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Abstract Expressing complex
curves with simple parametric curve
segments is widely used in computer
graphics, CAD and so on. This paper
applies rational quadratic B-spline
curves to give a global C1 continuous
approximation to a large class of
plane parametric curves including
rational parametric curves. Its appli-
cation in approximate implicitization
is also explored. The approximated
parametric curve is first divided into
intrinsic triangle convex segments
which can be efficiently approxi-
mated with rational quadratic Bézier
curves. With this approximation,
we keep the convexity and the cusp
(sharp) points of the approximated
curve with simple computations.

High accuracy approximation is
achieved with a small number of
quadratic segments. Experimental
results are given to demonstrate
the operation and efficiency of the
algorithm.

Keywords Rational approxima-
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1 Introduction

Conics or rational quadratic curves have many simple and
classical properties, and they are widely studied and ap-
plied in various fields such as computer graphics, CAD,
image processing and so on [11, 13, 16, 21, 23, 24]. Ap-
proximately expressing a plane parametric curve possibly
in transcendental form with conics can import various
complex curves into these fields and facilitate their ap-
plications. In this paper, we propose an efficient method
to approximate plane parametric curves with rational
quadratic splines. Its application in approximate implici-
tization is also explored.

∗Partially supported by a Chinese NKBRPC grant 2004CB318000, an EP-
SRC grant GR/S69085/01, and a USA NSF grant CCR-0201253.

Many methods have been proposed to approximate
plane curves using parametric curves in low degree, in-
cluding high accuracy approximation [5, 9], points sam-
pling approximation [22, 30, 31], various approximations
using polynomials [29], rational curves [2] and linear seg-
ments [7]. The high accuracy approximation was intro-
duced by de Boor [5] and then improved in later work [9].
This work is mainly concerned with the local approxima-
tion effect at a point on a given curve. For rational func-
tions, Wang et al. investigated the necessary and sufficient
convergence criteria for their polynomial approximations,
based on the notion of hybrid polynomials [29]. Bajaj and
Xu, on the other hand, applied a local expansion method
to approximate an implicit algebraic curve with C1 con-
tinuous piecewise rational curves [2]. Closely related to
this work, a systematic method for linear approximation
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of composite plane and space Bézier curves is due to Cho
et al. [7]. In the work, significant points are first extracted
from an approximated curve based on its curvature and
torsion variation, providing an initial rough approxima-
tion, which is then further subdivided for error control and
topology consistency between the curve and its approxi-
mation.

Approximating plane curves using conics has also
been widely studied [1, 11, 20, 21, 23, 31]. Under certain
error expression, the necessary and sufficient condition
to optimally approximate a plane curve using conics
was given in [1]. Curvature continuous approximation
methods to plane curves have been proposed by Farin [11],
Pottmann [21], and recently by Yang [31]. Most of the
approximation methods, however, mainly consider cer-
tain curve segments possessing some simple properties,
e.g., without inflection points (flexes for short) inside or
lying within a triangle. How to get such segments from
various general complex curves, e.g., curves in Figs. 1
or 2, is not fully addressed. For the specific application
of conics in font plotting, an algorithm is provided to
approximate a general parametric curve using the split-
and-merger method for adaptively choosing knots of the
approximation splines [13], where iterative sampling of
points and merging of approximation curve segments are
applied so that finally each of these resulted segments lies
in a triangle. However, no specific error control method is
provided in this work.

Another motivation of our work is approximate implic-
itization. Given a rational parametric curve, we can always
convert it into implicit form, which is called implicitiza-
tion. But for a general parametric curve C(t) = (x(t), y(t))
where x(t) and y(t) may be non-rational functions such
as trigonometric and exponential functions, we usually
cannot compute its exact implicit form. Even if the ex-
act implicit form can be computed, it is not necessary to
do so in many cases. The reason is that some compli-
cated computations may be involved in the process of ex-
act implicitization and the resulted implicit form can have
large numbers as coefficients, e.g., the curves in Sect. 5.
Furthermore, as investigated by Sederberg, an exact im-
plicitization form may have self-intersections or some
unwanted branches [26]. All these unexpected properties
limit the applications of the exact implicitization in prac-
tical fields.

Due to these reasons, the idea of approximate implic-
itization has been proposed. Power series sequences are
applied by Montaudouin et al. to give local explicit ap-
proximations for curves and surfaces around a singular
point [18]. The method is extended by Chuang and Hoff-
mann to give a local implicit approximation to a paramet-
ric curve or surface [8]. A systematic work to implicitly
approximate parametric curves or surfaces is proposed by
Dokken using singular value decomposition to find a set
of alternative approximations [10]. Sederberg et al. con-
sidered monoid curves and surfaces to find an approxi-

Fig. 1. Euler’s spiral C0

Fig. 2. An algebraic curve C1

mate implicit equation and an approximate inversion map
of a plane rational parametric curve or a rational para-
metric surface [26]. Shalaby et al. generated a C1 con-
tinuous quadratic B-spline approximation for a paramet-
ric curve via its orthogonal projection in Sobolev spaces,
and wavelets are then applied to reduce the curve seg-
ments [27]. Since the implicit form of conics can be eas-
ily obtained, if we can approximate a parametric curve
with rational quadratic splines, its approximate implici-
tization is then a natural consequence. Furthermore, our
algorithm ensures that each resulted approximation con-
ics lies in a convex triangle, which confine the range of
its implicit representation, and therefore intersections be-
tween unwanted branches outside the triangles will not be
produced.

Although these previous approximation methods for
curve approximation perform very well in many cases,
there are still important issues that are not addressed in
detail. The first issue is the curve segmentation. Dividing
a curve on its singular points is mentioned in some previ-
ous work. However, consider Euler’s spiral C0(t) [25] and
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an algebraic curve C1(t) [1]:

C0(t) =
⎛
⎝

t∫

0

cos
(π

2
ξ2

)
dξ,

t∫

0

sin
(π

2
ξ2

)
dξ

⎞
⎠, 0 ≤ t ≤ 4;

C1(t) = (1−8t +26t2 −32t3 +13t4)b0 −4(−2t +9t2

−14t3 +7t4)b1 + (10t2 −24t3 +15t4)b2,

where b0 = (−1, 0), b1 = (1, 4/3), b2 = (1, 0), and 0 ≤
t ≤ 1. The corresponding graphs of C0(t) and C1(t)
are plotted in Figs. 1 and 2. Neither of these two curve
segments have singular points. Therefore no segmenta-
tions are needed if considering singular points only. But
most previous methods do not give good approxima-
tions for them even if a high order of approximation can
be achieved. Actually it is implicitly assumed in these
methods that the approximated curve segments are con-
vex, but no detail is illustrated on how to get such convex
segments from a general complex curve. In Fig. 1, for ex-
ample, even if the curve is separated at its singular points
and flexes (it does not have actually), the convexity of the
resulted segments cannot yet be ensured. The second is-
sue is how to keep the intrinsic geometric properties of
the curve such as cusp points, convexity, etc. In this paper,
these issues are to be resolved with an intrinsic segmenta-
tion of the approximated curve.

In this paper, we propose a geometric method to ap-
proximate a general complex plane parametric curve seg-
ment. The method consists of three steps. First, the curve
to be approximated is divided into triangle convex seg-
ments by separating them at the cusp points, the flexes,
the parallel points and shoulder points (definitions in
Sect. 3). This curve segmentation does not depend on
the coordinate and is intrinsic. The triangle convexity of
the resulted segment makes it possible to have an effi-
cient conics approximation using a global approximation
method called shoulder point approximation. The approx-
imate quadratic spline is finally converted into a rational
quadratic B-spline with proper knot selection [4, 19]. The
final quadratic B-spline obtained with our method keeps
the convexity and the cusp (sharp) points of the approx-
imated parametric curve. Experimental results show that
high accuracy of approximation may be achieved with
a small number of quadratic segments. In our method,
the main computation is to solve univariate equations, for
which there exist mature algorithms, ensuring generation
of the final approximate spline in an efficient way. Fur-
thermore, the method can be used to find approximations
not only for rational parametric curves but also for a large
class of parametric curves defined by non-rational func-
tions such as trigonometric and exponential functions.

The rest of the paper is organized as follows. We in-
troduce the rational quadratic Bézier curves as well as
some of their properties in Sect. 2. Our main result, the ap-

proximation method, is illustrated in Sects. 3, 4 and 5. We
conclude the paper in Sect. 6.

2 Rational quadratic Bézier curves

In the section, rational quadratic Bézier curves are intro-
duced as well as some of their properties to be used in the
paper.

Any rational quadratic segment or conics can be ex-
pressed by a rational quadratic Bézier curve in the follow-
ing form [11, 16, 21]:

P(t) = P0φ0(t)+ωP1φ1(t)+ P2φ2(t)

φ0(t)+ωφ1(t)+φ2(t)
, 0 ≤ t ≤ 1, (1)

where φ0 = (1− t)2, φ1 = 2t(1− t), φ2 = t2 are quadratic
Bernstein basis; ω ∈ R is weight, Pi = (xi, yi) ∈ R2 are
control points of P(t) and triangle P0 P1 P2 is its control
triangle. A rational quadratic Bézier curve in form (1) has
the following properties [11, 16]:

(P1) Convex hull: segment P(t), 0 ≤ t ≤ 1, lies in the
convex hull, i.e., the control triangle P0 P1 P2, for ω > 0.

(P2) Endpoints interpolation: from

P(0) = P0, P(1) = P2,

P′(0) = 2ω(P1 − P0), P′(1) = 2ω(P2 − P1),

it can be seen that P(t) passes through the endpoints
P0, P2 and the two lines passing through points P0, P2
with direction P′(0), P′(1) meet at point P1.

(P3) Type parameter: the quadratic type of P(t) is
uniquely determined by its weight ω: for 0 < ω < 1, we
have an ellipse segment; for ω = 1, a parabola; and for
ω > 1, a hyperbola. If the sign of ω is changed, we get
a complementary segment(s) of the conics, which is the
other part(s) of the quadratic curve outside the control tri-
angle (see Fig. 3).

(P4) Shoulder point: point S = P( 1
2) is called the

shoulder point of P(t), which can be computed as

S = 1

2
(Q0 + Q2), (2)

where Q0 = P0+ωP1
1+ω

, Q2 = ωP1+P2
1+ω

. The tangent line of
P(t) at the shoulder point S passes through Q0 and Q2
and is parallel to line P0 P2. Furthermore, S is the unique
point on P(t), 0 ≤ t ≤ 1, that has maximum distance to
line P0 P2, as illustrated in Fig. 4.

(P5) Implicit form: the implicit form of P(t) = (x(t),
y(t)) in Eq. 1 is given by

τ2
1 = 4ω2τ0τ2, (3)

where τi are barycentric coordinates of a point with re-
spect to the control triangle P0 P1 P2 with Pi = (xi, yi), i =
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Fig. 3. Type parameters

Fig. 4. Shoulder point

0, 1, 2. We have the following relation of the barycentric
coordinate (τ0, τ1, τ2) of a point in corresponding Carte-
sian coordinates (x, y)
(

x
y
1

)
=

(
x0 x1 x2
y0 y1 y2
1 1 1

)(
τ0
τ1
τ2

)

Thus we can get the implicit form of conics P(t) from
computing τi, i = 0, 1, 2 from (x, y) using Cramer’s rule.

3 Dividing a curve segment into triangle convex
segments

In this section, assumptions of input curve segments to
be approximated are first made. Then some basic con-
cepts and definitions of a parametric curve are introduced.
After these preparations, we go deep into the topic as how
to divide a parametric curve segment into triangle convex
segments, which can then be efficiently approximated by
conics using the method described in Sect. 4.

The following notations and definitions are used in this
paper.

For two vectors Vi = (ui, vi), ui, vi ∈ R, i = 0, 1, we
have their dot product V0 · V1 = u0u1 + v0v1 and cross
product V0 × V1 = u0v1 −u1v0.

The input curve segment C(t) = (x(t), y(t)), a ≤ t ≤ b
is always assumed to be a curve segment such that for
any a ≤ t ≤ b, x ′(t), x ′′(t), y′(t), y′′(t) always exist. Fur-
thermore, it is also assumed that for a ≤ t ≤ b, the slope

lims→t y′(s)/x ′(s) either exists or approaches to infinity.
For a curve segment C(t) = (x(t), y(t)), a ≤ t ≤ b, the fol-
lowing definitions and symbols are given.

We call P0 = C(a) the left endpoint, T− = limt→a+
(x ′(t), y′(t)) the corresponding left tangent direction, and
the line passing through P0 with direction T− is the left
tangent line. The right endpoint P2 = C(b), the right tan-
gent direction T+ and the right tangent line can be defined
in a similar way. With these definitions, C(t), a ≤ t ≤ b is
sometimes denoted as S[P0, P2] to show its left endpoint
P0 and right endpoint P2 or S[P0, T−, P2, T+] when its
left and right tangent directions T− and T+ are also pre-
scribed.

A point C(t0) is called a cusp point or singular point
if x ′(t0) = y′(t0) = 0. A cusp point is usually a sharp
point on the curve as shown in Fig. 5. The tangent di-
rection at a cusp point C(t0) is defined as follows. Let
s = limt→t0 y′(t)/x ′(t). If s is a finite number, we define
T = (1, s). If s approaches to infinity, we define T =
(0, 1). An inflection point C(t0), flex for short, is a non-
cusp point at which the sign of the curvature changes.
Flexes can be found by solving the equation x ′(t)y′′(t)−
x ′′(t)y′(t) = 0.

A point C(t0) is called a parallel point if there exists
s0 ≥ a such that (1) point C(s0) is a cusp point, a flex, or
a boundary point; (2) there exist no cusp or flexes on C(t)
for s0 < t < t0; and (3) the tangent directions at C(s0) and
C(t0) are parallel. Suppose that the left tangent directions
of S[C(s0), C(t0)] is T−. Then t0 can be found by solving

Fig. 5. Critical points
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the following univariate equations:

T− ×C′(t) = 0, s0 < t < s1. (4)

A curve segment S[P0, T−, P2, T+] is said to be trian-
gle convex if the left tangent line and the right tangent line
meet at a point P1 and the line segment P0 P2 and S form
a convex region inside the control triangle P0 P1 P2 of S.

A point SP on S[P0, T0, P2, T2] is said to be a shoulder
point if SP has the maximal distance to the line P0 P2.

Lemma 1. If a curve segment S[P0, P2] is triangle con-
vex and does not contain a segment of straight line, then
S[P0, P2] has a unique shoulder point.

Proof. Suppose that there are two shoulder points S1 and
S2. We can see that the line segment S1S2 should be in-
side the region formed by line P0 P2 and S. Since S1 and
S2 have maximal distance to P0 P2, the line segment S1S2
must be coincident with S, a contradiction. �

From Lemma 1, the shoulder point for a triangle con-
vex segment C(t), a ≤ t ≤ b, can be computed using
Newton–Ralphson method by solving the following equa-
tion with an initial value t = (a +b)/2,

(x ′(t), y′(t))× (P2 − P0) = 0. (5)

The curve segmentation in this paper will finally divide
an input approximated parametric curve into several tri-
angle convex segments, separated by four types of intrin-
sic critical points: the cusp points, the flexes, the parallel
points and some of the shoulder points.

A curve segment C(t) = (x(t), y(t)), a ≤ t ≤ b, is
called normal if it has a finite number of critical points. It
is clear that a rational parametric curve is always normal.
The curve segment C(t) = (sin(1/(2t −1)), cos(1/(2t −
1))), 0 ≤ t ≤ 1, is not normal since it has an infinite num-
ber of flexes near t = 1/2. We always assume that C(t) is
normal throughout this paper.

The following algorithm illustrates how to divide
a curve segment into triangle convex segments. It com-
putes all the critical points, at which the tangents of the
curve will change its direction in the parameter increasing
order.

Algorithm 2. The input is a normal curve segment C(t)
= (x(t), y(t)), a ≤ t ≤ b. The outputs are ti ∈ R, 0 ≤ i ≤ n
and Ti−, Ti+ ∈ R2, 0 ≤ i ≤ n −1, such that t0 = a < t1 <
· · · < tn = b and Ti− and Ti+ are the left and right tangent
directions of S[C(ti), C(ti+1)], which is triangle convex
for i = 0, · · · , n −1.

1. Find the cusp points and the flexes by solving the
following univariate equations: x ′(t) = y′(t) = 0 and
x ′(t)y′′(t)− x ′′(t)y′(t) = 0. Let the solutions be si, i =
1, · · · , l − 1. We assume that s0 = a < s1 < · · · < sl
= b.

2. For i = 0, · · · , l − 1, find the parallel points from
Eq. 4 in each interval [si, si+1]. Let the correspond-
ing t to the parallel points be rij , i = 0, · · · , l −
1, j = 1, · · · , mi and take ri0 = si .

3. For rij−1 < t < rij , get the unique shoulder point C(uij )
from Eq. 5 on S[C(rij−1), C(rij )] if it exists.

4. Rearrange si , rij and uij in an ascending order and re-
name them as ti, i = 0, · · · , n.

5. Find the left and right tangent directions Ti− and Ti+
for each segment S[C(ti), C(ti+1)], i = 0, · · · , n −1.

In steps 1 and 2 of Algorithm 2, we need to find all
the solutions of a univariate equation P(t) = 0 in a given
interval. If P(t) is a polynomial in t, the method in [14]
is applied to solve the equation, which can find all the
real solutions of polynomial equations with degrees up to
fifty within seconds. An alternative method is also referred
to [28] of quadratical convergence. For a rational curve,
its flexes and cusp points can also be identified using the
algorithm provided in [17]. If P(t) is a general function,
the global optimization methods, e.g., [3] can be applied
to find the minimal values for P(t)2. If P(t)2 achieves
a minimal value at t0 and P(t0) = 0, then t0 is a solution.
For univariate equations, our experiment results show that
these approaches are very efficient.

Figure 5 illustrates the resulted segments for some
curve segments divided by the critical points: (1) cusp
points, (2) flexes, (3) parallel points and (4) shoulder
points.

We have the following theorem for the triangle convex-
ity of the resulted curve segments from the curve segmen-
tation Algorithm 2:

Theorem 3. In Algorithm 2, S[C(ti), C(ti+1)], i = 0, · · · ,
n −1, are triangle convex.

Proof. Without loss of generality, we may assume that the
segment is S[C(t0), C(t1)] = S[P0, P2] (S for short) with
Pi = (xi, yi), i = 0, 2. We first make a rotation such that
the x-axis is parallel to P0 P2. Figure 6 shows all the pos-
sible forms of S. Since there exist no singular points or
flexes in S and the sweeping angle of the tangent line from

Fig. 6. Triangle convex segments



M. Li et al.

point P0 to point P2 is less than π, the slope k(t) of S
must be monotonic. We may assume that S is above line
P0 P2 and in this case k(t) is decreasing. According to con-
vex theory [6], a curve segment satisfying these conditions
forms a convex region with P0 P2. We need further to show
that S is inside the control triangle. For an arbitrary point
P = (x, y) �= (x0, y0) in S, there must exist a t̄ > t0 such
that point (x(t), y(t)) has the maximal distance to P0 P. At
this point, we have k(t̄) = y−y0

x−x0
. On the other hand, there

exists a point (x, ȳ) in the left tangent line of S such that
k(t0) = ȳ−y0

x−x0
. Then

y − y0

x − x0
= k(t̄) < k(t0) = ȳ − y0

x − x0
.

We have y < ȳ. Then the point P = (x, y) lies below the
point (x, ȳ), a point in the left tangent line of S. In a simi-
lar way, we have that all the points in S lie below the right
tangent line of S. Hence S is inside the control triangle.�

4 Shoulder point approximation for triangle
convex segment

With Algorithm 2 in Sect. 3, we can divide a parametric
segment into triangle convex segment. In this section, we
will show how to approximate a triangle convex segment
C(t) = (x(t), y(t))= S[P0, T0, P2, T2].

Let P1 be the intersection point of the left tangent line
and the right tangent line. Then the family of rational
quadratic curves P(ω, t) interpolating points P0, P2 with
the tangent directions T0, T2 at P0, P2 can be represented
as follows:

P(ω, t) = P0φ0(t)+ωP1φ1(t)+ P2φ2(t)

φ0(t)+ωφ1(t)+φ2(t)
, 0 ≤ t ≤ 1, (6)

where the weight ω > 0.
Suppose that the solid curve in Fig. 7 is the curve C(t)

to be approximated and the dotted curves are the quadratic
curve family P(ω, t). A proper value must be selected for
ω so that we has an optimal approximation to C(t). In

Fig. 7. Approximate curve fam-
ily

previous work, the free parameters are mainly determined
under some interpolation constraints [5, 9, 20]. Since these
methods are mainly based on the local properties of the ap-
proximated curve, they do not give good approximations
in some special cases even if a high order of approxima-
tion can be achieved, as pointed out in the introduction
section. If considering global properties, the selection of
the weight ω usually leads to some optimization problems
similar to the following:

min
ω

(s(C(t), P(ω, t))), min
ω

(max
t

(d2(ω, t))), (7)

where s(C(t), P(ω, t)) is the area bounded by curves C(t)
and P(ω, t); d(ω, t) is the distance function between C(t)
and P(ω, t) expressed in various forms [1, 8, 22]. However
all these expressions involve complicated computations
and are impractical. For these reasons, others try to give
a bound for the global error analysis in Eq. 7 so that the
optimization problems can be simplified [1, 10].

In this section, we propose an approximation method
for triangle convex segments, called shoulder point ap-
proximation. For a triangle convex segment, the shoulder
point has certain global properties. That is, the shoulder
point of a triangle convex segment has the maximum dis-
tance to the line determined by its two endpoints. We will
push the shoulder points of the approximated curve and
the approximate quadratic curve Eq. 6 as near as possible.
This gives an optimization method which is fast and has
a certain global property.

Before proposing the shoulder point approximation
method, we will first show how to estimate the error be-
tween the approximated curve and its approximations.
Suppose the implicit form of the quadratic curve Eq. 6
is f(x, y) = 0, which can be easily obtained from Eq. 3.
The distance from C(t) to an implicitly defined function
f(x, y) = 0 can be approximated by the following approx-
imation error function [8]:

e(t) = f(x(t), y(t))

[( fx(x(t), y(t))2 + fy(x(t), y(t))2)2] 1
2

. (8)

The approximation error can then be set as the following
optimization problem:

e = max
a≤t≤b

(e(t)). (9)

The optimization problem could be solved with exist-
ing methods [3]. In practice, we sample t as ti = i

n , i =
0, · · · , n, for a proper value of n, say n = 20, and set the
approximation error as max(|e(ti)|).

Let C(t) = (x(t), y(t)), a ≤ t ≤ b, be a triangle con-
vex curve segment and δ a small positive number. By a
δ-approximation for C(t), we mean a sequence of numbers
a = t0 < t1 < · · · < tm = b, and quadratic curve segments
Pi(t), i = 1, · · · , m, such that:
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– Pi(t), i = 1, · · · , m, pass through C(ti−1), C(ti) and
have the same left and right tangent lines with C(t) at
these points.

– The error between C(t) and Pi(t) computed with Eq. 9
is less than δ in the interval (ti−1, ti).

The following algorithm gives a δ-approximation for
a triangle convex segment via our shoulder point approx-
imation method.
Algorithm 4. The input is a triangle convex curve
segment C(t) = (x(t), y(t)) = S[P0, T0, P2, T2], a ≤ t ≤
b and a small positive number δ. The output is a δ-
approximation for C(t).
1. According to the interpolation requirements at the end-

points of P(ω, t), set P(ω, t) as Eq. 6.
2. Compute the shoulder point M = (Mx, My) of C(t)

from Eq. 5.
3. Let the shoulder point of P(ω, t) be S(ω), as expressed

in Eq. 2. We will determine a specific value ω0 for ω
such that S(ω0) has a minimum distance to the shoul-
der point M of C(t). Let Pi = (xi, yi), i = 0, 1, 2. We
have

S(ω) = (Sx, Sy) =
(

x0 +2ωx1 + x2

2(1+ω)
,

y0 +2ωy1 + y2

2(1+ω)

)
.

Solving the following equation, ∂d2(M,S)
∂ω

= 0, where
d2(M, S) = (Mx − Sx)

2 + (My − Sy)
2, we get

ω0 = 1

2
· (x0 + x2 −2Mx)+α(y0 + y2 −2My)

(Mx − x1)+α(My − y1)

for α = y0+y2−2y1
x0+x2−2x1

.

4. Compute the approximation error δ̄ with Eq. 9 between
P(ω0, t) and C(t). δ̄ < δ, end this procedure. Other-
wise, divide the segment into two parts at the shoulder
point M and repeat the approximation method until the
approximation error is less than δ.
The algorithm is ensured to be terminable for any small

positive number δ from the theorem below.
Theorem 5. With the Algorithm 4, the approximation
error is convergent to zero. More precisely, let s be the
area of the control triangle for the curve segment. After k
recursive subdivisions, the distance between the approxi-
mate curve and the given curve is less than

√
s/2k.

Proof. Let P(t) be the approximate curve for C(t) after one
step of approximation. Then P(t) and C(t) are contained
in triangle P0 P1 P2 (Fig. 8). After another step of segmen-
tation, the curves are contained in triangles P0 Q1 M and
P2 Q2 M, respectively. Let S1 and S2 points on P0 P2 such
that MS1 ‖ P0 Q1 and MS2 ‖ P2 Q2, s0, s1, s2 and s the
areas of triangles MS1S2, P0 Q1 M, P2 Q2 M and P0 P1 P2,
respectively. Then we have (s1 + s2)/s0 = Q1 Q2/S1S2

Fig. 8. Error control

and s0/s = (S1S2/P0 P2)
2. As a consequence,

s0 + s1

s
= Q1 Q2 · S1S2

P0 P2
2

≤ (Q1 Q2 + S1S2)
2

4P0 P2
2

= 1

4
. (10)

Due to the segmentation procedure, the angles P1 P0 P2
and P1 P2 P0 must be acute angles and hence the an-
gles P0 Q1 M and P2 Q2 M must be obtuse angles. Let the
heights of the triangles P0 Q1 M, P2 Q2 M corresponding
to P0 M, P2 M be h10 and h11, respectively. Let Q1T be
the altitude of triangle Q1 P0 M. We have Q1T 2 < P0T ·
TM ≤ (P0T + TM)2/4 = P0 M2/4. Then h10 < P0 M/2
and h11 < P2 M/2. From Eq. 10, we have that

h2
10 +h2

11 < h10 · P0 M

2
+h11 · P2 M

2
= s0 + s2 ≤ s

4
.

In particular, we have h2
10 ≤ s/4 and h2

11 ≤ s/4. Repeat the
process repeatedly. It is easy to show that after k steps of
subdivisions, we have h2

k0 ≤ s/22k and h2
k1 ≤ s/22k. �

Note that even for a large s, the error bound
√

s/2k will
approach to zero very fast. This feature shows the global
characteristic of the method.

Take for example the curve segment in Fig. 9 expressed
as follows [8]:

C2(t) = (t6 + t5 −2t3 +3t2 +12t,

t6 − t5 + t4 −4t3 −2t2 +24t),

where −1 ≤ t ≤ 1.
In this example, C2(t), −1 ≤ t ≤ 1, is first approxi-

mated by a single segment s0. Then C2(t) is divided into
two segments at point C2(.220) and the resulted seg-
ments are approximated by s00 and s01, respectively. Since
the approximation error for s00 is not under the error
bound, C(t), −1 ≤ t ≤ 0.220 is further divided at point
C2(−.344) with corresponding approximations s000, s001.
We compare respectively C2(t), −1 ≤ t ≤ 1, with the ap-
proximate spline (s0), (s00, s01), (s000, s001, s01) in Fig. 9.
The plots of the corresponding approximation error func-
tions defined in Eq. 8 are also shown in Fig. 9.
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Fig. 9. Approximate spline for C2(t)

5 The algorithm and experimental results

With Algorithm 2 to divide a parametric curve into a tri-
angle convex curve segment, which can then be approxi-
mated using Algorithm 4 with rational quadratic segments
in the form of Eq. 1, we can now give the main approxi-
mation algorithm for a normal parametric curve segment
C(t), a ≤ t ≤ b together with its corresponding approxi-
mate implicitizations.

Algorithm 6. The input is a normal curve segment C(t)
= (x(t), y(t)), a ≤ t ≤ b, and a small positive number δ.
The outputs are a quadratic B-spline curve B(t) such that
the approximation error between B(t) and C(t) is less
than δ and the corresponding approximate implicitization
spline for C(t).

1. Divide the curve into triangle convex segments with
Algorithm 2. Let the parametric values corresponding
to the critical points be ti, i = 0, · · · , n +1 (a, b are
also included), and take the left and right tangent di-
rections for each resulted segment as Ti− and Ti+, i =
0, · · · , n.

2. Construct a δ-approximation for C(t) on each interval
(ti, ti+1) using Algorithm 4.

3. Implicitize each resulted quadratic segment from the
step above as Eq. 3.

4. Convert the resulted rational quadratic Bézier spline
curve into a rational quadratic B-spline with a proper
knot selection just as the method proposed in [4, 19].

Theorem 7. With Algorithm 6, we obtain a piecewise C1

continuous approximate curve which keeps the convexity
and the cusp (sharp) points of the approximated paramet-
ric curve.

Proof. It can be first seen that the piecewise quadratic
approximate splines is G1 continuous from the fact
that the quadratic curves have the same tangent di-
rections with the original curve. The C1 continuity is
ensured from the conversion from piecewise Bézier
spline into B-spline with a proper knot selection [4,
19]. Since the quadratic curves have no cusp points,
we do not introduce new cusp points. On the other
hand, for each segment with the cusp point as end-
points, since the original curve is normal, we may de-
fine the tangent directions at the cusp points and the
quadratic curve segments have the same tangent direc-
tions at these cusp points. Therefore, the cusp points
of the original curve are kept (see examples C4(t) in
Sect. 5). Furthermore, the curve is divided into triangle
convex segments and the quadratic segments are con-
vex with no flexes, we also keep the convexity of the
curve. �

The method reported here is implemented in Visual
C++. The following experiments show that the method is
quite efficient in terms of computation time and the num-
ber of segments.

Consider C0(t) and C1(t) defined in the introduction,
C3(t) and C4(t) from [8], C5(t) from [15] and C6(t) intro-
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duced by ourselves as follows:

C3(t) = (3t6 + t5 −2t4 +38t3 −5t2 −14t,

t6 −12t5 −2t4 +2t3 −7t2 +13t),

C4(t) =
(

5t5 −16t4 +10t3 +4t2

0.1t3 +0.1t2 −2t +12.5
,

t5 + t4 +2t3 −16t2

0.1t3 +0.1t2 −2t +12.5

)
,

C5(t) = (92−93t −8t2 +45t3 −59t4 +57t5 +
63t6 +49t7, −12−50t −61t2 +99t3 −5t4

+54t5 +66t6 +77t7 −62t8 +43t9),

C6(t) = (sin(2t)+ ln(5t4 +2)+3t2,

3et2−1 + cos(t/5)+2t7).

The parameters for curves C0(t), C1(t), C3(t), C4(t),
C5(t) and C6(t) take values in [0, 1.8], [0, 1], [−1, 1],
[−1, 2.25], [−0.8, 0.8] and [−1, 1]. The figures of the

Fig. 10. C0 and its approximate spline in 0.28 seconds

Fig. 11. C1 and its approximate spline in 0.34 seconds

Fig. 12. C3 and its approximate spline in 0.55 seconds

approximate splines and the plots of their correspond-
ing error functions are shown in Figs. 10, 11, 12, 13,
14 and 15. The times needed to compute the approxi-
mate spline are 0.28, 0.34, 0.55, 2.09, 0.56 and 3.09
seconds, respectively, in a PC compatible with a 1.6G
CPU.
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Fig. 13. C4 and its approximate spline in 2.09 seconds

We list the exact implicit forms of the curves Ci(t) as
fi(x, y) = 0, i = 3, 4, 5 in the following:

f3(x, y) = x6 −18x5y −9960591x5 +135x4y2

−1997264x4y −619679130x4 −540x3y3

+3580432x3y2 +350654542x3y −26526524706x3

+1215x2y4 −8663560x2y3 −429981958x2y2

−135962440462x2y −943770338935x2

−1458xy5 −563721xy4 −4439136276xy3

−215654524172xy2−3897453715476xy

+14764617650081x+729y6 −532873y5

−297979610y4−425140748152y3

−2007289936389y2+15900357469318y.

f4(x, y) = 3991794925x5 −4172700895x4y

+6971917680x4 +2091059167x3y2

−5264748720x3y +615988800x3

Fig. 14. C5 and its approximate spline in 0.56 seconds

−543605072x2y3 −39483415440x2y2

+3079944000x2y +68106998xy4

+1194822720xy3−4927910400xy2

−3206723y5+350832510y4−29567462400y3.

f5(x, y) = 271818611107x9−1884921382721797x8

+4684978103434262x7y

+6331914982244916011x7

−1915604648060992x6y2

−18020143309088776518x6y
· · ·
−867257790753729562854841038447y2

−28252624012006517385168224708119y
−400386537071228143232938703229756.
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Fig. 15. C6 and its approximate spline in 3.09 seconds

The term f5(x, y) is a polynomial of degree 9 having 41
monomials with large numbers as coefficients. C0(t) and

C6(t) have no exact implicit form. As a comparison, we
also list the implicit forms of the three approximate seg-
ments for C5(t) as follows:

f50 = 13.443− .221x + .558y+ .001x2

− .004yx + .001y2,

f51 = 27031.010−448.412x+440.475y+1.888x2

−3.071yx +1.420y2,

f52 = 21.581− .600x + .456y+ .004x2

− .007yx + .003y2.

6 Conclusion

We propose an algorithm to construct rational quadratic B-
spline approximation for a plane curve in parametric form
and explore its applications in approximate implicitiza-
tion. After the computation of the critical points, the algo-
rithm mainly involves the solution of non-linear univariate
equations. With this algorithm, we keep the convexity and
the cusp points of the parametric curve with simple com-
putation.

Our future work is to further explore the curve seg-
mentation to intrinsically decompose the approximated
curve in an optimal way for conic or cubic segments
approximation, in combination with its curvature varia-
tion. The extension of the algorithm for an approximate
parametrization of an implicitly defined algebraic curve
can be found in [12]. It is interesting to see whether
the method can be extended to approximate 3D sur-
faces.

We wish to express our thanks to referees of this paper
for their valuable comments and suggestions.
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for conics. In: Farin, G. (ed.) Geometric
Modeling: Algorithm and New Trends, pp.
3–19. SIAM, Philadelphia (1985)

17. Li, Y., Cripps, R.: Identification of
inflection points and cusps on rational
curves. Comput. Aided Geom. Des. 14(5),
491–497 (1997)

18. Montaudouin, Y., Tiller, W., Vold, H.:
Application of power series in
computational geometry. Comput. Aided
Des. 18(10), 93–108 (1986)

19. Park, H.: Choosing nodes and knots in
closed b-spline curve interpolation to
a point data. Comput. Aided Des. 33(13),
967–974 (2001)

20. Piegl, L.: Interactive data interpolation by
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