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EFFECTIVE DEFINABILITY OF KOLCHIN POLYNOMIALS

JAMES FREITAG, OMAR LEÓN SÁNCHEZ, AND WEI LI

(Communicated by Matthew A. Papanikolas)

Abstract. While the natural model-theoretic ranks available in differentially
closed fields (of characteristic zero), namely Lascar and Morley rank, are known
not to be definable in families of differential varieties; in this note we show
that the differential-algebraic rank given by the Kolchin polynomial is in fact
definable. As a byproduct, we are able to prove that the property of being
weakly irreducible for a differential variety is also definable in families. The
question of full irreducibility remains open; it is known to be equivalent to the
generalized Ritt problem.

1. Introduction and some preliminaries

Fix a differentially closed field of characteristic zero (K,Δ) with Δ = {δ1, . . . , δm}
a set of distinguished commuting derivations. We let k be a differential subfield
of K. Furthermore, we assume that K is “big”; in the sense that it is a universal
model for differential-algebraic geometry. In particular, K is universal over k (or
over any “small” differential subfield for that matter). In model-theoretic parlance,
K is a saturated model of the theory DCF0,m.

Recall that a numerical polynomial (in one variable) is a polynomial p ∈ Q[t]
such that p(s) ∈ Z for all integers s. Numerical polynomials always have the form

p(t) =

d∑
i=0

ai

(
t+ i

i

)

for some integers ai’s. The tuple (ad, . . . , a0) is usually called the standard coeffi-
cients of p.

For an m-tuple ξ = (u1, . . . , um) ∈ Nm, we let ord(ξ) = u1 + · · · + um, and we
use multi-index notation to denote derivative operators; that is, δξ = δu1

1 · · · δum
m .

Let us recall a classical result of Kolchin.

Fact 1.1 ([8, Chap. 2, §12]). Let a = (a1, . . . , an) be a tuple from K. There exists
a numerical polynomial ωa/k with the following properties:

(i) For sufficiently large s ∈ N, ωa/k(s) equals the transcendence degree of

k(δξai : ord ξ ≤ s, i = 1, . . . , n) over k.
(ii) degωa/k ≤ m.

(iii) If we write ωa/k(t) =
∑m

i=0 ai
(
t+i
i

)
where ai ∈ Z, then am equals the

differential-transcendence degree of the differential field k〈a〉.
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The polynomial ωa/k is called the Kolchin polynomial of a over k (or the dif-
ferential dimension polynomial of a over k). Even though it is not generally a
differential-birational invariant of a, it serves as an important measure of the tran-
scendentality of a. For instance, if k ⊆ L ⊆ K are differential fields and a ∈ K,
then k〈a〉 is algebraically disjoint from L over k iff ωa/k = ωa/L.

Let x = (x1, . . . , xn) be an n-tuple of differential indeterminates for a fixed n ≥ 1.
If P is a prime differential ideal of the differential polynomial ring k{x}, we define
the Kolchin polynomial of P , ωP , as the Kolchin polynomial of a generic point
a ∈ Kn of P over k. Similarly, if V is an irreducible differential variety over k, we
define the Kolchin polynomial of V , ωV , as the Kolchin polynomial of the prime
differential ideal in k{x} given by the vanishing of V . For an arbitrary differential
variety (not necessarily irreducible) over k, the Kolchin polynomial of V is

ωV := max
≤

{ωW : W is an irreducible component of V } ,

where ≤ denotes the total ordering on the set of numerical polynomials by eventual
domination; i.e., p ≤ q if and only if p(s) ≤ q(s) for all sufficiently large s ∈ N

(equivalently, the standard coefficients of p are less than or equal to those of q in
the lexicographical order).

Remark 1.2. The Kolchin polynomial has the following two important properties
(for more properties see Chapter II of [8]):

(1) If V ⊆ W are irreducible differential varieties over k with generic points a
and b, respectively, then ωa/k ≤ ωb/k with equality if and only if V = W .

(2) The collection of Kolchin polynomials is well-ordered by eventual domina-
tion (see [14]).

Let F (x, y) be a collection of differential polynomials over k, where x and y are
tuples of differential indeterminates (not necessarily of the same length). Note that
for each a ∈ K |y|, the system F (x, a) = 0 defines a differential variety Va over k〈a〉.
Any such collection of Va’s will be called a (definable) family of differential varieties;
we denote this by (Va). We say that the family has order r if the differential
polynomials in F (x, y) have order at most r in the variable x and r is minimal (and
similarly for the degree of the family).

Given a definable family of differential varieties (Va) and a numerical polynomial
p, the questions that drive the results in this paper are the following:

Question 1.3. Is the set

(1) {a : ωVa
= p}

definable in the structure (K,Δ)? And, can one prove this effectively (i.e., effec-
tively produce a formula defining (1))?

We answer both questions affirmatively. The method of our proof uses recently
established bounds for the order of characteristic sets of prime differential ideals to
secure an effective value s0 (which depends only on the order of the family) such
that for s ≥ s0 we have that ωVa

(s) equals

(2) trdegk k(δ
ξbi : ord ξ ≤ s, i = 1, . . . , n),

where b = (b1, . . . , bn) is a generic point of any irreducible component of Va of
maximal Kolchin polynomial (among all components). We do this in Section 2. We
then prove in Section 3, using classical algebro-geometric facts and effective results
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DEFINABILITY OF KOLCHIN POLYNOMIALS 1457

in the theory of prolongation spaces, that one can effectively determine those a for
which (2) equals a fixed nonnegative integer for each natural number s ≥ s0. The
main result follows more or less immediately from this (see Theorem 3.6).

Finally, in Section 4, we apply the definability result to show that the property
of being weakly irreducible (meaning that there is only one component of maximal
Kolchin polynomial) is too definable in families. We will also see that any given
definable family (Va) admits only finitely many Kolchin polynomials; that is, the
set {ωVa

: as a varies} is finite.

Remark 1.4. Besides Kolchin polynomials, various other (model-theoretic) ranks
have been studied in differentially closed fields; see for instance [12]. Some of these
ranks are known not to be definable in families. For instance, working in the
ordinary case m = 1, from work of the Japanese school of integrable systems and
the trichotomy theorem for DCF0, Pillay and Nagloo show that Morley rank (and
also Lascar rank and the differential version of Krull dimension) are not definable
in families [11, Corollary 3.5]. Specifically, for α ∈ C, the solution set PII(α) to the
second Painlevé equation is strongly minimal if and only if α ∈ 1

2 + Z. So, in the
family of differential varieties

{PII(α) |α ∈ K},
the collection of those α such that PII(α) has Morley rank one (in this case the
Morley rank of each fibre is equal to its Lascar rank and differential Krull dimension)
is not definable.

2. On characteristic sets and numerical polynomials

We carry forward the notation from the previous section. In particular, k denotes
a (small) differential subfield of our universal differentially closed field (K,Δ).

As we pointed out in Fact 1.1, for all large enough values of s, the Kolchin
polynomial of an irreducible differential variety V over k is given by a transcendence
degree calculation. The minimum i0 ∈ N such that

ωV (s) = trdegk k(δ
ξbi : ord ξ ≤ s, 1 ≤ i ≤ n)

for all s ≥ i0, is known as the Hilbert-Kolchin regularity of V , where (b1, . . . , bn)
is a generic point of V . Upper bounds of this regularity number were estimated
for quasi-regular ordinary differential systems [1]. In this section (see Theorem 2.4
below), we effectively compute an upper bound on the Hilbert-Kolchin regularity
for irreducible components of differential varieties depending only on m, n and the
maximal order of the system.

We need to recall the notion of volume for subsets of Nm. We let ≤ denote the
product order on Nm; that is, (u1, . . . , um) ≤ (v1, . . . , vm) means that ui ≤ vi for
i = 1, . . . ,m. Given any E ⊆ Nm and a nonnegative integer s, the volume of E at
level s is

VE(s) = {ξ ∈ Nm : ord ξ ≤ s and ξ �≥ η for all η ∈ E}.
In [8, Chapter 0, §17], Kolchin shows that for any E ⊆ Nm there is a numerical
polynomial ωE(t) such that for sufficiently large s ∈ N

(3) ωE(s) = |VE(s)|.
Furthermore, degωE ≤ m; equality occurs if and only if E is empty, in which case
ωE(t) =

(
t+m
m

)
.

Licensed to EXLILAMS600. Prepared on Tue Mar  3 23:08:07 EST 2020 for download from IP 124.16.148.9.

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use
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The next proposition yields a number s0, depending only on m and the set of
minimal elements of E with respect to the product order, such that for all s ≥ s0
equality (3) holds.

Proposition 2.1. Let E ⊆ Nm and denote by M the set of minimal elements of
E with respect to the product order (which is a finite set by Dickson’s lemma). Let
D = 0 if M is empty, and otherwise set

D =
∑
ξ∈M

ord ξ.

Then for all s ≥ m(D − 1) we have ωE(s) = |VE(s)|.
Proof. One could prove this using the arguments in the proof of [9, Proposi-
tion 2.2.11], but we prefer to give a more direct argument. We proceed by induction
on m and D. The cases m = 1 or D = 0 are obvious. So now assume m > 1 and
D > 0. The result clearly holds when M is empty (equivalently, E is empty). So
we may assume that there is ζ = (v1, . . . , vm) ∈ M . Moreover, since D > 0, ζ is
not the zero tuple; without loss of generality, we assume that vm �= 0.

Consider the following sets:

E1 = {(u1, . . . , um−1) ∈ Nm−1 : (u1, . . . , um−1, 0) ≥ ξ for some ξ ∈ E}
and

E2 = {(u1, . . . , um) ∈ Nm : (u1, . . . , um + 1) ≥ ξ for some ξ ∈ E}.
LettingMi be the minimal elements of Ei for i = 1, 2, we see that

∑
ξ∈M1

ord ξ ≤ D.

On the other hand, the tuple η = (v1, . . . , vm − 1) is in M2, as ζ ∈ M and vm > 0,
and so, since ord η < ord ζ, we have

∑
ξ∈M2

ord ξ ≤ D − 1. By induction, we have

ωE1
(s) = |VE1

(s)| for all s such that s ≥ (m − 1)(D − 1). Also, ωE2
(s − 1) =

|VE2
(s− 1)| for all s such that s− 1 ≥ m(D − 2).

A straightforward computation yields

|VE(s)| = |VE1
(s)|+ |VE2

(s− 1)| for all s,

which in turn implies ωE(t) = ωE1
(t)+ωE2

(t−1) (this is because equality holds for
sufficiently large s). Now let s ≥ m(D − 1). Putting the above equalities together,
we get

ωE(s) = |VE(s)|,
as desired. �

Letting x = (x1, . . . , xn) be an n-tuple of differential variables, we recall that the
canonical orderly ranking � on the set {δξxi : ξ ∈ Nm, i = 1, . . . , n} is defined as:
δu1
1 · · · δum

m xi � δv11 · · · δvmm xj if and only if

(4) (
∑
k

uk, i, u1, . . . , um) ≤lex (
∑
k

vk, j, v1, . . . , vm),

where ≤lex denotes the (left) lexicographic order. The leader of a differential poly-
nomial f ∈ k{x}\k is the highest δξxi that appears in f with respect to �, and the
order of f is the order of its leader. Given any collection of differential polynomials
Σ ⊂ k{x} \ k, by a leader of Σ we mean a leader of one of its elements and by
the order of Σ we mean the maximum order among its elements. To avoid certain
technicalities that are unnecessary for our purposes, we will not give the precise
definition of a characteristic set. Let us just say that a characteristic set of a prime
differential ideal P ⊂ k{x} is a finite subset of P which is “reduced” and “minimal”
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DEFINABILITY OF KOLCHIN POLYNOMIALS 1459

with respect to the canonical orderly ranking �. We refer the reader to [8, Chapter
I] for further details.

We can now state the following result of Kolchin’s.

Fact 2.2. [8, Chapter II, §12] Let P be a prime differential ideal of k{x} and let
Λ be a characteristic set of P . If for each 1 ≤ i ≤ n we denote by Ei the set of all
ξ ∈ Nm such that δξxi is a leader of Λ, then

ωP (t) =

n∑
i=1

ωEi
(t).

In particular, the Kolchin polynomial ωP is completely determined by the set of
leaders of any characteristic set of P .

We will make use of a recent upper bound for the order of a characteristic
set obtained in [5]. Let A : N × N → N be the Ackermann function. From this
(nonprimitive recursive) function, we build Cn

r,m, for r ≥ 0 and n,m ≥ 1, as follows:

C1
0,m = 0, C1

r,m = A(m− 1, C1
r−1,m), and Cn

r,m = C1
Cn−1

r,m ,m
.

For example, a straightforward computation yields

Cn
r,1 = r, Cn

r,2 = 2nr, and C1
r,3 = 3(2r − 1).

From [5, Proposition 6.1] we have the following.

Fact 2.3. Let Σ ⊂ K{x1, . . . , xn} be of order at most r and let P be any of its
(minimal) prime components. Then a characteristic set for P has order at most
Cn

r,m.

We can now prove the main result of this section.

Theorem 2.4. Let V ⊆ Kn be a differential variety over k (not necessarily irre-
ducible) given by differential polynomials of order at most r. Set

s0 := mCn
r,m

(
Cn

r,m +m− 1

Cn
r,m

)
−m.

Then for all s ≥ s0 and any irreducible component W of V we have

ωW (s) = trdegk k(δ
ξbi : ord ξ ≤ s, i = 1, . . . , n),

where b = (b1, . . . , bn) is a generic point of W .

Proof. Let Λ be a characteristic set of the prime differential ideal P in k{x1, . . . , xn}
corresponding to W . By Fact 2.2,

ωW (t) =

n∑
i=1

ωEi
(t),

where Ei is the set of all ξ ∈ Nm such that δξxi is a leader of Λ. By Fact 2.3,
the elements of Λ have order at most Cn

r,m. Hence, the elements of the set Mi

of minimal elements of Ei (with respect to the product order) have order at most
Cn

r,m. Since the number of m-tuples of order s ∈ N is
(
s+m−1

s

)
, we get that the

number of elements in Mi is at most(
Cn

r,m +m− 1

Cn
r,m

)
,
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1460 JAMES FREITAG, OMAR LEÓN SÁNCHEZ, AND WEI LI

and so ∑
ξ∈Mi

ord ξ ≤ Cn
r,m

(
Cn

r,m +m− 1

Cn
r,m

)
.

Suppose s ≥ s0. Proposition 2.1 now yields ωW (s) =
∑n

i=1 |VEi
(s)|. Let b =

(b1, . . . , bn) be a generic point of W . Note that the set

Ns = {δξbi : ξ ∈ VEi
(s), 1 ≤ i ≤ n}

is algebraically independent over k (because Λ is a characteristic set of P ). Also, if
ξ is above or equal to an element of Ei, then δξbi is algebraic over

k(δζbj : δ
ζxj < δξxi);

and so, by induction and transitivity of algebraic field extensions, δξbi is algebraic
over Ns. We thus have that

n∑
i=1

|VEi
(s)| = trdegk k(δ

ξbi : ord ξ ≤ s, i = 1, . . . , n),

from which the desired equality follows. �

Note that in the ordinary differential case (i.e., m = 1), the value of s0 in
Theorem 2.4 reduces to r − 1. This special case of the bound was obtained in
[1, Theorem 12] for quasi-regular ordinary differential systems. Here we have shown
that such an upper bound in fact holds for all ordinary differential systems. We
highlight this in the following corollary.

Corollary 2.5. Let m = 1 and V ⊆ Kn be an ordinary differential variety over
k defined by differential polynomials of order at most r. Then the Hilbert-Kolchin
regularity of all the irreducible components of V is bounded by r − 1.

We will also need the following bound that witnesses eventual domination of the
Kolchin polynomials of the components of a differential variety.

Proposition 2.6. Let V ⊆ Kn be a differential variety over k (not necessarily
irreducible) given by differential polynomials of order at most r. Set

s1 := n 2m+1m!Dm + 1,

where

D = Cn
r,m

(
Cn

r,m +m− 1

Cn
r,m

)
.

Suppose W1 and W2 are components of V . Then ωW1
> ωW2

with respect to eventual
domination if and only if for all s > s1 we have ωW1

(s) > ωW2
(s).

Proof. Write the Kolchin polynomial of Wi in (standard) numerical form; that is,

ωWi
=

m∑
j=0

ai,j

(
t+ j

j

)
,

where the ai,j ’s are integers. By [10, Corollary 3.3], we have

(5) |ai,j | ≤ nDm for j = 0, . . . ,m.

It is easy to show, by induction say, that if one writes (t+1) · · · (t+m) =
∑m

j=0 cjt
j ,

then cj ≤ 2m−1m!. From this it is easy to show, by induction and using (5), that if
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we write ωWi
as

∑m
j=0 bi,jx

j , then |bi,j | ≤ n2mm!Dm. Also note that, because the
ai,j ’s are integers, all the products bi,j ·m! are integers.

Using the above observations and Cauchy’s bound on polynomial roots (in terms
of the coefficients of the given polynomial), we get that any root of the difference
ωW1

− ωW2
must be bounded (in absolute value) by n 2m+1m!Dm + 1, that is,

by s1. Thus, if ωW1
eventually dominates ωW2

, then for s > s1 we must have
ωW1

(s) > ωW2
(s). �

3. Definability of Kolchin polynomials

In this section we prove the main result of the paper, namely that having a
prescribed Kolchin polynomial is a definable property in families of differential
varieties. For our proof, we will make use of prolongation spaces. We use the
notation fixed in previous sections.

Given an n-tuple b from our universal differential field (K,Δ) and s a nonnegative

integer, we let ∇s(b) be the tuple in Kn·(m+s
m ) consisting of b and its derivatives of

order at most s. The ordering of the tuple is not particularly important, but for
convention, we will order the tuple with respect to the canonical orderly ranking
as in (4).

Definition 3.1. Given a differential variety V ⊆ Kn and a nonnegative integer s,
the prolongation of V is defined as

Bs(V ) := ∇s(V )Z-cl ⊆ Kn·(m+s
m ),

where ∗Z-cl denotes Zariski-closure.

In Proposition 3.3 below we prove that if (Va) is a definable family of differential
varieties, then for each s the family (Bs(Va)) is also definable. Our proof uses the
following fact, which follows from results in [2].

Fact 3.2. Recall that ∗Z-cl denotes Zariski-closure.
(1) If V ⊆ Kn is a differential variety given by differential polynomials of degree

d and order R, then there is D = D(d,R,m, n), which can be effectively
computed, such that deg V Z-cl ≤ D.

(2) Given a definable family (Va) of differential varieties, the family ((Va)
Z-cl) is

definable as well. Moreover, one can effectively compute a formula defining
this family.

Proof. (1) This is precisely the content of [2, Corollary 4.5 and Remark 4.7(2)].
Note that an explicit formula is provided there that computes D(d,R,m, n).

(2) Suppose the family (Va) is defined uniformly by the collection of differential
polynomials F (x, y) over k (each Va ⊂ Kn is defined by F (x, a) = 0 as defined in
Section 1). Suppose the order and degree of F (x, y) are at most R and d, respec-
tivelly. By (1), deg(Va)

Z-cl ≤ D, where D only depends on the data (d,R,m, n).
So, by [6, Proposition 3] and Kronecker’s theorem (see [13, Chapter 7,§17]), we can
find (n+ 1)-many polynomials g0, . . . , gn of degree at most D such that (Va)

Z-cl is
defined by g0 = · · · = gn = 0.

A collection of polynomials defining (V Z-cl
a ) uniformly can be obtained by fixing

(n+1)-many generic polynomials in z of the form G(z, u) = {g0(z, u), . . . , gn(z, u)}
of degree D and noting that the set of points (a, ba) such that the gi(z, ba)’s define
(Va)

Z-cl is the same as the set of points (a, ba) such that the points of Va are
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1462 JAMES FREITAG, OMAR LEÓN SÁNCHEZ, AND WEI LI

solutions to the gi(z, ba)’s and there is no other Zariski-closed set defined by (n+1)-
many polynomials of degree at most D with this property contained in the solution
set of the gi(z, ba)’s. The latter condition is easily expressible by a formula in
the language of differential rings. To be more precise, each V Z-cl

a is defined by
g0(z, ba) = · · · = gn(z, ba) = 0 with (a, ba) satisfying the following formulae:(

∀x F (x, a) = 0 → G(x, ba) = 0
)

and (
∀u

(
∀x F (x, a) = 0 → G(x, u) = 0

)
→

(
∀z G(z, ba) = 0 → G(z, u) = 0

))
.

�

Part (2) of the above fact is referred to as Zariski-closure being definable in
families of differential varieties. As a result we can prove the following.

Proposition 3.3. Let (Va) be a definable family of differential varieties with each
Va in Kn, and let s be a nonnegative integer. Then (Bs(Va)) has the structure of
a definable family, and one can effectively compute a formula defining this family.

Proof. The differential variety ∇s(Va) is given by the equations of Va together with

z = ∇s(x),

where x are variables for Kn and z are variables for Knαs that coincide with x in
the first n coordinates where αs :=

(
m+s
m

)
. Thus, the family of differential varieties

(∇s(Va)) is definable. By part (2) of Fact 3.2, the family ((∇s(Va))
Z-cl) is definable,

and one can effectively derive a formula defining it. Since Bs(Va) = (∇s(Va))
Z-cl,

we are done. �

We will make use of the following well-known algebro-geometric fact (for various
elementary proofs see [7] and [3, Introduction and Appendix]).

Fact 3.4. Let (Xa) be a definable family of algebraic varieties (in the language of
rings). Then, for fixed d and �, the set

{a : dimXa ≥ d and Xa has at least �-many top-dimensional components}
is definable by a formula in the language of rings. Moreover, a formula defining
this set can be effectively computed.

Corollary 3.5. Let (Va) be a definable family of differential varieties, and let d, �, s
be nonnegative integers. Then the set

{a : dimBs(Va) ≥ d and Bs(Va) has at least �-many top-dimensional components}
is definable, and a formula can be effectively computed.

Proof. Copying the notation in the proof of Proposition 3.3, we have a generic
family of polynomials Gz(x) such that for specific (a, b) there is a formula (in the
language of differential rings) such that Gb(x) defines Bs(Va). If we add to this the
formula defining

{b : Gb(x) has dimension ≥ d and at least �-many top-dimensional components},
which exists by Fact 3.4, we obtain the desired formula. �

We can now prove the (effective) definability of Kolchin polynomials in families.
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DEFINABILITY OF KOLCHIN POLYNOMIALS 1463

Theorem 3.6. Let (Va) be a definable family of differential varieties and let p be
a numerical polynomial. Then the sets

(6) {a : ωVa
≥ p}

and

(7) {a : ωVa
= p}

are definable in the structure (K,Δ).

Proof. First note that, by Fact 1.1(ii), if p has degree larger than m, then both sets
(6) and (7) are empty. So we assume that deg(p) ≤ m. Now note that (7) follows
from (6). Indeed, by Remark 1.2(2), there is a minimum Kolchin polynomial q such
that q > p, but then (7) equals

{a : ωVa
≥ p and ωVa

< q}
which is definable by (6).

We now prove (6). Since the coefficients of any polynomial (in one variable over
Q) of degree at most m are determined by its values at m + 1 distinct natural
numbers (using invertibility of Vandermonde matrices for instance), if we can ef-
fectively bound (within given intervals) the values of ωVa

at m+ 1 distinct natural
numbers, then we can effectively decide when ωVa

≥ p. This is because a numerical
polynomial q dominates p iff the standard coefficients (as a numerical polynomial)
of q are greater than or equal to those of p in the lexicographical order.

Suppose the family (Va) has degree d and order r. Let s1 be as in Proposition 2.6
(note that s1 ≥ s0 with s0 defined as in Theorem 2.4). LetW be an irreducible com-
ponent of Va (for fixed but arbitrary a) of maximal Kolchin polynomial. By Theo-
rem 2.4 and Proposition 2.6, for all s > s1 we have that dimBs(W ) ≥ dimBs(W

′)
for W ′ any other component of Va. Since Bs(Va) equals the union of the prolon-
gation of its components, for s > s1 we get that dimBs(Va) = dimBs(W ). The
upshot is that now Theorem 2.4 yields ωVa

(s) = dimBs(Va) for all a and s > s1.
Now the result follows from Corollary 3.5, as it shows that we can effectively find

a formula that determines those a’s such that dimBs(Va) is within a fixed interval,
and hence the same applies to ωVa

(s) for any s > s1, as desired. �

Remark 3.7. The various steps (in the current and previous section) for the proof
of Theorem 3.6 are effective in the sense that they provide a general recipe for a
specific formula giving the collection of fibres with some fixed Kolchin polynomial.

From the proof of Theorem 3.6, we can deduce the following.

Proposition 3.8. Let (Va) be a definable family of differential varieties and let �
be a nonnegative integer. Then the set

(8) {a : Va has at least �-many components of maximal Kolchin polynomial}
is definable in the structure (K,Δ).

Proof. Using the notation of the proof of Theorem 3.6, we see that for s > s1,
we have ωVa

(s) = ωVi
(s) for each i such that Bs(Vi) is top-dimensional in Bs(V ).

Thus, for such Vi’s we get ωVa
= ωVi

; in other words, such Vi’s are the components
of V of maximal Kolchin polynomial. This shows that the set (8) equals the set
of those a’s such that Bs(Va) has at least �-many top-dimensional components for
s = s1, . . . , s1 +m. But the latter set of a’s is definable by Corollary 3.5. �
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4. Some applications of definability

Using Theorem 3.6 and Proposition 3.8, we can prove the definability of other
interesting differential-algebraic properties. For instance, we have the following.

Corollary 4.1. Let (Va) be a definable family of differential varieties, let p be a
numerical polynomial, and let � be a nonnegative integer. Then the set

{a : ωVa
= p and Va has at least �-many components with Kolchin polynomial p}.

is definable in the structure (K,Δ).

Proof. The above set is simply the intersection of the sets

{a : ωVa
= p}

and

{a : and Va has at least �-many components of maximal Kolchin polynomial}.
The former is definable by Theorem 3.6, while the latter is definable by Proposi-
tion 3.8. �

Recall that a differential variety V is said to be weakly irreducible if it has exactly
one component of maximal Kolchin polynomial. Proposition 3.8 has the following
immediate consequence.

Corollary 4.2. Given a definable family (Va) of differential varieties, the set

{a : Va is weakly irreducible}
is definable in the structure (K,Δ).

Note that being weakly irreducible is not equivalent to being (fully) irreducible.
In fact the question of definability of irreducibility for differential varieties is re-
markably difficult (and remains open); it is actually equivalent to the generalized
Ritt problem which has been a longstanding problem since the 1950s (see [4, The-
orem 1]).

We recall that the differential type of V , usually denoted by τV , is defined as the
degree of the Kolchin polynomial of V . We now show that the differential type is
also a property that is definable in families.

Corollary 4.3. Let (Va) be a definable family of differential varieties, and let d be
a nonnegative integer. Then, the set

{a : τVa
≥ d}

is definable.

Proof. Consider the set of all Kolchin polynomials with differential type at least
d. By Remark 1.2(2), this set has a smallest element (with respect to eventual
domination), say p. By Theorem 3.6, the set {a : ωVa

≥ p} is definable. The latter
is precisely the set of those a’s such that the differential type of Va is at least d. �

Our last result says that a definable family admits only finitely many Kolchin
polynomials.

Corollary 4.4. Let (Va) be a definable family of differential varieties. Then the
set

{ωVa
: as Va varies in the family}

is finite.
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Proof. Towards a contradiction assume the set is infinite. Let N be the collection
of numerical polynomials of degree at most m. For each p ∈ N, consider the set

Ap = {a : ωVa
�= p}.

The set Ap is definable by Theorem 3.6. Moreover, by our assumption, the in-
tersection of finitely many of the Ap’s is nonempty. But by universality of K (or
saturation rather), the intersection

⋂
p∈N

Ap would contain a point, say a0. Of
course, this is impossible since ωVa0

is a numerical polynomial of degree at most
m. �
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the order of quasi-regular implicit systems of differential equations, Linear Algebra Appl. 430
(2009), no. 8-9, 2102–2122, DOI 10.1016/j.laa.2008.11.029. MR2503957

[2] James Freitag and Omar León Sánchez, Effective uniform bounding in partial differential
fields, Adv. Math. 288 (2016), 308–336, DOI 10.1016/j.aim.2015.10.013. MR3436387

[3] James Freitag, Wei Li, and Thomas Scanlon, Differential chow varieties exist, J. Lond. Math.
Soc. (2) 95 (2017), no. 1, 128–156, DOI 10.1112/jlms.12002. With an appendix by William
Johnson. MR3653087
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