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Generalized Stewart–Gough Platforms
and Their Direct Kinematics

Xiao-Shan Gao, Member, IEEE, Deli Lei, Qizheng Liao, and Gui-Fang Zhang

Abstract—In this paper, we introduce the generalized
Stewart–Gough platform (GSP) consisting of two rigid bodies
connected with six distance and/or angular constraints between
six pairs of points, lines, and/or planes in the base and the moving
platform, respectively. We prove that there exist 3850 possible
forms of GSPs. We give the upper bounds for the number of
solutions of the direct kinematics for all the GSPs. We also obtain
closed-form solutions and the best upper bounds of real solutions
of the direct kinematics for a class of 1120 GSPs.

Index Terms—Closed-form solution, decoupled mechanisms, di-
rect kinematics, generalized Stewart–Gough platform (GSP), par-
allel manipulator.

I. INTRODUCTION

THE Stewart–Gough platform (SP), originated from the
mechanism designed by Stewart for flight simulation [23]

and the mechanism designed by Gough for tire testing [12], is
a parallel manipulator consisting of two rigid bodies: a moving
platform, or simply a platform, and a base. The position and
orientation (pose) of the base are fixed. The base and platform
are connected with six extensible legs. For a set of given values
for the lengths of the six legs, the pose of the platform could
be generally determined. The SP has been studied extensively
in the past 20 years and has many applications. Compared
with serial mechanisms, the main advantages of the SP are
its inherent stiffness and high load/weight ratio. For recent
surveys, please consult [5] and [16].

Many variants of the SP were introduced for different pur-
poses. Most of these variants are special forms of the SP. In [7],
Faugere and Lazard gave a classification of all special forms of
the SP. In [2], Baron et al. studied all the possibilities of using
three joints to connect the legs and the platforms. The SP uses
distances between points as the driving parameters. New par-
allel manipulators of six degrees of freedom (DOFs) based on
distances between points and planes were proposed by Artigue
et al. [1] and Dafaoui et al. [4]. Parallel manipulators based on
distances between points and lines are proposed by Hunt [13]
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and Pritschow et al. [20]. Bonev et al. and Zhang added extra
sensors to the SP in order to find a unique position of the plat-
form or to do calibration [3], [27].

In this paper, we introduce the generalized Gough–Stewart
platform (GSP), which could be considered as the most gen-
eral form of parallel manipulators with six DOFs in a certain
sense. A GSP consists of two rigid bodies connected with six
distance or/and angular constraints between six pairs of points,
lines, and/or planes in the base and platform, respectively. The
original SP is one of the GSP, where the six constraints are dis-
tance constraints between points. The SPs introduced in [1],
[4], [13], and [20] are all special cases of the GSP, where the
six constraints are distance constraints between points/planes
or points/lines. We prove that there exist 3850 possible forms
of GSPs. We also show how to realize these designs by using
different combinations of revolute, prismatic, cylindrical, spher-
ical, and planar joints. The purpose of introducing these new
GSPs is to find new and more practical parallel mechanisms for
various purposes.

A large portion of the work on SP is focused on the direct
kinematics: for a given set of lengths of the legs, determine the
pose of the platform. This problem is still not solved completely.
For the SP, Lazard [7], [15], Mourrain [18], [19], Raghavan [21],
and Ronga et al. [22] proved that the number of complex solu-
tions of the direct kinematics is at most 40, or infinite. Diet-
maier showed that the SP could have 40 real solutions [6]. On
the other hand, Wen and Liang [24] and Zhang and Song [26]
gave the closed-form solutions for the SP with planar base and
platforms. For the general case, Husty derived a set of six poly-
nomial equations which lead to an equation of degree 40 [14].

In this paper, we give the upper bounds for the numbers of so-
lutions of the direct kinematics for all 3850 GSPs by borrowing
techniques from Lazard [15] and Mourrain [19]. One interesting
fact is that the direct kinematics for many GPSs are much easier
than that of the SP. We identify a class of 35 GPSs which could
have at most 20 solutions. We show that a class of 1220 GSPs is
decoupled, in that we can first determine the direction and then
the position of the platform. We also obtain the closed-form so-
lutions and the optimized upper bounds for the numbers of real
solutions of these GSPs.

One specific reason that leads us to introduce the GSP is that
the direct kinematic problem for the original SP is considered
a very difficult task [5], while for some of the GSPs, the direct
kinematic problem is much easier. The difficulty in solving the
direct kinematic problem is considered to be a major obstacle
in using the SP in many applications. These new GSPs might
provide new parallel manipulators which have the stiffness and
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lightness of the SP, and with an easy-to-solve direct kinematic
problem.

The rest of the paper is organized as follows. In Section II, we
define the GSP. In Section III, we introduce the techniques used
to determine the number of solutions. In Section IV, we give the
equations for the distance and angular constraints. In Section V,
we give the direct kinematic analysis. In Section VI, we give
the closed-form solutions to a class of GSPs. In Section VII, we
show how to realize the GSPs. In Section VIII, conclusions are
given.

II. GENERALIZED STEWART–GOUGH PLATFORM

We consider three types of geometric primitives: points,
planes, and lines in the three-dimensional (3-D) Euclidean
space, and two types of geometric constraints: the distance con-
straints between point/point, point/line, point/plane, line/line,
and the angular constraints between line/line, line/plane, and
plane/plane.

For a constraint , the valence of is the number of scalar
equations required to define . Besides some special cases, all
constraints mentioned above have valence one. One of the spe-
cial cases is “two planes form an angle of zero,” which needs
two equations to describe. These special cases could be omitted,
since they only occur in rare or special cases. Therefore, we as-
sume that every constraint has valency one.

A rigid body in the space has six DOFs. Therefore, to deter-
mine its position and orientation, we need six geometric con-
straints. This leads to the following definition.

Definition 2.1: A GSP consists of two rigid bodies connected
with six geometric constraints. One of the rigid bodies, called
base, is fixed, and the other rigid body, called platform, is mov-
able. The pose of the platform is determined by the values of the
six constraints.

The GSP can be divided into four classes.

3D3A: The GSP has three distance and three angular con-
straints.

4D2A: The GSP has four distance and two angular con-
straints.

5D1A: The GSP has five distance and one angular con-
straints.

6D: The GSP has six distance constraints.

We cannot have more than three angular constraints, due to the
fact that a rigid body in the space has three rotational DOFs, and
these rotational DOFs can generally be determined by three an-
gular constraints. A fourth angular constraint will conflict with
the other angular constraints.

Fig. 1 is one of the simplest GSPs, where are two lines
on the platform and are two lines on the base. Lines
and are connected with six geometric constraints repre-
sented by lines marked with an “a” or a “d” representing an an-
gular constraint or a distance constraint, respectively. Therefore,
this is a 3D3A GSP. It is proved that this platform has at most
four solutions [10]. Note that this is a special case of GSP. In
the general case, there should exist six lines in the base and the
platform, respectively, and the six constraints are between six
pairs of different lines.

Fig. 1. Special 3D3A GSP.

Proposition 2.2: If we assume that the geometric primitives
in the base and platform are distinct, there are 1120 types of
3D3A GSPs, 1260 types of 4D2A GSPs, 1008 types of 5D1A
GSPs, and 462 types of 6D GSPs. Totally, there are 3850 types
of GSPs.

Proof: Let be the number of possible ways to as-
sign distance (angular) constraints between the platform and
the base. There are three types of angular constraints: line/line,
line/plane, plane/plane. For the line/plane constraint, we need
to consider two cases: line/plane and plane/line, meaning that
the line is on the platform and the base, respectively. Hence,
we need to consider four types of angular constraints. Similarly,
we need to consider six types of distance constraints. Then the
number of possible types of jDiA GSPs is

By simple computations, the possible types of 3D3A, 4D2A,
5D1A, and 6D are , , ,
and , respectively.

III. THE RIGID-MOTION VARIETIES OF

LAZARD AND MOURRAIN

In order to find the maximal number of solutions to the direct
kinematics, we need the rigid-motion varieties introduced by
Lazard and Mourrain. A rigid motion in space can be described
by , where is a 3 3 matrix representing a rotation, and

is a vector in representing a translation. satisfies the
following equations: and .

Lazard introduced a representation of rigid motions as an al-
gebraic variety in [15]. The coordinates are the elements of
the matrix , and vectors and . The defining equa-
tions of this variety are

(1)

We call this variety the Lazard variety and the variables Lazard’s
coordinate system. By computing the Hilbert function of this
ideal, it is easy to see that the variety is of dimension 6 and of de-
gree 20 [15]. The rotation and the translation corresponding
to the usual description of rigid motions are the projection of
this variety onto the space of the elements of the matrix and
vector .

Mourrain defined the set of rigid motions in the space as
an algebraic variety in . Let be the
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th column of , the th row of , and
. These vectors satisfy

(2)

where represents the internal product of and ,
for , and for . Introducing new variables

, and which satisfy the following equations:

(3)

the set of rigid motions is described as a variety in defined
by the above equations. The variables are , , , and . A
variable of homogenization is introduced in order to work in
the projection space . Setting in the ideal generated
by the previous equations, we obtain the part of the variety at
infinity. In order to eliminate the component of the variety at
infinity in , Mourrain introduced the new variables

(4)

Now the variables are , , , , and
. Equations (2)–(4) define a variety in . We call it Mourrain

variety and the variables Mourrain’s coordinate system. This
variety is of dimension 6 and of degree 40 [19]. Mourrain proved
that the rotation and translation corresponding to the usual
description of rigid motions are the projection of this variety in

[18].

IV. DISTANCE CONSTRAINTS AND ANGULAR CONSTRAINTS

In this section, we will give the equations for these constraints
in Lazard’s and Mourrain’s coordinate systems. We use , ,
and to represent a point, a line, and a plane, respectively. Then
there exist six kinds of distance constraints in the GSPs: DPP,
DPL, DLP, DPH, DHP, and DLL. For instance, DPL repre-
sents a distance constraint between a point on the platform and
a line on the base. There exist four kinds of angular constraints
in the GSPs: ALL, ALH, AHL, and AHH. For instance, AHL
represents an angular constraint between a plane on the platform
and a line on the base.

DPP. This is the usual distance constraint in the SP between
two points. Suppose that a point is fixed on the platform, and
a corresponding point is fixed on the base. After performing a
rotation and a translation to the platform, the image of point

is . The distance between and the image of under
the rigid motion is given by the norm of

where represents . In Lazard’s coordinate system,
we have

(5)

This is a quadratic equation in the variables , , and . In
Mourrain’s coordinate system, we have

(6)

This is a linear equation in the variables , , , and
DPL. A point is fixed on the platform. A line is fixed

on the base. Let be a point on , and a unit vector parallel
to . Then under the rigid motion , the distance between
the image of and is the norm of . The
distance constraint can be represented by

(7)

It is clear that the above expression is independent of the choices
of and . This is a quadratic equation, both in the variables

, , and , and variables , , , and .
DLP. A line is fixed on the platform, and a point is fixed

on the base. Let be a point on , and a unit vector parallel
to . Then under the rigid motion , the distance between
the image of and is the norm of . The
distance constraint can be represented by

Since , we have

(8)

This is a quadratic equation, both in the variables , , and ,
and variables , , , and .

DPH. A point is a fixed on the platform, and a plane on
the base. Let be the unit normal vector of . The equation of

can be represented in the form , where is the
distance from the origin point to . The distance constraint can
be represented by

(9)

This constraint can be represented by two linear equations or
a quadratic equation, both in the variables , , and , and
variables , , , and .

DHP. A plane is fixed on the platform. A point is fixed
on the base. Let be a point on and the unit normal vector of

. The equations of and the image of under the rigid motion
are and ,

respectively. The distance constraint can be represented by

This constraint can be represented by two linear equations or
a quadratic equation, both in the variables , , and , and
variables , , , and .
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DLL. The last distance constraint is between two lines. Let
be a line on the platform, and a line on the base. Let

be a point on , and a unit vector parallel to . The distance
constraint between and the image of under a rigid motion

can be represented by

This is a quartic equation, both in the variables , , and ,
and variables , , , and .

ALL. Let be a line on the platform, and a line on
the base. Let be a unit vector parallel to . The angular
constraint between and the image of under a rigid motion

can be represented by

where is the angle formed by the two lines. This is a linear
equation in .

ALH. Let be a line on the platform, and a plane on the
base. Let and be the unit normal vectors of and . The
angular constraint between and the image of under a rigid
motion can be represented by

where is the angle formed by and . This is a linear equa-
tion in .

AHL. Let be a plane on the platform, and a line on the
base. Let and be the unit normal vectors of and . The
angular constraint between and the image of under a rigid
motion can be represented by

This is a linear equation in .
AHH. Let be a plane on the platform, and a plane

on the base. Let be the unit normal vector of . The angular
constraint between and the image of under a rigid motion

can be represented by

This is a linear equation in .
If the equation for a constraint is of degree , we say that the

constraint is of degree . In summary, we have the following
result.

Propositon 4.1: Angular constraints are of degree one. DPL,
DLP, DPH, and DHP constraints are of degree two. DLL con-
straints are of degree four. A DPP constraint is of degree one
in Mourrain’s variable system, and is of degree two in Lazard’s
variable system.

V. DIRECT KINEMATICS OF GSP

The direct kinematic problem of a GSP is to find the pose of
its platform, supposing that the pose of the base is known and the
values for the six constraints are given. In this section, we will
give upper bounds for the numbers of solutions for the direct
kinematics of the GSPs.

We need the following well-known result [8].
Theorem 5.1 (Bezout’s Theorem): Let ,

be polynomial equations in variables, such that the variety
defined by , , is of degree , and the

variety defined by , has a finite number of
solutions. Then contains at most solutions,
where is the (total) degree of in the variables.

Theorem 5.2: For a GSP with constraints of degree two
and constraints of degree four in Mourrain’s coordinate
system, if the direct kinematic problem has a finite number
of complex solutions, then the number of solutions is at most

.
Proof: We illustrate the proof with a special case. Con-

sider a GSP with five DPP distance constraints and one DPL
constraint. Five points on the platform are imposed
with the DPP constraints with five points on the
base, respectively. Point on the platform is imposed a DPL
constraint with a line on the base. Let be a point on , and

the unit normal vector of . Following Mourrain’s treatment
[19], we need to find the common solutions of (2)–(4), and the
following equations in :

(10)

By (6), the first five equations are linear in the variables , ,
, and . By (7), the last equation is of degree two. According to

Section III, as a variety in , the Mourrain variety is of degree
40. By Bezout’s theorem, if the direct kinematic problem has
a finite number of complex solutions, the problem has at most

solutions. The general case can be proved similarly.
Note that constraints of degree one do not affect the number of
solutions.

Theorem 5.3: For a GSP with constraints of degree two
other than the DPP constraint and constraints of degree four.
Suppose that the direct kinematic problem has a finite number
of complex solutions. If there exist DPP constraints in the GSP,
then the number of solutions is at most . Otherwise,
the number of solutions is at most .

Proof: We still use the special case in the proof of The-
orem 5.2 to illustrate the case that there exist DPP constraints.
In this example, , . Following Lazard’s treatment
[23], we need to find the common solutions of (1) and the fol-
lowing equations in :

(11)

We may set . The first equation in (11)
becomes . Then for 2, 3, 4, 5, we have

Then these equations are linear in , , and . The last one
in (11) is of degree two. According to Section III, as a variety in

, the Lazard variety is of degree 20. By Bezout’s theorem,
the problem has at most solutions. If there
exist no DPP constraints, the result is a direct application of
the Bezout theorem and the fact that the Lazard variety is of
degree 20.



GAO et al.: GENERALIZED STEWART–GOUGH PLATFORMS AND THEIR DIRECT KINEMATICS 145

Fig. 2. 6D GSP driven by point/plane distances.

In general, Theorems 5.2 and 5.3 give the same bound, except
that the DPP distance constraint is not imposed. In that case,
the equation system does not contain equation in
Lazard’s coordinate system, and the bounds given by Lazard’s
method is half of the bound given by Mourrain’s method. We
will use this property to give a class of GSPs whose maximal
number of solutions is 20. This bound is half of that of the
original SP. As a consequence, the direct kinematic problem is
easier.

Constraint DPH can be represented by two linear equations
(9) which represent the fact that the point is in different sides
of the plane. Since in a real mechanism, we know on which
side of the base the platform is located, we need only one of the
linear equations. We call solutions obtained in this way feasible
solutions. The GSP in Fig. 2 is a GSP with six DPH distance
constraints. The solid dots in the base mean that the legs are
perpendicular to the corresponding planes, and the hollow dots
in the platform represent sphere joints. Since the DPH constraint
is of degree two, by Theorem 5.3, this GSP could have at most

solutions. But, we will show that it has at most
20 feasible solutions.

Theorem 5.4: If we assume that the geometric primitives in
the base and platform are distinct, there are 35 types of GSPs
using DPH distance constraints and angular constraints. The di-
rect kinematic problem for these 35 GSPs has at most 20 feasible
solutions, or an infinite number of solutions.

Proof: Use the notations introduced in Proposition 2.2.
Let , be the number of possible ways to assign

angular constraints between the platform and the base. Since
there is only one type of distance constraint, the number of pos-
sible GSPs mentioned in the theorem is

. Since the equation for the feasible
solutions of constraint DPH is linear, and angular constraints
are all linear, by Bezout’s theorem, the maximal number of fea-
sible solutions, if finite, is no more than the degree of Lazard’s
variety, which is 20.

VI. CLOSED-FORM SOLUTIONS TO THE

DIRECT KINEMATICS OF 3D3A GSPS

For 3D3A GSPs, we may solve the direct kinematic problem
in two steps. First, we impose three angular constraints to de-
termine the rotational DOFs of the platform. It is clear that

imposing distance constraints will not break the angular con-
straints imposed previously. Then, we may impose three dis-
tance constraints to determine the position of the platform. In
other words, the 3D3A GSPs are decoupled with respect to
the angular and distance constraints. This allows us to find the
closed-form solutions to all 1120 GSPs.

In what follows, we will use Wu-Ritt’s characteristic set
method [17], [25] to find the closed-form solutions. Let
be a set of parameters, , the variables to be
determined, and a set of polynomial equations in
and the . The method could be used to find a set of equations
in triangular form, that is, an equation system like

which could be used to solve for all values of , except a
set with lower dimension than that of . In other words, the
triangular set provides solutions in the generic case. Variable
is called the leading variable of .

A. Imposing Three Angular Constraints

According to Section IV, the expressions of angular con-
straints only involve unit vectors parallel to the corresponding
lines or perpendicular to the corresponding planes in the
platform or the base. So we need only to consider angular
constraints between two unit vectors. Let , , and be
unit vectors on the base, and , , and unit vectors on the
platform. Assuming that the rotational matrix is
and the angular constraints are ,

, and . Since
are fixed on the platform and the base, we may assume

without loss of generality that , ,
, , , and
. We obtain the following equation system:

(12)

where the , , , and are parameters, and the are the
variables to be solved.

Equation system (12) can be reduced to the following trian-
gular form with Wu-Ritt’s characteristic set method [17], [25]
under the variable order

:

(13)
where the bold variable in each equation is the leading variable,

, , ,
, ,

and all the , , and
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TABLE I
EIGHT REAL SOLUTIONS TO ROTATION MATRIX R

Fig. 3. Example of 3D3A GSP.

are polynomials in parameters , , , and , which
may be found in [11].

Proposition 6.1: After imposing three angular constraints,
the number of real solutions for the direction of the platform
is at most eight, and this bound cannot be improved. Further-
more, (13) provides closed-form solutions to the problem in the
generic case.

Proof: Lazard showed that the rotational matrix satisfying
(2) defines a variety of dimension three and degree eight in
[15]. By Bezout’s theorem, the number of directions for the
platform is at most eight or infinity when three angular con-
straints are imposed, since the equations for angular constraints
are linear. From Example 6.2 below, the problem could indeed
have eight real solutions. So the bound can not be improved.
According to the basic theory of the characteristic set method
[17], [25], (13) provides a solution for a given set of values of
the parameters when these values do not vanish the coefficients
of the leading variables. Let be the
product of these coefficients. Since is a polynomial in the pa-
rameters only, the values vanishing clearly consist of a set
with lower dimension than that of the parameters.

Example 6.2: Fig. 3 represents a 3A3D GSP, where lines
connecting the platform and the base labeled by “ ” or “ ” rep-
resent angular or distance constraints, respectively, and

are different lines. Let be on the platform and
on the base. We further assume that , , and are

perpendicular to each other; , , and are also perpendic-
ular to each other.

The angular constraints are ,
, and . If taking

, , , ,
, and , we can get ,

, and from (12). The equation system (12)
can be reduced to the following triangular form with Wu-Ritt’s
characteristic set method [17], [25] under the variable order

:

(14)
Let , , and

. Then , , and
. We obtain eight sets of real solutions to the rotation matrix

, which are listed in Table I.

B. Imposing Three Distance Constraints

Definition 6.3: As mentioned in Section IV, there exist six
kinds of distance constraints: DPP, DPL, DPH, DLP, DHP,
and DLL. For each them, say DPL, the locus of the cor-
responding geometric element on the platform, that is the set
of all possible points on , under the three angular constraints,
and this distance constraint is called the locus induced by this
constraint, and is denoted by or .

Proposition 6.4: Let be a distance constraint between a
geometric element on the platform and a geometric element
on the base. If the direction of the platform is fixed, then the
locus of , that is , could be a (feasible) plane, a sphere, or a
cylinder.

Proof: We use to denote the distance between
two geometric elements , . The loci induced by the six dis-
tance constraints can be determined as follows.
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. For constraint , the locus of is a
sphere with center and radius .

. For constraint , the locus of the is
two planes and , which are parallel to the plane and
with distance to . Similar to Theorem 5.4, we may consider
feasible solutions of the platform by treating one of the planes
as feasible.

. For constraint , the locus of is a
cylinder with axis and radius .

Please note that in the three cases mentioned above, the loci
have nothing to do with the three angular constraints. In the
following cases, the angular constraints are necessary to obtain
the loci.

. For constraint , if we only consider the
distance constraint, then line could be all the tangent lines of a
sphere with center and radius . If we further assume that the
direction of line is fixed, then the locus of is a cylinder with
axis and radius , where is the line passing through and
parallel to .

. Let the constraint be . Since the direc-
tion of is fixed, has two solutions: the two planes which are
parallel to and with distance to . Similar to Theorem 5.4,
we may consider feasible solutions of the platform by treating
one of the planes as feasible.

. Let the constraint be . We need con-
sider two cases. (1) The two lines and are not parallel to
each other. Since the direction of line is fixed, the locus of
is two planes which are parallel to and , and with distance
to . (2) If and are parallel, the locus of is the cylinder .

Proposition 6.5: Let be a distance constraint between a
geometric element on the platform and a geometric element
on the base. If the direction of the platform is fixed, then the
locus of any given point on is .

Proof: If is a point, must be one of DPP, DPL, or
DPH. In this case, the statement is obviously valid. Otherwise,

is either a line or a plane. From the above discussion, we know
that the collection of points on is . Hence, could be
considered as the locus for a given point on .

After the three angular constraints are imposed, the direction
of the platform is fixed. To find the pose of the platform, we need
only to find the position of a point on the platform.

Algorithm 6.6: The input includes three distance constraints
, between geometric elements on the platform

and the base. We further assume that the directions of the plat-
form, and hence, the directions of the lines and planes in are
known. The output is a new position for the platform such that
the three distance constraints are satisfied.

1) Determine the equations , for
the loci as shown in Proposition 6.4.

2) Let be a constraint between a geometric element
on the platform and on the base. If is a point, let

. Otherwise, is either a line or a plane. Select
an arbitrary fixed point on as . Let .

3) By Proposition 6.5, after imposing the distance con-
straint , point is on the locus . Furthermore,
since the direction of the platform is fixed, when im-
posing each constraint ( ), point must also

be on the locus ( ) which is the translation of
at the direction . Then after imposing the

three distance constraints, the position for point
must be the intersection of three surfaces

(15)

4) Solving (15) as shown in Proposition 6.7, we find the
new position for point .

5) Move the platform along the translation vector
, and it will satisfy the three distance constraints.

Proposition 6.7: Use , , and to denote a plane, a sphere
and a cylinder. We use a combination of these three letters to
denote the intersection of three such surfaces. For example, PPP
means to find the intersection point of three planes. We have the
following upper bound for the solutions of their intersections if
the number of solutions is finite. Furthermore, these bounds are
the best in terms of finding real solutions.

1) Case PPP. This is the intersection of three planes. Hence,
it has at most one solution.

2) Cases PPC, PPS, SSS, or PSS. They have two solutions
at most. The equation system for each of these cases can
be reduced to a triangular set consisting of two linear
equations and a quadratic equation.

3) Cases PCC, SSC, or PSC. They have four solutions at
most. The equation system for each of these cases can
be reduced to a triangular set consisting of two linear
equations and one quartic equation.

4) Cases CCC or SCC. They have eight solutions at most.
The equation system for each of these cases can be re-
duced to a triangular set consisting of two linear equa-
tions and one equation of degree eight.

Proof: Let us consider the case PSC, which is to find the
intersection of a plane, a sphere, and a cylinder. By Bezout’s
theorem, it has at most four solutions. Without loss of generality,
we may assume that the equations for the plane, sphere, and
cylinder are as follows

where , , and are the parameters, and , , and are
the variables to be solved. The above equation system can be
reduced into the following triangular form under the variable
order :

(16)

where ; ;
;

;

; ; ;



148 IEEE TRANSACTIONS ON ROBOTICS, VOL. 21, NO. 2, APRIL 2005

. Equations (16) could be used
to give the solutions for all parametric values except those van-
ishing . Parametric values
vanishing must satisfy or . The corresponding
solutions can be obtained easily with the same method. Please
refer to [11] for other cases. We still need to show that the above
equation system could have four real solutions. We will give a
geometric proof of this fact. The intersection of a plane and a
sphere is a circle . We may assume that the intersection of the
plane and the cylinder is an eclipse and choose the position of

properly so that it has four intersections with the eclipse, and
hence, with the cylinder. The fact that the upper bound given
in this proposition is the best for cases PPP, PPC, PPS, SSS,
PSS, PCC, SSC, PSC, and SCC could be proved similarly as
case PSC. The idea is first to find the intersection of two sur-
faces, which is a line, a circle, or two circles. Then intersect the
line or circles with the third surface. Example 6.8 shows that
case CCC could have eight real solutions.

Example 6.8: Continue from Example 6.2. Now we impose
three distance constraints to the GSP in Fig. 3. Here we still use
the same notations to denote the lines and points on the base and
the platform. We assume that the three angular constraints have
been imposed.

Let the constraints be , , and
. Without loss of generality, we may assume that

. Assuming that the coordinates of point
become after imposing the constraints. By
Algorithm 6.6, should be the intersection of three cylinders
and satisfy the following equation system:

(17)

The above equation can be easily reduced to the following tri-
angular form:

(18)

It is obvious that above equation system has eight complex so-
lutions. Furthermore, if , , and

, the equation system has eight real solutions.

C. Number of Solutions for the 3D3A GSPs

As a direct consequence of Propositions 6.1 and 6.7, we have
the following result.

Theorem 6.9: We generally could have eight solutions when
imposing three angular constraints. We generally could have
one, two, four, or eight solutions when imposing three distance
constraints. Therefore, a 3D3A GSP generally could have ,

solutions depending on the types of the constraints
imposed on it. These bounds are the best in terms of finding real
solutions.

Table II gives a classification of the 1120 3D3A GSPs ac-
cording to the three distance constraints in it and their max-
imal number of solutions. This classification is possible, due to
the fact that the angular constraints do not affect the maximal
number of solutions. In the table, is the maximal number

TABLE II
MAXIMAL NUMBER OF SOLUTIONS FOR 3D3A GSPS

of solutions; the second column is the types of the three inter-
section surfaces; the other columns give all the possible com-
binations of the three distance constraints. For instance, PH
represents the distance constraint between a point on the plat-
form and a plane on the base. By Proposition 2.2, there exist

cases to assign three distance constraints be-
tween the base and the platform.

VII. REALIZATION OF THE GSPS

In this section, we will show how to realize the GSPs, which
could be useful for people using GSPs in various fields.

Before giving the realization of these constraints, we will
show that there exist many possible variants in these realiza-
tions. One variant is that each constraint could be constructed
with different combinations of joints such as revolute, pris-
matic, cylindrical, spherical, and planar joints. For instance, the
point/plane distance constraint can be constructed by a spher-
ical and a planar joint, as shown in Fig. 4, or by a spherical and
two prismatic joints, as shown in Fig. 5. The arrows in these
figures show that the driver is the distance between the point
and the plane.

The second variant is that there exist different arrangements
for the driver. For a given constraint, the position of the driver
joint can be arranged in different places. For instance, Fig. 6
shows a realization of a point/line distance constraint, where the
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Fig. 4. P/H distance constraint.

Fig. 5. P/H distance constraint.

Fig. 6. Inside driver.

driver joint is placed inside the corresponding point and line.
Drivers of this kind are called inside drivers. Fig. 7 shows a re-
alization of the same constraint, where the driver joint is placed
outside the point and line. Drivers of this kind are called outside
drivers. Both of the mechanisms are realizations of the same
constraint, but their kinematic problems are different. In this
paper, we only consider the inside driver joint case.

According to Section II, we consider seven types of con-
straints. If we could design mechanisms that realize these seven
constraints, then all the 3850 kinds of GSPs can be realized. In
what follows, we will show how to realize all seven kinds of
constraints. In the corresponding figures, the driver joints are
shown by the arrows. As we mentioned before, each figure is
only one kind of possible realization.

Fig. 7. Outside driver.

Fig. 8. L/L distance constraint.

1) The point/point distance constraint is the classical case
which can be realized with two spherical joints.

2) Fig. 6 is a realization for the point/line distance con-
straint, which consists of a spherical joint and a cylin-
drical joint. The driver is a prismatic joint between the
spherical joint and the cylindrical joint.

3) Fig. 4 is a realization for the point/plane distance con-
straint, which consists of a spherical joint and a planar
joint. The driver is a prismatic joint between the spher-
ical joint and the planar joint.

4) Fig. 8 is a realization for the line/line distance constraint
which uses two cylindrical joints. Between the two joints
is a revolute joint and a driver prismatic joint.

5) Fig. 9 is a realization for the line/line angular constraint,
which uses two cylindrical joints. Between the two joints
is a prismatic joint and a driver revolute joint.

6) Fig. 10 is a realization for the line/plane angular con-
straint, which consists of a cylindrical joint and a planar
joint. The driver is a revolute joint between the cylin-
drical joint and the planar joint.

7) Fig. 11 is a realization for the plane/plane angular con-
straint, which uses two planar joints. The driver is a rev-
olute joint between the two planar joints.

A realization for the 3D3A GSP in Fig. 1 is given in Fig. 12,
where the distance and angular constraints between line and
line are combined into one chain. So in this chain, both the
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Fig. 9. L/L angular constraint.

Fig. 10. L/H angular constraint.

Fig. 11. H/H angular constraint.

revolute and prismatic joints are driver joints. The same happens
line and line .

A realization for the 6D GSP in Fig. 2 is given in Fig. 13,
where the six constraints are all point/plane distances. From the
figure, we can see that all six spherical joints are in the same
plane. This is different from that given in [4]. Also, the mecha-
nism in [4] uses outside drivers.

Fig. 12. Realization of the GSP in Fig. 1.

Fig. 13. Realization of the GSP in Fig. 2.

Fig. 14. Realization of the GSP in Fig. 3.

A realization for the 3D3A GSP in Fig. 3 is given in Fig. 14,
where the three distance constraints are between points and
lines, and the three angular constraints are between three pairs
of lines.

VIII. CONCLUSION

A generalization of the SP is introduced by considering all
possible geometric constraints between six pairs of geometric
primitives on the base and the platform, respectively. This gives
3850 types of GSPs with the original SP as one of the cases. The
purpose of introducing these new types of SPs is to find new and
better parallel mechanisms.

We also give an upper bound for the number of solutions of
the direct kinematics for each GSP. One related problem is to
find the maximal number of real solutions. We show that the
upper bounds given for the 1120 types of 3D3A GSPs are also
the best bounds for the GSPs to have real solutions. Closed-form
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solutions to 3D3A general SPs are also given. It is proved that
the original SP could have 40 real solutions [6]. It is interesting
to see how to extend the technique used in [6] to other GSPs.

Instead of giving the upper bound for the number of solutions
to the direct kinematics of the GSPs, a possible improvement is
to give all the possible numbers of solutions, as done in [9] for
a similar problem. Besides the direct kinematics, we may also
study the workspace, the singularity, and the dynamic properties
of the GSPs in order to fully understand the GSPs.
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