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Recall: Last week, we studied the notions of differential ranking, autoreduced set and character-
istic set:

o A differential ranking Z# is a total ordering on O(Y) := {yfk) : k>0,1<i<n} satisfying (1)
v<d(v)and (2) v<u=d(v)<d(u). It is a well-ordering.

e Given f € K{Y}, the leader/initial/rank/separant of f is dentoed by ws,I¢,S¢,rk(f). A
polynomial g is partially reduced w.r.t. f if no proper derivative of uy appears in g; and in addtion,
if deg(g,us) < deg(f,uy), then g is reduced w.r.t f.

e An autoreduced set is a set A C K{Y } with each element reduced w.r.t. all the other elements.
A characteristic set of a differential ieal I is an autoreduced set of lowest rank contained in I.

We start to introduce pesudo-division of differential polynomials:

Lemma 2.2.11. Let A = Ay,..., A, be an autoreduced set in K{Y'} and F' € K{Y'}. Then there
erist FF € K{Y'} and t; € N satisfying

1) F is partially reduced with respect to A (i.e., F is partially reduced w.r.t. each A;),

2) the rank of F is not higher than that of F,

3) 1184 F = F mod [A]
=1

)

p .
More precisely, [] SZ_F — F can be expressed as a linear combination of derivatives 0(A;) with

1=1
coefficients in K{Y} such that O(ua,) < up.

Proof. If F is partially reduced with respect to A, then set F = F and t; = 0 (i < p). Otherwise,
F contains a proper derivative 6% (ua,) of the leader of some A;. Let vp be the maximal one among
all such derivatives. We shall prove the lemma by induction on vp. Suppose for all G € K{Y}
that doesn’t involve a proper derivative of any w4, of rank > vp, the corresponding G and natural
numbers are defined satisfying the desired properties. There exists a unique A € A such that
vp = 6F(uy) for some k > 0. If A = Z‘LO Liua®, then

6F(A) = Sa0%(ua) + T with T having lower rank than 6*(us) = vp.

Denoting | = deg(F,vp) and write F' as F = Zi:o Jyvp! where Jo,...,J; don’t involve proper
derivatives of any w4, of rank > vp. Then we have

l l

SA'F =" JiSaT (Save) = JiSa T (=T)" mod (6%(A)).
=0 =0

Clearly, G = Zé:o JiSAlfi(—T)i doesn’t involve proper derivatives of any wa, of rank > vp. By

- p
the induction hypothesis, 3 G partially reduced with respect to A and k; € N such that [] S]ZiG =
i=1
~ . - ki, Ai#A
G mod [A]. Now it suffices to set F' =G, t; = . O
ki+1,A,=A

Remark: F constructed by the process in the proof is called the partial remainder of F w.r.t A.

Let us recall the pseudo reduction algorithm in commutative algebra:
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Let D be an integral domain and we consdier the polynomial ring D[v] (v is an indeterminate
over D). Let F, A € D[v] be of respective degrees dp,d4(> 0) and assume

A=Tgv% +- + Lv+ I

with I; € D. Let e = max{dr — dq + 1,0}. Then we can compute unique @, R € D[v] with
deg(R,v) < deg(A,v) such that
I, F=QA+ R

Theorem 2.2.12. Let A = Ay, ..., Ay be an autoreduced set in K{y1,...,yn}. If F € K{y1,...,yn},
then 3 Fy € K{y1,...,yn} (called the differential remainder of F w.r.t. A) and r;,t; € N s.t.

1) Fy is reduced w.r.t A,

2) The rank of Fy is no higher than the rank of F,

P
3) 11 S%.I'i F = Fy mod [A].
=1

Proof. Let F be the partial remainder of F with respect to A and H St F = F mod [A]. Let

rp = max{0,deg(F,ua,) — deg(Ap,ua,) +1}. Then IF, ; € K{Y'} part1ally reduced with respect
to A and reduced with respect to A, such that IT” F=F, ; mod (Ap). If p =1, then we are done.
Otherwise, we can find r,—1 and Fj,_o € K{Y'} partlally reduced with respect to A and reduced with
respect to A,_1, A, s.t. IT” ! Irp F = F, 5 mod (A, 1, A,) and is not higher than F. Continuing in
this way, we get Fj satlsfylng the des1red properties.

O

Remark: The reduction procedures above could be summarized in an algorithm, called the Ritt-
Kolchin algorithm to compute the §-remainder of a J-polynomial F' with respect to an autoreduced
set A. Denote Fy above by d-rem(F, A), or F = Fp.

Example: Consider K{y;,y2} and fix the orderly ranking with y; > ys.
(1) Let f =y and A= A; = yoy;. Here f = 0, and I4, f € [A].

(2) Let f =y} +1and A= A; = yoy?. ua, = y1 and S, = 2y2y1 Clearly, f is not partially
reduced with respect to A. Note that §(A1) = 2y2y19) + yhy?. The partial remainder of f
with respect to A is 2yoy1 — vhy? = f and Su, f — f = A" € [A].

Since .
Layf = T5AL = 9220001 — a9i) — (—¥5)y28 = 2u3m

is reduced with respect to A, f e 2y2y1 and 14,54, f — 2y3y1 = —yhA1 + 14, A} € [A].

Theorem 2.2.13. Let A be an autoreduced set of a proper differential ideal I C K{yi,...,yn}-
Then the following are equivalent:

(1) A is a characteristic set of I.
(2) Vfel, o-rem(f, A)=0

(8) I doesn’t contain a nonzero differential polynomial reduced with respect to A.



18 CHAPTER 2. DIFFERENTIAL POLYNOMIAL RINGS AND THE BASIS THEOREM

Proof. (2) < (3) is obvious.

“(1) = (3)” Suppose f € I\{0} is reduced with respect to A = Ay, ..., Ap. Let k € N be maximal
such that rk(Ag) < rk(f). Then Ai,..., A, f is an autoreduced set lower than A. (Here, in the
case rk(f) < rk(A1), take k = 0 and {f} is an autoreduced set < .A.) Thus, we get a contradiction,
and (3) is valid.

“(3) = (1)” Assume (3) is valid. Suppose A = Aj,..., A, is not a characteristic set of I.
Then 3 B = By, ..., By, an autoreduced set of I of lower rank than A. Thus, by definition, either
(1) 3k < min{p,q} such that for i < k, rk(A;) = rk(B;) and Ay > By, or (2) ¢ > p and for
i <p, 1k(A4;) = rk(B;). Then either By, or By is nonzero and reduced with respect to A. O

Remark: By Theorem 2.2.13, if A = Aq,..., A, is a characteristic set of I C K{Y}, then I4,,S4, ¢
I(i=1,...,p).

A characteristic set of I can be obtained by the following procedure (non-constructive) : choose
A; € I of minimal rank. Choose A3 of minimal rank in theset {f € I'| f is reduced with respect to A;}.
Then A1, As is autoreduced. Choose As of minimal rank in the set {f € I | f is reduced with respect to
A, Ay}, Then Aj, Ay, Az is autoreduced. Continue like this. The process must terminate for an
autoreduced set is finite. In the end, we will obtain an autoreduced set A := Ay,..., A, of I such
that no polynomial in [ is reduced with respect to A. Clearly, A is a characteristic set of I.

Lemma 2.2.14. Let A be a characteristic set of a proper differential ideal I C K{Y'}. Denote H}
to be the multiplicative set generated by initials and separants of elements in A and set

sat(A) .= [A]:HY ={fe K{Y}|3IM e H}, M f € [A]}.
Then I C sat(A). Furthermore, if I is prime, I = sat(A).

Proof. For each f € I, by Theorem 2.2.13, é-rem(f, A) = 0. Thus, Jis,tg € N(A € A) s.t.
AHAIZ‘S%f € [A]. That is, f € sat(A).
€
Suppose [ is prime. For each f € sat(A), Jia,t4a s.t. AHAIZ‘SZ‘]‘ € [A] C I. Since I4,S4 are
€
not in I, f € I and I = sat(A) follows. O

Exercise: Develop a division algorithm as follows:

Input: f € K{Y} and an autoreduced set A= Aj,..., A, w.r.t. a fixed ranking.

Output: g € K{Y}, the differential remainder of f w.r.t. A. That is, g is reduced w.r.t. A and
there exist ig,jr € Ns.t. T} - -IZPSQI . Sﬁpf —ge[A.

2.3 The Ritt-Raudenbush basis theorem

In the end of section 2.1, we gave an example showing that a differential ideal in K{Y} might not
be differentially finitely generated. For example,

=10 ™) ]

and

T=1lyy vy, y®Fy*, ]
are not differentially finitely generated. But note that {I} = {y} and {J} = {yy'} are differentially
finitely generated as radical differential ideals. In this section, we will show every radical differential
ideal in K{Y'} is differentially finitely generated as radical differential ideals.
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Definition 2.3.1. A differential ring is called Ritt-Noetherian if the set of radical differential
ideals satisfies the ascending chain condition (ACC).

Lemma 2.3.2. Let (R,0) be a differential ring. Then R is Ritt-Noetherian < every radical dif-
ferential ideal I of R is finitely generated as a radical differential ideal. (i.e. I fi,...,fs € I s.t.

I={f1,...,fs})

Proof. “=" Let I be an arbitrary radical differential ideal of R. Suppose [ is not finitely generated as
a radical differential ideal. Then we can construct a strict increasing sequence of radical differential
ideals, i.e., {a1} G {a1,a2} G - G {ar,a0,...,0,} G ---.

“<" Let I} C Is C --- be sequence of radical differential ideals. Take I = Uf; I;. Then I is a
radical differential ideal. Thus, 3 f1,...,fs € I s.t. I = {f1,..., fs}. Since each f; € I, 3m € N s.t.
fiEIm(\V/izl,...,S). SO{fl,,fS}gImglif = m+j:{fl,...,f5}f0rj€N. ]

Lemma 2.3.3. Let R be a diffeential ring with Q C R. Let S C R be a subset and a € R such that
the radical differential ideal {S,a} has a finite set of generators as a radical differential ideal. Then,
there exists s1,...,sp € S such that {S,a} = {s1,...,sp,a}.

Proof. By hypothesis, 3hq,...,h; s.t. {a,S} = {h1,...,y}. For each i, h; € {a,S} = Im; s.t.
h" € [a,S]. So 3ds1,...,sp € S s.t. for each i, h;" € [a,s1,...,5]. Thus, h; € {a,s1,...,8p} C
{a,S} = {h1,....,u} C{a,s1,...,sp} C{a, S}

O

Theorem 2.3.4. Let (K,0) be a differential field with Q C K. The differential polynomial ring
K{y1,...,yn} is Ritt-Noetherian.

Proof. By Lemma 2.3.2, it suffices to prove that every radical differential ideal of K{yi,...,yn} is
finitely generated as radical differential ideals. Suppose the contrary and 3 a radical differential ideal
of K{y1,...,yn} that is not finitely generated. By Zorn’s lemma, 3 a maximal radical differential
ideal J C K{y1,...,yn} that is not finitely generated.

Claim: J is a prime differential ideal.

Proof of the claim. Suppose the contrary, then Ja,b € K{y1,...,yn} s.t. a,b ¢ J but ab € J.
Since {a,J} 2 J and {b,J} 2 J, {a,J} and {b,J} are finitely generated as radical differential
ideals. Then by Lemma 2.3.3, 3 f1,..., fs,91,...,9t € J s.t. {a,J} ={a, f1,...,fs} and {b,J} =
{b,91,...,49:}. Hence,

J2C{a,J}-{b, Ty ={a, fi,. ., s} {byg1,- -, gt}
C {ab,ag;,bf, fig; :1<i<s,1<j<t}£P
CJ
For each f € J, f2€ J2C P = feP=J=P={abag;,bfi,fig; : 1 <i <s,1<j<t}
contradicting the hypothesis that J is not finitely generated. The claim thus is proved.
Fix a ranking on oY) and take a characteristic set A of J under this ranking. Let A = Ay,..., A,

and denote I £ H I4,,S & H Sa,. Since J is prime, J = sat(A) = [A] : H} C {A} : (IS). Since

14,,54, ¢ J for each i, IS ¢ J Thus {J,1S} is finitely generated as a radical differential ideal. That
is, 3h1,...,hy € Jst. {J,IS} ={h1,...,h,IS}. Thus,
J2CJ-{JISY=J - {h1,..., 1S}
C{hi,...,hy, A}(for IS - J C {A})
CJ
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Hence, J = {h1,..., i, A1,..., Ay}, which leads to a contradiction. So every radical differential
ideal of K{yi,...,yn} is finitely generated as a radical differential ideal. O]

Theorem 2.3.5. Let R be a differential ring which is Ritt-Noetherian and Q C R. Then for every
radical differential ideal I G R, there exist a finite number of prime differential ideals Py, ..., P} s.t.

I=P. (2.1)

Moreover, if (2.1) is irredundant (Vi, (| P; € P;), then this set of prime ideals is unique. In this
J#i

case, Py,..., P, are called prime components of 1.

Proof. Suppose the statement is false, i.e., the set U = {I | I & K{y1,...,yn}is a radical differential
ideal and I is not a finite intersection of prime differential ideals} is not empty. Since R is Ritt-
Noetherian, every ascending chain of radical differential ideals has an upper bound in U. By Zorn’s
lemma, U has a maximal element J € U. Clearly, J is not prime. So Ja,b ¢ J but ab € J. Thus,
{J,a} 2 J and {J,b} 2 J. Also, {J,a} # R. Indeed, if not, then 1 € {J,a}. Since Q C R, 1 € [J, d]
and 1 = f + Y %0%(a), where f € J. By ab € J and J is radical, b6*(a) € JYk € N. So
b= fb+ > *b6¥(a) € J, contradicting to b ¢ J. Similarly, {J,b} # R could be shown.

By the maximality of J, 3 P?,..., P, PP

(AR Plb+t prime differential ideals in R s.t.

{Joa} =PN---NP*and
[Ibh = by 00 P,
Now show J = {J,a} N {J,b}. Indeed, let f € {J,a} N {J, b}, then f2 € {J,a}-{J,b} C {J,ab} C
J = feJ. Thus, J={Ja}n{Jb}=PNn---NP'N Pﬁ_l N---N Plz_t, contradicting to the
hypothesis J € U. So the first statement is valid.

l t l
Uniqueness. Suppose I = (| P; = [ Q; be irredundant intersections. Foreachj =1,...,¢, ) P
- i=1 j=1 i=1

Qj. Then Fig € {1,...,1} s.t. P, C Q;. Indeed, suppose the contrary, then 3 f; € P;\Q; for each

l
i=1,...,1. Thus, fifo--- fi € (| P; € Qj, which yields a contradiction. Similarly, 3jo € {1,...,t}
=1

1=

t

s.t. Qj, € P, € Qj. Since I = () Q; is irredundant, jo = j and P;, = ;. Thus, [ =¢ and 3 a
j=1

permutation o € 5; s.t. P, = Q(;). O

Corollary 2.3.6. Every proper radical differential ideal I G K{y1,...,yn} (char(K) = 0) can be
l
written as a finite intersection of prime differential ideals. If I = (| P; is irredundant, P; are called
i=1

prime components of I.

Example: I = {y/? — 4y} C Q{y}. Then I = {y? — 4y,y"” — 2} N {y} (Chapter 3).

-



