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Abstract Elimination theory is central in differential and difference algebra. The Wu-Ritt character-

istic set method, the resultant and the Chow form are three fundamental tools in the elimination theory

for algebraic differential or difference equations. In this paper, the authors mainly present a survey of

the existing work on the theory of characteristic set methods for differential and difference systems,

the theory of differential Chow forms, and the theory of sparse differential and difference resultants.

Keywords Differential Chow forms, differential resultants, sparse differential resultants, Wu-Ritt

characteristic sets.

1 Introduction

Algebraic differential equations and difference equations frequently appear in numerous
mathematical models and are hot research topics in many different areas. Differential algebra,
founded by Ritt and Kolchin, aims to study algebraic differential equations in a way similar to
how polynomial equations are studied in algebraic geometry[1, 2]. Similarly, difference algebra,
founded by Ritt and Cohn, mainly focus on developing an algebraic theory for algebraic differ-
ence equations[3]. Elimination theory, starting from Gaussian elimination, forms a central part
of both differential and difference algebra.

For the elimination of unknowns in algebraic differential and difference equations, there are
several fundamental approaches, for example, the Wu-Ritt characteristic set theory, the theory
of Chow forms, and the theory of resultants.

The characteristic set method is a fundamental tool for studying systems of polynomial or
algebraic differential equations[1, 2]. However, the algorithmic study of the characteristic set
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was in stagnation for quite a long time until Wu’s work on zero decomposition for polynomial
equations and automated geometry theorem proving appeared in the late 1970s[4–6], the method
can be viewed as an extended Gaussian elimination method for polynomial systems. Since then,
many efficient algorithms and new properties for characteristic sets were proposed for algebraic
equation systems and differential equation systems[6–12]. The idea of the method is to privilege
systems which have been put in a special “triangular form”, also called an ascending chain
or simply a chain. The zero-set of any finite system of polynomials equations or differential
polynomial equations can be decomposed into the union of the zero-sets represented by chains.
With this method, solving a system of equations can be reduced to solving successive univariate
equations. It can also be applied to determine the dimension, the degree, and the order of a
finitely generated system of polynomials or differential polynomials, to solve the radical ideal
membership problem, and to prove theorems from elementary and differential geometries.

The notion of characteristic set for difference polynomial systems was proposed by Ritt and
Doob[13], Titt and Raudenbush[14]. The general theory of difference algebra was established by
Cohn[3]. Algorithms and properties for ordinary difference chains were well studied in [15–17],
zero decomposition algorithms were provided to solve the perfect ideal membership problem.
Some basic properties and zero decomposition algorithm are also extended to the partial dif-
ference case[18]. However, it is still an open problem to solve the perfect ideal membership
problem in the partial difference case.

For the mixed differential and difference polynomial (DD-polynomial) systems, the theoret-
ical properties of differential algebra (dimension polynomials, finite generation of ideals, etc.)
have been generalized to DD-setting[19], and the algorithmic counterparts were developed in [20]
for ordinary differential-difference ring.

The Chow form, also known as the Cayley form, is a basic concept in algebraic geometry[21, 22].
In recent decades, it becomes a powerful tool in elimination theory and especially for the com-
putational aspects of algebraic geometry. For instance, Brownawell made a major breakthrough
in elimination theory by developing new properties of the Chow form and proving an effective
version of the Nullstellensatz with optimal bounds[23]; Gel’fand, et al and Sturmfels started the
sparse elimination theory which is to study the Chow form and the resultant associated with
toric varieties[21, 24]. It also has important applications in transcendental number theory[25, 26]

and algebraic computational complexity theory[27].
Recently, the theory of differential Chow forms in both affine and projective differential

algebraic geometry has been developed in [28, 29]. Most of the basic properties of the algebraic
Chow form are extended to its ordniary differential counterpart[28] and the theory of differential
Chow varieties is established in [30]. For difference varieties, a theory of difference Chow forms
is also given in [31]. And in the partial differential case, differential Chow forms are defined for
a specific kind of partial differential varieties and a type of partial differential Chow varieties is
given in [32].

The multivariate resultant, which gives conditions for an over-determined system of polyno-
mial equations to have common solutions, is also a basic concept in algebraic geometry[21, 24, 33–35].
Due to the ability to eliminate several variables simultaneously without introducing many ex-
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traneous solutions, resultants have emerged as one of the most powerful computational tools in
elimination theory. Many algorithms with best complexity bounds for problems such as polyno-
mial equation solving and first order quantifier elimination, are strongly based on multivariate
resultants[23, 27, 36–38]. As a major advance in algebraic geometry and elimination theory, the
concept of sparse resultants was introduced by Gelfand, Kapranov, and Zelevinsky[21] and
by Sturmfels[24]. The degree of the sparse resultant is the Bernstein-Kushnirenko-Khovanskii
(BKK) bound[39], instead of the Beźout bound[21, 40]. And the sparse resultant has matrix rep-
resentations and determinant forms[37, 38, 41, 42]. All these make the computation of the sparse
resultant more efficient and could be implemented in many computer algebra systems.

The differential resultant problem was first studied for differential operators by Ore[43],
Berkovich and Tsirulik[44], Zeilberger[45], Chyzak and Salvy[46], and Carrà-Ferro[47]. The sub-
resultant theory was studied by Chardin[48], Li[49] and Hong[50]. For nonlinear differential
polynomials, Ritt introduced the differential resultant for two univariate ordinary differential
polynomials in [51, p.47]. Then for the multivariate differential resultant, Zwillinger, Rueda
and Sendra Carrà-Ferro tried to define or compute the differential resultant as the algebraic
resultants of a certain prolonged (differentiated) system[52–54]. The first rigorous definition for
multivariate differential resultant was given by Gao, et al. in [28], where the properties of
differential resultants were given too. Then the theory of sparse differential resultants for Lau-
rent ordinary differential polynomials has been developed and a computational algorithm with
single-exponential complexity is given in [55]. Matrix representations for differential resultants
in special cases were studied in [56, 57]. A theory of sparse difference resultants are introduced
in [58–60].

In this paper, we mainly give a survey of the above three main elimination approaches in
differential algebra and difference algebra. We should point out that there are other recent
important advances in differential and difference elimination theory which are not our theme
here, for example, several main contributions are made to both the differential and the difference
Nullstellensatz problem[61–65].

The rest of the paper is organised as follows. In Section 2, we will overview general theories
of characteristic set methods in polynomial algebra, differential algebra and difference algebra
respectively. The theory of differential Chow forms and differential Chow varieties is presented
in Section 3. In Section 4, we present the main results in the theory of sparse differential
resultants and sparse difference resultants.

2 Characteristic Set Methods

In this section, we will introduce basic notations and results in the characteristic set methods
for algebraic, differential, difference and differential-difference systems.

2.1 Characteristic Set Method for Algebraic Polynomial Systems

Let K be a computable field with characteristic zero. Let Y = {y1, y2, · · · , yn} be indeter-
minates and K[Y] = K[y1, y2, · · · , yn] the polynomial ring. We use a natural ordering for the
variables y1 ≺ y2 ≺ · · · ≺ yn. For P ∈ K[Y], the class of P , denoted by class(P ), is the largest
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c such that yc occurs in P . If P ∈ K, we set class(P ) = 0. If class(P ) = c, we called yc the
leading variable, denoted as lvar(P ). The leading coefficient of P as a univariate polynomial in
lvar(P ) is called the initial of P , and is denoted as I(P ). The formal derivative ∂P

∂yc
is called

the separant of P , and is denoted by S(P ). A polynomial Q is reduced with respect to another
polynomial P if class(P ) = c > 0 and deg(Q, yc) < deg(P, yc).

Definition 2.1 A sequence of nonzero polynomials A = A1, A2, · · · , Ap is a triangular
set if either p = 1 or class(A1) < class(A2) < · · · < class(Ap). A is called an ascending chain,
or simply a chain, if Aj is reduced w.r.t. Ai for i < j.

For a triangular set A, we denote by IA and SA the products of the initials and separants
of the polynomials in A respectively.

For a triangular set A, we can rename the variables Y as U = {u1, u2, · · · , uq} and X =
{x1, x2, · · · , xp} such that A can be rewritten as the following form

A =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

A1(U, x1) = I1x
d1
1 + terms of lower degree in x1,

...

Ap(U, x1, x2, · · · , xp) = Ipx
dp
p + terms of lower degree in xp,

(1)

where p + q = n and Ii = I(Ai), UA = U is called the parametric set (or parameters) of A.
We can introduce a rank between two polynomials and two triangular sets. A polynomial

P1 has higher rank than a polynomial P2, denoted as P2 ≺ P1, if either class(P1) > class(P2),
or c = class(P1) = class(P2) and deg(P1, yc) > deg(P2, yc). If no one has higher rank than the
other for two polynomials, they are said to have the same rank, denoted as P1 ∼ P2. We use
P1 � P2 to denote the relation of either P1 ≺ P2 or P1 ∼ P2. It is easy to see that � is a
partial order on the polynomial ring. We may extend the rank to triangular sets in a natural
way. For two triangular sets A = A1, A2, · · · , Ap and Â = Â1, Â2, · · · , Âs. We say that A has
higher rank than Â, also denoted as Â ≺ A, if either there exists a k ≤ min(p, s) such that
A1 ∼ Â1, A2 ∼ Â2, · · · , Ak−1 ∼ Âk−1 and Âk ≺ Ak, or p < s and Ai ∼ Âi for 1 ≤ i ≤ p. If no
one has higher rank than the other for two triangular sets, they are said to have the same rank,
denoted as A ∼ Â. We use A � Â to denote the relation of either A ≺ Â or A ∼ Â. Then �
is a partial order on the triangular sets.

Definition 2.2 The algebraic saturation ideal of a triangular set A is defined as follows

asat(A) = {f ∈ K[Y]|∃k ∈ N, Ik
Af ∈ (A)}.

Then asat(A) is an ideal.
For a triangular set A and a non-zero polynomial G, there is a uniquely determined poly-

nomial R reduced w.r.t.A such that JG =
∑

i QiAi + R for some polynomials Qi and some
smallest power-product J of initials of Ai.

Definition 2.3 The R obtained above is called the remainder of G w.r.t.A, denoted as
R = a-prem(G,A).
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Definition 2.4 A characteristic set (CS) of a polynomial set P is any chain of lowest
ranking contained in P.

It is evident that any two characteristic sets of a polynomial set are of the same rank. A
polynomial Q is called reduced w.r.t. a chain A if Q is reduced w.r.t. all the polynomials in A.

Note that the zero set defined by a non-trivial chain may have no zeros. For example, let
A = {y2

1 , y1y2−1}, then it is a chain, but Zero(A) = Zero(asat(A)) = ∅. Hence, we need to add
more constraints for the chain in order to make the zero set represented by A can be measured
by A in certain sense.

Definition 2.5 Let A = A1, A2, · · · , Ap be a nontrivial triangular set. A polynomial P

is said to be invertible w.r.t. A if (P, A1, · · · , Ap) ∩ K[U ] 
= {0}.
Definition 2.6 A nontrivial triangular set A is called regular if the initials of Ai are

invertible w.r.t. Ai−1, where Ak = {A1, A2, · · · , Ak} for any k and A0 = ∅.
The concept of regular sets was introduced independently by Yang, et al.[66] and Kalkbrener[67].

Definition 2.7 A regular triangular set A = A1, A2, · · · , Ap of form (1) is said to be
irreducible if A1 is an irreducible polynomial in x1 and Ai is irreducible module Ai−1 for
i = 2, 3, · · · , p.

Then, we have

Theorem 2.8 (see [7, 67]) If A is an irreducible triangular set, then asat(A) is a prime
ideal with dimension |U |. Conversely, each characteristic set of a prime ideal is an irreducible
chain.

Moreover, regular sets have nice properties,

Theorem 2.9 (see [67], Theorem 3.1) Let A be a regular chain, then Zero(asat(A)) =
∪iasat(Ci), where Ci is an irreducible chain for each i and the parametric set of Ci is the same
as A.

Theorem 2.10 (see [7], Theorem 6.1) A triangular set A is a characteristic set of asat(A)
if and only if A is regular.

Now, let’s describe the routine of the characteristic set method, which is introduced by
Wu[4, 6, 11].

Let P be a polynomial set. We set P0 = P and choose a characteristic set B0 of P0. Let R0 be
the nonzero remainders of polynomials in P0\B0 w.r.t. B0. Suppose that R0 
= ∅. Then we form
a new polynomial set P1 = P0 ∪ R0. Choose now a characteristic set B1 of P1. Then, B1 is of
lower order than B0. Continuing in this way, we will obtain successively Pi,Bi, Ri, i = 1, 2, · · · ,
for which

B0 � B1 � B2 � · · · .

This sequence can only be a finite one, hence there exists an m, such that Rm = ∅. The above
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procedure can be exhibited in the form of the scheme as follows:

P = P0 P1 · · · Pi · · · Pm

B0 B1 · · · Bi · · · Bm = CS (S)

R0 R1 · · · Ri · · · Rm = ∅,
where

P = Bi = a characteristic set of Pi

Ri = a-prem(Pi/Bi,Bi)/{0},
Pi = P0 ∪ Bi−1 ∪ Ri−1.

Definition 2.11 The CS obtained above is called a Wu-characteristic set of P.

Then, we have the following properties of Wu-characteristic set CS.

Theorem 2.12 (see [11], Well-ordering principal) Let CS be a Wu-characteristic set of P,
then

Zero(CS/I) ⊂ Zero(P) ⊂ Zero(CS),

Zero(P/I) = Zero(CS/I) (2)

Zero(P) = Zero(CS/I) +
⋃

i

Zero(P + {Ii}),

where Ii is the initial of the polynomial Ci ∈ CS, I is the initial product of CS.

Using the well ordering principal again for each component (P+{Ii}) in the above theorem,
we may obtain a zero decomposition algorithm for the polynomial system P.

Theorem 2.13 (see [11], Zero decomposition theorem) For P ⊂ K[Y], there exists an
algorithm, which can compute finite Wu-characteristic sets CSj, such that

Zero(P) =
⋃

j

Zero(CSj/Ij), (3)

a-prem(P/CSj) = {0},
where Ij is the initial product of CSj.

In [68], Gallo and Mishra showed that the complexity of computing a characteristic set for
a given ideal generated by a polynomial system is single exponential.

Theorem 2.14 (see [68], Theorem 4.14) Let I = (f1, f2, · · · , fs) be an ideal in K[X ], and
deg(fi) ≤ d, 1 ≤ i ≤ s. Then under any ordering on the indeterminants x1 ≺ x2 ≺ · · · ≺ xn,
where the first dim(I)-many variables are independent, one can compute a characteristic set of
I, in O(so(n)(d+1)O(n3)) sequential time or O(n7 log2(s+d+1)) parallel time. The polynomials
in the computed characteristic set are of degree O(s(d + 1)O(n2)).

Unfortunately, as we mentioned before, the zero set Zero(CSj/Ij) may be empty even if
CSj is non-trivial, then, one need to give some restriction on the Wu-characteristic sets. The
following theorem gives irreducible decomposition for the zero set of P, that is, restrict CSj to
be irreducible ones.
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Theorem 2.15 (see [11, 69], Irreducible decomposition) For P ⊂ K[Y], there exists an
algorithm, which can compute a finite number of irreducible ascending chains Ak in finite steps,
and polynomials Gk which are reduced w.r.t. Ak, such that

Zero(P) =
⋃

k

Zero(Ak/IkGk) (4)

or

Zero(P) =
⋃

k

Zero(Ak/Ik) =
⋃

k

Zero(asat(Ak)), (5)

where Ik is the initial product of Ak for any k.

There are also triangular decomposition algorithms in different types, one can also decom-
pose the zero set of the polynomial system into the union of the zero sets of regular sets[67, 70–73].

There are also fruitful applications for various zero decomposition algorithms[74–77]. The
most successful area is the automated theorem proving for elemental geometry. The routine to
prove theorems from elemental geometry is as follows[11]:

Step 1 Introduce a coordinate system, using indeterminates x1, x2, · · · , xn to denote the
points or other geometric quantities, then the assumptions in the theorem can be represented
by a set of polynomial equations, say HS = 0. Also, the conclusion of the theorem can be
represented by a polynomial equation, say G = 0.

Step 2 Using zero decomposition algorithm to decompose the zero set of HS into a set of
zeros which is represented by triangular sets, say C1, C2, · · · , Ct.

Step 3 Computing Ri = a-prem(G, Ci), 1 ≤ i ≤ t, then if Ri = 0, 1 ≤ i ≤ t, we conclude
that the theorem is true (sometimes, we may get rid of the initial conditions), and if there exists
an h, such that Rh 
= 0, then the theorem is not true at the component defined by Ch.

Another way to prove theorems from elemental geometry is to translate the problem into
determining whether a polynomial system has zeros or not. That is, to determine whether
G = 0 is true under the assumption HS = 0 is equivalent to decide whether G ∈ √

(HS), or
Zero(HS) ⊆ Zero(G), this is a radical ideal membership problem. One can reduce this problem
to determining whether a new polynomial system {HS, Gz + 1} has zeros or not, where z is a
new indeterminate. Then, the theorem is true (without any initial condition) if and only if the
zero decomposition of {HS, G ∗ z + 1} provides no nontrivial component.

Since the work of Wu[4–6, 11], there are extensive work studies the characteristic set method,
see [8, 67, 69–71, 76, 78–81]. Using these methods, one can decompose the zero set of a
polynomial system into the zero sets represented by triangular systems. When we do not
restrict that the characteristic of K is zero, that is, char(K) = p > 0, then one can have
stronger properties[82–85].

2.2 Characteristic Set Method for Differential Polynomial Systems

The results of the characteristic set method for algebraic polynomial systems can be natu-
rally extended to the differential case[8–10, 86–88].
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Let K be a computable field equipped with a finite set δ = {δ1, δ2, · · · , δs} of derivations on
this field.

Let Ω be the commutative semigroup of elements generated by δ. Let Y = {y1, y2, · · · , yn}
be indeterminates and K{Y} = K[ΩY] the differential polynomial ring, where ΩY = {θyi|θ ∈
Ω , 1 ≤ i ≤ n}. For a differential polynomial system P = {P1, P2, · · · , Ps} ⊂ K{Y}, we denote
by [P] the differential ideal generated by P.

Definition 2.16 A rank over the set of derivatives θyj is said to be admissible if it is a
total and compatible with the differentiations:

1) δiθyj > θyj for any i, θ ∈ Ω , j;
2) θ1yi > θ2yj ⇒ θθ1yi > θθ2yj for any θ, θ1, θ2, i, j.

Let P be a differential polynomial of K{Y}. The leader uP is the highest ranking derivative
appearing in P . The initial I(P ) and separant S(P ) of P is defined as the algebraic case when
regarding P as a univariate polynomial in uP . Let Q ∈ K{Y}, we say that Q has higher rank
than P when its leader has higher ranking than uP or is equal but with a higher degree in uP .
The ranking on the derivatives induces a partial order on the differential polynomials in K{Y}.
A differential polynomial Q is said to be reduced w.r.t. P if no proper derivatives of uP appears
in Q and deg(Q, uP ) < deg(P, uP ).

Let A = {A1, A2, · · · , Am} be a set of differential polynomials, we say A is a differential
chain if u1 < u2 < · · · < um and Ai is reduced w.r.t. Aj for any 1 ≤ i, j ≤ m, i 
= j, where
ui = lead(Ai). For a differential chain A, we denote by HA the product of the initials and
separants of A, that is HA = I(A)S(A). We say A is saturated if both IA and SA is invertible
w.r.t. A. For details of these definitions, please refer to [8, 10, 87].

Note that, for any P ∈ K{Y}, the initial of δiP is just the separant of P and lvar(δiP ) =
δilvar(P ) and the leading degree of δiP is just one. And for the pseudo-remainder procedure,
one need to reduce the polynomial w.r.t. a differential chain not only for the leading variables
but also the derivatives of the leading variables.

Let A = A1, A2, · · · , Am be a differential chain. We denote by LA the leading variables and
their derivatives, and PA = ΩY \ LA. Then, PA form a parametric set of A.

Let A be a differential chain, P a set differential polynomials. We say P ∈ P is reduced
w.r.t. A if P is reduced w.r.t. each element in A. Now, we define a pseudo-remainder procedure
for a differential polynomial P ∈ P w.r.t. a differential chain A, see Algorithm 1.

Algorithm 1 — d-prem(P,A)
While P is not reduced w.r.t. A do
Q = an element of A, s.t. P is not reduced w.r.t. Q;
θuQ = the highest ranking derivative of uQ in P ;
P = a-prem(P, θQ, θuP );
od;

This procedure terminates in finite steps and there exists an h ∈ H∞
A , such that hP =

d-prem(P,A) mod [A].
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According to the differential structure, if P is not reduced w.r.t. A, then the Q ∈ A such
that P is not reduced w.r.t. Q may not unique, hence one need to verify the consistence of the
choice of Q.

Let A = A1, A2, · · · , Am be a differential chain in K{y1, y2, · · · , yn} and θiyki = lvar(Ai), i =
1, 2, · · · , m. For any 1 ≤ i < j ≤ m, if class(Ai) = class(Aj) = t, then θi ≺ θj . Let θi,j be
the least common multiple of θi and θj in Ω , let Δij = a-prem( θi,j

θi
Ai,

θi,j

θj
Aj , θi,jyt) be the

algebraic pseudo-remainder of θi,j

θi
Ai w.r.t. θi,j

θj
Aj in variable θi,jyt; otherwise, let Δij = 0.

Definition 2.17 If d-prem(Δij ,A) = a-prem(Δij ,AΔij ) = 0, we call A a coherent
differential chain.

Rosenfeld’s Lemma[89] show that if a differential chain is coherent, then the differential
chains can be regarded as algebraic ones in some sense. Moreover, we have

Theorem 2.18 (see [10], Theorem 4.4, Theorem 6.2) Let A be a coherent differential
chain in K[Y]. Then [A] : H∞

A is a radical differential ideal. Let (A) : H∞
A = ∩r

i=1(Ci) : I∞Ci

is a characteristic irredundant decomposition in K[PA, LA] then Ci is coherent, 1 ≤ i ≤ r, and
[A] : H∞

A = ∩r
i=1[Ci] : H∞

Ci
is a characteristic irredundant decomposition of [A] : H∞

A in K[Y].

Based on the above theorem, one may design an algorithm to compute the zero-decomposition
algorithm for differential polynomial system analog to algebraic one.

Theorem 2.19 (see [9], Theorem 3.4.1) Let P be a set of differential polynomials in K[Y].
Then, we can compute a set of saturated coherent ascending chains {B1,B2, · · · ,Bk}, such that

Zero(P) = ∪k
i=1Zero(Bi/S(Bi)) = ∪k

i=1Zero(Bi : S(Bi)∞).

With this theorem, one can solve the radical ideal membership problem, and hence the
mechanical theorem proving for differential polynomial systems.

2.3 Characteristic Set Method for Ordinary Difference Polynomial Systems

Let K be a computable field considered with an automorphism σ of K. Let Ω be the
semigroup generated by σ. Let Y = {y1, y2, · · · , yn} be indeterminates and K{Y} = K[ΩY]
the difference polynomial ring. Here, ΩY = {θyi|θ ∈ Ω , 1 ≤ i ≤ n} is the set of transforms
of indeterminates. We denote by [P] the difference ideal generated by P, {P} the perfect ideal
generated by P. Then, {P} is the intersection of the prime difference ideals which contain P.

Due to the work of Gao and his collaborators[15–17, 90], the theory and algorithms have been
well developed.

Similar to the differential case, one may define a rank on the set of ΩY. Let A = A1, A2, · · · ,

Am be a difference chain in K{y1, y2, · · · , yn}. We denote by LA the leading variables and their
transforms, and PA = ΩY\LA the parametric set of A. We denote by V (S) the set of variables
occur in S for S ⊂ K{Y}.

Definition 2.20 Let A be a difference chain, P a set of difference polynomials. Let AP be
an algebraic system with elements θA, where θ ∈ Ω and A ∈ A. We say an algebraic triangular
set AP is an extension of A w.r.t. P if any variable occurs in V (AP ∪ {P}) ∩ LA must be the
leading variable of some polynomial in AP.
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We simply denote AP = A{P} for a difference chain with a single polynomial P . For details
of this definition, please refer to [17]. Then, the difference remainder for P w.r.t. A can be
defined as follows

r-prem(P,A) = a-prem(P,AP ).

Similar to the differential case, one need to check the consistence of the difference extension.
The main difference between the difference case and the differential case is that σP need not
to be linear in its leading variable.

Definition 2.21 Let A = A1, A2, · · · , Am be a difference chain in K{y1, y2, · · · , yn}
and ki = ord(Ai, lvar(Ai)), i = 1, 2, · · · , m. For any 1 ≤ i < j ≤ m, if class(Ai) =
class(Aj) = t, then ki < kj , let Δij = a-prem(σkj−kiAi, Aj , yt,kj ) be the algebraic pseudo-
remainder of σkj−kiAi w.r.t. Aj in variable yt,kj ; otherwise, let Δij = 0. If r-prem(Δij ,A) =
a-prem(Δij ,AΔij ) = 0, where a-prem is the algebraic pseudo-remainder, we call A a coherent
difference chain.

Definition 2.22 Let A be a difference chain and f be a difference polynomial. We say
that f is invertible w.r.t. A if it is invertible w.r.t. Af , when f and Af are treated as algebraic
polynomials.

Definition 2.23 Let A = A1, A2, · · · , Am be a difference chain and Ii = I(Ai). The chain
A is said to be (difference) regular if σiIj is invertible w.r.t. A for any non-negative integer i

and 1 ≤ j ≤ m.

Then, we have

Theorem 2.24 (see [17], Theorem 2.11) A difference chain A is the characteristic set of
sat(A) iff A is coherent and difference regular.

Unfortunately, one does not know whether the zero set given by a coherent and regular
chain is empty or not. It may happen that a nontrivial coherent and difference regular has no
difference zero.

Example 2.25 A = {y2
1 + 1, σy1 + y1, y

2
2 + 1, σy2 − y2}, then one can check that A is

coherent and difference regular, but the zero set of sat(A) = [A] is empty.

Hence, we introduce a new type of chains.

Definition 2.26 A chain A is said to be proper irreducible if

• A∗ = AA is an algebraic irreducible triangular set; and

• If f = σg ∈ asat(A∗) then g ∈ asat(A∗).

For coherent and irreducible chains, thanks to the difference kernel introduced by Cohn[3],
we have

Theorem 2.27 (see [17], Theorem 3.7,3.8) A coherent and proper irreducible chain is
difference regular. Moreover, Zero(sat(A)) 
= ∅.

A proper irreducible chain A is said to be strong irreducible if AP is an irreducible algebraic
triangular set for any difference polynomial P .
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Theorem 2.28 (see [17], Theorem 3.10) Let A be a coherent and strong irreducible dif-
ference chain. Then sat(A) is a reflexive prime difference ideal.

Up to now, we do not know how to decompose the zero set of a difference polynomial sys-
tem into the union of coherent and strong irreducible difference chains (prime decomposition).
Fortunately, we can test and compute the proper irreducible chains, and we have

Theorem 2.29 (see [17], Theorem 4.2) Let P be a finite set of difference polynomials in
K{y1, y2, · · · , yn}, then there exists an algorithm to compute coherent and proper irreducible
difference chains Ai, i = 1, 2, · · · , k, such that

Zero(P) =
k⋃

i=1

Zero(Ai/Ji), Zero(P) =
k⋃

i=1

Zero(sat(Ai)), {P} =
k⋂

i=1

{sat(Ai)}. (6)

Moreover, Zero(P) = ∅ iff k = 1 and A1 is trivial.
Using this theorem, one can solve the perfect ideal membership problem for difference poly-

nomial systems[15], and hence the mechanical theorem proving for difference polynomial sys-
tems.

Remark 2.30 One can also extend the above results to the ordinary DD-settings. Let K
be a computable field equipped with an automorphism σ and a derivation δ of K. Note that σ

and δ need not to commute. Then, similar as the ordinary difference case, one can define the
chain, the regularity, the coherence, the proper irreducible chain, the strong irreducible chain
in this setting. Then, Theorems 2.24, 2.27, 2.28, 2.29 can also be extended to the DD-case, for
details see [20].

2.4 Characteristic Set Method for Partial Difference Polynomial Systems

Let K be a field of characteristic zero. We say that K is an inversive partial difference field
with transforming operators {σ1, σ2, · · · , σm} over K if {σ1, σ2, · · · , σm} are automorphisms of
K which commute pairwise on K.

Let Θ be the semigroup generated by {σ1, σ2, · · · , σm}, that is, Θ = {σk1
1 σk2

2 · · ·σkm
m |ki ∈

N, 1 ≤ i ≤ m}. Let Y = {y1, y2, · · · , yn} be indeterminates and K{Y} = K[ΘY] the partial
difference polynomial ring. Here, ΘY = {θyi|θ ∈ Θ , 1 ≤ i ≤ n} is the set of transforms of
indeterminates. We denote by [P] the partial difference ideal generated by P, {P} the perfect
partial difference ideal generated by P. Then, {P} is the intersection of the prime partial
difference ideals that contain P.

One can also extend the characteristic set method to the partial difference case. One may
treat Θ as a set of monomials of the difference operators, then we can define an admissible
ordering on these monomial[91], this ordering induce a total ordering for ΘY. Then, for any
partial difference polynomial f , according to this ordering, we can define the leading variable,
the class, the initial and the separant of f , which can be denoted by lvar(f), class(f), I(f), S(f),
respectively.

Definition 2.31 A partial difference polynomial f is said to be reduced w.r.t. another
polynomial g if deg(f, ηlvar(g)) < deg(g, lvar(g)), for any η ∈ Θ .
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Definition 2.32 A subset A = A1, A2, · · · , Ap of K{Y}/K, where every element is re-
duced w.r.t. all the others, is called an autoreduced set. A chain is an autoreduced set where
the polynomials are listed in the ascending ordering: A1 < A2 < · · · < Ap.

Similar to the ordinary difference case, one may define main variables and parameters of a
chain A as follows.

LA = {ηyc ∈ ΘY s.t. ∃ A ∈ A, lvar(A) = θyc, and η is a multiple of θ},
PA = ΘY \ LA.

Then, we can define an extension of A w.r.t. a partial difference polynomial set P similar to the
ordinary case[18].

Definition 2.33 Let A be a partial difference chain, P a set of partial difference polyno-
mials. Let AP be an algebraic system with elements θA, where θ ∈ Θ and A ∈ A. We say an
algebraic triangular set AP is an extension of A w.r.t. P if any variable occurs in V (AP∪{P})∩LA
must be the leading variable of some polynomial in AP.

Then, one can define the pseudo-remainder of a polynomial w.r.t. a chain, prem(f,A) =
a-prem(f,Af ) for any partial difference polynomial f and a partial difference chain A.

Let A = A1, A2, · · · , Al be a chain in K{Y} and θiyti = lvar(Ai), i = 1, 2, · · · , l. For any
1 ≤ i < j ≤ m, if ti = tj = t, let the least common multiple transform of θi and θj be θi,j . We
define the Δ-polynomials of Ai and Aj as Δj,i = θi,j

θj
Aj and Δi,j = θi,j

θi
Ai.

Definition 2.34 If p-prem(Δi,j ,A) = 0 and p-prem(Δj,i,A) = 0, we call A a coherent
chain.

Definition 2.35 Let A be a chain and f be a polynomial. f is said to be partial difference
invertible, (or invertible) w.r.t. A if it is invertible w.r.t. Af when f and Af are treated as
algebraic polynomials.

Definition 2.36 Let A = A1, A2, · · · , Am be a chain and Ii = I(Ai). A is said to be
(partial difference) regular if θIj is invertible w.r.t. A for any θ ∈ Θ and 1 ≤ j ≤ m.

Then, we have

Theorem 2.37 (see [18], Theorem 20) A chain A is the characteristic set of sat(A) if
and only if A is coherent and difference regular.

Definition 2.38 A chain A is strong irreducible if

• Af is an irreducible algebraic triangular set for any f ∈ K{Y};

• For θ ∈ Θ and h ∈ K{Y}, if θh ∈ asat(Af ) then h ∈ asat(Af ).

Theorem 2.39 (see [18], Theorem 22) Let A be a coherent and strongly irreducible dif-
ference chain. Then sat(A) is a reflexive prime difference ideal.

Theorem 2.40 (see [18], Theorem 25) Let I be a reflexive prime difference ideal and A
be a characteristic set of I. Then A is coherent, strongly irreducible, and I = sat(A).

For the zero decomposition, we have
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Theorem 2.41 (see [18], Theorem 27) Let P be a finite set of polynomials in K{y1, y2, · · · ,

yn}, then we can obtain a sequence of coherent chains Ai, i = 1, 2, · · · , k such that

Zero(P) =
k⋃

i=1

Zero(Ai/IAi) =
k⋃

i=1

Zero(sat(Ai)). (7)

Remark 2.42 Unfortunately, for any proper coherent ascending chain A, one does not
know if the zero set of sat(A) is empty or not. An example shows that even for an ideal
generated by one single irreducible polynomial, the zero set of this ideal may be empty[92]. Up
to now, the perfect ideal membership problem is still open.

Example 2.43 (see [92]) Let K = (Q(i, b), {σ, τ}), where Q is the field of rational num-
bers, i2 + 1 = 0, b =

√
2, the difference operators σ1, σ2 are defined as follows.

σ1i = i, σ1b = −b,

σ2i = −i, σ2b = b.

Consider the zero set of x2 − b or equivalently, {x2 − b}

{x2 − b} = {x2 − b, σ1x + ix, σ2x − x} ∩ {x2 − b, σ1x + ix, σ2x + x}
∩{x2 − b, σ1x − ix, σ2x − x} ∩ {x2 − b, σ1x − ix, σ2x + x}.

One can check that each component of the above equations has no zero, that is, {x2 − b} = [1].

3 Differential Chow Forms and Differential Chow Varieties

In this section, we will briefly introduce the definition of differential Chow forms, present
basic properties and show the existence of differential Chow varieties. For more details, please
refer to [28, 29]. Unless otherwise indicated, all differential varieties under discussion are ordi-
nary differential ones in Sections 3 and 4.

Let K be a fixed differential field of characteristic 0 with derivation δ, and E a universal
differential field extension of K [2]. By A

n and P
n, we mean the affine differential space and the

projective differential space defined over E respectively. For a subset U ⊂ E, we use K{U},
K〈U〉 to denote the differential ring K[(δku)k∈N,u∈U ], the differential field K

(
(δku)k∈N,u∈U

)
)

generated by S over K respectively.
To define differential Chow forms, we first need the generic differential intersection theory.

Intersection theory is a fundamental problem in algebraic geometry, and it is well-known that
each component of the intersection of two irreducible algebraic varieties in A

n of dimension
r and s is of dimension at least r + s − n. However, this result does not hold in differential
algebraic geometry. A famous counter-example was given by Ritt[1]:

Example 3.1 Let n = 3 and V be the general component of V(y5
1−y5

2+y3(y1y
′
2−y2y

′
1)2) ⊂

A
3. Let W = V(y3). Clearly, both V and W are irreducible differential varieties of differential

dimension 2. However, V ∩ W = {(0, 0, 0)} whose differential dimension is 0 < 2 + 2 − 3.
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Example 3.1 is also a counter-example to the differential version of the algebraic intersection
formula, which claims that the intersection of an irreducible variety V of dimension d and a
hypersurface not containing V is purely of dimension d−1. Although in general the intersection
formula does not hold in the differential setting, the next result shows that it holds generically.

Definition 3.2 Let �s,r be the set of all differential monomials in K{y1, y2, · · · , yn}
of order ≤ s and degree ≤ r. Let U = {uM}M∈�s,r be a subset of elements of a universal
differential field containing K that are differential indeterminates over K. Then,

f =
∑

M∈�s,r

uMM

is called a generic differential polynomial of order s and degree r. A generic differential hyper-
surface is the set of differential zeros of a generic differential polynomial.

Theorem 3.3 (see [28], Theorem 1.1) Let V ⊆ A
n be an irreducible differential variety

over K of dimension d and order h. Let P be a generic differential polynomial of order s with
the set of its coefficients u. Then,

1) over K〈u〉, V ∩ V(P ) 
= ∅ if and only if d > 0.

2) if d > 0, then the intersection of V and V(P ) is an irreducible differential variety over
K〈u〉 of differential dimension d − 1 and order h + s.

Remark 3.4 Theorem 3.3 could be generalized to the partial differential case, as was
shown in [32, 93] that ωV ∩V(P )(t), the Kolchin polynomial of V ∩ V(P ), is equal to ωV (t) −
(
t+m−s

m

)
(here m is the number of derivations).

Let V ⊂ A
n be an irreducible differential variety defined over K of dimension d and

Li = ui0 + ui1y1 + · · · + uinyn, i = 0, 1, · · · , d

be d+1 generic linear differential polynomials with the vector of coefficients ui = (ui0, · · · , uin).
Given ai = (ai0, · · · , ain) ∈ P

n, let

Li(ai) = ai0 + ai1y1 + · · · + ainyn, i = 0, 1, · · · , d

denote the defining polynomial of d + 1 differential hyperplanes. Let

Z0 =
{
(a0, · · · , ad) ∈ (Pn)d+1|V ∩ V(L(a0)) ∩ · · · ∩ V(L(ad)) 
= ∅}. (8)

Then by Theorem 3.3, the Kolchin closure of Z0 (i.e., the smallest differential variety containing
Z0), Z0

kol
, is an irreducible differential variety of codimension 1. So there exists a unique

irreducible differential polynomial F (u0, u1, · · · , ud) such that Z0
kol

is the general component
of F , that is,

Z0
kol

= V(sat(F ))

under any arbitrary ranking.

Definition 3.5 (see [28], Definition 4.2) The unique F (u0, u1, · · · , ud) (up to appropriate
scaling) is defined to be the differential Chow form of V or I(V ).
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Differential Chow forms uniquely characterize their corresponding differential varieties. They
could be computed using differential characteristic set methods by its definition; and for irre-
ducible differential varieties given by characteristic sets, algorithms with single exponential
complexity were designed in [94] to compute their differential Chow forms.

The following theorem gives some basic properties of differential Chow forms.

Theorem 3.6 (see [28], Theorem 1.2) Let V be an irreducible differential variety defined
over K with differential dimension d and order h. Suppose F (u0, u1, · · · , ud) is the differential
Chow form of V . Then F has the following properties.

1) ord(F ) = h. In particular, ord(F, ui0) = h for each i = 0, 1, · · · , d.
2) F is differentially homogenous of the same degree m in each ui. This m is called the

differential degree of V.

3) Let g = deg(F, u
(h)
00 ). There exist differential extension fields Kτ (τ = 1, 2, · · · , g) of K

and ξτj ∈ Kτ (j = 1, 2, · · · , n) such that

F = A

g∏

τ=1

(u00 + u01ξτ1 + · · · + u0nξτn)(h),

where A is a differential polynomial free from u
(h)
00 . Moreover, each ξτ = (ξτ1, ξτ2, · · · , ξτn) is

a generic point of V , and L1, L2, · · · , Ld vanish at ξτ .
4) The points ξ1, ξ2, · · · , ξg are the only points of V lying on the differential hyperplanes

Li = 0 (i = 1, 2, · · · , d) as well as on the algebraic hyperplanes L
(k)
0 = 0 (k = 0, 1, · · · , h − 1).

The number g is called the leading differential degree of V .
5) Given d + 1 differential hyperplanes Li(ai) = 0 (i = 0, 1, · · · , d), if V and Li(ai) =

0 (i = 0, 1, · · · , d) have a point in common, then F (a0, a1, · · · , ad) = 0. Conversely, if
F (a0, a1, · · · , ad) = 0 and ∂F

∂u
(h)
00

(a0, a1, · · · , ad) 
= 0, then the d + 1 hyperplanes Li(ai) =

0 (i = 0, 1, · · · , d) and V have a common point.

Below is a simple example to illustrate these invariants of a differential variety.

Example 3.7 Let n = 1 and V = V(y2y′ + 1) ⊆ A
1. Then the differential Chow form of

V is F (u0) = u2
00u01u

′
00 − u3

00u
′
01 − u4

01. The order of V is 1, the differential degree of V is 4
and the leading differential degree of V is 1.

A differential variety is called order-unmixed if all its components have the same differential
dimension and order. Let V be an order-unmixed differential variety of dimension d and order
h and V =

⋃l
i=1 Vi its minimal irreducible decomposition with Fi(u0, u1, · · · , ud) the Chow

form of Vi. Let

F (u0, u1, · · · , ud) =
l∏

i=1

Fi(u0, u1, · · · , ud)si (9)

with si arbitrary nonnegative integers. In [28], a differential algebraic cycle is defined associated
to (9) similar to its algebraic analog, that is, V =

∑l
i=1 siVi is a differential algebraic cycle

with si as the multiplicity of Vi and F (u0, u1, · · · , ud) is called the differential Chow form of
V .
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Suppose each Vi is of differential degree mi and leading differential degree gi, then the
leading differential degree and differential degree of V is defined to be

∑l
i=1 sigi and

∑l
i=1 simi

respectively. A differential cycle V in the n dimensional affine space with dimension d, order
h, leading differential degree g, and differential degree m is said to be of index (d, h, g, m) in
A

n.

Definition 3.8 Let V be a differential cycle of index (d, h, g, m) in A
n. The differential

Chow coordinate of V is the coefficient vector of the differential Chow form of V considered as
a point in a higher dimensional projective space determined by (d, h, g, m) and n.

Definition 3.9 Fix an index (d, h, g, m) and n. Consider the sets

V(n,d,h,g,m) = {V ∣
∣V is a differential cycle of index (d, h, g, m) in A

n}

and

C(n,d,h,g,m) =
{
cV

∣
∣ cV is the differential Chow coordinate of V , V ∈ V(n,d,h,g,m)

}
.

If V(n,d,h,g,m) (or equally C(n,d,h,g,m)) has the structure of a differential constructible set in some
differential space, then V(n,d,h,g,m) is called the differential Chow variety of index (d, h, g, m) of
A

n, denoted by δ-chow(n, d, h, g, m).

Once the existence of differential Chow varieties is proved, the theory of differential Chow
varieties will provide a natural stratification of the parameter spaces of differential cycles via
the discrete index invariant. In the case g = 1, the existence of differential Chow varieties was
proved through constructing the defining differential equations and inequations of C(n,d,h,1,m).

Theorem 3.10 (see [28], Theorem 5.7) For each n, d, m and g = 1, the differential Chow
variety δ-chow(n, d, h, 1, m) exists.

But the constructive methods used to prove Theorem 3.10 could not be adapted to prove
the general case. The existence of differential Chow varieties in general case was proved with a
model-theoretical approach in [30] (refer to [30] for a detailed proof).

Theorem 3.11 (see [30], Theorem 5.1) For each nonnegative integer n, d, g, m, the dif-
ferential Chow variety δ-chow(n, d, h, g, m) exists.

Differential Chow forms are also studied for projective differential varieties[29]. In the partial
differential case, the theory of differential Chow forms and differential Chow varieties is not well-
developed[32]. Even in the course of defining partial differential Chow forms, an insuperable
obstacle is encountered: It is impossible to define differential Chow forms for most of irreducible
partial differential varieties. Only for a specific kind of irreducible partial differential varieties,
we could manage to define differential Chow forms, and only a specific kind of differential Chow
varieties exist.

For the ordinary difference case, the generic intersection theory for difference varieties is
proved and Theorem 3.3 is generalised to its difference analog[31]. Also, in [31], the difference
Chow form is defined for irreducible difference varieties and its basic properties are proved too.
Due to the distinct structures of the differential and difference operators, the theory of difference
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Chow forms is far from well-develped compared with their ordinary differential counterparts.
In particular, it may happen that two different irreducible difference varieties may have the
same difference Chow form (see [31, Example 6.4]). Thus, in general, it is impossible to develop
a theory of difference Chow varieties.

4 Differential Resultants and Sparse Differential Resultants

In this section, we introduce the theory of differential resultants and the theory of sparse
differential resultants.

4.1 Differential Resultants

Differential resultants were first studied for differential operators, or equivalently, for linear
homogenous differential polynomials. Using the analogue between ordinary differential op-
erators and univariate polynomials, differential resultants for two linear ordinary differential
operators were implicitly given by Ore[43] and then studied by Berkovich and Tsirulik[44] using
Sylvester style matrices. The subresultant theory was first studied by Chardin[48] for two differ-
ential operators and then by Li[49] and Hong[50] for more general Ore polynomials. Carrá-Ferro
generalized it to the partial differential operators in [47].

The differential resultant for two nonlinear differential polynomials in one variable was de-
fined by Ritt in [51, p.47]. In [52, p.46], Zwillinger proposed to define the differential resultant of
two differential polynomials as the determinant of a matrix following the idea of algebraic mul-
tivariate resultants, but did not provide the details. General differential resultants were defined
by Carrà-Ferro using Macaulay’s definition of algebraic resultants[54, 95]. But, the treatment
in [54, 95] is not complete. For instance, the differential resultant for two generic differential
polynomials with positive orders and degrees greater than one is always identically zero if using
the definition in [54]. In [96], Yang, et al. used the idea of algebraic Dixon resultant to com-
pute the differential resultant. Although efficient, this approach is also not complete, because
it does not show that the differential resultant can always be computed in this way. Differential
resultants for linear ordinary differential polynomials were studied by Rueda-Sendra[53, 57].

The first rigorous definition of the differential resultant of n + 1 differential polynomials in
n variables was given by Gao, et al. in [28], where the properties of differential resultants were
proved.

Definition 4.1 Let Pi (i = 0, 1, · · · , n) be generic differential polynomials in n variables
y1, y2, · · · , yn with orders si and degrees mi. For each i, denote ui to be the set of coefficients
of Pi. By Theorem 3.3, there exists a unique (up to a scalar in Q) irreducible differential
polynomial R(u0, u1, · · · , un) ∈ Q{u0, u1, · · · , un} such that

[P0, P1, · · · , Pn] ∩ Q{u0, u1, · · · , un} = sat(R).

This R(u0, u1, · · · , un) is defined to be the differential resultant of P0, P1, · · · , Pn.

For a given system of n+1 differential polynomials P i in y1, y2, · · · , yn with orders si, degrees
mi and coefficients vi from some differential field K, their differential resultant is defined to be
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R(v0, v1, · · · , vn) ∈ K. The vanishing of the differential resultant gives a necessary condition
for the system having a common solution. Besides, differential resultants have the following
properties which are similar to the classical algebraic case.

Theorem 4.2 (see [28], Theorem 1.3) Let Pi (i = 0, 1, · · · , n) be generic differential
polynomials in y1, y2, · · · , yn with orders si, degrees mi, and degree 0 terms ui0 respectively.
Let R(u0, u1, · · · , un) be the differential resultant of P0, P1, · · · , Pn, where ui is the set of
coefficients of Pi. Then

a) R(u0, u1, · · · , un) is differentially homogeneous in each ui and is of order hi = s− si in
ui (i = 0, 1, · · · , n) with s =

∑n
l=0 sl.

b) There exist ξτρ(ρ = 1, 2, · · · , n) in the differential extension fields Kτ (τ = 1, 2, · · · , t0) of
F such that

R(u0, u1, · · · , un) = A(u0, u1, · · · , un)
t0∏

τ=1

P0(ξτ1, ξτ2, · · · , ξτn)(h0),

where A(u0, u1, · · · , un) is a differential polynomial in ui, t0 = deg(R, u
(h0)
00 ), P0(ξτ1, ξτ2,

· · · , ξτn)(h0) is the (h0)-th derivative of P0(ξτ1, ξτ2, · · · , ξτn), and (ξτ1, ξτ2, · · · , ξτn) (τ =
1, 2, · · · , t0) are certain generic points of the zero dimensional prime ideal [P1, P2, · · · , Pn].

c) The differential resultant can be written as a linear combination of Pi and their derivatives
up to the order s − si (i = 0, 1, · · · , n). Precisely, we have

R(u0, u1, · · · , un) =
n∑

i=0

s−si∑

j=0

hijδ
j
Pi.

In the above expression, hij ∈ F〈u〉[y1, · · · , yn, · · · , y
(s)
1 , · · · , y

(s)
n ] have degrees at most (sn +

n)2Dsn+n + D(sn + n), where u = ∪n
i=0ui \ {u00, · · · , un0}, and D = max{m0, m1, · · · , mn}.

d) Suppose that ui (i = 0, 1, · · · , n) specialize to sets vi of specific elements in E and Pi (i =
0, 1, · · · , n) are obtained by substituting ui by vi in Pi. If Pi = 0 (i = 0, 1, · · · , n) have a
common solution, then R(v0, v1, · · · , vn) = 0. On the other hand, if R(v0, v1, · · · , vn) = 0 and

∂R

∂u
(h0)
00

(v0, v1, · · · , vn) 
= 0, then Pi = 0 (i = 0, 1, · · · , n) have a common solution in E.

If ui specializes to a set vi of specific elements in an extension field of F , then either
SR(v0, v1, · · · , vd) = 0 or Pi (i = 0, 1, · · · , n) have a common solution in an extension field of
F , where Pi are obtained by substituting ui by vi.

e) (BKK-type bound) For each i ∈ {0, 1, · · · , n},

deg(R, ui) ≤
s−si∑

k=0

M(
(Qjl)j �=i,0≤l≤s−sj ,Qi0, · · · ,Qi,k−1,Qi,k+1, · · · ,Qi,s−si

)
,

where s =
∑n

i=0 si, Qjl is the Newton polytope of δl
Pj as a polynomial in y

[s]
1 , y

[s]
2 , · · · , y

[s]
n and

M(S) is the mixed volume of the polytopes in S.

Example 4.3 The simplest nonlinear differential resultant is the case n = 1, d0 =
d1 = 2, s0 = 0, s1 = 1. Denote y1 by y. Let P0 = u00 + u01y + u02y

2, P1 = u10 +
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u11y + u12y
′ + u13y

2 + u14yy′ + u15(y′)2. Then the differential resultant for P0 and P1 is a
δ-polynomial R(u0, u1) such that ord(R, u0) = 1, ord(R, u1) = 0 and R is δ-homogenous
of degree 8 in u0 and degree 2 in u1, respectively. Totally, R has 206 terms. Moreover, R

has a matrix representation which is a factor of the determinant of the coefficient matrix of
P0, y

′
P0, y

2
P0, yy′

P0, y
′2

P0, P
′
0, yP

′
0, y

′
P
′
0, yy′

P
′
0, y

′2
P0, P1, yP1, y

′
P0, yy′

P1 w.r.t. the monomials
{yl0(y′)l1 |0 ≤ l0 ≤ 4, 0 ≤ l1 < 4, l0 + l1 ≤ 4}.

In the computational aspect, differential resultants could be computed by the characteristic
set method. But to be more efficient, it is desirable to find matrix representation or determi-
nantal formulae for the differential resultants. Note that such a formula was claimed to be given
in [54, 95], which are not correct as explained in the beginning of this section. The first matrix
representation was given by Zhang, et al.[56] for two generic ordinary differential polynomials
f1 and f2 in the differential indeterminate y with order 1 and arbitrary degree. It is still an
open issue whether differential resultants generally admit matrix representations.

Theorem 4.4 (see [56], Theorem 4.4) The algebraic sparse resultant of f1, f2, δf1, δf2 as
polynomials in variables y, y′, y′′ is not identically zero, and contains the differential resultant
of f1 and f2 as a factor.

4.2 Sparse Differential Resultants

Similar to the fact that sparse resultants are defined for Laurent polynomial systems and
related to solutions in (C\{0})n, sparse differential resultants are related to Laurent differential
polynomials and non-polynomial solutions.

Let Y = {y1, y2, · · · , yn} be the set of n differential variables and (K, δ) is a differential
field. A Laurent monomial of the form

∏n
i=1

∏s
k=0(y

(k)
i )mik (s ∈ N, mik ∈ Z) is called a Laurent

differential monomial in Y. A Laurent differential polynomial in Y over K is a finite linear com-
bination of Laurent differential monomials with coefficients from K. The Laurent differential
polynomial ring over K is denoted by K{Y

±}.
To seek solutions for Laurent differential polynomials, the presence of negative exponents

requires us to consider non-polynomial solutions. A non-polynomial solution of f ∈ K{Y
±} is

a point (a1, a2, · · · , an) ∈ A
n such that f(a1, a2, · · · , an) = 0 and for each i and k, δkai 
= 0.

Let Ai = {Mi0, Mi1, · · · , Mili} (i = 0, 1, · · · , n) be n + 1 sets of Laurent differential mono-
mials in Y. Consider n + 1 generic Laurent differential polynomials in Y

Pi =
li∑

k=0

uikMik, i = 0, 1, · · · , n (10)

defined over Ai (called the support of Pi), and denote ui = (ui0, ui1, · · · , uili). Given vectors
ai = (ai0, ai1, · · · , aili) ∈ P

li , let

Pi(ai, Y) :=
li∑

k=0

aikMik, i = 0, 1, · · · , n (11)

denote the specific Laurent differential system with coefficients ai.
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The sparse differential resultant should be a differential polynomial in the coefficients ui

which vanishes at (a0, · · · , an) precisely (in certain sense) when the system Pi(ai, Y) = 0 has
a non-polynomial solution. For this purpose, let

Z0 =
{
(a0, · · · , an)|P0(ai, Y) = · · · = P0(an, Y) = 0 has a non-polynomial solution

}

and Z be the Kolchin closure of Z0 in P
l0 × · · · × P

ln , that is,

Z =
{
(a0, · · · , an)|P0(ai, Y) = · · · = P0(an, Y) = 0 has a non-polynomial solution

}kol
.

Then Z is an irreducible differential variety. If Z is of codimension 1, then there exists a unique
differential polynomial such that Z is the general component of this polynomial. We need to
find a necessary and sufficient condition for Z satisfying such desired property. This is precisely
the condition that A0, · · · ,An is Laurent differentially essential.

The system A0, · · · ,An, or P0, · · · , Pn in 10, is called Laurent differentially essential if there
exists ki (i = 0, 1, · · · , n) with 1 ≤ ki ≤ li such that

δ.tr.deg Q

〈
M0k0

M00
,
M1k1

M10
, · · · ,

Mnkn

Mn0

〉

= n.

There exists a simple criterion based on linear algebraic computations to detect whether
A0, · · · ,An is Laurent differentially essential. Let Mik/Mi0 =

∏n
j=1

∏si

l=0(y
(l)
j )tikjl , where

si = ord(Pi, Y) and tikjl ∈ Z. Introduce n algebraic indeterminates x1, · · · , xn and set
dij =

∑li
k=0 uik

∑si

l=0 tikjlx
l
j for i = 0, 1, · · · , n and j = 1, 2, · · · , n.

Proposition 4.1 For Pi given in 10, let

MP =

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎝

d01 d02 · · · d0n

d11 d12 · · · d1n

...
...

. . .
...

dn1 dn2 · · · dnn

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎠

.

Then the following are equivalent.
1) A0, · · · ,An is Laurent differentially essential.
2) rank(MP) = n.
3) There exist ki (i = 0, 1, · · · , n) with 1 ≤ ki ≤ li such that rank(Mk0,··· ,kn) = n where

Mk0,··· ,kn =
(
d′ij

)

(n+1)×(n+1)
with d′ij =

∑si

l=0 tikijlx
l
j.

4) Z is an irreducible differential variety of codimension 1.

Definition 4.5 Let A0, · · · ,An be a Laurent differentially essential system. There exists
a unique (up to a scalar in Q) irreducible differential polynomial R ∈ Q{u0 · · · , un} such that

Z = V
(
sat(R)

)
.

This R is defined to be the sparse differential resultant of P0, · · · , Pn, denoted by ResA0,··· ,An .
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Example 4.6 Let A0 = {1, y1y2}, A1 = {1, y1y
′
2} and A2 = {1, y′

1y
′
2}. It is easy to verify

that A0,A1,A2 form a Laurent differentially essential system. And

ResA0,A1,A2 = u10u01u21u11u
′
00 − u10u00u11u21u

′
01 − u2

01u21u
2
10 − u01u00u

2
11u20.

For a specific system of Laurent differential polynomials Pi(ai, Y) = 0 with supports Ai

and coefficents ai, the sparse differential resultant of Pi(ai, Y) = 0 is defined to be the value
ResA0,··· ,An(a0, · · · , an). Similar to the relation between sparse resultants and non-zero so-
lutions (e.g., in (C\{0})n), the vanishing of its sparse differential resultant gives a necessary
condition such that the given system has a non-polynomial solution. This is one property of
the sparse differential resultant. Besides, it has similar properties as its algebraic countpart.

Theorem 4.7 (see [55], Theorem 1.2) Let A0, · · · ,An be a Laurent differentially essen-
tial system. The sparse differential resultant R(u0, · · · , un) = ResA0,··· ,An has the following
properties:

1) If the Pi(ai, Y) = 0 in (11) has a common non-polynomial solution, then R(a0, · · · , an) =
0. Conversely, if R(a0, · · · , an) = 0 and ∂R

∂u
(h)
00

(a0, · · · , an) 
= 0 (h = ord(R, u00)), then

Pi(ai, Y) = 0 (i = 0, · · · , n) has a common non-polynomial solution.
2) R(u0, · · · , un) is differentially homogenous in each ui (i = 0, 1, · · · , n).
3) (Poisson Product Formula) Let h = ord(R, u0) ≥ 0. Then t0 = deg(R, u

(h)
00 ) ≥ 1 and

there exist (Qτ , δτ ) and ξτk ∈ Qτ for τ = 1, 2, · · · , t0 and k = 1, 2, · · · , l0 such that

R = A

t0∏

τ=1

(

u00 +
l0∑

k=1

u0kξτk

)(h0)

,

where A is a polynomial in Q〈u1, · · · , un〉[u[h0]
0 \u(h0)

00 ]. Furthermore, if additionally the system
is normal rank essential (see [55, Definition 5.5]), then there exist ητ = (ητ1, · · · , ητn) ∈ Q

n
τ

such that

R = A

t0∏

τ=1

[
P0(ητ )

M00(ητ )

](h0)

,

And ητ (τ = 1, 2, · · · , t0) are common non-polynomial solutions of P1, · · · , Pn.
4) (Differential toric varieties) Assume that Ai = A (i = 0, 1, · · · , n). The differential toric

variety XA associated with A is defined and is shown to be an irreducible projective differential
variety of dimension n. And the differential Chow form of XA is R.

5) hi = ord(R, ui) ≤ Ji = Jac(P̂î) for i = 0, 1, · · · , n, where P̂î = {P0, · · · , Pn}\{Pi}.
6) deg(R) ≤ ∏n

i=0(mi +1)hi+1 ≤ (m+1)
∑n

i=0(Ji+1) = (m+1)J+n+1, where mi is the degree
of the norm form of Pi, m = maxi{mi}, and J =

∑n
i=0 Ji.

7) Let ord(Pi, yj) = eij. R has the following representation

n∏

i=0

N
(hi+1)deg(R)
i0 · R =

n∑

i=0

hi∑

j=0

Gij

(
Pi

)(j)

where Gij ∈ Q[u[h0]
0 , · · · , u

[hn]
n , y

[t1]
1 , · · · , y

[tn]
n ] with tj = maxn

i=0{hi + eij} such that
deg(GijP

(j)
i ) ≤ [m + 1 +

∑n
i=0(hi + 1)deg(Ni0)]deg(R).
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Similar to the differential resultant, in principle, the sparse differential resultant can also be
computed with characteristic set methods for differential polynomials via symbolic computati-
on[1, 4, 10]. But in general, differential elimination procedures based on characteristic sets do
not have an elementary complexity bound. In [55], based on order and degree bounds given
in 5)–7) of Theorem 4.7, a single exponential algorithm SDResultant to compute the sparse
differential resultant R was proposed.

Theorem 4.8 (see [55], Theorem 6.18) The sparse differential resultant of P0, · · · , Pn

can be computed with at most O
(
(J + n + 2)O(lJ+l)(m + 1)O(lJ+l)(J+n+2))/nn

)
Q-arithmetic

operations, where l =
∑n

i=0(li + 1), m = maxn
i=0 mi, and J =

∑n
i=0 Ji.

For linear non-homogenous sparse differential polynomials, Rueda[57] gave matrix formulas
to compute the sparse linear differential resultants. Precisely, let P be a system of n linear
nonhomogeneous ordinary differential polynomials in n − 1 variables. Linear differential re-
sultant formulas for P are given which are determinants of coefficient matrices of appropriate
sets of derivatives of the differential polynomials in P or in a linear perturbation of P . In
particular, when P is “super essential”, such a formula is the determinant of a matrix without
zero columns. It is desirable to give matrix representations for sparse differential resultants for
non-linear systems.

4.3 Sparse Difference Resultants

Let F be a reflexive difference field with a transforming operator σ and F{Y} = F [σkyj :
k ∈ N] the ring of difference polynomials in the difference indeterminates Y = {y1, · · · , yn}.

Similarly to the differential case, to study sparse difference resultants, we are interested in
Laurent difference polynomials. A Laurent difference monomial is a Laurent monomial of the
form

∏n
i=1

∏s
k=0(σ

kyi)bik for some s ∈ N and bik ∈ Z. A Laurent difference polynomial over
F is a finite linear combination of Laurent difference monomials with coefficients in F . We
denote the difference ring of Laurent difference polynomials over F by F{y1, y

−1
1 , · · · , yn, y−1

n },
or simply by F{Y

±}. For F ∈ F{Y
±}, an n-tuple (a1, · · · , an) over F with each ai 
= 0 is said

to be a nonzero difference solution of F if F (a1, · · · , an) = 0.

Suppose Ai = {Mi0, Mi1, · · · , Mili} (i = 0, 1, · · · , n) are finite sets of Laurent difference
monomials in Y. Consider n+1 generic Laurent difference polynomials defined over A0, · · · ,An:

Pi =
li∑

k=0

uikMik, i = 0, 1, · · · , n, (12)

and denote ui = (ui0, ui1, · · · , uili), i = 0, 1, · · · , n. Given vectors ai = (ai0, · · · , aili) ∈ P
li , let

Pi(ai, Y) :=
li∑

k=0

aikMik, i = 0, 1, · · · , n (13)

denote the specific Laurent difference system with coefficients ai.
Sparse difference resultants are used to give conditions on the coefficients ai to determine

whether Pi(ai, Y) = 0 has a nonzero solution. Let

Z0 =
{
(a0, · · · , an)|P0(ai, Y) = · · · = Pn(an, Y) = 0 has a nonzero solution

}
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and Z be the smallest difference variety in P
l0×· · ·×P

ln containing Z0. Then Z is an irreducible
difference variety. And Z is of codimension one if and only if A0, · · · ,An form a Laurent
transformally essential system.

Definition 4.9 A set of Laurent difference polynomials of the form 12 is called Laurent
transformally essential if there exist ki (i = 0, 1, · · · , n) with 1 ≤ ki ≤ li such that

σ.tr.deg Q

〈
M0k0

M00
,
M1k1

M10
, · · · ,

Mnkn

Mn0

〉

/Q = n.

In this case, we also say that A0, · · · ,An form a Laurent transformally essential system.

Now suppose {P0, · · · , Pn} is a Laurent transformally essential system. Then Z is an irre-
ducible difference variety of codimension one. Then there exists a unique irreducible difference
polynomial R ∈ Q{u0, · · · , un} such that Z is a general component of R (Unlike the differential
case, there may be several different general components of an irreducible difference polynomial.)
From the point view of ideals, if we denote

Iu = {P0, · · · , Pn}Q{Y±,u0,··· ,un} ∩ Q{u0, · · · , un},

then Iu is a reflexive prime difference ideal of codimension one. By the difference characteristic
method, the above R can serve as the first polynomial in each characteristic set of Iu w.r.t.
any ranking endowed on u0, · · · , un, that is,

[P0, · · · , Pn] ∩ Q{u0, · · · , un} = sat(R, R1, · · · , Rk).

(As pointed out in [59, Problem 23], it is still unknown whether k = 0 or not).

Definition 4.10 The above R(u0, · · · , un) is defined to be the sparse difference resultant
of the Laurent transformally essential system P0, · · · , Pn, denoted by ResA0,··· ,An .

Given a specific system of Laurent difference polynomials Pi(ai, Y) (i = 0, 1, · · · , n), the
sparse difference resultant of the Pi(ai, Y) is defined to be ResA0,··· ,An(a0, · · · , an).

Example 4.11 Let n = 1 and P0 = u00 +u01y
2
1 , P1 = u10y

(1)
1 +u11y1. Clearly, P0, P1 are

Laurent transformally essential. The sparse difference resultant of P0, P1 is

R = u2
10u01u

(1)
00 − u2

11u00u
(1)
01 .

Similarly to the differential case, there is a simple criterion to detect whether a Lau-
rent difference system is transformally essential in terms of their supports. Let Mik/Mi0 =
∏n

j=1

∏s
l=0(y

(k)
j )tikjl and set

dikj =
s∑

l=0

tikjlx
l (j = 1, 2, · · · , n) ∈ Z[x],

where x is a new algebraic indeterminate. Let βik = (dik1, dik2, · · · , dikn). Then
∑li

k=1 uikβik is
called the symbolic support vector of Pi. The matrix MP whose rows are the symbolic support
vectors of Pi is called the symbolic support matrix of the system.
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Proposition 4.2 Let P0, · · · , Pn be defined in (12). Then P0, · · · , Pn form a Laurent
transformally essential system if and only if rank(MP) = n.

Sparse difference resultants have the following properties:

Theorem 4.12 (see [59], Theorems 37, 41, 51) Let Pi (i = 0, 1, · · · , n) be a Laurent
transformally essential system and R its sparse difference resultant. Then

1) R is transformally homogeneous in the coefficient set of each Pi. And

Res(σP0, · · · , σPn) = σRes(P0, · · · , Pn).

2) If Pi(ai, Y) = 0 (i = 0, 1, · · · , n) has a common nonzero difference solution, then their
sparse difference resultant R(a0, · · · , an) is zero.

3) ord(R, ui) ≤ Ji, where Ji is the Jacobi number of the system {Pj : j 
= i}.
4) The degree of R has a Bezout-type bound and R can be written as a linear combination

of the norm form of Pi and its transforms with given order and degree bounds.

Based on the order and degree bounds, an algorithm SDResultant(P0, · · · , Pn) was de-
signed to compute the sparse difference resultant, which has single-exponential complexity.

Theorem 4.13 (see [59], Theorem 76) Let P = {P0, · · · , Pn} be a Laurent transformally
essential system of the form (12). Let J =

∑n
i=0 Ji and m = maxi deg(Pi, Y). Algorithm

SDResultant computes the sparse difference resultant R with at most

O
(
(J + n + 2)O(lJ+l)(m + 1)O((lJ+l)(J+n+2))/nn

)

Q-arithmetic operations.

When P0, · · · , Pn are generic differential polynomials (dense in the sense that it contains all
terms with respect to bounded order and degree), the sparse difference resultant exists. In this
case, Res(P0, · · · , Pn) is defined to be the difference resultant of P0, · · · , Pn.

We know exact orders and degrees for difference resultants, and also we have determinant
formulae to compute difference resultants.

Theorem 4.14 (see [59], Theorem 79) Let Pi (i = 0, 1, · · · , n) be generic difference poly-
nomials of the form with order si, degree mi, and coefficients ui. Let R(u0, · · · , un) be the
difference resultant of P0, · · · , Pn. Denote s =

∑n
i=0 si. Then R(u0, · · · , un) is also the al-

gebraic sparse resultant of P
[s−s0]
0 , · · · , P

[s−sn]
n treated as polynomials in Y

[s]. And for each
i ∈ {0, 1, · · · , n} and k = 0, · · · , s − si,

ord(R, ui) = s − si, (14)

deg(R, u
(k)
i ) = M(

(Qjl)j �=i,0≤l≤s−sj ,Qi0, · · · ,Qi,k−1,Qi,k+1, · · · ,Qi,s−si

)
, (15)

where Qjl is the Newton polytope of P
(l)
j as a polynomial in Y

[s] and u
(k)
i = (u(k)

iα )uiα∈ui .

Example 4.15 Consider two generic difference polynomials of order one and degree two
in one indeterminate y: Pi = ui0+u01y+ui2y

(1)+ui3y
2+ui4yy(1)+ui5(y(1))2, i = 0, 1. Then the

degree bound given by Theorem 4.12 is deg(R) ≤ (2+1)4 = 81. By Theorem 4.14, deg(R, u0) =
M(Q10,Q11,Q00) + M(Q10,Q11,Q01) = 8 + 8 = 16 and consequently deg(R) = 32, where
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Q00 = Q10 = conv{(0, 0, 0), (2, 0, 0), (0, 2, 0)}, Q01 = Q11 = conv{(0, 0, 0), (0, 2, 0), (0, 0, 2)},
and conv(·) means taking the convex hull in R

3. By the proof of Theorem 4.14, R is the sparse
resultant of P0, σ(P0), P1, σ(P1).

As a direct consequence of the above theorem and the determinant representation for alge-
braic sparse resultants given in [42], we have the following result.

Corollary 4.15 The difference resultant for generic difference polynomials Pi (i = 0, 1,· · ·, n)
can be written as the form det(D1)/ det(D0) where D1 and D0 are matrices whose elements are
coefficients of Pi and their transforms up to the order s − si and D0 is a minor of D1.

For sparse difference resultants, it ha been shown in [59] that the sparse difference resultant
is equal to the algebraic sparse resultant of certain generic sparse polynomial system (there
are procedures to find such a generic sparse polynomial system), which theoretically could also
lead to a determinant representation for the sparse difference resultant. The difficulty lies in
that we do not know before implementing the procedures that which of the σk(Pi) are needed
to compute the algebraic sparse resultant. New bounds and an efficient implementation for
sparse difference resultant are presented in [60]. Related to the sparse difference resultants,
difference toric varieties and binomial ideals are studied in [90, 97].

5 Open Problems

In the paper, we focus on the fundamental algorithmic tools in the elimination theory for
differential and difference polynomials, and briefly survey the existing work on the theory of
characteristic set methods, the theory of differential Chow forms, and the theory of sparse
differential and difference resultants. Despite these significant developments, there are still a
number of open problems to be further explored. We will end the paper by proposing four
representative problems.

Problem 1 (The Ritt problem) Given an irreducible ordinary differential polynomial A ∈
K{y1, · · · , yn} vanishing at (0, · · · , 0), decide whether (0, · · · , 0) is a zero of sat(A) = [A] : S∞

A ?
More generally, given two prime differential ideals sat(A) and sat(B) represented by differential
characteristic sets A and B respecitively, decide whether sat(A) ⊆ sat(B)?

These problems are essential in order to devise algorithms to obtain minimal prime decom-
positions for finitely generated radical differential ideals. They are far from solved even for the
simplest case n = 1. And they have several other equivalent formulations[98].

Problem 2 Develop the mechanical theorem proving methods for partial difference poly-
nomial systems, or specifically, to solve the perfect ideal membership problem in the partial
difference case.

Problem 3 Give matrix representations or determinantal formulae for (sparse) differential
resultants. This is a central problem to be solved to devise efficient algorithms to compute
(sparse) differential resultants. However, we do not have such formulae, even in the simplest case
of the differential resultant for two generic differential polynomials in one variable. Currently,
there are results only in the linear case[57] and in the case when there are two generic differential
polynomials of degree two and order one[56].
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Problem 4 Develop a theory of resultants for systems of partial differential polynomials.

References

[1] Ritt J F, Differential Algebra, American Mathematical Society Colloquium Publications, Vol.

XXXIII, American Mathematical Society, New York, 1950.

[2] Kolchin E R, Differential Algebra and Algebraic Groups, Academic Press, New York-London,

1973.

[3] Cohn R M, Difference Algebra, Interscience Publishers John Wiley & Sons, New York-London-

Sydeny, 1965.

[4] Wu W T, On the decision problem and the mechanization of theorem-proving in elementary

geometry, Sci. Sinica, 1978, 21(2): 159–172.

[5] Wu W T, A constructive theory of differential algebraic geometry based on works of Ritt J F

with particular applications to mechanical theorem-proving of differential geometries, Differential

Geometry and Differential Equations (Shanghai, 1985), volume 1255 of Lecture Notes in Math.,

Springer, Berlin, 1987, 173–189.

[6] Wu W T, Basic Principles of Mechanical Theorem Proving in Elementary Geometries, Science

Press, Beijing, 1984; English translation, Springer, Wien, 1994.

[7] Aubry P, Lazard D, and Moreno Maza M, On the theories of triangular sets, J. Symbolic Comput.,

1999, 28(1): 105–124.

[8] Boulier F, Lazard D, Ollivier F, et al., Representation for the radical of a finitely generated

differential ideal, Proceedings of the 1995 International Symposium on Symbolic and Algebraic

Computation, ISSAC’95, Montreal, Canada, July 10–12, 1995, 158–166. ACM Press, New York,

NY, 1995.
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