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ABSTRACT

In this paper, the concept of sparse differential resultant for
a differentially essential system of differential polynomials is
introduced and its properties are proved. In particular, a
degree bound for the sparse differential resultant is given.
Based on the degree bound, an algorithm to compute the
sparse differential resultant is proposed, which is single ex-
ponential in terms of the order, the number of variables, and
the size of the differentially essential system.

Categories and Subject Descriptors

1.1.2 [Computing Methodologies]: Symbolic and Alge-
braic Manipulation - Algorithms for differential equations

General Terms
Algorithms, Theory

Keywords

Sparse differential resultant, differentially essential system,
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1. INTRODUCTION

The resultant, which gives conditions for a system of poly-
nomial equations to have common solutions, is a basic con-
cept in algebraic geometry and a powerful tool in elimination
theory [2, 8, 16, 6, 19, 9, 24, 28]. The sparse resultant was
introduced by Gelfand, Kapranov, and Zelevinsky as a gen-
eralization of the usual resultant [13]. Basic properties for
the sparse resultant were given by Sturmfels and co-authors
[23, 28, 29]. A Sylvester style matrix based method to com-
pute sparse resultants was first given by Canny and Emiris
[3, 10]. A determinant representation for the sparse resul-
tant was given by D’Andrea [7].
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The differential resultant for two nonlinear differential
polynomials in one variable was studied by Ritt in [25, p.47].
General differential resultants were defined by Carra Ferro
using Macaulay’s definition of algebraic resultants [4]. But,
the treatment in [4] is not complete. For instance, the differ-
ential resultant for two generic differential polynomials with
degrees greater than one is always zero if using the definition
in [4]. Differential resultants for linear ordinary differential
polynomials were studied by Rueda and Sendra in [27]. In
[12], a rigorous definition for the differential resultant of n+1
generic differential polynomials in n variables was presented.

A generic differential polynomial with order o and degree
d contains an exponential number of differential monomials
in terms of o and d. Since most of the differential poly-
nomials encountered in practice do not contain all of these
monomials, it is useful to define the sparse differential resul-
tant which can be considered as the differential analog for
the algebraic sparse resultant [7, 10, 13, 28].

In this paper, the concept of sparse differential resultant
for a differentially essential system consisting of n + 1 dif-
ferential polynomials in n differential variables is introduced
and its properties similar to that of the Sylvester resultant
are proved. In particular, we give a degree bound for the
sparse differential resultant, which also leads to a degree
bound for the differential resultant. Based on the degree
bound, we give an algorithm to compute the sparse differen-
tial resultant. The complexity of the algorithm in the worst
case is single exponential of the form O(n%37 (s4+1)°™ (m+

1)0("52”), where s, m, n, and [ are the order, the degree, the
number of variables, and the size of the differentially essen-
tial system respectively. The sparseness is reflected in the
quantity .

In principle, the sparse differential resultant can be com-
puted with any differential elimination method, and in par-
ticular with the change of order algorithms given by Boulier-
Lemaire-Maza [1] and Golubitsky-Kondratieva-Ovchinnikov
[14]. The differentially essential system already forms a tri-
angular set when considering their constant coefficients as
leading variables, and the sparse differential resultant is the
first element of the characteristic set of the prime ideal gen-
erated by the differentially essential system under a different
special ranking. Therefore, the change of order strategy pro-
posed in [1, 14] can be used. In our case, due to the special
structure of the differentially essential system, we can give
specific bounds for the order and degree needed to compute
the resultant, which allows us to reduce the problem to lin-
ear algebra directly and give explicit complexity bounds.

As preparations for the main results of the paper, we prove



several properties about the degrees of the elimination ideal
and the generalized Chow form in the algebraic case, which
are also interesting themselves.

The rest of the paper is organized as follows. In Section 2,
we prove some preliminary results. In Section 3, we define
the sparse differential resultant and give its properties. And
in Section 4, we present an algorithm to compute the sparse
differential resultant. In Section 5, we conclude the paper
by proposing several problems for future research.

2. DEGREE OF ELIMINATION IDEAL AND
GENERALIZED CHOW FORM

In this section, we will prove several properties about the
degrees of elimination ideals and generalized Chow forms in
the algebraic case, which will be used later in the paper.
These properties are also interesting themselves.

2.1 Degree of elimination ideal

Let P be a polynomial in K[X] where X = {z1,...,2z,}.
We use deg(P) to denote the total degree of P. Let Z be
a prime algebraic ideal in K[X] with dimension d. We use
deg(Z) to denote the degree of Z, which is defined to be
the number of solutions of the zero dimensional prime ideal
(I,Ll, .. .,]Ld), where L; = w0 + Z;.Lzl Ui L5 (Z =1,..., d)
are d generic primes [17]. That is,

deg(Z) = [V(Z,La, ..., La)]. (1)

Clearly, deg(Z) = deg(Z,L4,...,L;) for i =1,...,d. deg(Z)
is also equal to the maximal number of intersection points
of V(Z) with d hyperplanes under the condition that the
number of these points is finite [18]. That is,

deg(Z) = max{|V(Z) N Hi N---N Hy| : H; areaffine
hyperplanes with |V(Z) N Hy N---N Hg| < oo}

(2)

The relation between the degree of an ideal and that of its
elimination ideal is give by the following result.

Theorem 2.1 Let T be a prime ideal in K[X] and I, =IN
Klzi,...,zx] for any 1 <k < n. Then deg(Zx) < deg(Z).

Proof: Suppose dim(Z) = d and dim(Zy) = di. Two cases
are considered:

Case (a): di =d. Let P; = uio + usanx1 + - + wipzy (1 =
1,...,d). Denote u = {u;; : ¢ = 1,...,d;j = 0,...,k}.
Then by [17, Theorem 1, p. 54], J = (Zy,P1,...,Pq) is a
prime ideal of dimension zero in K (u)[z1,...,2x] and has
the same degree as 7. We claim that

1) (Z,Py,...,Py) N K(u)[z1,...,26] = T

2) (Z,P1,...,Pg) is a O-dimensional prime ideal.

To prove 1), it suffices to show that whenever f is in the
left ideal, f belongs to J. Without loss of generality, sup-
pose f € K[u][z1,...,zk]. Then there exist h;, ¢; € K[u][X]
and g € Z such that f = Y, g + Zle q:P;. Substi-
tuting uip = — 25:1 u;kxr into the above equality, we get
f= Zl higi € I, and f = fmod(]P)l, .. .,Pd). So, feJ.

To prove 2), suppose (£1,...,&,) is a generic point of Z.
Denote Uy = {u10,...,ua0}. Then Jo = (Z,Pq,...,Pq) C
K(u\Uo)[X, Uo] is a prime ideal of dimension d with a generic
pOiIlt (fl, e ,fn, — Z?:l uljfj, B Z?:l ud]fj). Since
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d1 = d, there exist d elements in {&1, ..., } algebraically in-
dependent over K. So by [16, p.168-169], JoNK (u\Uo)[Uo]
(0) and 2) follows.

Since J and (Z,P1, ...,P4) are zero dimensional ideals,
by [30, Proposition 9, p.7], deg(J) < deg(Z, P, ...,Pq). So
by (2), deg(Z) > [V(Z,Pr,...,Ba)| > deg(7) = deg(ZTs).

Case (b) dy < d. Let L; = w0 + usn®1 + -+ + UinTn ('L =
1,...,d —di). By [17, Theorem 1, p. 54], J = (Z,Lq,...,
Li—q;) € K(u)[X] is a prime ideal of dimension d; and
deg(J) = deg(Z), where u = {us; : ¢ = 1,...,d —d1;5 =
0,...,n}. Let Jr = J N K(u)[z1,...,zr]. We claim that
Je = () in K(u)[z1,...,zk]. Of course, Jip 2 (Zy). Since
both Ji and (Zy) are prime ideals and dim((Zx)) = da, it
suffices to prove that dim(Jx) = d:.

Let Jo = (I, Ly,... ,]Ld_dl) - K(U\Uo)[x, Uo] with Uy =
{u10,...,Ua—d,,0}. Suppose {z1,...,xq,} is a parametric
set of Z. Similarly to the procedure of proving 2) in case
(a), we can show that Jo N K (u\Uo)[z1,...,zaq,, Uo] = (0),
and Jx N K(u)[z1,...,2zq,] = (0) follows. So dim(Jx) = d:.

Since dim(Jx) = dim(J), by case (a), we have deg(Jx) <
deg(J) = deg(Z). And due to the fact that deg(Jx)

deg((Zx)) = deg(Zx), deg(Zy) < deg(Z) follows. O
In this article, we will use the following result.
Lemma 2.2 [22, Proposition 1] Let Fy,...,F, € K[X] be

polynomials generating an ideal T of dimension r. Suppose

deg(F1) > -+ > deg(F) and let D := [[" deg(F;). Then

deg(Z) < D.

2.2 Degree of algebraic generalized Chow form
Let Z be a prime ideal in K[X] with dimension d,

>

1<ag+-Fan<m;

— @l @ N
P; = w0+ Uiay.an®y T (1=0,...,d)

generic polynomials of degree m;, and u; the vector of coef-
ficients of P;. Philippon [24] proved that

(Z,Po,...,Pq) N Kuog,...,uq] = (G(uog,...,uq)) (3)

is a prime principal ideal and G(uy, ..., uq) is defined to be
the generalized Chow form of Z, denoted by G(Z).

In this section, we will give the degree of the generalized
Chow form in terms of the degrees of Z and that of P; by
proving Theorem 2.4.

At first, we will give another description of the degree for
a prime ideal. In (3), when P; become generic primes

L; :U¢0+Zvijl‘j(i:0,1,...,d),

j=1

the generalized Chow form becomes the usual Chow form,
denoted by Chow(Z). That is

(Z,Lo,...,Lq) N K[vo,...,vq] = (Chow(Z)) (4)

where v; is the set of coefficients of IL;. A basic property of
Chow forms is that [17] for each ¢ between 0 and d,

deg(Z) = deg,, Chow(Z). (5)

In the following lemma, we will give the degree of an ideal
intersected by a generic primal. To prove the lemma, we
apply the following Bezout inequality (see [15] or [18]): Let
V, W be affine algebraic varieties. Then

deg(V NW) < deg(V) - deg(W). (6)



Lemma 2.3 Let T be a prime ideal in K[X] with dim(Z) =
d > 0 and P a generic polynomial. Then deg(Z, P)

deg(P) - deg(Z).

Proof: Firstly, we prove the lemma holds for d = 1. Let
v be the vector of coefficients of P, m = deg(P), and
J (Z,P) ¢ K(v)[X]. Then by [17, p. 110], J is a
prime algebraic ideal of dimension zero. Let Lo be a generic
prime with ug the vector of coefficients. By (4), (J,Lo) N
K (v)[ug] = (Chow(J)). Here, we choose Chow(J) to be
an irreducible polynomial in K[v,up]. From (5), we have
deg(J) = deg,,, Chow(J).

Let M = (Z,Lo) C K(up)[X]. Then M is a prime ideal
of dimension zero with deg(M) = deg(Z). And (M, P) N
K (uo)[v] = (G(M)) where G(M) € K|v,ug] is irreducible.
Clearly, G(M) = ¢ Chow(J) for some ¢ € K* and G(M)
can be factored as

deg(7)

A(wo) T P&,

where &, are all the elements of V(M) and A(ug) is an ex-
traneous factor lying in K[ug]. Now, specialize P to L{"
where L1 = w10 + ZZL 1 U1:T; 1S a generic prime. Then we
have G(M) = A(uo) [T22® L' (¢,) and deg(G(M),uo) =
deg(J). Since Chow(Z) B(uo)Hdeg(I)L (&-) for some
B € Klug] is irreducible and G(M) € K[uo,uﬂ, there ex-
ists g € K[ug]* such that G(M) = g - (Chow(Z))™. So,
deg(G(M),ug) > m - deg(Chow(Z), 0) =m - deg(Z). And
by Bézout inequality (6), deg(Z,P) < deg(Z) - deg(P), so
deg(Z, P) = deg(Z) - deg(P).

For the case d > 1, let L1,...,Lq—1 be generic primes,
then 71 = (Z,Li,...,Lq—1) is a prime ideal of dimension
one and deg(Z1) = deg(Z). By the case d = 1, deg(Z1, P) =
deg(Z1) - deg(P). So deg(Z, P) = deg(Z,P,Ly,...,Lg—1)
deg(Z1, P) = deg(Z1) - deg(P) = deg(Z) - deg(P).

The following result generalizes Lemma 1.8 in [24].

G(M) =

O

Theorem 2.4 Let G(uo,...

form of a prime ideal T of dimension d w.r.t. Po,...

Then G is of degree deg(Z) [] deg(P;
J#i

,uq) be the generalized Chow
Py
i) in each set u;.

Proof: Tt suffices to prove the result for i = 0.

If d = 0, then G(uo) = [[92™ Py(¢,), where &, € V().
Clearly, deg(G,uo) = deg(Z).

We consider the case d > 0. Let Jo = (Z,P1,...,Pq) C
Kluy,...,ug, X and J = (Jo) C K(uy,...,uq)[z1, ..., xu].
Then J is a prime ideal of dimension zero and by Lemma 2.3,
deg(J) = deg(Z) [1{, deg(P;). We claim that G(uo, . . ., uq)
is also the generalized Chow form of 7, hence deg(G, up) =

deg(J) = deg(Z) Hle deg(P;). Since G(uo,...,uq) is the
generalized Chow form of Z, we have (Z,Py,...,Pq) N Kuo,

. ud} = (G(uo, ey ud)) = (Jo,P()) n K[uo, e ud]. Let
Gi(ug,...,uq) € Kluo,...,uq] be the generalized Chow

form of J and irreducible. Then (J,Po)NK(ui,...,uq)[uo]
= (G1). So G € (G1). But G, G are irreducible polynomi-
als in Kuo,...,uq], so G = c¢- G for some ¢ € K* and G
is the generalized Chow form of 7. O

3. SPARSE DIFFERENTIAL RESULTANT

In this section, we define the sparse differential resultant
and prove its basic properties.
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3.1 Definition of sparse differential resultant

Let F be an ordinary differential field and F{Y} the ring
of differential polynomials in the differential indeterminates
Y ={y1,...,yn}. For any element e € f{Y} we use el®) =
§%e to represent the k-th derivative of e and el*! to denote the
set {e : 1 =0,...,k}. Details about differential algebra
can be found in [20, 26].

The following theorem presents an important property on
differential specialization, which will be used later.

Theorem 3.1 [12, Theorem 2.14] Let {u1,...,u,} be a set
of differential indeterminates, and P;(U,Y) € F{U,Y} (i =
1,...,m) differential polynomials in the differential inde-
terminates U = (u1,...,ur) and Y = (y1,...,yn). Let
YO = (49,43,...,40), where 3 are in some differential ex-
tension field of F. If P;(U,Y°) (i = 1,...,m) are differen-
tially dependent over F(U), then for any specialization U to
U° in F, P,(U°,Y%) (i = 1,...,m) are differentially depen-
dent over F.

To define the sparse differential resultant, consider n + 1
differential polynomials with differential indeterminates as
coefficients

l;

Pi:uio—i—ZumMik (i:O,...7n) (7)

k=1
where M, = (Y[Si])"‘i’“ is a monomial in {y1,...,Yn,...,
y$) Ly 9) with exponent vector ax and |agx| > 1. The

set of exponent vectors S; = {0, i, : k=1,...,1;} is called
the support of P;, where 0 is the exponent vector for the
constant term. The number |S;| = I; + 1 is called the size of
P;. Note that s; is the order of P; and an exponent vector
of P; contains n(s; + 1) elements.

Denote u = {uix : i = 0,...,mk = 1,...,l;}. Let
N1,...,Nn be n elements which are differentially indepen-
dent over Q(u) and denote n = (m1,...,nn), where Q is the
field of rational numbers. Let

l;
= uw@FE (i =0,...,n).
k=1

Denote the differential transcendence degree by d.tr.deg.
Then, we have

(®)

Lemma 3.2 d.tr.deg Q(u){Co, ..., ¢n)/Q(u) = n if and only
if there exist n monomials M., (i = 1,...,n) in (7) such
that r; # r; for i # j and My, (n) = (n[ST heriki are dif-
ferentially independent over Q(u).

Proof: “ < 7 Without loss of generality, we assume r; =
i(t=1,...,n) and M, (n) (: = 1,...,n) are differentially
independent. It suffices to prove that (i,...,{, are differ-
entially independent over Q(u). Suppose the contrary, i.e.
C1,-..,Cn are differentially dependent. Now specialize u;; to
—0;ik;. By Theorem 3.1 and (8), Mk, (n) (i =1,...,n) are
differentially dependent, which is a contradiction.

“ =7 Suppose the contrary, i.e., My, (n) (i =1,...,n)
are differentially dependent for any n different r; and k; =
1,...,1l;. Since each (; is a linear combination of M, (1)
(ks = 1,...,l), Cryy--vy G, are differentially dependent,
contradicting that d.tr.deg Q{u)(Co,...,¢n)/Q(u) = O



Definition 3.3 A set of differential polynomials of form (7)
satisfying the condition in Lemma 3.2 is called a differen-
tially essential system.

A differential polynomial f of form (7) is called quasi-
generic [12] if for each 1 < ¢ < m, f contains at least one
monomial in F{y;} \ F. Clearly, n + 1 quasi-generic differ-
ential polynomials form a differentially essential system.

Now let [Po,...,P,] be the differential ideal generated by
P; in Q(u){Y, uoo,-..,uno}. Then it is a prime differential
ideal with a generic point (1,...,7n, Co,.-.,(n) and of di-
mension n. Clearly, Z = [Po,...,Ps] N Q(u){uoo, ..., uno}
is a prime differential ideal with a generic point (o, ..., Cn).
As a consequence of Lemma 3.2, we have

Corollary 3.4 T is of codimension one if and only if {Po,
..., Pn} is a differentially essential system.

Now suppose {Po,...,P,} is a differentially essential sys-
tem. Since Z is of codimension one, then by [26, line 14,
p. 45], there exists an irreducible differential polynomial
R(u; ugo, - - -y uno) € Q(u){uoo,- - ., uno} such that

,Pr] N Q(u){uogo, - - -, uno} = sat(R) (9)

where sat(R) is the saturation ideal of R. More explic-
itly, sat(R) is the whole set of differential polynomials hav-
ing zero pseudo-remainders w.r.t. R under any ranking
endowed on wugo,...,Uno. And by clearing denominators
when necessary, we suppose R € Q{u;uoo,...,uno} is ir-
reducible and also denoted by R(u;wugo,...,uno). Let u;
(wio, wit, - - -, uir; ) be the vector of coefficients of P; and de-
note R(uo,...,u,) = R(u;uoo,...,uno). Now we give the
definition of sparse differential resultant as follows:

[P, ...

Definition 3.5 R(uo,...,us) € Q{uo,...,un} in (9) is
defined to be the sparse differential resultant of the differ-
entially essential system Py, ..., Py.

Example 3.6 Forn =2, let Py = uoo+uo1y1y2, P1 = w10+
uo1Y1Ys, and Po = uag +u21y1y2. Using differential elimina-
tion algorithms [5], we can show that P1, P2, Ps form a differ-
entially essential system and their sparse differential resul-
tant is R = —uuugougl —u01uoou§1u1o +uo1u11quu21u60 -
U11U20U00U21 U1 -

The following properties can be proved easily.

1. When all P; become generic differential polynomials of
the form P; = w0 + > uiya(Y[Si])O‘, the sparse
1<|a|<m;
differential resultant is the differential resultant de-
fined in [12].

2. R is the vanishing polynomial of ((o, ..., (n) with min-
imal order in each wu;9. Since R € Q{u;wuoo,. .., Uno}
is irreducible, ord(R, u;) = ord(R, o).

3. Suppose ord(R,u;) = h; > 0 and denote 0o = Y7, hs.
Given a vector (qo,...,qn) € N"™ with Yoo =
q, if ¢ < o, then there is no polynomial P in sat(R)
with ord(P,u;) = ¢;. And R is the unique irreducible
polynomial in sat(R) with total order ¢ = o up to some
a € Q. This property will be used in our algorithm to
search for the sparse differential resultant.
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Remark 3.7 [t is not easy to define the sparse differential
resultant as the algebraic sparse resultant of ng) considered
@) The reason is that it is difficult to

check whether the supports of P; and ]P’Ek> satisfy the condi-
tions for the existence of the algebraic sparse resultant [29].

as polynomials in y

Furthermore, the coefficients of ]P’Ek) are not generic.

3.2 Properties of sparse differential resultant

Following Kolchin [21], we introduce the concept of differ-
entially homogenous polynomials.

Definition 3.8 A differential polynomialp € F{yo,...,yn}
is called differentially homogenous of degree m if for a new
differential indeterminate X, we have p(Ayo, A\y1 ..., A\yn) =
A"p(Yo, Y1, - - Yn)-

The differential analog of Euler’s theorem related to ho-
mogenous polynomials is valid.

Theorem 3.9 [21] f € F{yo,v,...
homogenous of degree m if and only if

_lmf
“l o

Sparse differential resultants have the following property.

,Yn} is differentially

r=20
r#0

ktr) w0 0f o, yn)
r J ay](k+r)

>y

=0 keN

Theorem 3.10 The sparse differential resultant is differ-
entially homogenous in each w; which is the coefficient set
Of P;.

Proof: Similar to the proof of [12, Theorem 4.16], we can
show that R satisfies the conditions of Theorem 3.9 for each
u;. The proof is omitted due to the page limit. O

Continue from Example 3.6. In this example, R is differ-
entially homogenous of degree 2 in ug, of degree 1 in u; and
of degree 2 in us respectively.

In the following, we prove formulas for sparse differential
resultants, which are similar to the Poisson type formulas for
Chow forms and algebraic resultants [23]. Denote ord(R, u;)
by h; (i =0,...,n). We have the following theorem.

Theorem 3.11 Let R(uo,...,uy) be the sparse differential
resultant of Po,...,Pn. Let deg(R, u(()}SO)) = to. Then there
exist £xi forT=1,...,t0 and k=1,...,lp such that

to lo

R=A H (uwoo + Z uorbri) ",

k=1

[ho]
0 -

(10)

T=1

where A is a polynomial in Flu . ugfb"]\ué}g‘”].

Proof: Now consider R as a polynomial in u(()g") with coeffi-
cients in Qp = Q(U?:Ouy”] \ {u{’}). Then, in an algebraic
extension field of Qp, we have
to
R= A (uge” — =)
=1

where to = deg(R, u(()’(;‘J)). Note that z, is an algebraic root of
R(ugg(’)) = 0 and a derivative for z; can be naturally defined



to make F(z,) a differential field. From R(u; (o, ...,{n) =0,
if we differentiate this equality w.r.t. u< 0), then we have

" OR OR
(ho) gy (1) =0 (11)
Ougy, ¢,
where 6(5”0) and c(hO) are obtained by substituting wu,o by
G in (20) and <ho) respectively.

Now multiply equatlon (11) by wor and for k from 1 to lo
add all of the equations obtained together, then we get

OR
C(ho) G+ Z Ol (12)
Thus, the polynomial G1 = uoo (ho) + Zk 1 Uok (ZO)
vanishes at (uogo,...,Uno) = (Co,...,cn) Since ord(Gl) <

ord(R) and deg(G1) = deg(R), there exists some a € F
such that G1 = aR. Settmg u< 0) zr in both sides of
G1, we have uopoR-o0 + Zk:l uOkRTk = 0, where R, =
— Since R is irreducible as an algebraic poly-

(ho)

oR
3ué};0> u

nomial in ug,”’, Rro # 0. Denote & = Rrx/Rro. Thus,
w00 + S0 uorérr, = 0 under the condition u((]}g(]) = zr.
lo
Consequently, z, = —( 3 uor&rr) ") and (10) follows. O
k=1
If Py contains the linear terms y; (i = 1,...,n), then the
above result can be strengthened as follows.
Theorem 3.12 Suppose Po has the form
Po = uoo + Z uoiYs + Z ugi (Yl*olyoi, (13)
1=n-+1
Then there exist - (T=1,...,t0;k=1,...,n) such that

(ho)
90] 0‘01)

757")'

R=A H (UOO + Z qu&Tz + Z UOZ

i=n+1

. (ko)

:AHPO(g)

Moreover, & (T=1,...,t0

where & = (§-1,- -

) lies on P1,...,Py.

Proof: For the first part, from Theorem 3.11, it remains

to show that for i = n+ 1 to lo, & = ( LS"])Q(”. From
equation (11), we have n; = 88(},30) ﬁﬁo) and (nlsoly20i =

s @ (@0i);
65(5?0) 64<ho> If (Ylol)oi = == 1% (v (k)) 0k then
01
ﬁ 1_0[ “OR , OR )(M)(am)jk _ OR OR
1 e US?O) 6§éh°> auggo) 8C(()h0>
It follows that
ﬁ lt ( OR OR )y (e _ OR / OR
h h h h
j=1k=0 auéj‘)) 8“800) Buéi") 8“5)00)
vanishes at (uoo, ..., un0) = (Co,-..,Cn). Since there exists

some a € N, such that G; =

9R

( OR n S0 OR
(ho) (ho))
dug; - dupg

Wy( IT 1T ¢

OR .
(k)y(@0i)jk _
PLARLN IRA

(—m/
(ho)
Buo}o dugg
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is a polynomial in Q{uo,...,u,}, G; € sat(R). Now sub-
stituting u(h°+h) 2™ for b > 0 into Gi, we obtain that
(cv04) S0l \ao4
&t =TTy TR ((6) ) 0" = (€7)er,
The proof of the second assertion is based on generalized
differential Chow form introduced in [12] and is omitted. O

As in algebra, the sparse differential resultant gives a nec-
essary condition for a system of differential polynomials to
have common solutions, as shown by the following theorem.

Theorem 3.13 Let Py,...,P, be a differentially essential
system of the form (7) and R(uo,...,un) be their sparse
differential resultant. Denote ord(R,u;) = h; and Sgp =
%. Suppose that when u; (i = 0,...,n) are specialized
to sets vi; which are elements in an extension field of F, P;
are specialized to P; (i = 0,...,n). If P, =0(@ =0,...,n)
have a common solution, then R(vo,...,v,) = 0. Moreover,
if Sr(Vo,...,vn) # 0, in the case that P, = 0(i = 0,...,n)
have a common solution &, then for each k, we have

(g = O

R (14)
Gué};“)

(vo, ... ,Vn)/SR(Vo,...,Vn).

Proof: Since R(uo, ..., un) € [Po,...,Pn], R(vo,...,Vn) €
[Po,...,Pyn]. Soif P; = 0(i = 0,...,n) have a common
solution, then R(vo,...,vy) should be zero.

From equation (11), it is clear that the polynomlal

Sg - (=Ylohyeor ¢ [Py ... P,].

<ho>Jr

Thus, if § is a common so-

lution of P; = 0, then the polynomlal (ho) (Vo, ..., vn) +
SRr(Vo,...,vn) - (—Y[0))20k vanishes at 5. So (14) follows.
d

Again, if Py contains the linear terms y; (i = 1,...,n),

then the above result can be strengthened as follows.

Corollary 3.14 Suppose Py has the form (13). If R(vo,...,
vn) = 0 and Sr(vo,...,vn) # 0, then P; = 0 have a com-
mon solution.

Proof: From the proof of the above theorem, we know that
for k from 1 to n,

OR
Gué};“ )

OR

Ay = o
8ué}5°)

(—yk) (S [Po, . ,]Pn]

Clearly, Ay is linear in yi. Suppose the differential remain-
der of P; w.r.t. Ay,..., A, in order to eliminate y1,...,yn
is ¢i, then SEP; = g;,mod[A1,...,A,] for a € N. Thus,
gi € [Po,...,Po]NQ{u){uoo, .- .,uno} =sat(R). So we have
S%P; = 0mod [A1,...,A,, R] for some b € N. Now special-
ize u; to v; for : =0,...,n, then we have

S%(vo,...,vs) P =0mod[Ay, ..., 4,]. (15)
Let & = TO)(VOw--7Vn)/SR(VO>~~7Vn) (k=1,...,n),
and denote .f (&1,...,6n). Then from equation (15),

P;(¢) = 0. So, £ is a common solution of Py, ..., P,. O
4. ANALGORITHM TO COMPUTE SPARSE
DIFFERENTIAL RESULTANT

In this section, we give an algorithm to compute the sparse
differential resultant with single exponential complexity.



4.1 Degree bounds for sparse differential re- The following theorem gives an upper bound for degrees

sultants of differential resultants, the proof of which is not valid for
sparse differential resultants. In the following result, when
we estimate the degree of R, only the degrees of P; in Y are
considered, while in Theorem 4.1, the degrees of P; in both
Y and w;x are considered.

In this section, we give an upper bound for the degree
and order of the sparse differential resultant, which will be
crucial to our algorithm to compute the sparse resultant.

Theorem 4.1 LetPy,...,P, be a differentially essential sys-
tem of form (7) with ord(P;) = s; and deg(P;,Y) = m,;. Let Theorem 4.2 Let F; (i = 0,...,n) be generic differential

R(ug,...,uy) be the sparse differential resultant of P; (i = polynomials in Y = {y1,...,yn} with order s;, degree m; =
0,...,mn). Suppose ord(R,u;) = h; for each i. We have deg(P:,Y), and s = Y ;si. Let R(uo,...,un) be the dif-
. " erential resultant of Fo, ..., F,. Then we have deg(R,ux) <
1) hi <s—s; fori=0,...,n where s =" | si. ]:—;,;4-1 " oms s'}il(‘)for cach k=0,....m. 8 )
2) R can be written as a linear combination of P; and their
derivatives up to order h;. Precisely, Proof: Without loss of generality, we consider k = 0.
. By [12, Theorem 6.8], ord(R,u;) = s — s; for each i and
R(uo,...,u,) = ZZGik]PEk) (16) R (R 50]’['_'"]F[S Sn][) C QY w0,
=i Let 7¢ = (F*U . FF)) c Q@ )[Y[S ], Where u =
n [sfsi] a . . . .
Ui—qiu; Clearly, Z¢ is a prime ideal of dimension s — sg.
. [ho] [hn] [h] =144 )
for some Gir € Qug™, ..., un™, Y] where Let Po,... Ps o be independent generic polynomlalb of
h = mazi{h; + si}. degree mo in Y with v; coefficients of P;. Denote v =
3) deg(R) < []",(m: + 1)hi+1 < (m+ 1)+ here U;Z5°vi\{vio} where vo is the constant term of IP;.
m = m_a:cl{lrz?} - Suppose 7 is a generic point of Z¢. Let ; = —P:(n) + vio
and (; = —Fél)(n) + u(()lo) (i =0,...,8 — s0). Clearly, ¢
Proof: 1) Let 6; = — 1<‘2|:< wia(n*1)* (i = 0,...,n) where and ¢; are free of v;o and u(()z(; respectively. Let G(vo,...,
S|la|lsm; _ 7. 13-
n = (N1,...,Mn) is the generic point of the zero differential Va—so) . G(V; voo, .- US_SO(;O) € Q[u,voi'. - Vs—so] be the
ideal [0, and W; = wio + 3w (Y1) is a generic generalized Chow form of Z¢. Then G(V;wvoo, ..., vs:so~,0)
’ i = o 1<|aTem; e 8 is the vanishing polynomial of ((o,...,{s—s,) over Q(u,v).
polynomial of order s; and d:egr(;e m;. Then from the prop- Now specialize v; to the corresponding coefficients of F o(l)
erty of differential resultants ([12, Theorem 1.3.]), we know Then (; are specialized to Cz By [16 p.168-169], there exists
the minimal polynomial of (6o, ...,0,) is of order s — s; in a nonzero polynomial H(ulf™*0N\ule=%0) 000 . 057500y €
each u;0. Now specialize all the u;q such that 6; are special- Q[ugs So]’ o ul~ Sn]} such that
ized to the corresponding (;. By the procedures in the proof 1) H(u[s—so]\u[s—so] . 6 Ci) —0and
of Theorem 3.1, we can obtain a nonzero differential poly- 2) deg((l)'{) < deOgO(G)7 e
nomial vanishing at ((o, ..., (,) with order not greater than So I FE_SO] F[g sn] [s—so] [s—snl] _
s—s; in each variable u;o. Since R is the minimal polynomial ° € (¥ [S o] )N Q[ [s— SO]’ oo Un -
of (Co,...,Cn), ord(R,u;) = ord(R Ui0) < 8 — ;. (R). Thus, deg(R, u, ) < deg(H,ug ) < deg(G(vo,
L ., Vs—sy)). By Theorem 2.4, deg(G, vz) = deg(Z%)mg *°
2) Substituting w0 by P; — 1921 i, (Y*1)% in the poly- for each i. Since Z® is generated by (Fl[S sl Rk é”])
nomial R(u;uoo,...,uno) for i =0,...,n, we get in Qu)[Y S]] deg(fl“) <Ili=, ijS‘H by Lemma 2.2. So,
d R < s so s—s 0
R(u; uoo, - .-, Uno) eg(R, wo) [ m;

lo In,
_ I Z [solyaok -3 [snlyonk
R(u; P UOk(Y )5y o P kzl“”k(y ) 4.2 Algorithm

=3", Sp ‘o sz )+ T(u,Y) If a polynomial R is the linear combination of some known
o polynomials Fi(i = 1,...,s), that is R = >_°_, H;F;, then
for Gir € Q{Ulou;, Y} and T = R(u; 2 wor (Y 50])a0k’ a general idea to estimate the computational complexity of
k=1 R is to estimate the upper bounds of the degrees of R and
l . .
L [sn]\nk . H;F; and to use linear algebra to find the coefficients of R.
o ,EI unk(YEr)%%) € [Po,.., Pa] 0 QQu){Y}. Simce For sparse differential resultant, we already gave its de-
[Po,...,Pr]NQ(u){Y} = [0], "= 0 and 2) is proved. More- gree in Theorem 4.1. Now we will give the degrees of the
over, (]pglo PP hAQuil L i) = (R(uo, ). expressions in the linear combination.
3) Let Jo = ( piol . iy C@[u([)ho],...,u%"],m where
Y are the y; and thelr derivatives appearing in ]P’g”’], e ,]P’ZL"]. Theorlem 4.3 LetPo,...,Pn bea diﬁere@tially essential sys-
By Lemma 2.2, deg(J: n ki de P, Y Uw) = tem with order s; and degree m; respectively. Denote s =
Y ) 8(J0) < Tlizo I dee . ) S si, m = marj—o{m;}. Let R(uo,...,u,) be the sparse
17 (mi + 1)"* and (R) = Jo N Quy, ..., ul™] is the a0 .
i=0\"1" AR R differential resultant of Po,...,Pn with ord(R,u;) = h; for

elimination ideal of Jy. Thus, by Theorem 2. 1 cach i. Then we have deg(GikPEM) < (m + 1)deg(R) <

n m -+ 1) T2 4y formula (16).
deg(R) < deg(Jo) < [J(mi + 1)+ (17) ( ) f (16)
=0 Proof: By Theorem 4.1 and its proof, R can be written as
Together with 1), 3) is proved. O R(ug,...,up) =0 S0 GikIP’Z(.M.
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To estimate the degree of Gik]P’Ek), we need only to con-
sider every monomial M (u;uoo, ..., Uno) in R(uo,...,uy).
Consider one monomial M = u” [T, HZ;O (ugg))d““ with
ly| = d and d + 327 S°F dyy, < deg(R), where u” repre-
sents a monomial in u and their derivatives with exponent
vector . Using the substitution in the proof of Theorem 4.1,
we have

n h; li (k) dik
M=w T[] ((m I ) ) .
1=0 k=0 Jj=1

When expanded, every term has total degree bounded by
d4+ 30 oSk (mi + 1)diy in u([)ho], ulland Y with
h = max{h; + s;}. Since d + 3.7 S2F (m; + V)da <
(m + 1)(d + 27y Ypiodir) < (m + 1)deg(R), applying
Theorem 4.1, the theorem is proved. a

For a given system fo,..., fn € F{y1,...,Yn}, let v; be
the set of coefficients of f; and P(f;) the differential poly-
nomial of the form (7) with the same support as f;. When

P(f;) form a differentially essential system, let R(uo, ..., un)
be their sparse differential resultant. Then R(vo,...,Vvy) is
defined to be the sparse differential resultant of fi;. The

following result gives an effective differential Nullstellensatz
under certain conditions.

Corollary 4.4 Let fo,..., fn € F{y1,...,yn} have no com-
mon solutions with ord(f;) = si,s = >, si, and deg(f;) <
m. If the sparse differential resultant of fo, ..., fn is nonzero,
then there exist Hij € F{y1,...,yn} s.t. D1 Z;;S‘ Hijf,f”

=1 and deg(Hijfi(j)) < (m A+ 1)netnt2

Proof: The hypothesis implies that P(f;) form a differen-
tially essential system. Clearly, R(uy,...,u,) has the prop-
erty stated in Theorem 4.3, where u; are coefficients of P(f;).
The result follows directly from Theorem 4.3 by specializing
u; to the coefficients of f;. O

Now, we give an algorithm SDResultant to compute
sparse differential resultants. The algorithm works adap-
tively by searching R with an order vector (ho,...,hn) €
N"*! with h; < s—s; by Theorem 4.1. Denote o = > o hi.
We start with o = 0. And for this o, choose one vector
(ho,...,hs) at a time. For this (ho,...,hn), we search for
R from degree D = 1. If we cannot find an R with such a
degree, then we repeat the procedure with degree D + 1 un-
til D > [[1,(mi + 1)""*1. In that case, we choose another
(ho,...,hn) with 37 Jh; = o. But if for all (ho,...,hn)
with h; < s—s; and ., hi = o, R cannot be found, then
we repeat the procedure with o + 1. In this way, we need
only to handle problems with the real size and need not go
to the upper bound in most cases.

Theorem 4.5 Algorithm SDResultant computes sparse
differential resultants with at most O(n*>3™ (s +1)°™ (m +

1)0("132 )Y Q-arithmetic operations.

Proof: In each loop of Step 3, the complexity of the algo-
rithm is clearly dominated by Step 3.1.2., where we need

to solve a system of linear equations P = 0 over Q in

co and c;;. It is easy to show that |co| = (Dzrfl_l) and
+1)D—m;—1+L+n(h+1 _

jeig| = (THOPLI IR, where L = ST (hs +

1)(li + 1). Then P = 0 is a linear equation system with
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Algorithm 1 — SDResultant(Po,...,P,)

Input: A differentially essential system Po,...,P,.
Output:  The sparse differential resultant of Po,...,P,.
1. Fori =0,...,n, set s; = ord(P;), m; = deg(P;,Y),

u; = coeff(P;) and |w;| =1; + 1.
2.5t R=0,0=0,s=>. 8, m=max;{m;}.
3. While R =0 do
3.1. For each vector (ho,...
=oand h; <s—s; do
3.1.1. U = U?:0u£h1]7 h = max;{h; + s;}, D = 1.
3.1.2. While R =0 and D <[] ,(m; + 1)"*! do
3.1.2.1. Set Ry to be a homogenous GPol of
degree D in U.
3.1.2.2. Set ¢ = coeff(Ro, U).
3.1.2.3. Set H;j(i =0,...,n;5=0,...,h;) to be
GPols of degree (m+1)D —m; —1in Y U,
3.1.2.4. Set ¢;; = coeff(Hy;, Y U U).
3.1.2.5. Set P to be the set of coeflicients of
Ro(uo,...,un) — >0 Z;Zo HijP,EJ) as an
algebraic polynomial in Y U.
3.1.2.6. Solve the linear equation P
variables co and c;;.
3.1.2.7. If ¢ has a nonzero solution, then substi-
tute it into Ro to get R and go to Step 4.,
else R = 0.
3.1.2.8. D:=D+1.
3.2. o:=o-+1.
4. Return R.

vhn) € N0 with 357 hs

= 0 in

/*/ GPol stands for generic ordinary polynomial.

/*/ coeff(P, V) returns the set of coefficients of P as an
ordinary polynomial in variables V.

_ (D+L-1 n m—+1)D—m;—1+L+n(h+1 .
N = ( L—-1 >+Z’L:0(h7’+1)(( ) L+n(h+1) ( >> vari-

ables and M = (<m+lgfz(ii§b)(h“)) equations. To solve it,

we need at most (max{M, N})* arithmetic operations over
Q, where w is the matrix multiplication exponent and the
currently best known w is 2.376.

The iteration in Step 3.1.2. may go through 1 to d; =
[T o(ms + 1) < (m + 1)™+" ! and the iteration in
Step 3.1. at most will repeat [} (s —si +1) < (s +1)" "
times. And by Theorem 4.1, Step 3 may loop from o = 0 to
ns. The whole algorithm needs at most

ns d; 2.376
Y %55*31‘ 2P (max{M, N})

i hi=o

< O(nSAB’?G(S 4 1)O(n) (m + 1)O(nls2))
arithmetic operations over Q. In the above inequalities, we
assume that (m 4 1)™ "2 > [s + n(s + 1) and use the fact
that { > (n+ 1)?, where [ = > (l; + 1). Our complexity
assumes an O(1)-complexity cost for all field operations over
Q. Thus, the complexity follows. a

Remark 4.6 Algorithm SDResultant can be improved by
using a better search strategy. If D is not big enough, in-
stead of checking D + 1, we can check 2D. Repeating this
procedure, we may find a k such that 2F < deg(R) < 2F+1,
We then bisecting the interval [2%, 25" again to find the
proper degree for R. This will lead to a better complezity,
which is still single exponential.



5. CONCLUSION AND PROBLEM

In this paper, the sparse differential resultant is defined
and its basic properties are proved. In particular, degree
bounds for the sparse differential resultant and the usual dif-
ferential resultant are given. Based on these degree bounds,
we propose a single exponential algorithm to compute the
sparse differential resultant.

In the algebraic case, there exists a necessary and suffi-
cient condition for the existence of sparse resultants in terms
of the supports [29]. It is interesting to find such a condition
for sparse differential resultants.

It is useful to represent the sparse resultant as the quotient
of two determinants, as done in [7] in the algebraic case. In
the differential case, we do not have such formulas, even in
the simplest case of the resultant for two generic differential
polynomials in one variable. The treatment in [4] is not
complete. For instance, let f,g be two generic differential
polynomials in one variable y with order one and degree
two. Then, the differential resultant for f, g defined in [4] is
zero, because all elements in the first column of the matrix
M(6,n,m) in [4, p.543] are zero. Furthermore, it is not easy
to fix the problem.

The degree of the algebraic sparse resultant is equal to the
mixed volume of certain polytopes generated by the supports
of the polynomials [23] or [13, p.255]. A similar degree bound
is desirable for the sparse differential resultant.

There exist very efficient algorithms to compute the alge-
braic sparse resultants ([10, 11]). How to apply the princi-
ples behind these algorithms to compute sparse differential
resultants is an important problem.

6.
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