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Abstract    The aim of mathematics mechanization is to 
develop symbolic algorithms for manipulating mathematical 
objects, proving and discovering theorems in a mechanical 
way. This paper gives a brief review of the major advances 
in the field over the past thirty years. The characteristic set 
method for symbolic solution of algebraic, differential, and 
difference equation systems are first introduced. Methods 
for automated proving and discovering geometry theorems 
are then reviewed. Finally, applications in computer-aided 
geometric design, computer vision, intelligent computer- 
aided design, and robotics are surveyed. 
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1 Introduction 
A major trend in the information age is the mechanization of 
mental labor with the assistance of computers. Partial 
mechanization of mental labor allows scientists and engi-
neers to free themselves from tedious and sometimes human 
unreachable tasks and to concentrate on high-level innova-
tive activities, and hence to greatly enhance social produc-
tivity. It was in this background that the first author of this 
paper began to call for the study of mathematics mechaniza-
tion in the 1970s, which is the effort to mechanize mental 
labor in the field of mathematics, in particular, theorem 
proving, discovering, and equation solving. 

The first author of the paper started the research on 
mathematics mechanization around 1976 and published the 
first paper in 1978, in which he established a method for 
proving geometry theorems, known as Wu’s method. In 
1979, the first author of the paper went further to propose 
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the “Program of Mathematics Mechanization” which con-
sists the following aspects:  

• “Cover as much as possible the whole of mathematics 
by domains each of which is sufficiently small to be mecha-
nizable, at the same time also sufficiently large to contain lot 
of theorems or problems of high mathematical interest.” 

• Apply the methods of mathematics mechanization to in-
terdisciplinary studies and engineering problem solving.  

The past thirty years witnessed the development of 
mathematics mechanization into an active new research area 
covering theories, algorithms, and a wide range of applica-
tions. 

The central theme of mathematics mechanization in the 
past thirty years is to study effective symbolic methods for 
solving various equation systems. The reason could be illus-
trated by the so-called Descartes Program [1], which was 
proposed by Descartes in his posthumous work Rules for the 
Direction of the Mind as a general principle of problem 
solving: 

First, reduce any kind of problem to a mathematical 
problem.  

Second, reduce any kind of a mathematical problem to a 
problem of algebra.  

Third, reduce any problem of algebra to the solution of a 
single equation. 
Although the Descartes program is apparently wrong in 
many aspects, the importance of Descartes’ thought is un-
disputable. It is well-recognized that algebraic equation 
solving plays a key role in many kinds of important science 
and engineering problems, let alone we could include dif-
ferential, difference, and other types of equations in this 
program. 

On the other hand, developing methods for solving equa-
tions is the main concern of mathematics in ancient China  
[2]. A peak of the work of ancient Chinese mathematicians 
on equation solving is Szejie Zhu’s work in 1303, which 
gives a quite general method for solving equation systems 
with four indeterminates. It is along the lines of thought fur-
nished by the classic work of the ancient Chinese mathe-
matics that the first author introduced concepts and tech-
niques from modern mathematics, mainly borrowed from 
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the classical text of Ritt [3], in order to reformulate and to 
make precise and rigorous the procedure that originated 
from Szejie Zhu’s work. The outcome is a general charac-
teristic set method [4, 5], which will be reviewed in Section 2. 

Another focus of mathematics mechanization is auto-
mated reasoning and computation in geometries. Geometry 
has always been a model of precise reasoning. It is quite 
natural that geometry theorem proving was selected as one 
of the first problems to be experimented with when the field 
of artificial intelligence (AI) started in the 1950s. But, the 
progress is slow in the sense that the proposed methods 
could only prove very simple geometry theorems. Things 
changed after the appearance of Ref. [6], where a powerful 
method is introduced, which can be used to prove quite dif-
ficult geometry theorems efficiently [5, 6] for the first time. 
Due to this method, “geometry theorem proving was then 
fully revived and became one of the most actively re-
searched and successful areas in automated deduction” [7]. 
In Section 3, we will give a brief introduction to some of the 
major developments in this area. 

Applications and interdisciplinary studies are a major 
character of mathematics mechanization. The characteristic 
set method and the methods for geometry reasoning and 
computation have diverse applications. Theoretically, they 
may serve as a basis to solve many problems from mathe-
matics, physics, mechanics, chemistry, computer science, etc. 
They were also applied to many problems from real-world 
applications, especially problems from IT, including com-
puter vision and image processing [8−11], intelligent com-
puter-aided design (CAD) systems [12], computer-aided 
geometric design (CAGD) [2, 13−15], hardware verification 
[16], analysis of robotics and mechanisms [2, 17]. In Section 
4, we will review some of these applications. 

 

2  The characteristic set method 
The characteristic set method plays a central role in the the-
ory and applications of mathematics mechanization. In this 
section, we will introduce its main features and applications 
in equation solving.  

2.1  Properties of ascending chains 

Let K be the field of rational numbers, 1 2{ , , , }nx x x= "X  a 
set of indeterminants, and K [ ]X  the set of polynomials 
in X with coefficients in K. The universal field E over K is an 
algebraically closed field containing an infinite number of  
indeterminants. For a polynomial D and a polynomial set P  
⊂   K [X], 

Zero( ) { | ( ) 0, }n P Pη η= ∈ = ∀ ∈P PE  

is called a variety, and Zero (P/D) = Zero (P) \ Zero(D) is 
called a quasi variety. 

A set A of polynomials is called an ascending chain (or 
triangular set), or simply a chain, if after renaming the vari-

ables X as U = {u1," , uq} and Y = {y1," , yp}, A can be 

written as the following form: 
A1(U, y1) = I1

1
1
dy + terms of lower degrees in y1, 

"  (1) 
Ap(U, y1," , yp) = Ip

pd
py + terms of lower degrees in yp. 

Ii is called the initial of Ai. Denote IA = ∏ i Ii. The dimension 
of A is defined to be dim(A) = |U| = q. The degree of A is 

defined to be deg(A) = 1 .p
ii d=∏  

We could say that the solutions for a chain is basically 
determined. Intuitively, for a set of given values of the pa-
rameters U, the yi can be determined iteratively by solving 

univariate equations Ai = 0. In order to show the properties 
of chains, we first introduce several concepts. The satura-
tion ideal of A is defined as below: 

sat(A) = {P [ ] | , ( )}.kk P∈ ∃ ∈IX AK A  
We may define an ordering among the chains such that 

any set of chains contains one with the lowest order [2, 5]. A 
characteristic set of a polynomial set P  is any chain con-
tained in P  with lowest ordering. 

A chain A  is called irreducible if A1 is irreducible in  
K1 [y1] and Ak is irreducible modulo A1," , Ak−1. 
Theorem 2.1  Let A  be an irreducible chain. Then sat ( )A  

is a prime ideal of dimension dim ( )A  and degree deg ( )A  

with respect to .U  Conversely, a characteristic set of a prime 
ideal is irreducible. 

The following result shows that the dimension and degree 
of a chain are intrinsic properties. 
Theorem 2.2  [18, 19] Let A  be a chain of form (1). If 
Zero(sat ( )) ,≠A ∅  Zero(sat ( )A ) and Zero ( / )IAA are un-
mixed. More precisely, write Zero(sat ( )A ) as an irredun-

dant decomposition: Zero(sat ( )A ) = 1
r
i=∪ Zero(sat(Ci)). 

Then 
(i) Ci is also of form (1). As a consequence, dim(sat(Ci)) = 

dim(A). 

(ii) 1deg ( ) deg ( ) .r
i i=∑≥A C Furthermore, deg ( ) =A     

1deg( )r
i i=∑ C  iff A is satured, that is, the initials and se-

prants of A are invertible with respect to A. 
To extend Theorems 2.1 and 2.2 to the case of algebraic 

differential polynomials, we need to assume that the chains 
are either passive [20] or coherent [21, 22]. 

Similar results are also proved in the case of algebraic 
difference polynomials [19, 23]. However, in the difference 
case, we do not have algorithms to decide whether a chain is 
regular or irreducible. In order to have a constructive theory, 
proper irreducible chains are introduced [23]. Also, Theorem 
2.2 is proved for proper irreducible chains. 

In differential and difference cases, Theorem 2.2 could be 
strengthened as follows. Let A be a chain of form (1). De-
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fine the order of A to be ord( ) ord( , ).i ii A y=∑A  Then we 

further have  
Theorem 2.3  [19] Let 1Zero( ( )) Zero( ( ))r

i i==sat sat∪A C  
be an irredundant decomposition. Then ord(A) = ord(Ci). 

Other properties of chains, including invertibility with 
respect to a chain and properties of the saturation ideal [22, 
24], factorizations module of a chain [25], and bounds for 
the coefficients of a chain to represent a zero-dimensional 
variety [26], were also studied. 

2.2  Characteristic set method 

The characteristic set method is to decompose the zero set 
for a polynomial system in general form into the union of 
zero sets for chains. Since the zero set of a chain is consid-
ered to be known, this method gives a general tool to deal 
with equation systems. The characteristic set method con-
sists of the well-ordering principle, the zero decomposition 
theorem, and the projection theorem. 

Let P  be a finite set of polynomials. Then we can per-
form the following operations: 

0 1

0 1

0 1

mi

i m

i m

=
=
=

" "
" "
" "

PP P P P

R R R R
B B B B C

∅
 (2) 

where iB is the characteristic set of ;iP  iR  is the set of 
nonzero remainders of the polynomials in iP with respect 
to iB ;  and 1 .i i i+ = ∪P P R  In scheme (2), m =B C verifies 

prem( , ) {0} and Zero( ) Zero( ),= ⊂P PC C  (3) 
where prem denotes the pseudo-remainder. Any chain C 
verifying the property (3) is called a Wu characteristic set of  
P. 

Theorem 2.4 (Wu’s Well-ordering Principle)  [5, 6] Let C 

be a Wu characteristic set of a polynomial set P. Then 

Zero( ) Zero( / ) Zero( { }),

Zero( ) Zero( ( )) Zero( { }),
i i

i i

I

I

=

=

I

sat

∪ ∪ ∪

∪ ∪ ∪
∪
∪

P P
P P

CC C

C C
 

where Ii are the initials of the polynomials in C. 
Using the well-ordering principle recursively, we obtain 

the following key result. 
Theorem 2.5 (Ritt-Wu’s Zero Decomposition Theorem) [3, 
5] There is an algorithm that allows the determination for a 
given polynomial set P  in a finite number of steps a finite set 
of (irreducible) chains Aj such that 

Zero( ) = Zero( / ) = Zero( ( )).
jj j j jI sat∪ ∪P AA A  

Let P  be a polynomial set, and [ , ],D ∈ U XK where 

1{ , , }mu u= "U  and 1{ , , }.nx x= "X  The projection of 
Zero( / )DP�  to U  is defined as follows: 

Proj Zero( / ) { | . .( , ) Zero( / )}.m nD e a s t e a D= ∈ ∃ ∈ ∈X P PE E  
Projection for quasi-varieties can be computed with the 

characteristic set method. 
Theorem 2.6 (Projection Theorem)  [2, 27] For a poly-
nomial set [ , ]K⊂P U X  and [ , ],D K∈ U X we can compute 
chains iA  and polynomials Di in [ ]UK  such that 

1Proj Zero( / )= Zero( / ).
i

l
i i iD D= I∪X P AA  

The concept of characteristic set for prime ideals was in-
troduced by Ritt [3]. The Wu-characteristic set, the well- 
ordering principle, and the current form of zero decomposi-
tion theorems were introduced by the first author [2, 4−6]. 

The complexity of the method was studied in Ref. [28]. 
Like most general algorithms for polynomial equation solv-
ing, the characteristic set method is of exponential complex-
ity in the worst case and developing algorithms with lower 
complexity is a challenging problem. In order to improve the 
computation efficiency, new forms of chains such as weak 
chains [5, 18], regular chains and satured chains [22, 29, 30] 
were introduced. Hybrid characteristic set methods were 
introduced in Refs. [31, 32]. New elimination procedures for 
the characteristic set method were introduced [2, 18, 30, 
33−35]. A promising work is to develop a modular charac-
teristic set method [26], where a new equiprojectile decom-
position algorithm was proposed. 

The characteristic set method for algebraic differential 
equation systems was also proposed [3, 20−22, 36−38]. A 
characteristic set method for algebraic difference equation 
systems was proposed in Refs. [19, 20]. The characteristic 
set method was also extended to certain analytical functions 
in Ref. [39]. 

The characteristic set method was implemented in several 
software packages, including the MMP [40], Wsolve [41], 
and Epsilon [42]. 

2.3  Equation solving with the characteristic set method 

When talking about equation solving, most people usually 
refer to numerical methods such as the Newton-Raphson 
method. These methods start from certain initial values and 
apply some limiting processes to converge toward some 
solution of the given polynomial equations. In general, these 
methods will give only one solution among the set of all 
possible solutions and are thus local in character. Also, these 
methods give only solutions in approximate values and suf-
fer from error control as well as stability control. 

In contrast to the numerical methods, the symbolic ones 
give solutions in some acceptable algebraic form and all the 
possible solutions may be expressed in this way so that the 
methods are global in character. Among such symbolic 
methods we may cite in particular the Gröbner basis method, 
which has been proved to be quite successful in the 
zero-dimensional case. On the other hand, by decomposing 
the zero set of a polynomial system into the zero sets of 
polynomial systems in triangular form, the characteristic set 
method gives a complete way to describe the structure for 
the zero sets of equation systems for all dimensions [2, 4, 5]. 
Furthermore, for zero dimensional chains, its real solutions 
can be computed by methods of root isolation [43]; for al-
gebraic differential equations, formal power series solutions 
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for chains can be computed algorithmically [44]. 
Most equation systems from applications have parameters. 

In general, a parametric polynomial equation system in 
1= { , , }nx x"X  with parameters 1{ , , }mu u= "U  has the 

following form: 
1

1

( , ) 0, , ( , ) 0,
( , ) 0, , ( , ) 0.

t

r

P P
D D

= =
≠ ≠

"
"

U X U X
U X U X  (4) 

For an equation system (4), we may ask the following 
questions: (1) For what values of ,U  the xi have solutions? 
(2) How to compute these solutions for xi? (3) Determine the 
number of solutions of the xi for given values of .U  The first 
problem can be answered by the Projection Theorem 2.6. 
The second problem is solved by dividing the parametric 
space into domains and on each domain the solution for xi 
can be represented by a chain [45]. The third problem is 
solved if the equation system has a finite number of solu-
tions for the xi. 

Hybrid characteristic set methods were developed to have 
the advantages of both the numerical methods and the sym-
bolic methods [11, 13, 32]. 

 

3  Automated reasoning with the characteristic set 
method 
After Ref. [6], extensive studies on automated theorem 
proving were carried out. In this section, we survey some of 
the major advances. 

3.1  Wu’s method of automated geometry theorem proving 
and discovering 

A geometry theorem is called a theorem of equality type, if 
after introducing coordinates, the theorem can be expressed 
in the following form: 

1 1[( 0 0 0 0) ( 0)],i s tx H H D D C∀ = ∧ ∧ = ∧ ≠ ∧ ∧ ≠ =" " ⇒  (5) 
where Hi, Di, C are in [ ].XK  

For theorems of equality type, we have the following 
principles of mechanical theorem proving, which are conse-
quences of Theorems 2.4 and 2.1. 
Theorem 3.1  [6] For a geometry statement of form (5), let 

A  be a Wu-characteristic set of {H1," , Hs}. If prem(C, A) 
= 0, then the statement is valid under the non-degenerate  
condition IA 0.≠  

Note that the non-degenerate condition 0≠IA  is gener-
ated automatically by the algorithm. 
Theorem 3.2  [5] Let .i iD D= ∏ With Theorem 2.5, we 
have 

1 1Zero({ , , }/ ) Zero( ( ) / ).l
s i iH H D D== sat" ∪ A  

If prem( , ) 0, 1, , ,iC i l= = "A  then the statement is true. If 

iA  is irreducible and prem( , ) 0,iC ≠A then the statement is 
not valid on Zero( ( ) / ).i Dsat A  

There are two kinds of problems in elementary geometry 

other than theorem proving. One is finding locus equations, 
the other is deriving geometry formulas. For a geometric 
configuration given by a set of polynomial equations 

1 1 1( , , , ) 0, , ( , , , ) 0,p r ph x x h x x= =" " "U U  we want to find 
a relation between arbitrarily chosen variables U (parame-
ters) and a dependent variable, x1. It is pointed out in Ref. 
[46] that the characteristic set method can be used to dis-
cover such unknown geometric formulas. Many new theo-
rems from elementary and differential geometries were 
discovered in this way. 

The characteristic set method can be used to prove a 
much wider class of geometry theorems. Let E  e an alge-
braically closed extension of K, that is, the field of complex 
numbers. A first order formula over E  can be defined as 
follows:  

1. If [ ],P ∈ XK  then ( ) 0P =X  is a formula. 
2. If f, g are formulas, then , ,f f g¬ ∧  and f g∨  are 

formulas. 
3. If f is a formula, then ( )ix f∃ ∈E  and ( )ix f∀ ∈E  are 

formulas. 
A formula can always be written as a prefix canonical form: 

1 1 1 1( , , , , , ),m m d mQ y Q y u u y yφ ψ= " " "  (6) 
where Qk is a quantifier ∃  or ∀  and ψ a formula free of 
quantifiers. For a first order formula φ of form (6), there 
exists a fundamental problem: 

Quantifier Elimination: Find a formula 1( , , )du uθ "  

such that θ is equivalent to φ. If d = 0, we need to decide 
whether φ is valid or not. 

Since an existential quantifier can be eliminated with 
Theorem 2.6, we have the following result, which gives the 
scope of Wu’s method of geometry theorem proving. 
Theorem 3.3  Based on the characteristic set method, we 
have a decision procedure for the first order theory over a 
(differentially) algebraically closed field. 

It turns out that most of the theorems in elementary and 
differential geometries are of equality type and the Wu’s 
method is capable of proving most of these theorems. Col-
lections of theorems proved with Wu’s method can be found 
in Refs. [18, 47]. Wu’s method to prove theorems in ele-
mentary geometries was further extended to prove theorems 
from differential geometry and mechanics [20, 44]. The 
method is further improved and extended in Refs. [36, 38, 
48]. 

3.2  Coordinate-free approaches to automated reasoning in 
geometry 

Algebraic methods, though powerful, generally can only tell 
whether a statement is true or not. The proofs generated are 
generally not readable. Several approaches to produce read-
able proofs based on geometric invariants were proposed. As 
expected, these methods can produce shorter proofs than that 
of the coordinate-based methods. But, this advantage comes 
with a price: in general, these methods are not complete. 

The area method is the first successful method based on 
geometric invariants [49]. Three basic geometric quantities: 
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the ratio of parallel line segments, the signed area, and the 
Pythagorean difference are used as the basic geometric 
quantities. The basic propositions, which formally describe 
the properties of these quantities, are the deductive basis of 
the area method. The method involves the elimination of the 
constructed points from the conclusion using these basic 
geometry propositions. The area method is powerful enough 
to solve most of the problems that have been solved with 
Wu’s method and is capable of producing short and readable 
proofs for a large proportion of them. 

One of the earliest efforts to develop coordinate-free 
methods of geometric reasoning is to use techniques from 
the bracket algebra such as Cayley factorization and bi-
quadratic final polynomials. The first successful method 
along this line is proposed in Ref. [50]. In Refs. [51, 52], the 
techniques of Clifford algebra are combined with Wu’s 
method to prove geometry theorems. The idea is to use sev-
eral rules of solving vector equations in vector level. 

More recently, Li et al. proposed the conformal geometric 
algebra [53], which is a powerful tool for geometric repre-
sentation and computations. By mapping three-dimensional 
geometric objects into a five-dimensional space, this algebra 
provides a unified and compact representation for classical 
geometric objects and a set of effective algorithms for geo-
metric computation. As a consequence, geometric theorems 
can be proved and new geometric relations can be discov-
ered effectively [54]. Conformal geometric algebra is also 
widely used in computer vision and computer graphics. 

3.3  AI approaches to automated reasoning in geometry 

Geometry theorem proving on computers began in the 1950s 
with the landmark work of Gelernter et al. [55]. Gelernter’s 
geometry machine uses a backward chaining approach, that 
is, it reasons from the conclusion to the hypotheses and gen-
erates a proof-tree for a theorem. Several basic ideas of 
geometric reasoning such as using a numerical model, con-
structing auxiliary points, and generating geometric lemmas 
were studied in this work. Most of the other work on the AI 
approach of geometric reasoning can be considered exten-
sions of this work. The main problem with these approaches 
is that the search of a proof generally will lead to search 
space explosions and the methods cannot be used to prove 
difficult theorems. 

In Ref. [56], a deductive database method for geometry 
theorem proving is proposed. The resulting program can be 
used to find the fixpoint for a geometric configuration, i.e., 
the system can find all the properties of the configuration 
that can be deduced using a fixed set of geometric rules.  
This method seems to be the first search-based method ca-
pable of proving and discovering a large number of geomet-
ric theorems. The idea of the method is to use a structured 
deductive database to reduce the size of the database and to 
use a set of powerful deduction rules based on the concept of 
full-angles. 

Generally speaking, the algebraic approaches are decision 
procedures and are more powerful, while the AI approaches 
are not decision procedures and are less powerful. But, the 
AI methods have the following advantages. (1) Exploring 

search methods may lead to general techniques of theorem 
proving. (2) Proofs produced by the AI method are generally 
easy to understand than proofs based on algebraic computa-
tions. (3) Using predicates only makes the reaching of fix-
point possible. (4) AI methods allow to produce multiple and 
shortest proofs for a geometry theorem. 

Geometry Expert is a software system that implements 
Wu’s method, the area method, and the deductive database 
method for proving geometry theorems [57]. It is also a dy-
namic geometry software system for automated geometric 
diagram generation. 

3.4  Proving theorems involving inequalities 

The methods introduced in Section 3.1 are complete only for 
geometries over complex numbers, although it is quite suc-
cessful to prove theorems from Euclidean geometry. His-
torically, Tarski’s landmark work on quantifier elimination 
over the field of real numbers provides a complete method 
to prove all elementary theorems from Euclidean geometry. 
However, Tarski’s method is too involved to solve any prob-
lems in practice. In the 1970s, Collins invented the CAD 
method, which provides an optimized quantifier elimination 
algorithm [58]. This general approach is used to prove 
geometry theorems with limited success. The main difficulty 
is that in geometry theorems, there are many parameters that 
increase the computation complexity. An effective method 
along this line is the quantifier elimination algorithm for 
linear and quadratic equations proposed in Ref. [59], which 
has been used to prove a large number of difficult geometry 
theorems. 

The global optimization problem under algebraic con-
straints was considered [60] and the following result was 
proved. 
Theorem 3.4 (Finite Kernel Theorem)  [60] Let P  be an 
arbitrary polynomial set and P a polynomial in [ ].XR  Then 
we can construct a finite set of real values K such that the 
extremal values of P under the constraint = 0P  are con-
tained in K.  

The method was used to prove geometry theorems in-
volving inequalities, to prove trigonometric inequalities, to 
solve non-linear programming problems, and to solve 
optimization problems [2]. 

In Refs. [30, 61], a powerful tool, called the complete 
discrimination system (CDS) was introduced, which can be 
used to give explicit conditions for a univariate polynomial 
equation P(x) = 0 to have a certain given number of solu-
tions. By means of CDS, together with Wu’s method and a 
partial CAD algorithm, a program called BOTTEMA was 
implemented, which is particularly powerful to prove ine-
qualities from triangles [62]. 

 

4  Selected applications of the characteristic set 
method 
Equation solving, geometric computation and reasoning are 
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within the heart of many aspects of information technology. 
Methods developed from mathematics mechanization have 
been used successfully in some of these problems. In this 
section, we review several of these applications. 

4.1  Applications to computer-aided geometric design 

Two kinds of problems from CAGD are extensively studied 
with the characteristic set method: the surface-fitting prob-
lem and the implicitization of rational parametric equations. 

The surface-fitting problem is to construct a real implicit 
surface that intersects a set of given real surfaces along a set 
of given curves with certain given continuities [2]. Based on 
the characteristic set method, a general method to solve the 
above problem was given. As an example, it is shown that 
there exists a cubic blending surface for two cylinders de-
fined by 

2 2 2 2 2 2
1 2,y z r x z r+ = + =  alone the sections given 

by x = d1, y = d2 iff 
2 2 2 2

1 1 2 2 .r d r d+ = +  In Ref. [14], a set of 
similar formulae for blending two quadratic surfaces in gen-
eral form were given and named the Wu Wen-tsun formulae. 
Blending three or more surfaces with Wu’s method was con-
sidered in Ref. [31]. 

To find the implicit form for a set of rational parametric 
equations is a basic problem in CAGD. Most existing work 
satisfies with finding the implicit equations. A method was 
proposed in Ref. [27] to find the defining equations for the 
image of a set of rational parametric equations. In Ref. [15], 
Wu’s method is used to find a basis for the implicit ideal; to 
decide whether the parameters are independent, and if not, to 
re-parameterize the equation so that the new parameters are 
independent; to decide whether the parametric equation is 
proper, and for a non-proper equation, find a proper re- 
parameterization; to decide whether the parametric equation 
is normal, and if it is not normal, find a normal re-parame-
terization in some cases. 

4.2  Applications to computer vision 

Some of the early applications focused on solving con-
straints raised from computer vision. In Ref. [9], Wu’s 
method is used to perspective viewing in image understand-
ing. Here, the authors considered the problem: under what 
conditions the images of some geometric objects are in cer-
tain particular positions and how to use Wu’s method to de-
duce these conditions automatically. In Ref. [63], Wu’s 
method is used to solve the edge matching constraints and 
occluding-contour constraints occurring in the global stereo 
vision problem when the scene consists of polyhedrals. 

Another problem studied extensively with Wu’s method 
is the Perspective-n-Point (PnP) problem [8, 10, 11]. The 
problem is to determine the position and orientation of the 
camera with respect to a scene object from n correspondent 
points. In Ref. [8], the characteristic set method is used to 
give a complete analytical solution to the P3P problem. A 
complete solution classification for the P3P equation system 
is also given, that is, explicit criteria are given for the P3P 
problem to have one, two, three, and four solutions. Com-

bining the analytical solutions with the criteria, an algorithm 
is given to find complete and robust numerical solutions to 
the P3P problem. The characteristic set method is used to 
prove that the probability for the P4P problem to have one 
solution is one. In Ref. [11], a hybrid method was proposed, 
which can be used to find solutions in the singular case. 

Due to its ability to represent geometric objects intrinsi-
cally, geometric invariant methods are widely used in com-
puter vision. Methods proposed in Refs. [52, 54] were used 
to study the reconstruction of high dimension objects from 
their 2D projections. Conformal geometric algebra was used 
to simplify the solving procedure for monocular vision 
problems. Spinor and twist representations are used to re-
duce the number of constraints, which often lead to effective 
solutions of the pose estimation problem, shape approxima-
tion, and curve blending [53]. 

4.3  Applications to intelligent computer-aided design 

Most works on automated geometry reasoning focus on 
theorem proving and discovering. On the other hand, many 
problems from engineering applications are about how to 
draw a geometric diagram automatically. A typical example 
is computer-aided design where the main task is to draw 
machine parts and a key feature of the new generation of 
CAD system is the automatic generation of such design dia-
grams. 

A general framework for automated geometric diagram 
generation is as follows. First, graphical algorithms are used 
to decompose a large problem into basic merge patterns, 
which are the smallest problems that cannot be decomposed 
further [12]. Second, basic merge patterns are classified and 
solved with symbolic or numerical methods. Third, merge 
the solved basic merge patterns to obtain a solution of the 
original problem. The decomposition is the key step in the 
solving process, and it is due to this step that a class of 
large-scale problems can be solved effectively. 

The characteristic set method and search methods can be 
used to solve the basic merge patterns and to simplify the 
decomposition [12, 17]. Based on Wu’s method, a decision 
procedure for ruler and compass construction for a geomet-
ric diagram was proposed. 

4.4  Applications to kinematics of robotics 

From the viewpoint of structures, there are two major 
classes of robotics: serial manipulators consisting of several 
links successively and parallel manipulators consisting of 
two platforms connected with several independent links. The 
inverse kinematics of a manipulator is to find the parameters 
for the links such that the manipulator can reach a given 
position and an orientation in the space. The forward kine-
matics of a manipulator is to find the position and orienta-
tion of one end of the manipulator for given parameters of 
the links. The inverse kinematics for serial manipulators and 
the forward kinematics for parallel manipulators are central 
problems for kinematics of robotics. 

It is known that the inverse kinematics for a general serial 
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manipulator has up to 16 solutions. Closed form solutions 
are not yet found. Using the characteristic set method, a 
complete analysis for the inverse kinematics of a special 
type of serial manipulator, Puma560, was given. The ana-
lytical solutions, the working range, and the singularities of 
the inverse kinematics were derived [2]. 

The general spatial parallel manipulator has six links and 
is called the Stewart platform. It is known that the forward 
kinematics for the Stewart platform has up to 40 solutions. 
Closed form formulae for these solutions were found only in 
some special cases. In Ref. [17], a class of 3850 generalized 
Stewart platforms was introduced, which consists of two 
rigid bodies connected with six distance and/or angular con-
straints between six pairs of points, lines and/or planes in the 
base and the moving platform, respectively. Upper bounds 
for the number of solutions of the forward kinematics for all 
the platforms were given. Closed-form solutions and the 
best upper bounds of real solutions of the forward kinemat-
ics for a class of 1120 platforms were given with Wu’s 
method. 
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