
element of A is of lowest rank}. Then U0 ⊇ U1 ⊇ · · · . By Lemma 2.2.7, ∃ i ∈ N (actually i ≤ n
in our ordinary differential case) such that Ui ̸= ∅ and Ui+1 = ∅. Actually, any element of Ui is an
autoreduced set in U of lowest rank.

Definition 2.2.10. Let I ⊆ K{Y } be a differential ideal. An autoreduced set of lowest rank contained
in I is called a characteristic set of I (with respect to the given ranking).

Remark: By convention, ∅ and {a} with a ∈ K∗ are autoreduced sets. (Here, rk(a) = (1, 1).)

We start to introduce pesudo-division of differential polynomials:

Lemma 2.2.11. Let A = A1, . . . , Ap be an autoreduced set in K{Y } and F ∈ K{Y }. Then there
exist F̃ ∈ K{Y } and ti ∈ N satisfying

1) F̃ is partially reduced with respect to A (i.e., F̃ is partially reduced w.r.t. each Ai),

2) the rank of F̃ is not higher than that of F ,

3)
p∏

i=1
Sti
Ai
F ≡ F̃ mod [A].

More precisely,
p∏

i=1
Sti
Ai
F − F̃ can be expressed as a linear combination of derivatives θ(Ai) with

coefficients in K{Y } such that θ(uAi) ≤ uF .

Proof. If F is partially reduced with respect to A, then set F̃ = F and ti = 0 (i ≤ p). Otherwise,
F contains a proper derivative δk(uAi) of the leader of some Ai. Let vF be the maximal one among
all such derivatives. We shall prove the lemma by induction on vF . Suppose for all G ∈ K{Y }
that doesn’t involve a proper derivative of any uAi of rank ≥ vF , the corresponding G̃ and natural
numbers are defined satisfying the desired properties. There exists a unique A ∈ A such that
vF = δk(uA) for some k > 0. If A =

∑d
i=0 IiuA

i, then

δk(A) = SAδ
k(uA) + T with T having lower rank than δk(uA) = vF .
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Denoting l = deg(F, vF ) and write F as F =
∑l

i=0 JivF
i where J0, . . . , Jl don’t involve proper

derivatives of any uAi of rank ≥ vF . Then we have

SA
lF =

l∑
i=0

JiSA
l−i(SAvF )

i ≡
l∑

i=0

JiSA
l−i(−T )i mod (δk(A)).

Clearly, G =
∑l

i=0 JiSA
l−i(−T )i doesn’t involve proper derivatives of any uAi of rank ≥ vF . By

the induction hypothesis, ∃ G̃ partially reduced with respect to A and ki ∈ N such that
p∏

i=1
Ski
Ai
G ≡

G̃ mod [A]. Now it suffices to set F̃ = G̃, ti =

{
ki, Ai ̸= A

ki + l, Ai = A
.

Remark: F̃ constructed by the process in the proof is called the partial remainder of F w.r.t A.

Recall the pseudo reduction algorithm in commutative algebra:
Let D be an integral domain and v an indeterminate over D. Let F,A ∈ D[v] be of respective
degrees dF , dA. Suppose A = IdAv

dA + · · ·+ I1v+ I0 ̸= 0 with Ii ∈ D. Let e = max{dF − dA+1, 0}.
Then we can compute unique Q,R ∈ D[v] s.t. IedAF = QA+R and deg(R, v) < deg(A, v).

Theorem 2.2.12. Let A = A1, . . . , Ap be an autoreduced set in K{y1, . . . , yn}. If F ∈ K{y1, . . . , yn},
then ∃ a δ-polynomial F0 (called the differential remainder of F w.r.t. A) and ri, ti ∈ N such that

1) F0 is reduced w.r.t A,

2) The rank of F0 is no higher than the rank of F ,

3)
p∏

i=1
Sti
Ai

IriAi
F ≡ F0 mod [A].

Proof. Let F̃ be the partial remainder of F with respect to A and
p∏

i=1
Sti
Ai
F ≡ F̃ mod [A]. Let

rp = max{0, deg(F, uAp)− deg(Ap, uAp) + 1}. Then ∃Fp−1 ∈ K{Y } partially reduced with respect
to A and reduced with respect to Ap such that IrpAp

F̃ ≡ Fp−1 mod (Ap). If p = 1, then we are done.
Otherwise, we can find rp−1 and Fp−2 ∈ K{Y } partially reduced with respect to A and reduced with
respect to Ap−1, Ap s.t. Irp−1

Ap−1
IrpAp

F̃ ≡ Fp−2 mod (Ap−1, Ap) and is not higher than F̃ . Continuing in
this way, we get F0 satisfying the desired properties.

Remark: The reduction procedures above could be summarized in an algorithm, called the Ritt-
Kolchin algorithm to compute the δ-remainder of a δ-polynomial F with respect to an autoreduced
set A. Denote F0 above by δ-rem(F,A), or F →

A
F0.

Example: Consider K{y1, y2} and fix the orderly ranking with y1 > y2.

(1) Let f = y1 and A = A1 = y2y1. Here f →
A

0, and IA1f − 0 ∈ [A].

(2) Let f = y′1 + 1 and A = A1 = y2y
2
1. uA1 = y1 and SA1 = 2y2y1. Clearly, f is not partially

reduced with respect to A. Note that δ(A1) = 2y2y1y
′
1 + y′2y

2
1. The partial remainder of f

with respect to A is 2y2y1 − y′2y21 = f̃ and SA1f −A′
1 = f̃ . Since

IA1 f̃ − If̃A1 = y2(2y2y1 − y′2y21)− (−y′2)y2y21 = 2y22y1

is reduced with respect to A, f →
A

2y22y1 and IA1SA1f − 2y22y1 = −y′2A1 + IA1A
′
1 ∈ [A].


