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Recall: ® Let (K,0) C L. Then § could be extended to a derivation on L. And the extension is
unique iff L is algebraic over K. (If o € (L,") is algebraic over the constant field of K, then o/ = 0)

e Let K C L C M be differential fields. Then M is differential algebraic over K < M is
differential algebraic over L and L is differential algebraic over K.

e Nonvanishing theorem of differential polynomials: Let K be a non-constant differential field
of characteristic 0. If G is a nonzero differential polynomial in K{y1,...,yn}, there exist elements
M, ..., N in K such that G(n1,...,n,) # 0. In particular, if 0 # G € K{y} is of order r and £ € K

is a nonconstant, there exists

n=c+ecaf+- -+l
where all the ¢;’s are constants in K, satisfying G(n) # 0.

Now, we are ready to show that when (K,¢) is a nonconstant differential field, every finitely
generated differential algebraic extension field of K is generated by a single element.

Theorem 4.2.3 (Differential Primitive Element Theorem). Let (K,¢) be a non-constant differen-
tial field of characteristic 0 (i.e., b € K, 6(b) #0). Assume K{aq,...,ay) is differential algebraic
over K. Then 3¢ € K(a,...,an) s.t. K(og,...,a,) = K().

Proof. It suffices to show that if v, 3 are differential algebraic over K, then de € K s.t.

K(y,B) = K{y+ep).

Introduce a new differential indeterminate t over K(v,3) and consider vy + t5 € K(t){~,3). By
Lemma 4.1.6, v + t3 is differential algebraic over K (t). Consider the prime differential ideal I(y +
tp) C K(t){y} and suppose A(y) € K (t){y} is a characteristic set of I(y +¢3). Then A(y+t5) =0
but Sa(v + tf8) # 0. Assume ord(A) = s. Clearing denominators when necessary, we can take
A € K{t,y} and write A(t,y) for convenience.

Now we have A(t,y+t3) =0 but daé) (t,v +tB) # 0. Note that

(k) 0, k
—6((7+t5) ):{’ <9 for k < s.

ot(s) B, k=s

Take the partial derivative of A(t v+ t8) =0 w.r.t. t(s) we have

Since a (S 7 (t,v+tB8) # 0 belongs to K (v, 8){t}, by the proof of Lemma 4.2.2, 3e € K s.t. %(e,y—l—
ef) #0. Thus, g = 7% € K(v+ef) and K(v, ) = K(y+ ¢3) follows. O
ay(a) 7T

Corollary 4.2.4. Let (K,§) be a non-constant differential field. Let K(ni,...,n,) be a differential
algebraic extension field of K. Then ey, ... e € K s.t. K{n,...,nn) = K{e1m + -+ + ennp)-

Remark: G. Pogudin proved the differential primitive theorem for the case

{@K/ = {0};

@K (n1,...,n,) has a nonconstant

(“The primitive element theorem for differential fields with zero derivation on the ground field. J.
Pure Appl. Algebra, 4035-4041, 2015.”)



40 CHAPTER 4. EXTENSIONS OF DIFFERENTIAL FIELDS

4.3 Differential transcendence bases

Let R be a differential ring. Elements aq,...,a, in a differential over-ring S of R are called dif-
ferentially algebraically dependent over R if there exists a nonzero G € R{yi,...,yn} s.t.
G(aq,...,apn) = 0. Otherwise, ai,...,q, are called differentially (§-) algebraically independent
over R. A subset of S is called §-algebraically independent over R if all its subsets are 6-
algebraically independent over R.

Definition 4.3.1. Let K C L be differential fields and A C L. An element b € L is called ¢-
algebraically dependent on A (over K ) if b is d-algebraic over K(A). A subset B of L is called
d-algebraically dependent on A (over K ) if every element of B is §-algebraically dependent on A.

Since K is our fixed base differential field, for simplicity, we usually omit “over K.

Lemma 4.3.2. Let K C L be an extension of d-fields, A C L and b € L. Then b is §-algebraically
dependent on A if and only if 3f € K{y1,...,Yn,2} and ay,...,a, € A such that f(ai,...,an,2) #0
and f(ai,...,an,b) =0.

Proof. Assume b is §-algebraically dependent on A. Then by definition, b is d-algebraic over K (A),
so 3 a nonzero g € K(A){z} s.t. g(b) =0. Let {a1,...,an} C A be the subset appearing effectively

in the coefficients of g. After multiplying g by an appropriate element from K{aj,...,a,}, we can
assume g € K{ay,...,an,z}. Thus, this g(y1, ..., yn, ) satisfies the desired property. The converse
is obvious. O

Lemma 4.3.3. Let K C L be an extension of §-fields and A be a subset of L which is §-algebraically
independent over K. Let b € L. If A,b are d-algebraically dependent over K, then b is d-algebraic
over K(A).

Proof. Since A, b are §-algebraically dependent over K, then there exists a nonzero differential poly-
nomial f € K{yi1,...,yn,2} s.t. f(a1,...,an,b) =0 for some ay,...,a, € A. Since ay,...,a, are
d-algebraically independent over K, f(ai,...,an,2) # 0. Thus, b is d-algebraic over K(A). O]

Lemma 4.3.4 (Transitivity of d-algebraic dependence). Let (K,d) C (L,6) and A,B,C C L. If A
is 0-algebraically dependent on B and B is §-algebraically dependent on C, then A is §-algebraically
dependent on C.

Proof. By the assumption, K (B)(A) is d-algebraic over K (B) and K(C)(B) is d-algebraic over K (C').
By Lemma 4.1.7, K(C, B, A) is é-algebraic over K(C). Thus, each element of A is J-algebraic over

K(C). O
Lemma 4.3.5 (The exchange property). Let ay,...,an,,b be elements from a J-extension field of
K. If b is 0-algebraically dependent on aq,...,a, but not on ay,...,a,—1, then a, is d-algebraically
dependent on aq,...,an_1,b.

Proof. Since b is d-algebraically dependent on aq,...,a,, by Lemma 4.3.2, there exists a nonzero

g € K{yi,...,yn, 2} s.t. glai,...,an,z) # 0 and g(ay,...,an,b) = 0. Regard g as a univariate
d-polynomial in y, with coefficients from K{yi,...,yn—1,2}, i€, g = >, gi(y1,- - Yn—1,2)M;i(yn)
where the M;(y,) are distinct é-monomials. Then there exists ig s.t. gi,(a1,...,an-1,2) # 0,
for otherwise, we would get g(ai,...,an—1,an,2) = 0. Since b is not d-algebraically dependent
on ai,...,an—1, Gis(ai,...,an—1,b) # 0. So g(a1,...,an—1,Yn,b) # 0 and consequently, a, is J-
algebraically dependent on aq,...,a,_1,0. O
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Proposition 4.3.6. Let K C L be an extension of -fields and A = {aq,...,an}, B = {b1,...,bn} be
two subsets of L. Assume that 1) A is §-algebraically independent over K and 2) A is §-algebraically
dependent on B. Then n < m.

Proof. Let r = |[ANB|. If r = n, ie.,, A C B, then we are done. Now assume r < n and
write B =aq,...,ar,bp11,...,bn. Since a,1 is §-algebraically dependent on a1, ..., ar, byry1,..., by
but not on aq,...,a,, there will be a b; (r+1<j <m)st. a4 is d-algebraically dependent
on ag,...,ar,b41,...,b; but not d-algebraically dependent on ai,...,a,,by41,...,bj—1. Bt the
exchange property (Lemma 4.3.5), b; is d-algebraically dependent on a1, ..., ar,byq1,...,bj—1,ar41,
and thus d-algebraically dependent on By := (B\{b;}) U {a,41}. Therefore, B is J-algebraically
dependent on Bj. Since A is d-algebraically dependent on B, by Lemma 4.2.4, A is §-algebraically
dependent on Bj. Note that |Bi| = m and |AN By| = r + 1. Continuing in this way, we will
eventually get some B,,_, with [ANB,,_,| =n, ie, AC B,_,. Son <m. O

Definition 4.3.7. Let (K,0) C (L,d). A subset A of L is called a d-transcendence basis of L
over K if 1) A is §-algebraically independent over K and 2) L is §-algebraic over K(A).

By the size of a set, we mean its cardinality if the set is finite, and co otherwise.

Theorem 4.3.8. Let (K,5) C (L,9). Then every §-generating set of L O K contains a §-
transcendence basis of L over K. In particular, there exists a d-transcendence basis of L over K.
Moreover, any two d-transcendence bases of L over K are of the same size.

Proof. Let M be a d-generating set of L over K, i.e., L = K(M). Let
N ={S C M | S is é-algebraically independent over K}.

Then () € N # (). Clearly, the union of every chain of elements in N is again in N. So by Zorn’s
lemma, there exists a maximal element A in N.

Claim: A is a é-transcendence basis of L over K.

We now show the claim. For any a € M, a, A are §-algebraically dependent over K. By Lemma
4.3.3, a is d-algebraic over K(A), so M is 0-algebraic over K(A). And by Lemma 4.1.6, L = K (M)
is d-algebraic over K(A). Thus, A C M is a J-transcendence basis of L over K.

Now suppose A and B are both d-transcendence bases of L over K. By symmetry, it suffices
to show that the size of A > the size of B. If A is an infinite set, it is automatically valid. So we
may assume A is finite. Let B be any finite subset of B. Since A is a d-transcendence basis of L
over K, each element of Bj is d-algebraic over K(A), and Bj is d-algebraically dependent on A. By
Proposition 4.3.6, |B1| < |A|. Thus, |B| < |A|. O

Corollary 4.3.9. Let (K,d) C (L,0) and L = K(M). If A is a mazimal §-algebraically independent
subset of M, then A is a d-transcendence basis of L over K.

Theorem 4.3.8 guarantees we can make the following definition:

Definition 4.3.10. Let (K,6) C (L,0). The size of a d-transcendence basis of L over K is called
the 6-transcendence degree of L over K. It is denoted by §-tr.deg(L/K).

Corollary 4.3.11. Let (K,0) C (L,9) and L = K{ay,...,ay). Then §-tr.deg(L/K) < n, and the
d-transcendence degree of a finitely 0-generated 6-field extension is finite.

Proof. Tt is clear from Corollary 4.3.9. O
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Corollary 4.3.12. Let (K,§) C (L,9). If L contains n number of §-independent elements, then
n < 0-tr.deg(L/K). In fact,

d-tr.deg(L/K) = sup{n € N | Jay,...,a, € L differentially algebraically independent over K}.

Proof. Let ay,...,a, € L be d-algebraically independent over K. We can enlarge {ai,...,a,} to
a J-generating set B of L over K. Then {aj,...,a,} is contained in a maximal J-algebraically
independent subset A’ C B. By Corollary 4.3.9, A’ is a §-transcendence basis of L over K. Thus,
n < 0-tr.deg(L/K) and also

sup{n € N|Jay,...,a, € L that are d-algebraically independent over K} < é-tr.deg(L/K).

The reverse estimate is clear, for a d-transcendence basis is §-algebraically independent over K. [

Theorem 4.3.13. Let K C L C M be §-fields. Then
d-tr.deg(M/K) = 0-tr.deg(M/L) + §-tr.deg(L/K).
(Here, 0o 4 a(o0) = 00).

Proof. Let A be a transcendence basis of L over K and B a §-transcendence basis of M over L.
Claim: AU B is a d-transcendence basis of M over K.

First, since B is d-algebraically independent over K(A) (C L), AU B is §-algebraically independent

over K. It remains to show M is d-algebraic over K (A, B). Since each element of M is d-algebraic

over L(B) and each element of L is §-algebraic over K(A), M is J-algebraic over K (A, B). Thus,

A U B is a é-transcendence basis of M over K and AN B = () implies that §-tr.deg(M/K) =

d-tr.deg(M/L) + d-tr.deg(L/K). O

Adjoining the differential primitive element theorem, we have

Proposition 4.3.14. Let L = K{ay,...,a,) and suppose K contains a nonconstant element in the
case d = 0-tr.deg(L/K) = 0. Then L is §-generated by no more than d + 1 elements.

Proof. In the case d = 0, this is the differential primitive element theorem. Assume d > 0. Then
I{&,..., &} C {a1,...,an} st. &1,...,& is a O-transcendence basis of L over K, and denote
the others by &441,...,&,. Then by the differential primitive element theorem, there exist a; €

K<§1,...,§d> st. L= K<§17---7§d><§d+17---;§n> = K<§1,...,§d><ad+1fd+1 +--~+an§n>. (d >0=
K(&1,...,&q) is a non-constant J-field). O



