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Abstract. A characteristic set theory for partial difference polynomial
systems is proposed. We introduce the concept of coherent and regular
ascending chains and prove that a partial difference ascending chain is
the characteristic set of its saturation ideal if and only if it is coherent
and regular. This gives a method to decide whether a polynomial belongs
to the saturation ideal of an ascending chain. We introduce the concept
of strongly irreducible ascending chains and prove that a partial differ-
ence ascending chain is the characteristic set of a reflexive prime ideal
if and only if it is strongly irreducible. This gives a simple and precise
representation for reflexive prime ideals.
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1 Introduction

The characteristic set method is a fundamental tool for studying systems of alge-
braic or algebraic differential equations. The method could be used to transform
an equation system into so-called characteristic sets, which are systems of equa-
tions in certain triangular form also called ascending chains, or simply chains.
This allows people to give the dimension, the order, and the degree of a solution
set over an algebraically or differentially closed field. Also, triangular equation
systems are ready for symbolic and numerical solutions.

The characteristic set method was introduced by Ritt in the 1930s as an
algebraic tool to study differential equations [17, 19]. However, the algorithmic
study of the characteristic set was in stagnation for quite a long time until Wu’s
work on zero decomposition for polynomial equations and automated geometry
theorem proving appeared in the late 1970s [23,24,25]. Since then, many efficient
algorithms and new properties for characteristic sets were proposed for algebraic
equation systems and differential equation systems [1,2,4,5,6,7,8,9,11,12,16,22,
27]. In [13, 14, 15], a characteristic set method was also introduced for ordinary
difference equation systems and ordinary differential-difference equation systems.

In this paper, we develop a characteristic set theory for partial difference poly-
nomial systems. We obtain three main results. First, we introduce the concept
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of coherent chains and this leads to a normal representation of the difference
polynomials in the saturation ideal of a coherent chain. Second, we introduce
the concept of regular chains and prove that a partial difference chain is the
characteristic set of its saturation ideal if and only if it is coherent and regular.
We also prove that the saturation ideal of a partial difference regular and coher-
ent chain is the union of some algebraic saturation ideals. This gives a method
to decide whether a polynomial belongs to the saturation ideal of a chain. Third,
we introduce the concept of strongly irreducible chains and prove that a partial
difference chain is the characteristic set of a reflexive prime ideal if and only if it
is strongly irreducible. This gives a simple and precise representation for prime
and reflexive prime ideals. These results are generalizations of similar results
about algebraic polynomial systems [2], differential systems [6,16], and ordinary
difference systems [13,14]. Due to the complicated structure of partial difference
polynomials, our generalization is nontrivial and there still exist many problems
unsolved in the partial difference case. The major open problem is to give a
constructive criterion for regular and non-trivial chains. For details, please see
Section 4.

In [18,20,26], the characteristic set of partial differential and difference poly-
nomial systems was defined and used to prove the Noetherian property of the
partial differential and difference polynomial ring. Dimension polynomials for
differential and difference polynomial ideals were also studied in [18, 26]. But,
the results presented in this paper for regular and irreducible chains were not
given in these papers.

The rest of this paper is organized as follows. In Section 2, we present the no-
tations and known results needed in this paper. In Sections 3, 4, and 5, we prove
the properties of coherent, regular, and strongly irreducible chains respectively.
In Section 6, we give the zero decomposition theorem and algorithm. In Section
7, we conclude the paper.

2 Preliminaries

We will introduce the notions and preliminary properties needed in this paper.
For the general theory of difference algebra, please refer to [3, 10, 18].

2.1 Difference Polynomials and Difference Chains

Let K be a field of characteristic zero. We say that K is an inversive partial
difference field with transforming operators {σ1, . . . , σm} over K, if {σ1, . . . , σm}
are automorphisms of K onto K which commute pairwise on the elements of K.
Let

Tσ = {σo1
1 . . . σom

m |j = 1, . . . , m, oj ≥ 0}.

We regard Tσ as a free commutative monoid. The order of an element η =
σo1

1 . . . σom
m of Tσ is ord(η) = Σm

j=1oj . η is proper if ord(η) �= 0. The vector of an
element η ∈ Tσ is vec(η) = (i1, . . . , im) if η = σi1

1 . . . σim
m . For η1, η2 ∈ Tσ, η1 is a
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(proper) multiple transform of η2 or η2 is a (proper) factor transform of η1 if ∃
η ∈ Tσ such that η1 = ηη2 (ord(η) �= 0). It is denoted by η1 � η2(η1 � η2).

Let X = {x1, . . . , xn} be a finite set of difference indeterminates over K and

TσX = {ηxi|η ∈ Tσ, i = 1, . . . , n}.

R = K{x1, . . . , xn} = K[TσX] denotes the ring of partial difference polynomials
in the indeterminates X with coefficients in K. For convenience, in this paper,
when we say polynomials, we mean partial difference polynomials, otherwise we
will point out clearly.

Let < be a total ordering over TσX defined as follows: ∀η, θ ∈ Tσ, 1 ≤ i, j ≤ n,
ηxi > θxj if i > j or i = j and ord(η) > ord(θ) or else ord(η) = ord(θ) and the
first nonzero element of vec(η)−vec(θ) is greater than zero. Let f be a polynomial
not in K, the leader of f is the highest element of TσX (w.r.t. <) that appears
in f , and we denote it by uf . We write f as a univariate polynomial in uf :

f = Idud
f + · · · + I0.

Id = init(f) is called the initial of f . Let uf = ηxi. Then i and xi are called the
class and leading variable of f , denoted as class(f) and lvar(f) respectively. We
define vec(ηxi) = vec(η) and vec(f, xj) = vec(η), if ηxj = max{τxj appears in
f}, vec(f) = vec(f, lvar(f)).

An n-tuple over K is of the form a = (a1, . . . , an), where the ai are selected
from some difference extension field of K. Let f ∈ K{X}. To substitute an n-tuple
a into f means to replace each of the ηxi occurring in f with the corresponding
ηai. Let P be a set of polynomials in K{X}. An n-tuple over K is called a
solution of the equation set P=0 if the result of substituting the n-tuple into
each polynomial of P is zero. We use Zero(P) to denote the set of solutions of
P = 0. Let f ∈ K{X}. It is easy to check that Zero(f) = Zero(ηf) ∀η ∈ Tσ. For
the sets of polynomials P and D, Zero(P/D) denotes the set of solutions of P = 0
which do not annihilate any polynomial of D.

Let g be a polynomial not in K. A polynomial f is said to be of less than g,
denoted as f < g, if uf < ug or (uf = ug) = u and deg(f, u) < deg(g, u). If
neither f < g nor g < f , we say that f and g are equivalent and we write f ≡ g.
A polynomial f is said reduced w.r.t. g if deg(f, ηug) < deg(g,ug), ∀η ∈ Tσ.

A subset A of R\K, where every element is reduced w.r.t. all the others, is
called an autoreduced set. A chain is an autoreduced set where the polynomials
are listed in the ascending ordering: A = A1 < A2 < · · · < Ap. It is easy to show
that every chain A in R = K{X} is a finite set.

If A = A1, . . . , Ap and B = B1, . . . , Bq are two chains, we say that A < B if
either there is some j ≤ min(p, q) such that Ai ≡ Bi for i < j and Aj < Bj , or
q < p and Ai ≡ Bi for i ≤ q. If neither A < B nor B < A, we say that A and
B are of the same order and we denote A ≡ B. The following result is a basic
property of chains (page 147 in [18]).

Lemma 1. A strictly decreasing sequence of chains A1 > A2 > A3 > · · · is
finite.
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If F ⊆ R, then the set of all the chains contained in F has a minimal element
according to Lemma 1, which is called a characteristic set of F and it is denoted
by CS(F). A polynomial f is reduced w.r.t. a chain if it is reduced to every
polynomial in the chain. The following results are easy to prove.

Lemma 2. If f �= 0 is reduced w.r.t. CS(F), then CS(F ∪ {f}) < CS(F).

Lemma 3. A chain A ⊂ P is a characteristic set of P if and only if there is no
nonzero polynomial in P which are reduced w.r.t. A.

A difference ideal is a subset I of R = K{x1, . . . , xn}, which is an algebraic
ideal in R and is closed under transforming. A difference ideal I is called reflexive
if ηf ∈ I implies f ∈ I for all η ∈ Tσ. Let S be a set of elements of R. The
difference ideal generated by S is denoted by [S]. Obviously, [S] is the set of all
linear combinations of the polynomials in S and their transforms. The ordinary
or algebraic ideal generated by S is denoted as (S). A difference ideal I of R is
called perfect if the presence in I of a product of transforms of an element f of R
implies f ∈ I. The perfect difference ideal generated by S is denoted as {S}. A
perfect ideal is always reflexive. A difference ideal I is called a prime difference
ideal if it is prime as an algebraic ideal.

Let A be a chain and IA the set of products of the initials of the polynomials
in A and their transforms. The saturation ideal of A is defined as follows

sat(A) = {f ∈ K{X} | ∃J ∈ IA, s.t. Jf ∈ [A]}.

2.2 Invertibility of Algebraic Polynomials

We will introduce some notations and results about invertibility of algebraic
polynomials w.r.t. an algebraic ascending chain. These results are given in [1,2,
5, 6].

Let A = A1, . . . , Am be a nontrivial triangular set in K[x1, . . . , xn] over a field
K of characteristic zero. Let yi be the leading variable of Ai, y = {y1, . . . , yp}
and u = {x1, . . . , xn} \ y. u is called the parameter set of A. We can denote
K[x1, . . . , xn] as K[u, y]. Ii is the initial of Ai. For a triangular set A, let IA
be the set of products of the initials of the polynomials in A. The algebraic
saturation ideal of a triangular set A is defined as follows

a-sat(A) = {f ∈ K[x1, . . . , xn] | ∃J ∈ IA, s.t.Jf ∈ (A)}.

Definition 4. Let A = A1, A2, . . . , Am be a nontrivial triangular set in K[u, y]
with u as the parameter set, and f ∈ K[u, y]. f is said to be invertible w.r.t. A if
(f, A1, . . . , As)∩K[u] �= {0} where s = class(f). A is called regular if the initials
of Ai are invertible w.r.t. A1, . . . , Ai−1.

Theorem 5. [2,6] Let A be a triangular set. Then A is a characteristic set of
a-sat(A) iff A is regular.

Lemma 6. [6] A finite product of polynomials which are invertible w.r.t. A is
also invertible w.r.t. A.
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Lemma 7. [6] A polynomial g is not invertible w.r.t. a regular triangular set A
iff there is a nonzero f in K[u, y] such that fg ∈ (A) and g is reduced w.r.t. A.

Lemma 8. [25] Let A be an irreducible triangular set. Then a polynomial g is
invertible w.r.t. A iff g �∈ a-sat(A).

3 Coherent Chains

For any chain A, after a proper renaming of variables, we could write it as the
following form:

A =

⎧
⎪⎪⎨

⎪⎪⎩

A1,1(u, y1), . . . , A1,k1(u, y1)
A2,1(u, y1, y2), . . . , A2,k2(u, y1, y2)
. . .
Ap,1(u, y1, . . . , yp), . . . , Ap,kp(u, y1, . . . , yp)

(1)

where lvar(Ai,j) = yi, u = {u1, . . . , uq} such that p+q = n, X = u
⋃

{y1, . . . , yp}.
For c = 1, . . . , p, let

Ac = Ac,1(u, y1, . . . , yc), . . . , Ac,kc(u, y1, . . . , yc) (2)

3.1 Prolongation of Chains

We will now introduce the prolongation of a chain, which is a key concept in our
theory. For instance, we will use this concept to define the pseudo-remainder of
a polynomials w.r.t. a chain.

For a set of polynomials P, we use LP to denote the set of leaders of the
polynomials in P. For ηxc ∈ Tσ, we use Dηxc to denote the set of θxc such that
θ is a factor of η. More precisely, we have:

LP = {ηxc ∈ TσX s.t. ∃ P ∈ P,uP = ηxc}.

Dηxc = {θxc ∈ TσX s.t. η � θ}.

We define the main variables and parameters of a chain A as follows.

MVA = {ηxc ∈ TσX s.t. ∃ A ∈ A,uA = θxc, and η � θ}.

PAA = TσX \ MVA.

For any finite set of polynomials P and a chain A, we say that AP is a pro-
longation of A w.r.t. P if it satisfies the following properties:

– AP ⊇ A is an algebraic triangular set under the ordering ≤ when all ηxi ∈
TσX are considered as independent variables.

– If A ∈ AP, then there exist a B ∈ A and an η ∈ Tσ such that A = ηB and
B has the lowest degree among all elements in {C|uA = uθC , C ∈ A}.
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– For any ηxc occurring in P∪AP, either ηxc ∈ PAA or there exists an A ∈ AP

such that uA = ηxc.

Intuitively speaking, AP is a finite subset of TσA such that each ηxi occurring
in P is either in PAA or a leader of a polynomial in AP. It is easy to show that
AP satisfies the following properties.

– The parameters of AP as an algebraic triangular set are all in PAA.
– A polynomial f is reduced w.r.t. A if and only if f is reduced w.r.t. Af in

the algebraic sense, where Af = A{f}.

The following algorithm can be used to compute a prolongation AP, for a
given chain A and a polynomial set P.

Algorithm 9. Prolongation(A, P)

– Input:A chain A of form (1) and a finite set of polynomials P.
– Output: A prolongation AP of A w.r.t. P.

Begin
AP := A
For i=p to 1

Ωi := {η | ηyi appears in Ai, Ai+1, . . . , Ap or P};
τ := LCM(Ωi)
For all η � τ

Ωη := {A | A ∈ Ai, ∃ θ ∈ Tσ, θuA = ηyi},
choose an element A of Ωη with the least degree s.t. θuA = ηyi.
AP := AP ∪ θA

Λ := {η | ηyi occurring in AP, ηyi �∈ PAA and ∀ A ∈ AP, uA �= ηyi}
While (Λ �= ∅)

θ := max Λ
For all θ̄ ∈ Λ and θ̄ � θ

choose A ∈ A with the least degree, s.t. ∃ θ′ ∈ Tσ, θ′uA = θ̄yi

AP := AP ∪ θ′A
Λ := {η | ηyi occurring in AP, ηyi �∈ PAA and ∀ A ∈ AP

uA �= ηyi}
End While

i := i − 1
End.

The termination of the algorithm is apparent if we notice that the sequence
of elements of θ := max Λ is strictly decreasing.

Example 1. Consider the chain A = {A1, A2, A3} ⊆ K{y}. The transforming
operators are {σ1, σ2}.

A1 = σ2
2σ1y

2, A2 = σ2σ
3
1y + σ2y, A3 = σ3

2σ2
1y + σ4

2y (3)

Let vec(A) denotes all the vec(Ai) for a chain A. Then, elements of vec(A)
are represented by circles in Figure 1. We have PAA = {y, σ2σ1y, σ2σ

2
1y, σi

1y,
σj

2y | i, j ∈ N}.
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Fig. 2. The vec(AP ) for AP

For P = σ3
2σ4

1y + σ4
2y, we have AP = {A1, σ2A1, σ1A1, A2, σ

2
2A1, A3, σ2A2,

σ1A2, σ3
2A1, σ2A3, σ1A3, σ2σ1A2, σ

2
2A3, σ2σ1A3, σ

2
1A3, σ2σ

2
1A3}. The elements of

vec(AP ) are given in Figure 2. The new elements of vec(AP ) are represented by
black dots.

We use prem(f, g, x) to denote the algebraic pseudo-remainder of f w.r.t. g
relative to variable x, prem(f, g) is prem(f, g, x) where x is the leading variable
of g.

With these notations, we define the difference pseudo remainder of f w.r.t. A
to be: rprem(f, A) = prem(f, Af ) where the variables and their transforms in
f and A are treated as independent algebraic variables. The following lemma is
clear.

Lemma 10. Let f, A be as above and r = rprem(f, A). Then, there is a J ∈ IA
such that uJ < uf ,

Jf ≡ r mod [A] (4)

and r is reduced w.r.t. A. Equation (4) is called the remainder formula.

3.2 Coherent Chains

It is clear that the prolongation of a chain is not unique since for some A ∈ AP we
may choose different A1 and A2 in A to generate A : uA = uθ1A1 = uθ2A2 . The
concept of coherent chain is to guarantee that all these different prolongations
of a chain are equivalent in certain sense.

Definition 11. Let A = A1, . . . , Al be a chain in K{X} and vi = vec(uAi),
i = 1, . . . , l. For any 1 ≤ i < j ≤ m, if class(Ai) = class(Aj) = t, let the
least common multiple transform of uAi and uAj be ηi,juAi = ηj,iuAj . We de-
fine the Δ-polynomials of Ai and Aj as Δj,i = ηj,iAj and Δi,j = ηi,jAi. If
rprem(Δi,j , A) = 0 and rprem(Δj,i, A) = 0, we call A a coherent chain. Let
Δ(A) be the set of all the Δ-polynomials of A.
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Let A = A1, . . . , Al be a chain. A representation g =
∑

i,j gi,jηi,jAi is called
canonical representation if ηi,jAi in the expression are distinct elements in Af

for some polynomial f . In other words, g ∈ (Af ).
Let A∗ = AA.

Lemma 12. With the notation of Definition 11. Then the initials appeared in
rprem(Δj,i, A) are all in IA∗ .

Proof: It is apparent due to the definition of the coherent chain.

Lemma 13. Let A be a coherent chain of form (1), A ∈ A, and η ∈ Tσ . Then
there is a J ∈ IA such that uJ < uηA and JηA has a canonical representation.
Proof: Let c = class(A). The polynomials in A with class c are Ac,1, . . . , Ac,i−1,
Ac,i = A, . . . , Ac,kc .

First, if uηA is not the multiple transform of any one of uA1 , . . . ,uAi−1 ,
uAi+1 . . . ,uAc,kc

, then ηA ∈ AηA. Second, suppose that uηA is the multiple
transform of uAc,k

, but ηA ∈ AηA.
Otherwise, we will prove this by induction on the ordering of uηA. Let the

least common transform of uA and uAc,k
be uηiA = uηkAc,k

, Δi,k = ηiA, η̄ηi = η,
so ηA = η̄Δi,k. Since A is a coherent chain, rprem(Δi,k, A) = 0. We have

J̄Δi,k = g1τ1B1 + g2τ2B2 + · · ·

where Bj ∈ A, τjBj ∈ AΔi,j , and uJ̄ < uΔi,k
, degree(Δi,k,uΔi,k

) ≥
degree(τ1B1,uτ1B1), uΔi,k

= uτ1B1 > uτ2B2 > · · · . Let η̄ act on the two sides of
the above equation and we get

η̄J̄ · η̄Δi,j = η̄g1 · η̄τ1B1 + η̄g2 · η̄τ2B2 + · · ·

We denote it by
J1ηA = ḡ1 · ρ1B1 + ḡ2 · ρ2B2 + · · ·

where J1 = η̄J̄ , uJ1 < ηA, ρj = η̄jτj . If ρ1B1 is not of the first two cases, we
continue the above process on ρ1B1 until we get (after rearrange the symbols
properly)

J2ηA = f1 · θ1C1 + f2 · θ2C2 + · · ·
where Cj ∈ A θj ∈ Tσ uηA = uθ1C1 > uθ2C2 > · · · and θ1C1 is of the first
two cases, any θ2C2, θ3C3, . . . satisfy the induction hypothesis. Then there is a
J ∈ IA such that JηA has a canonical representation.

The following is the main property of the coherent chain.

Theorem 14. If A=A1, . . . , Al is a coherent chain, then for any f =
∑

gi,jηjAi,
there is a J ∈ IA such that J · f has a canonical representation and uJ <
max{uηjAi}.
Proof: This is a direct consequence of Lemma 13.

Canonical representations are useful because in a canonical representation
∑

gi,jηjAi the polynomial ηiAi with the largest leader is unique and can be
eliminated under certain conditions.
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4 Regular Chains

Let A be a chain of form (1), f a polynomial. f is said to be partial difference
invertible, (or invertible) w.r.t. A if it is invertible w.r.t. Af when f and Af are
treated as algebraic polynomials.

Definition 15. Let A = A1, . . . , Am be a chain and Ii = init(Ai). A is said to
be (difference) regular if ηIj is invertible w.r.t. A for any η ∈ Tσ and 1 ≤ j ≤ m.

Lemma 16. Let A be a characteristic set of an ideal I. If a polynomial f is
invertible w.r.t. A, then f �∈ I.

Proof: Let U be the algebraic parameter set of A. Since f is invertible w.r.t. A,
there exists a polynomial g and a nonzero r ∈ K[U] such that gf = r mod [A].
If f ∈ I, we have r ∈ I. Since r is reduced w.r.t. A, by Lemma 3, we have r = 0,
a contradiction.

Lemma 17. If A is a regular chain of form (1), then Af is a regular algebraic
triangular set for any polynomial f .

Proof: If A is difference regular, then by Definition 15, all ηIj are invertible w.r.t.
A. The initials of the polynomials in Af are all of the form ηIj and they are
of ordering lower than the highest ordering of the polynomials in Af . Then, by
Definition 4, Af is a regular algebraic triangular set.

Lemma 18. If a chain A of form (1) is the characteristic set of sat(A), then
for any polynomial f , Af is a regular algebraic triangular set.

Proof. By Lemma 5, we need only to prove that B = Af is the characteristic
set of a-sat(B). Let W be the set of all the ηyj such that ηyj is of lower or
equal ordering than an η̄yj occurring in B. Then B ⊂ K[W ]. If B is not the
characteristic set of a-sat(B), then there is a g ∈ a-sat(B) ∩ K[W ] which is
reduced w.r.t. B and is not zero. g does not contain ηyi which is of higher
ordering than those in W . As a consequence, g is also reduced w.r.t. A. Since
g ∈ a-sat(B) ⊂ sat(A) and A is the characteristic set of sat(A), g must be zero,
a contradiction.

As pointed out in [13], the Rosenfeld Lemma [21] for differential equations can
not be extended to difference case. Correspondingly, we have:

Lemma 19. Let A be a coherent and regular chain, and r a polynomial reduced
w.r.t. A. If r ∈ sat(A), then r = 0.

Proof. Let A = A1, A2, . . . , Al. Since r ∈ sat(A), there is a J1 ∈ IA such that
J1 · r ≡ 0 mod [A]. By Lemma 6, J1 is difference invertible w.r.t. A, i.e. there is
a polynomial J̄1 and a nonzero N ∈ K[V ] such that

J̄1 · J1 ≡ N mod [A]

where V is the set of parameters of AJ1 as an algebraic triangular set. Hence,

Nr ≡ J̄1 · J1 · r ≡ 0 mod [A].
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Or equivalently,
N · r =

∑
gi,jηi,jAj . (5)

Since A is a coherent chain, by Theorem 14, there is a J2 ∈ IA such that J2 ·N ·r
has a canonical representation in [A], where uJ2 < max{uηi,jAj } in (5). That is

J2 · N · r =
∑

ij

ḡi,jρi,jAj , (6)

where, uρi,jAj are pairwise different. If max{uρi,jAj } in (6) is lower in ordering
than max{uηi,jAj } in (5), we have already reduced the highest ordering of uηi,jAj

in (5). Otherwise, assume uρaAb
= max{uρi,jAj } and Ab = Ib ·udb

Ab
+Rb. Substi-

tuting udb

ρaAb
by − ρaRb

ρaIb
in (6), the left side keeps unchanged since uJ2 < uρaAb

,
N is free of uρaAb

and deg(r,uρaAb
) < deg(ρaAb,uρaAb

). In the right side, the
ρaAb becomes zero, i.e. max{uρi,jAj } decreases. Clearing denominators of the
substituted formula of (6), we obtain a new equation:

(ρaIb)t · J2 · N · r =
∑

fijτi,jAj . (7)

Note that in the right side of (7), the highest ordering of τi,jAj is less than uρaAb

and (ρaIb)t ·J2 is invertible w.r.t. A. Then after multiplying a polynomial which
is invertible w.r.t. A and can be represented as a linear combination of τi,jAj

all of which is strictly lower than uρaAb
. Repeating the above process, we can

obtain a nonzero N̄ , such that N̄ · r = 0. Then r = 0. By Lemma 3, A is the
characteristic set of sat(A).

The following is one of the main results in this paper.

Theorem 20. A chain A is the characteristic set of sat(A) iff A is coherent
and difference regular.

Proof: If A is coherent and difference regular, then by Lemma 19, any polynomial
in sat(A) which is difference reduced w.r.t. A is zero. So A is a characteristic
set of sat(A). Conversely, let A = A1, A2, . . . , Al be a characteristic set of the
saturation ideal sat(A) and Ii = init(Ai). For any 1 ≤ i < j ≤ l, let r =
rprem(Δi,j , A) as in Definition 11. Then r is in sat(A) and is difference reduced
w.r.t. A. Since A is the characteristic set of sat(A), r = 0. Then A is coherent.
To prove that A is regular, for any 0 ≤ i ≤ l, η ∈ Tσ we need to prove that
f = ηIi is invertible w.r.t. A. Assume this is not true. By definition, f is not
invertible w.r.t. Af when they are treated as algebraic equations. By Lemma 18,
Af is a regular algebraic triangular set. By Lemma 7, there is a g �= 0 which is
reduced w.r.t. Ag (and hence A) such that f ·g ∈ (Af ) ⊂ [A]. Since f = ηIi ∈ IA,
g ∈ sat(A) and g is reduced w.r.t. A. Since A is the characteristic set of sat(A),
we have g = 0, a contradiction. Hence, f = ηIi is invertible w.r.t. A and A is
difference regular.

Theorem 21. If A is a coherent and difference regular chain of form (1),then

sat(A) = ∪f∈K{X}a-sat(Af ).
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Proof: It is easy to see that sat(A) ⊃
⋃

f∈K{X}
a-sat(Af ). If f ∈ sat(A), since A is

coherent and difference regular chain, and A is the characteristic set of sat(A),
we have rprem(f, A) = 0, or prem(f, Af ) = 0, that is f ∈ a-sat(Af ). Hence
sat(A) ⊂

⋃

f∈K{X}
a-sat(Af ).

Note that we cannot check whether a chain is regular directly due to the reason
that Tσ contains an infinite number of elements. To give a complete zero de-
composition algorithm like the one in [13,15], we need to define a type of chains
such that we have a constructive criterion to check whether it is regular and
the chain A is non-trivial in the sense that Zero(a-sat(A)) �= ∅. These problems
are the major open ones for the characteristic set method of partial difference
polynomial systems.

5 Characteristic Set of Reflexive Prime Difference Ideals

In the algebraic and differential cases, prime ideals can be described by irre-
ducible chains. In this section, we will extend this result to the partial difference
case. In order to do that, we need to introduce the concept of strongly irreducible
chains.

A chain A is called strongly irreducible if

– Af is an irreducible algebraic triangular set for any f ∈ K{X}, and
– For η ∈ Tσ and h ∈ K{X}, if ηh ∈ a-sat(Af ) then h ∈ a-sat(Af ).

Theorem 22. Let A be a coherent and strongly irreducible difference chain.
Then sat(A) is a reflexive prime difference ideal.

Proof: Let f, g be two r-pols such that fg ∈ sat(A). By Lemma 21, there exists a
polynomial h such that fg ∈ D = a-sat(Ah). Since A is strongly irreducible, Ah

is an irreducible algebraic triangular set and hence D is a prime ideal. We thus
have f ∈ D or g ∈ D. In other words, f ∈ sat(A) or g ∈ sat(A). Hence, sat(A)
is a prime ideal. We still need to show that sat(A) is reflexive. If σif ∈ sat(A)
then ∃ h ∈ K{X}, σif ∈ a-sat(Ah). f ∈ a-sat(Ah) according to the definition
of strongly irreducible chain. Then f ∈ sat(A).

To prove that the characteristic set of any prime ideal is strongly irreducible, we
need the following lemmas.

Lemma 23. Let I be a prime difference ideal, A its characteristic set. Then
I = sat(A).

Proof: It is clear that I ⊂ sat(A). Let f ∈ sat(A). Then there is a J ∈ IA such
that Jf ∈ [A] ⊂ I. By Theorem 20, J is invertible w.r.t. A. Hence J is not in I
by Lemma 16. Since I is a prime ideal, f ∈ I.
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Lemma 24. Let I be a reflexive prime difference ideal, A its characteristic set.
Then ∀ h ∈ f ∈ K{X}, Ah is algebraic irreducible.

Proof: Otherwise, there exists an h ∈ f ∈ K{X}, such that Ah is a reducible
algebraic triangular set. By definition, there exist polynomials f and g which are
reduced w.r.t. Ah such that fg ∈ Ah ⊂ sat(A) = I. From this, we have f ∈ I
or g ∈ I, which is impossible since f and g are reduced w.r.t. A.

Theorem 25. Let I be a reflexive prime difference ideal, A a characteristic set
of I. Then A is coherent, strongly irreducible, and I = sat(A).

Proof: By Lemma 23, for any characteristic set A of I, we have I = sat(A). By
Theorem 20, A is coherent. By Lemma 24, we have for any h ∈ K{X}, Ah is
algebraic irreducible. Also, if σig ∈ a-sat(Ah), then σig ∈ I. Since I is reflexive,
g ∈ I. Then g ∈ a-sat(Ah).

The following example shows that it is difficult to decide whether a chain is
strongly irreducible. Even in the the ordinary case, deciding whether a chain is
strongly irreducible is a major difficult problem in difference algebra.

Example 2. [10] Let K = Q(t). The transforming operators over K is σ such
that σt = (t + 1). A ⊆ K{x1, x2} and A = {A1, A2} where A1 = x2

1 + t, A2 =
x2

2 + t + k. If k > 1, A2 − σkA1 = (x2 − σkx1)(x2 + σkx1), x2 − σkx1 �∈ sat(A),
x2 +σkx1 �∈ sat(A). sat(A) is not a prime difference ideal, and A is not strongly
irreducible.

6 Algorithms of Zero Decomposition

In this section, we will present an algorithm which can be used to decompose
the zero set of a general polynomial set into the zero sets of coherent chains.

Lemma 26. Let P be a finite set of polynomials, A = A1, . . . , Am a character-
istic set of P, Ii = init(Ai), and J =

∏m
i=1 Ii. If prem(P, A) = 0 for all P ∈ P,

then

Zero(P) = Zero(A/J)
⋃

∪m
i=1Zero(P ∪ {Ii})

Zero(P) = Zero(sat(A))
⋃

∪m
i=1Zero(P ∪ {Ii})

Proof: This is direct consequence of the remainder formula (4).

Now, we can give the zero decomposition theorem.

Theorem 27. Let P be a finite set of polynomials in K{y1, . . . , yn}, then we can
obtain a sequence of coherent chains Ai, i = 1, . . . , k such that

Zero(P) =
k⋃

i=1

Zero(Ai/IAi) =
k⋃

i=1

Zero(sat(Ai)) (8)

We first give the following algorithm to find the decomposition.
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Algorithm 28. ZDT(P)

– Input: a finite set P of polynomials.
– Output: W = {A1, . . . , Ak} s.t. Ai is coherent

and Zero(P) =
⋃k

i=1 Zero(sat(Ai)).
Begin

B = CS(P) //This gives the characteristic set of P.
If B = 1 then W = {}
Else

R = {prem(f, B) �= 0 | f ∈ (P \ B) ∪ �(B)}
If R = ∅ then W={B} ∪ ∪iZDT(P ∪ {Ii})
Else W = ZDT(P ∪ R)

where Ij are the initials of the polynomials in B.
End.

Proof of Correctness of Algorithm 28. If R = ∅, by Lemma 26, we obtain a chain.
Since Ij is reduced w.r.t. B, by Lemma 2, the characteristic set of P ∪ {Ii} is
of lower ordering than that of B. Similarly, the characteristic set of P ∪ R is of
lower ordering than that of B. By Lemma 1, the algorithm will end and give the
decomposition.

Example 3. Let A = {A1, A2} where A1 = σ2
1y2

3 + σ2y2, A2 = σ2y3 + σ2
1y1. A

is not coherent, since the remainder A3 = rprem(σ2A1, A) = σ2
2y2 + σ4

1y2
1 is

reduced w.r.t. A. If we do the zero decomposition for A we obtain {A3, A1, A2}
which is a coherent chain.

7 Conclusion

In this paper, we extend some of the main properties of chains to the partial
difference polynomial systems. We prove that a partial difference chain is the
characteristic set of its saturation ideal if and only if it is coherent and regular.
We also prove that a partial difference ascending chain is the characteristic set
of a reflexive prime ideal if and only if it is strongly irreducible. Finally, we give
the zero decomposition algorithm.

Comparing to the algebraic, differential, and ordinary difference cases, there
still exist major problems unsolved in the partial difference case. These include
to give a constructive criterion for a chain to be regular and non-trivial and to
solve the perfect ideal membership problem.
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(1999)

2. Aubry, P., Lazard, D., Moreno Maza, M.: On the Theory of Triangular Sets. Journal
of Symbolic Computation 28, 105–124 (1999)



320 G.-L. Zhang and X.-S. Gao

3. Bentsen, I.: The Existence of Solutions of Abstract Partial Difference Polynomial.
Trans. of AMS 158, 373–397 (1971)

4. Boulier, F., Lazard, D., Ollivier, F., Petitot, M.: Representation for the Radical
of a Finitely Generated Differential Ideal. In: Proc. of ISSAC 1995, pp. 158–166.
ACM Press, New York (1995)

5. Boulier, F., Lemaire, F., Moreno Maza, M.: Well Known Theorems on Triangular
Systems and the D5 Principle. In: Proc. of Transgressive Computing 2006, pp.
79–91 (2006)
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