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Recall: o (Differential Primitive Element Theorem) Let (K,¢§) be a differential field of
characteristic 0 containing at least a nonconstant element. Assume K ({aq,...,q,) is differential
algebraic over K. Then 3¢ € K(aq,...,an) st. K{ag,...,an) = K(£). In particular, there exist
e; € K s.t. K<Oq, ceey an> = K<Z?:1 61'017;>.

e Differential transcendence basis of L/K: a subset A of L satisfying 1) A is §-algebraically
independent over K and 2) L is J-algebraic over K(A).

Existence: Every d-generating set of L O K contains a d-transcendence basis of L over K. And
any two d-transcendence bases of L over K are of the same size.

¢ Differential transcendence degree of L/K: the size of a j-transcendence basis of L over K,
denoted by d-tr.deg(L/K). We have

(1) o-tr.deg(L/K) = sup{n € N | Jay,...,a, € L §-algebraically independent over K}.

(2) For K C L C M, é-tr.deg(M/K) = é-tr.deg(M/L) + o-tr.deg(L/K).

4.4 Applications to differential varieties

Let (K,0) be a é-field of characteristic 0 and (K, ) a d-closed field containing (K, ).

4.4.1 Differential dimension polynomials of differential varieties

Let V C K™ be an irreducible §-variety over K. Then I(V) C K{yi,...,yn} is a prime differen-
tial ideal. The quotient ring K{yi,...,yn}/I(V) is a differential domain, which we can write as
K{y1,...,Un}, where g; is the residue class of y;. It is called the differential coordinate ring
of V and denoted by K{V}, We can consider its elements with K-valued functions on V and so
we call them differential polynomial functions on V. The field of fractions of the differential co-
ordinate ring is called the field of differential rational functions on V| and is denoted by
K(V) = K(y1,...,Yn). Naturally, K(V) is a §-field extension of K. Clearly, (g1,...,9n) € (K(V))"
is a generic point of V. Indeed, given f € K{y1,...,yn}, f(¥1,-..,9n) = 0 if and only if f € I(V).
Given any other generic point (a1,...,a,) of V, we have K(V) = K(y1,...,Un) = K(a1,...,an)
with g; <> a;. In particular, §-tr.degK (41, ..., yn)/K = d-tr.degK{aq,...,a,)/K.

In order to measure the “size” of a differential variety (i.e., the solution set of algebraic differential
equations), we introduce the notion of differential dimension:

Definition 4.4.1. Let V C A" be an irreducible d-variety over K. The differential dimension of
V is defined as the §-transcendence degree of the §-field K(V') of 6-rational functions on 'V over K,
denoted by §-dim(V'). That is,

d-dim(V') := 6-tr.degK (V) /K.
For an arbitrary V' with irreducible components Vq, ..., Vpy,
d-dim(V') := max; §-dim(V;).

An equivalent definition of differential dimension in the language of differential ideals is given by
Ritt:

Definition 4.4.2. Let P C K{y1,...,yn} be a prime é-ideal. A 6-variable set U C {y1,...,yn} is
called a d-independent set modulo P if PN K{U} = {0}. A parametric set of P is a mazimal
d-independent set modulo P. The d-dimension of P (or V(P)) is defined to be the cardinal number
of its parametric set.
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Exercise: Please show different parametric sets of a prime d-ideal have the same cardinal number.
And show Definition 4.4.1 and Definition 4.4.2 are equivalent for prime d-ideals or irreducible 6-
varieties.

Lemma 4.4.3. Let V be a §-variety and W C V' a §-subvariety. Then §-dim(W) < d-dim(V).

Proof. First assume W and V are both irreducible. W C V implies that I(W) D I(V'). Suppose
d-dim(W) = d and {y1,...,yq} is a parametric set of I(W). Clearly, I(V) N {y1,...,y4} = {0} and
{y1,...,ya4} is a 6-independent set modulo I(V') which could be extended to a parametric set of I(V).
Thus, 0-dim(V) = 6-dim(I(V)) > d.

Now let V' and W be arbitrary. Let W; be an irreducible component of W with §-dim(W') =
d-dim(W7). Then W7 is contained in an irreducible component V; of V. By the above,

O-dim(W) = o-dim(W7) < §-dim(V;) < o-dim(V).

Exercise: Let W C V be two irreducible §-varieties with 0-dim(W) = 6-dim(V'). Is W = V?

It is true in the algebraic case but not valid in differential algebra:

Non-example: Let W = V(') C Al and V = V(y) € Al. Then W C V and §-dim(W) =
o-dim(V'). But W # V.

This example shows that the differential dimension is not a fine enough measure of size of differ-
ential varieties, thus we need a more discriminating measure: the differential dimension polynomial
of an irreducible d-variety V or I(V'). The idea of Hilbert polynomial for homogeneous ideals suggests

that it might be a way to consider the truncated coordinate ring by order: Let P C K{y1,...,yn} be
a prime d-ideal. Denote K[ygt], - ,yg]] = K[yi(J) :j<tyi=1,...,n]andlet P, = PﬂK[ygﬂ, . ,yg]].
Then P, is a prime algebraic ideal with dimension dim(F;).

Recall that a polynomial f € R[t] is said to be numerical if f(s) € Z for sufficiently big s € N.

Any f € R[t] can be writen as
t+k
f= Z%( I )
k
t+k

where a;, € R and ("}%) = (¢ 4+ 1)(t +2)--- (¢ + k)/k!. f is numerical if and only if aj € Z for every
k. We define f < g to mean that f(s) < g(s) for all sufficiently big s € N; this totally orders R[t]
and well orders the set of all numerica polynomials which are > 0.

Kolchin showed that for ¢t > 0, dim(F;) is a numerical polynomial. We state it with the language
of §-field extensions.

Theorem 4.4.4 (Kolchin). Let P C K{yi,...,yn} be a prime §-ideal. There exists a unique
numerical polynomial wp(t) € R[t] such that dim(P;) = wp(t) for all sufficiently big t € N, with the
following properties:

1) wp(t) =d(t+1) + s with d = §-dim(V(P)) and some s € N;

2) (Computation of wp(t)) Let A = Aq,...,A; be a characteristic set of P w.r.t. some orderly

l
ranking and suppose 1d(A;) = yi_sé)) Then wp(t) = (n =10t +1)+ > si.
=1

3) wp(t) =n(t+1) < P=][0] (ie, V(P)=A"); wp(t) =0« V(P) is a finite set.
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Proof. Letn = (n1,...,m,) be a generic point of P. Denote nl = (n1, ..., 100,10, ... 7L, . .. ,ngt), ey nr(f) .
Clearly, 5l is a generic point of P, C K[ygt], e ,yg]]. So dim(P;) = tr.degK (ni!) /K.

For each A € A, A(n) = 0 and I4(n) # 0 imply that us(n) is algebraic over K(nj(-k) : y(.k) <

J
ua,j = 1,...,n). Repeated differentiation shows that if v is any derivative of u4, then v(n) is

algebraic over K (nj(.k) : yj(.k) <w,j =1,...,n). Let M denote the set of all derivatives yj(k) that

are not derivatives of any ugq (A € A) and let M(t) = M N {y§k) ck <t,j=1,...,n}. So, for
t > max{sy,..., s}, we have that
K (n) is algebraic over K ((v(n))verr(r))-> (%)
Thus, dim(P;) = tr.degK (nl)) /K = Card(M (t)). Since
M(t) = {yg(i),yg(i), . 7y§‘?;;1) ci=1,...,1}U {yj,y;-, . ,yj(-t) cj#£o(l),...,0()},

derivatives of leading variables derivatives of parametric variables

Card(M(t)) = (n—1)(t+1)+ ilsl So dim(P;) = (n—=10)(t+ 1)+ ési for t > max{s1,...,s;}.

l
Let wp(t) = (n—1)(t+ 1)+ >_ s;, which is numerical and dim(P;) = wp(t) for t > max{si,..., s}
i=1
This finishes the proof of the existence of wp(t) and 2).
To show 3), wp(t) = n(t +1) <= M(t) = {yj(k) ck<tj=1,...,n} < P = [0]; And
wp(t)=0<= M(t) =0 <= 1d(A) = {y1,...,yn} <= V(P) is a finite set.

It remains to show 0-dim(P) = n — [ to complete the proof of 1). Assume d = 6-dim(P) =
d-tr.degK (n) /K. W.L.O.G, let n1, ..., ng be a differential transcendence basis of K (n) over K. Thus,

l
wp(t) = tr.degK (. f/K = (n =Dt +1) + X s > trdegK (.. /K = d(t +1),
i=1
and n — | > d follows. Conversely, let {z1,..., 2,1} = {y1,-- -, ¥n}\{¥s(1),---» Yoy} Since any
nonzero polynomial in K{z,...,z,_;} is reduced w.r.t. A, we have K{z1,...,2z,_;} NP ={0}. So
{#z1,...,2n—1} is an independent set modulo P and can be enlarged to be a parametric set of P.

Thus, n — | < 6-dim(P) = d. Hence, n — | = d = 6-dim(P). O

Definition 4.4.5. Let V. C A" be an irreducible differential variety over K and P = I(V). The
above wp(t) is defined as the differential dimension polynomial of P or V, also denoted by

wy (t).
The d-dimension polynomial of an irreducible §-variety V' C A" is of the form
wy(t) =d(t+ 1) + s, where d = 0-dim(V') and s € N.

The number s is defined as the order of V, denoted by ord(V'). The order is the rigorous definition
for the notion “the number of arbitrary constants” of the solution of algebraic differential equations.
For an autoreduced set A = Ay,..., A, under an arbitrary ranking, if Id(4;) = y,gs')

the order of A as ord(A) = >°F_, s;. By the proof of the Theorem 4.4.4, we have

, we define

2
i

Corollary 4.4.6. Let P C K{yi1,...,yn} be a prime §-ideal and A = Ay, ..., A; be a characteristic
set of P w.r.t. some orderly ranking. Then 0-dim(P) = n — Card(A) and ord(P) = ord(A).

3 Arrange {yj(.k) ck<t,j=1,...,n}\M(t) in increasing order: ua, < ---. From the above, ua, is algebraic over
K ((v(n))ven)) and (x) can be shown by induction.
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Remark: In the partial differential case, (K, {d1,...,dn}), the differential dimension polynomial
of V' has the form

t+m t+m-—1
wv(t):am< m )+am_1< . >+---+a1(t+1)+a0,

where a,, = 6-dim(V). And the proof of the partial differential analogue of Theorem 4.4.4 is more
complicated.

Example: Let W =V(y/) C A and V =V(y”) C Al. W &V but 6-dim(W) = 6-dim(V). Note
that ww(t) =1< wv(t) = 2.

The next proposition shows that §-dimension polynomial is a finer measure than d-dimension.
Proposition 4.4.7. Let W,V C A" be irreducible §-varieties and W G V. Then wy (t) < wy(t).

Proof. Let Py =1(W) and P, = I(V'). Then W & V implies that Py 2 P5. So for all sufficiently big
t, PN K[ygt], e yv[f]] 2PN K[ygt], . ,y,[f}], consequently,

wi(t) = dimP N Kyl )
<dimPyn K. gl

4.4.2 Relative orders and differential resolvents

In this section, we will show that an irreducible J-variety is differentially birationally equivalent to
an irreducible -variety of codimension one.

Let P C K{y1,...,yn} be a prime d-ideal with a generic point ({1, ...,&,). Let U = {vyi, ..., vi, }
be a parametric set of P. The relative order? of P or V(P) w.r.t. U, denoted by ordy P, is defined
as

ordU(P) = tr.degK({l, .. ,§n>/K<§Z‘1,. .. 7§id>'

If A is a characteristic set of P w.r.t. any elimination ranking and U = {y;,,...,v;,} is the set of
non-leading variables of A, then U is a parametric set of P and the relative order of P w.r.t.U is
equal to ord(A).

Theorem 4.4.8. Suppose (K, ) contains a nonconstant element. Let P C K{u1,...,uq,Y1,---,Yn—d}

be a prime d-ideal with a parametric set {uy,...,uqy. Then Jai,...,an_q € K s.t. [Pyw — a1y1 —
o= p—gYn—da) € K{ui,...,uq,91,...,Yn—a,w} has a characteristic set of the form

X(’Uq,... ,Ud,UJ)

Il(uh B ude)yl - Tl(ula cee ,Ud,OJ)

In,d(Uh <oy Ud, W)yn—d - Tnfd(uh <oy Ud, LU)
w.r.t. the elimination ranking u; < -+ < ug < w < y1 < -+ < Yp—q. Moreover, ord(X,w) =
ordy (P).

4In Chapter 5, we shall show how relative order and differential dimension can read off a characteristic set under
arbitry ranking.
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Proof. Let n = (u1,...,44,Y1,-.-,Un—q) be a generic point of P. Introduce n — d new differential
indeterminates A1, ..., \,_q over K(n). Let
J = [P,(/J - )\12/1 — )\n—dyn—d] c K{ula"'audvyla' . '7yn—d>)‘17" . 7)‘n—d7w}-

Then J is a prime §-ideal with a generic point

= (U1, U, Y15 Yn—ds A1y - - s Aneds ML+ + Ap—d¥n—d)-
Since 0-dim(P) = d, d-tr.degK (n)/K = d and

O-tr.degK (§) /K = o-tr.degK (n) /K + §-tr.degK (n) (A1, ..., A—aq)/K(n)
=d+n—d=n.

So Jy = JN K{uy,...,ug,A\,..., \p—g,w} # [0] and {uq,...,ug, A1,..., \n_gq} is a parametric
set of Jy. Let {R(ui,...,ug,A1,...,A\n—q,w)} be a characteristic set of Jy w.r.t. the elimina-
tion ranking u; < -+ < ug < A} < -+ < Ay_g < w. Denote s = ord(R,w) > 0. Since
R(t1, ..., Ugy ALy -y Ap—dy MUL+ FAn—dUn—q) = 0, for j = 1,...,n—d, take the partial derivative
of this identity w.r.t. )\g-s) on both sides, then we obtain

OR OR
o o B =0 @)
J
where 881(3‘) and ) are obtained from a<s> and 8 oy by substituting (u1,...,ug,A1,..., Ap_a,w) =

J
(711,...,ﬂd,)\l,...,/\n,d,)\lgl+---+)\n,dyn,d) Note that é) §Z Jy, so W 75 0. AS W €
K{n}{)\,..., \n_q} is nonzero, by the non-vanishing theorem of nonzero polynomials, 3ay ...,a,_q €

K s.t. %‘AFM € K{n}\{0}. Let I(ul,.. L Ug,w) = %‘M:ai € K{ul,...,ud,w}. Then
I(Uy, ..., td, 0191 + -+ + Gn-dlin—d) = 5om OB, —ay #0.

Let J, = [Pw — a1y1 — — Gp—qYn—d) C K{uy,...,uq, 91, ,Yn—gq,w}. Then J, is a prime
d-ideal with a generic point

o= (U1, U, Y1y Un—ds Q1YL + -+ + Qp—aUn—d)-

Clearly, I(u1,...,uq,w) ¢ Jq. Let Tj(ui,...,uq,w) = —%
J

Ai=a;,i=1,...n—d’ By (41)7

I(ui,...,uq,w)y; — Tj(u1,. .., uq,w) € J,.

Since o-tr.degK (a)/K = d, J, N K{ui,...,uq,w} # [0] with a parametric set {uy,...,uq}. So its
characteristic set consists of a single §-polynomial. Let X (uq,...,uq,w) be an irreducible polynomial
constituting a characteristic set of J, N K{uq,...,ug,w} w.r.t the elimination ranking # : u; <

- < uqg < w. For each j, take the differential remainder of Iy; — T; w.r.t X (under #). Since
I¢ J,NK{ui,... ugw}, d-rem(Iy;—Tj, X) is of the form I;y; —T; where I;, Tj € K{u,...,uq,w},
I ¢ J,.

Claim: X (u1,...,uq,w), l1y1 — T1,. .., Iy_qyn—a — Tp_q is a characteristic set of J, w.r.t. the
elimination ranking u; < -+ < ug < w < Yy < -+ < Yp—q. Indeed, for all f € J,, first perform
the Ritt-Kolchin reduction process for f w.r.t. Iiyy — 11, ... In—qyn—dq — Th—d, then we get fo €
Jo N K{uq,...,uq,w}, thus fo could be reduced to 0 by X. Thus, we have proved the claim.
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It remains to show that ord(X,w) = ordy (P). Since K(n) = K(u1,...,Ug, 191+ +0n—qUn—d),

ordy(P) = trdegK(n)/K(uy,...,uq)
tr'degK<ﬂ17 “e 7ﬂda algl +---+ an—d?jn—d)/K<ﬂ17 cee ,?TLd)
ord(X,w).

Remark:

1) The above irreducible X (u1,...,uq4,w) is called a differential resolvent of P or V(P).

2) With the obtained aq,...,a,_q, we have K{(uy,...,Uq, Y1, Gn-d) = K{U1,...,Ug,a191 +
4+ ap—qUn—d). (Proposition 4.2.14) In the case d = 0, this is the differential primitive
element theorem.



