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Abstract. In this paper, we introduce the concept of planar general-
ized Stewart platform (GSP) consisting of two rigid bodies connected
with three constraints between three pairs of geometric primitives in the
two rigid bodies respectively. This problem can be treated as a special
but important class of geometric constraint solving problems. We show
that there exist sixteen forms of planar GSPs. We also obtain the closed-
form solutions of the direct kinematics for the planar GSPs. For a class of
GSPs with two distance and one angular constraints, we may give pure
geometric solutions based on ruler and compass constructions.
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1 Introduction

The Stewart platform, originated from the mechanism designed by Stewart for
flight simulation [22] and the mechanism designed by Gough for tire test [10],
is a spatial parallel manipulator consisting of two rigid bodies: a moving plat-
form, or simply a platform, and a base. The position and orientation (pose)
of the base are fixed. The base and platform are connected with six extensible
legs. For a set of given lengths of the six legs, the pose of the platform could
generally be determined. The Stewart platform has been studied extensively in
the past twenty years and has many applications. Comparing to serial mecha-
nisms, the main advantage of the Stewart platform is its inherent stiffness and
high load/weight ratio. For more information on the platform, please consult
[2, 4, 13, 15, 18, 19]. A large portion of the work on Stewart platform is focused
on the direct kinematics[13, 15, 18, 19].

On the other hand, geometric constraint solving is the central topic in much
of the current work of developing intelligent CAD systems [5, 11, 12, 14, 20]. It
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also has applications in molecular modelling, linkage design, computer vision
and computer aided instruction. Geometric constraint solving algorithms accept
the declarative description of geometric diagrams or engineering drawings as the
input and output a drawing procedure. In [6, 7], as a special class of geomet-
ric constraint problems, we introduce the spatial generalized Stewart platform
(GSP) consisting of two rigid bodies connected with six distance and/or angular
constraints between six pairs of points, lines and/or planes on the base and the
moving platform respectively, which could be considered as the most general
form of parallel manipulators with six DOFs in certain sense. We prove that
there exist 3850 possible forms of GSPs which could provide more practical six
DOFs parallel manipulators. The original Stewart platform is one of the GSPs
in [6], where the six constraints are distance constraints between points.

While a majority of the work on Stewart platform focuses on the spatial case,
several people also considered the planar Stewart platform which consists a mov-
ing platform and a base connected with three extensible legs. In [21], Pennock
and Kanssner proved that the the upper bound of the number of solutions for
the direct kinematics of the planar Stewart platform is six. Gosselin and Merlet
developed robust solving schemes and established sharper bounds for special pla-
nar Stewart platforms [9]. Other interesting work on the planar Stewart platform
could be found in [1, 3, 16, 17].

In this paper, we introduce the planar generalized Stewart platform which
could be considered as the most general form of planar parallel manipulators
with three DOFs in certain sense. A planar GSP consists of a base and a moving
platform connected with three distance or/and angular constraints between three
pairs of points and/or lines on the base and platform respectively. We show that
there exist sixteen forms of planar GSPs. The planar Stewart platform considered
in previous work such as [21, 9] is a planar GSP where the three constraints are
three distance constraints among three pairs of points.

The direct kinematics is to solve an algebraic equation system. The character-
istic set method is a convenient and powerful tool to deal with such equations[25].
Using the characteristic set method, we could reduce the solving of an equation
system into the solving of equations in triangular form and hence the solving
of univariate equations. It should be noticed that these univariate polynomial
equations are in “cascade” form, that is, the coefficients of an equation involve
the roots of the previous equations. These equations in triangular form are called
closed-form solutions in this paper. We show that closed-form solutions to the
direct kinematics of all planar GSPs could be found with the characteristic set
method [25]. With these closed-form solutions, upper bounds for the number of
solutions of the direct kinematics in the general cases can also be given. For a
class of GSPs involving an angular constraint, we provide a solution to the direct
kinematics based on ruler and compass constructions.

The rest of the paper is organized as follows. In Section 2, we define the
planar GSP. In Section 3, we give the solutions to direct kinematics for the
planar GSPs. In Section 4, conclusions are given. The results presented in this
paper were reported in the un-published technical report [8].
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2 Geometric Constraint Solving and Generalized Stewart
Platform

In this section, we will introduce the generalized Stewart platform as a special
class of geometric constraint problems.

2.1 A General Method of Geometric Constraint Solving

We consider two types of geometric primitives: points and lines in the two di-
mensional Euclidean plane and two types of geometric constraints: the distance
constraint between point/point, point/line and the angular constraint between
line/line. A geometric constraint problem is to find all the possible solutions of
a set of geometric primitives satisfying a set of geometric constraints.

In [7], we proposed a geometric constraint solving method. As shown in Fig-
ure 1, to solve a geometric constraint problem, we first use the C-tree decompo-
sition algorithm to reduce the problem to general construction sequences, and
then reduce the solving of general construction sequences to the solving of basic
merge patterns, which are the smallest problems we have to solve in order to
solve the original problem.

Let B and U be two sets of geometric primitives. A basic merging pattern
is to determine the position of U assuming that the position of B are known
and there exists a set of geometric constraints among geometric primitives in B
and U . We further assume that a basic merge pattern (B, U) has the following
properties.

1. B and B ∪ U are rigid bodies. Here, by a rigid body, we mean a structurally
well-constrained problem [7].

2. There is no subset V of U such that B ∪ V is a rigid body.

As shown in Figure 1, there are three classes of basic merge patterns. The type
of explicit constructions means to construct one geometric primitive, that is, U

Geometric Constraint Problem

General Construction Sequence

C-tree Decomposition

Basic Merge Patterns

Explicit Construction GSP General Type

Fig. 1. Solving a constraint problem
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consists of one geometric primitive. Explicit constructions are generally easy to
solve. The next easy case is the general Stewart platform (GSP), where both
B and U are rigid bodies and the problem is to determine the relative position
of two rigid bodies according to three constraints. In the general case, U is not
a rigid body and we need to determine the position of U using the constraints
between primitives in B and U and constraints between primitives inside U . In
this paper, we will give closed-form solutions to the 2D GSPs.

2.2 Planar Generalized Stewart Platform

A rigid body in the plane has three DOFs. Therefore, to determine its position
and orientation, we need three geometric constraints. This leads to the following
definition.

Definition 1. A planar generalized Stewart platform consists of two rigid bod-
ies connected with three geometric constraints. One of the rigid bodies called
base is fixed and the other rigid body called platform is movable. The posi-
tion and orientation of the platform are determined by the values of the three
constraints.

Fig. 2. Planar GSP

The planar GSP can be divided into two classes:

DDA. The GSP has two distance and one angular constraints.
DDD. The GSP has three distance constraints.

We cannot have more than one angular constraints due to the fact that a rigid
body in the plane has one rotational DOF and the rotational DOF can generally
be determined by one angular constraint.

Proposition 1. If we assume that the geometric primitives in the base and
platform are distinct, there are 6 types of DDA planar GSPs and 10 types of
DDD planar GSPs. Totally, there are 16 types of planar GSPs.

Proof. Let di(ai) be the number of possible ways to assign i distance(angular)
constraints between the platform and the base. There is one type of angular
constraint: line/line. For the point/line constraint, we need to consider two cases:
line/point and point/line meaning that the line is on the platform and the base
respectively. So we need only to consider three types of distance constraints:
point/point, point/line and line/point.
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The number of possible ways to select m objects from n types of objects is
Cm

m+n−1. Then the number of possible types of GSPs with j distance constraints
and i angular constraints is:

aidj = Ci
i+1−1 · Cj

j+3−1 = Ci
i · Cj

j+2 = Cj
j+2.

Then the number of DDA GSPs is: d2 = C2
2+2 = 6 and the number of DDD

GSPs is d3 = C3
3+2 = 10.

3 Closed-Form Solutions to the Direct Kinematics of
Planar GSPs

The direct kinematics of a GSP (B, U) is to find the position and direction of
U relative to B assuming that the position and direction of B is fixed and the
values for the three constraints between B and U are given.

3.1 The Characteristic Set Method

In what follows, we will use Ritt-Wu’s characteristic set method [25, 23] to find
the closed-form solutions of the direct kinematics of a GSP. Let V be a set of
parameters, xi, i = 1, . . . , p the variables to be determined, and PS = 0 a set of
polynomial equations in V and the xi. The method could be used to find a set
of equations in triangular form, that is, an equation system

CS =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

f1(V, x1) = I1(V )xd1
1 + R1(V, x1)

f2(V, x1, x2) = I2(V, x1)xd2
2 + R2(V, x1, x2)

...
fp(V, x1, . . . , xp) = Ip(V, x1, . . . , xp−1)x

dp
p + Rp(V, x1, . . . , xp)

(1)

where degxiRi(V, x1, . . . , xi) < di(i = 1, . . . , p). Variable xi is called the leading
variable of fi. Ii is called the initial of fi. For a set of values of the parameters V ,
we may solve xi with the univariate equation fp(V, x1, . . . , xi) = 0 recursively
under the condition Ii �= 0. These univariate equations could be solved with
either numerical methods or symbolic methods such as methods of real root
isolation. It is clear that in order to solve a set of equations in triangular form,
we need only to solve univariate equations.

For a set of polynomials PS and a polynomial D, let Zero(PS /D) be the set
of solutions for all P ∈ PS which are not solutions of D = 0. With Ritt-Wu’s
characteristic set method, we may decompose the solution set Zero(PS ) as the
union of the zero sets of several triangular sets:

Zero(PS ) = ∪m
i=1Zero(Ai/Ji) (2)

where each Ai is a triangular set and Ji is the product of the initials of the
polynomials in Ai. In this paper, when we say that the closed-form solutions
of an equations system PS = 0 are given, we mean that we have reduced the
PS = 0 to the solutions of triangular sets.
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3.2 The DDA Planar GSPs

For planar DDA GSPs, we may solve the direct kinematic problem in two steps.
First, we impose an angular constraint to determine the rotational DOF of the
platform. Then we impose the distance constraints without breaking the angular
constraint imposed previously. In this way, we generate a solution to the direct
kinematic problem based on the ruler and compass construction.

1. Imposing Angular Constraint
Let B and U be the base and the platform of the GSP. After an angular constraint
is imposed between B and U , we need only to find a rotational matrix R such that
RU satisfies the angular constraint. We need only to consider angular constraints
between two unit vectors on B and U respectively. Let s1 be a unit vector on
the base and s2 a unit vector on the platform. Without loss of generality, we
may further assume that s1 = s2. Let R = (rij)2×2 be the rotational matrix.
The angular constraint is imposed as follows. We assume that the platform is
at some known place at the beginning. After imposing the angular constraint,
the platform moves to the correct position by a rotation represented by the
rotational matrix R. So the angular constraint can be represented by

cos(� (s1,Rs2)) = d.

Let s2 = s1 = (l1, m1) where l21 + m2
1 = 1. We can obtain the following equation

system:
⎧
⎪⎪⎨

⎪⎪⎩

RTR = I
det(R) = 1
s1 · Rs2 = d
l21 + m2

1 = 1

(3)

Applying Ritt-Wu’s characteristic set method [24, 25] to equations (3) under the
variable order r11 > r22 > r12 > r21 > d > l1 > m1, we have

Zero((3)) = Zero(CS)

where CS is given below.

CS =

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

l21 + m2
1 = 1

r21
2 − 1 + d2 = 0

r12 + r21 = 0
r22 − r11 = 0
r11 − d = 0.

(4)

Proposition 2. After imposing an angular constraint, the number of real so-
lutions for the direction of the platform is at most two and this bound can be
reached. Furthermore, the equations CS in triangular form provide closed-form
solutions to the problem.
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Proof. Since equation system (4) consists of one quadratic equation and three
linear equations in the variables ri,j , the direct kinematics problem has at most
two solutions. Furthermore, the problem has two real solutions if and only if
1 − d2 > 0 which is possible since d = cos(� (s1,Rs2)).

2. Imposing Distance Constraints
As mentioned in Section 2, there exist three kinds of distance constraints:

DPP: the distance constraint between two points,
DLP: the distance constraint between a line on the platform and a point on

the base, and
DPL: the distance constraint between a point on the platform and a line on

the base.

Definition 2. For each distance constraint, say C =DPL, the locus of the cor-
responding geometric element e on the platform under the angular constraint
and this distance constraint is called the locus induced by this constraint, and is
denoted by LC or LDPL.

Proposition 3. Let D be a distance constraint between a geometric element
e on the platform and a geometric element on the base. If the direction of
the platform is fixed, then the locus of e, that is LD, could be a circle or two
lines.

Proof. We use DIS(e1, e2) to denote the distance between a geometric element
e1 on the platform and a geometric element e2 on the base. The loci induced by
the three distance constraints can be determined as follows.

LDPP . For constraint DIS(p1, p2) = d, the locus of point p1 is a circle with center
p2 and radius d.
LDLP . For constraint DIS(l, p) = d, if we only consider the distance constraint,
then line l could be all the tangent lines of a circle with center p and radius d. If
we further assume that the direction of line l is fixed, then the locus of l is two
lines l1 and l2 which are parallel to the line l and with distance d to p.
LDPL. For constraint DIS(p, l) = d, the locus of point p is two lines l1 and l2
which are parallel to the line l and with distance d to l.

In Figure 3, the circle in diagram (a) is the locus of DPP; the bold line l
tangent to the circle in diagram (b) represents the line on the platform and the
lines l1 coincident to l and l2 parallel to l is the locus of DLP; and two thin
lines parallel to line l in diagram (c) is the locus of DPL.

Proposition 4. Let D be a distance constraint between a geometric element e
on the platform and a geometric element on the base. If the direction of the
platform is fixed, then the locus of any given point on e is LD.

Proof. If e is a point, D must be either DPP or DPL. In this case, the statement
is obviously valid. Otherwise, e is a line. From the above discussion, we know
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l 2

P

l 2

d

l 1
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P2 P1

d

Fig. 3. Loci of distance constraints

that the collection of points on e is LD. Hence LD could be considered as the
locus for a given point on e.

After the angular constraint is imposed, the direction of the platform is fixed.
To find the position of the platform, we need only to find the position of a point
on the platform.

Algorithm 1. The input includes two distance constraints Di, i = 1, 2 between
geometric elements on the platform and the base. We further assume that the
directions of the platform and hence the directions of the lines on the platform
are fixed. The output is a new position for the platform such that the two distance
constraints are satisfied.

1. Determine the equations Ei(x, y) = 0, i = 1, 2 for the loci LDi as shown in
Proposition 3.

2. Let Di be a constraint between a geometric element ei on the platform and
fi on the base. If ei is a point, let pi = ei. Otherwise ei is a line. Select an
arbitrary fixed point on ei as pi. Let pi = (xi, yi).

3. By Proposition 4, after imposing the distance constraint Di, point pi is on
the locus LDi . Furthermore, since the direction of the platform is fixed, when
imposing the constraint D2, point p1 must also be on the locus L′

2 which is
the translation of LD2 at the direction p1 − p2. Then after imposing the two
distance constraints, the new position p′1 for point p1 must be the intersection
of two equations:

E1(x, y) = 0,
E2(x − x1 + x2, y − y1 + y2) = 0. (5)

4. By Proposition 3, (5) are equations for lines or circles. Then we need only
to find the intersections of pairs of lines and circles, which are very easy to
be solved. We generally could have two or four solutions.

5. Move the platform along the translation vector t = p′1 − p1, it will satisfy
the two distance constraints.

So for the DDA case, we have the following conclusions.
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1. To impose the angular constraint, we usually have two solutions.
2. To impose the two distance constraints, the problem is reduced to the in-

tersection of a pair of lines/a circle which has four real solutions; a pair of
lines/a pair of lines which has four real solutions; circle/circle which has two
real solutions.

As a consequence, we have proved the following result.

Theorem 2. We generally could have four or eight real solutions for a DDA
problem depending on the types of the constraints imposed on it. Furthermore,
these solutions can be obtained by rotating the platform and taking intersections
between line/line, line/circle, or circle/circle.

(a)
(b) (c)

P4

P3

P1

P2

L1

L2

L3

L4

P4

P3P2

P1

P1

P4 P1

P4

P3P2

P1
P4

C1

C2

C3

C 1

C2

C3

Fig. 4. A DDA geometric constraint problem and its geometric solution

Note that the solution given above is pure geometric. Let us illustrate this with
the example in Figure 4. We may consider this as a DDA GSP by considering
p1p4l4 as the platform and p2p3l2 as the base. We may solve this problem as
follows.

1. Rotate line p1p4 so that the angle between line p1p4 and line p2p3 is the
given angle.

2. Let c1 be the circle with p2 as center and |p2p1| as the radius, c2 the circle
with p3 as center and |p3p4| as the radius, and c3 the translation of c1 along
vector p4 − p1. The correct position for p4 is the intersection of c2 and c3.
Denote this intersection as p′4.

3. The position for p′1 is p′4 + p1 − p4. The problem could have either one or
two solutions as shown in (c) and (b) of Figure 4.

3.3 The DDD GSPs

A problem is called ruler and compass constructible, or RC-constructible, if the
coordinates of its geometric elements can be found by solving univariate linear
or quadratic equations.
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Theorem 3. As mentioned in section 3.2, there exist three kinds of distance
constraints: DPP, DLP and DPL. The DDD GSPs can be divided into ten
different sub-cases shown below. We use a new notation to represent these ten
cases. For instance, PPP-LLL represents the GSP where the three distance
constraints are between three points on the platform and three lines on the base
respectively.

1. Direct kinematics for PPP-LLL and LLL-PPP can be reduced to the solv-
ing of one quadratic and three linear equations in the general case. Hence
these GSPs are RC-constructible. Considering the fact that the distance con-
straint between a point and a line has two forms (|pl| = ±d), each of PPP-
LLL and LLL-PPP has at most 8 solutions.

2. Direct kinematics for PPP-LLP, LLP-PPP, LPP-PLL and LLP-PPL
can be reduced to the solving of one quartic and three linear equations in
the general case. We use the method in [5] to decide that the problems are
not RC-constructible. Each of PPP-LLP and LLP-PPP has at most 16
solutions. Each of LPP-PLL and LLP-PPL has at most 32 solutions.

3. Direct kinematics for PPP-LPP, LPP-PPP, LPP-PLP and PPP-PPP
can be reduced to the solving of one equation of degree six and three linear
equations in the general case. The polynomials of degree six in these cases are
irreducible. Then it is obvious that the problems are not RC-constructible.
Each of PPP-LPP and LPP-PPP has at most 12 solutions. LPP-PLP
has at most 24 solutions and PPP-PPP has at most six solutions.

Proof. Let us consider the case LPP-PLP, which is to impose three distance
constrains: DPP, DPL and DLP simultaneously. It is obvious that we can al-
ways get three non collinear points on the base and on the platform, respectively.
If the primitive involved is a line, we can take a point on it.

Let the three points on the base be B1, B2 and B3. Assuming that B1 is the
origin of the fixed coordinate system on the base, B1B2 the x-axis. The coordi-
nates of three points on the base are B1 = (0, 0), B2 = (b1, 0) and B3 = (b2, b3).
Let the three points on the platform be D1, D2 and D3. Assuming that point p
is the origin of the moving coordinate system on the platform. The coordinate
of point p in the fixed coordinate system is p = (x3, x4), and point p is the foot
of perpendicular line from point D3 to line D1D2. Let � (B1B2, D1D2) = θ,
x1 = cos θ, x2 = sin θ. The moving coordinates of the three points on the
platform are D1 = (−h1, 0), D2 = (h2, 0), D3 = (0, h3), where h1, h2, h3 are
three nonnegative parameters. D1D2 is the x-axis of the moving coordinate sys-
tem. The coordinates of D1, D2, D3 in the fixed coordinate system are D11 =
(−h1x1+x3, −h1x2+x4), D22 = (h2x1+x3, h2x2+x4) and D33 = (−h3x2+x3, h3
x1 + x4).

Let the parametric equation of the line l on the base be p = B3 +u1s1, where
s1 = (l1, m1) and |s1| = 1. Let the parametric equation of line l0 on the platform
in the moving coordinate system be P = D2 + u2s2 where s2 = (l2, m2) and
|s2| = 1. Then the parametric equation of line l0 in the fixed coordinate system
is p = D22 + u2s22, where |s22| = 1 and s22 = (l2x1 − m2x2, l2x2 + m2x1).
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Let the three constraints be |B1D11| = t, |B2l0| = t1 and |D33l| = t2, we have

x2
1 + x2

2 − 1 = 0
(−h1x1 + x3)2 + (−h1x2 + x4)2 − t2 = 0
(l2x2 + m2x1)(h2x1 + x3 − b1) − (l2x1 − m2x2)(h2x2 + x4) − d1 = 0
m1(−h3x2 + x3 − b2) − l1(h3x1 + x4 − b3) − d2 = 0

(6)

where d1 = ±t1 and d2 = ±t2.
Equation system (6) can be reduced to the following triangular form with

Ritt-Wu’s characteristic set method under the variable order x1 < x2 < x3 < x4.

z41x1
6 + z42x

5
1 + z43x

4
1 + z44x

3
1 + z45x

2
1 + z46x1 + z47 = 0

(z31x
2
1 + z32x1 + z33)x2 + z34x

3
1 + z35x

2
1 + z36x1 + z37 = 0

((−m1m2 − l1l2)x2 + (−l1m2 + m1l2)x1)x3 + m1h3x
2
2m2 + ((−m1h3l2

+l1h3m2)x1 + l1l2b1 − l1b3m2 − d2m2 + m1b2m2)x2 − l1h3x
2
1l2 + (d2l2

+l1b1m2 − m1b2l2 + l1b3l2)x1 − l1m2h2 − l1d1 = 0
−l1x4 − m1h3x2 + m1x3 − l1h3x1 − m1b2 + l1b3 + d2 = 0

(7)

where zij are the polynomials in the parameters li, mj , and hk, which may
be found in the technical report [8]. The equations in (7) give the solution to
the GSP in the generic case and hence the platform has at most six solutions.
Considering the fact that d1 = ±t1 and d2 = ±t2, the problem could have twenty
four solutions. For the other nine planar DDD GSPs, the proofs are quite similar.
Details could be found in the technical report [8].

Example 1. The problem in Figure 5 can be reduced into merging two rigid bod-
ies p1p2p3p4 and p5p6p7p8. We take p5p6p7p8 as the the base object and p1p2p3p4
the dependent object. The constraints are |l1p4| = 0, |l2p3| = 0 and |p5l3| = 0,
which is an LPP-PLL GSP. Let p7 = (0, 0). The parametric equations for lines
l1, l2 are p = (0, 0) + u1(0, 1) and p = (0, 0) + u2(1, 0). Let point p3 be the
origin of the moving coordinate system. Then p3 = (x3, x4). Let |p6p7| = b2,
|p5p6| = b3 and |p3p4| = h3. Thus the coordinates for points p4 and p5 are

P8

P7 P6

P5

P4

P3

P1

P2

l 7

l 4

l 3

l 2

l 1

l 5

l 6

Fig. 5. An example of planar DDD GSP
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p4 = (−x2h3 + x3, x1h3 + x4) and p5 = (b2, b3). The parametric equation of line
l3 is p = (x3, x4) + u3(x1, x2). The equation system is

⎧
⎪⎪⎨

⎪⎪⎩

x2
1 + x2

2 − 1 = 0
|x2(b2 − x3) − x1(b3 − x4)| = 0
| − h3x2 + x3| = 0
|x4| = 0

(8)

Applying Ritt-Wu’s characteristic set method to equation system (8) under the
variable order x3 > x2 > x1 > b2 > b3 > h3, we obtain the following decompo-
sition:

Zero((8)) = ∪6
i=1Zero(CSi/Ji)

where CSi and Ji are given below.

CS1 = [b2x3+h2
3x1

2−x1b3h3 −h2
3, b2x2+h3x1

2−x1b3−h3, h
2
3x1

4 −2b3h3x1
3 +

(b2
2 + b2

3 − 2h2
3)x1

2 + 2x1b3h3 + h2
3 − b2

2], J1 = b2h3.
CS2 = [x3, −x2b2 + x1b3, b

2
2x1

2 − b2
2 + x1

2b2
3, h3],J2 = b2.

CS3 = [x3,x2 − 1,x1, b2, h3], J3 = 1.
CS4 = [x3,x2 + 1,x1, b2, h3],J4 = 1.
CS5 = [x3,x1

2 + x2
2 − 1, b2, b3, h3], J5 = 1.

CS6 = [h3x2 − x3, h3x2
2 + x1b3, h3x1

2 − x1b3 − h3, b2], J6 = h3.

With the above zero decomposition, the solutions of (8) are reduced to the
solutions of CSi = 0, i = 1, . . . , 6.

From the structure of these triangular sets, we could solve equation (8) as
follows.

1. If h3 �= 0, b2 �= 0, we will use CS1 = 0 to find the solutions.
2. If h3 �= 0, b2 = 0, we will use CS6 = 0 to find the solutions.
3. If h3 = 0, b2 = 0, b3 = 0, we will use CS5 = 0 to find the solutions.
4. If h3 = 0, b2 = 0, b3 �= 0, we will use CS3 = 0, CS4 = 0 to find the solutions.
5. If h3 = 0, b2 �= 0, we will use CS2 = 0 to find the solutions.

If we take b2 = 1
2 , b3 = 0 and h3 = 1, we obtain four real solutions from

CS1 = 0, which are (
√

3
2 , 0, 0, 0), (−

√
3

2 , 0, 0, 0), (1, 0, 0, 0) and (−1, 0, 0, 0). So the
problem has four real solutions at most.

4 Conclusions

A generalization of the planar Stewart platform is introduced by considering all
possible geometric constraints between three pairs of geometric primitives on
the base and the platform respectively. This gives 16 types of planar GSPs. The
purpose of introducing these new types of planar Stewart platforms is to find
new and better parallel mechanisms. We give closed-form solutions to the direct
kinematics of these GSPs. For the six GSPs with two distance constraints and
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one angular constraint, we are able to give a pure geometric solution based on
ruler and compass constructions.

Acknowledgment. We want to thank the anonymous referees for valuable sug-
gestions.
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