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Abstract In this paper, a class of lattice supports in the lattice space Zm is found to be inherently

improper because any rational parametrization from Cm to Cn defined on such a support is improper.

The improper index for such a lattice support is defined to be the gcd of the normalized volumes

of all the simplex sub-supports. The structure of an improper support S is analyzed and shrinking

transformations are constructed to transform S to a proper one. For a generic rational parametrization

RP defined on an improper support S, we prove that its improper index is the improper index of S and

give a proper reparametrization algorithm for RP . Finally, properties for rational parametrizations

defined on an improper support and with numerical coefficients are also considered.

Key words BKK bound, chow form, improper lattice supports, improper rational parametrizations,

reparametrization, support transformation.

1 Introduction

Algebraic curves and surfaces admitting rational parametric representations are not only
interesting in theory but also important in practice: They are one of the main tools for rep-
resenting shapes in computer aided design and manufacturing[1]. In general, an algebraic va-
riety admitting a rational parametrization is called unirational. A basic property of a rational
parametrization is whether it is proper (one-to-one) or improper (many-to-one). If a ratio-
nal parametrization RP is not proper, a generic point of the variety corresponds to μ > 1
parameters. The integer μ, denoted as IX(RP ), is called the improper index of the rational
parametrization[2−5].
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If a rational parametrization is improper, naturally we would ask whether it can be reparam-
eterized so that the new parametrization is proper. In general, the answer is negative. For alge-
braic curves, the existence of a proper reparametrization for an improper rational parametriza-
tion is guaranteed by Lüroth’s theorem[6]. Effective methods to find a proper reparametrization
for an improper parametrization of an algebraic curve were proposed in [7–10]. For algebraic
surfaces, if the base field is algebraically closed, there always exists a proper reparametrization
for an improper parametrization[11]. However, if the dimension of the implicit variety deter-
mined by a parametric representation is greater than two, there exist improper parametrizations
that do not have proper reparametrizations even over algebraically closed fields[12].

The problem of finding a proper reparametrization for surfaces and varieties of higher di-
mensions is open in the general case[13]. There exist several partial results. In [14], a proper
reparametrization algorithm was proposed for rational parametrizations which are improper in
only one of the parameters. In [10], a proper reparametrization algorithm was proposed for
rational parametrizations which are improper in each parameter independently, that is, the
proper reparametrization can be found by replacing each parameter with a rational function in
itself. A proper reparametrization algorithm was given for algebraic ruled surfaces in [15]. A
class of inherently improper rational parametrizations was studied in [16].

In this paper, we consider the inherently improper parametric supports in the general case,
that is, rational parametric mappings defined on these supports from Cm to Cn for any m < n
are always improper. The paper is naturally divided into two parts.

In Sections 3 and 4, we consider properties of improper lattice supports. For a given finite
lattice support S in Zm, we define its improper index IX(S) to be the gcd of the normalized
volumes of all the simplex sub-supports. A lattice support is called proper if and only if its
support index is one. Lattice reduction algorithms from [17–18] are used to construct a support
transformation which can be used to transform an improper lattice support to a proper one.
The structure of an improper support S is analyzed. We show that for an improper lattice
support S, we can construct a set of linear congruent equations LS such that S is a subset of
the solutions of the equations LS = 0 and addition of any solutions of LS = 0 to S does not
change the index of the enlarged support.

In Sections 5 and 6, we consider properties of rational parametrizations defined on a lattice
support. For a generic rational parametrization RP (S) defined on a lattice support S, we
prove that its improper index equals the improper index of S. This gives an efficient method to
compute the improper index of a rational parametrization with elementary tools. We further
design an algorithm to find a proper reparametrization for RP (S) when IX(S) > 1. The
algorithm needs only integer arithmetic operations and hence is very fast comparing to the usual
methods based on symbolic computation. For a rational parametrization RP (S, C) defined on
S with numerical coefficients C, we prove that IX(S) is a factor of IX(RP (S, C)). We design
an algorithm to find a reparametrization whose improper index is IX(RP (S, C))/IX(S) and
prove that for almost all coefficients (coefficients from a non empty open Zariski subset of
the coefficient space) the reparametrization is proper. The results in this part are essential
generalizations of the results in [16]. For algebraic surfaces in R3, the implicit variety can be
defined with an irreducible polynomial equation f(x, y, z) = 0. In the general case, this is
not valid anymore. We need to use the Chow form of the implicit variety to overcome the
difficulties. Also, the construction of the transformation is more complicated.

The rest of the paper is organized as follows. In Section 1, notations and preliminary
results are given. In Section 2, the shrinking transformation for an improper lattice support is
constructed. In Section 3, the structure of improper lattice supports is analyzed. In Section 4,
generic rational parametrizations are considered. In Section 5, rational parametrizations with
numerical coefficients are studied. Section 6 concludes the paper with a summary.
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2 Preliminaries
In this section, we introduce the lattice support and define the improper index for a lattice

support.
Let Z be the set of integers and R be the set of reals. For an integer m ≥ 1, the set Zm

is the set of lattice points and the set Rm is the Euclidean space. For any set S ⊆ Zm, the
Newton polytope NP (S) is the convex hull of S. For any convex set P ⊆ Rm, the normalized
volume NV (P ) is m!Volm(P ), where Volm(P ) is the Euclidean volume of P .

A finite set S ⊂ Zm is a non-degenerate lattice support if NV (NP (S)) > 0. For instance,
the lattice supports with total degree less than or equal to d is

S =
{

p = (p1, p2, · · · , pm) ∈ Zm : 0 ≤ p1, 0 ≤ p2, · · · , 0 ≤ pm, |p| =
m∑

i=1

pi ≤ d

}
.

Note that NV (NP (S)) = dm.
Another example is a support with |S| = m + 1, which is called simplex support. Let

S = {pj ∈ Zm : pj = (pj,1, pj,2, · · · , pj,m), j = 1, 2, · · · , m + 1} be a simplex support. Then

NV (NP (S)) = abs

∣∣∣∣∣∣∣
p1,1 · · · p1,m 1
...

. . .
...

...
pm+1,1 · · · pm+1,m 1

∣∣∣∣∣∣∣
. (1)

Any set S′ ⊆ S is a lattice sub-support of S if S′ is also a lattice support. In particular, a
sub-support S′ is simplex if |S′| = m + 1. Simplex sub-supports are important in the study of
improper supports.

We define the improper index of a support S to be

IX(S) = gcd{NV (NP (S′)) : S′ ⊆ S, |S′| = m + 1}.
S is called proper if IX(S) = 1 and improper if IX(S) > 1.

To simplify our discussion, we assume the lattice support S contains the origin. Furthermore,
we assume the lattice support is non-degenerate, that is, IX(S) > 0.

Let T : Rm → Rm be an invertible affine transformation with

T (p1, p2, · · · , pm) = (a1,0 + a1,1p1 + · · · + a1,mpm, · · · , am,0 + am,1p1 + · · · + am,mpm). (2)

Here transformation T is a support transformation with respect to a lattice support S if T (S)
is also a lattice support; it holds that, T (S) ⊆ Zm and T is non-singular. The absolute value
of the determinant of the Jacobian matrix of T is written as

J(T ) = abs

∣∣∣∣∣∣∣
a1,1 a1,2 · · · a1,m

...
...

. . .
...

am,1 am,2 · · · am,m

∣∣∣∣∣∣∣
.

Given a support transformation T for a support S, it is well-known that

J(T ) =
NV (NP (T (S)))

NV (NP (S))
.

A support transformation T with J(T ) < 1 is called a shrinking support transformation,
and a support that admits a shrinking transformation is called a shrinkable support. In the
next section, we will show that improper supports can be shrunk by support transformations.
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3 Constructing a Proper Support from an Improper One

In this section, we will construct a support transformation to transform an improper lattice
support to a proper one.

Let p0 ∈ Zm. For any set of m + 1 lattice points S = {p1, p2, · · · , pm+1}, NV (NP (S)) is a
linear combination of NV (NP (p0 ∪ S \ {pj})), j = 1, 2, · · · , m + 1. Thus, instead of computing
the gcd of all simplex sub-supports, we only need to compute the gcds of simplex sub-supports
anchored at some chosen point p0. This observation leads to the following result.

Lemma 1 Let S be a lattice support and p0 ∈ S. We have

IX(S) = gcd{NV (NP (S′′)) : p0 ∈ S′′ ⊆ S, |S′′| = m + 1}.
Note that Lemma 1 provides an algorithm to compute IX(S) by computing the gcd of(|S|−1

m

)
integers.

The following result shows how to construct a shrunken support for an improper support.
Theorem 1 Let S be a lattice support containing the origin. Then there exists a support

transformation T for S such that IX(S)J(T ) = 1 and T (S) is a proper lattice support.
Proof We first introduce the following notations.
For a lattice point p = (p1, p2, · · · , pm) ∈ Zm, the k-th projection of p is p(k) = (pm+1−k, · · · ,

pm) ∈ Zk. We write 0(k) = (0, 0, · · · , 0) ∈ Zk.
The normalized volume of the k-th projections of k lattice points of S and the k-th projection

of the origin is a (k + 1) × (k + 1) determinant

A(k)
σ = abs

∣∣∣∣∣∣∣∣∣∣

0(k) 1
p
(k)
σ1 1
...

...
p
(k)
σk 1

∣∣∣∣∣∣∣∣∣∣
, (3)

where σ chooses k points pσ1 , pσ2 · · · , pσk
from S.

We define gk = gcdσ{A(k)
σ }, k = 1, 2, · · · , m. By Laplace expansion along the first column

we see that gk|gk+1. Since the IX(S) 
= 0, gk cannot be zero.
We now set the support transformation T as

T (p1, p2, · · · , pm)

=
(

gm−1p1 + β1,2p2 + · · · + β1,mpm

gm
, · · · , g1pm−1 + βm−1,mpm

g2
,
pm

g1

)
, (4)

where βi,j are integers to be found such that T (S) ⊂ Zm.

When k = 1, A
(1)
σ = abs

∣∣∣∣ 0 1
p
(1)
σ 1

∣∣∣∣ = |p(1)
σ | = |pσ,m|. Thus, g1 = gcdσ{|pσ,m|} and we have

g1|pσ,m for all pσ ∈ S.
For each A

(k)
σ involved in computing gk, enlarge it to become A

(k+1)
σ′ , where σ′ chooses the

same k points chosen by σ together with a general point p ∈ S. We thus have

A
(k+1)
σ′ = abs

∣∣∣∣∣∣∣∣∣∣∣∣

0(k+1) 1
p
(k+1)
σ1 1

...
...

p
(k+1)
σk 1

p(k+1) 1

∣∣∣∣∣∣∣∣∣∣∣∣
.
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By Laplace expansion along the last row, we have

A
(k+1)
σ′ = A(k)

σ pm−k + Bσ,m−k+1pm−k+1 + · · · + Bσ,mpm, (5)

where Bσ,m−k+1, · · · , Bσ,m are minor determinants of A
(k+1)
σ′ .

Since gk = gcdσ{A(k)
σ }, there exist integers ασ such that

∑
σ

ασA
(k)
σ = gk. But gk+1|A(k+1)

σ′

for any σ, by (5), we have
∑
σ

ασA
(k+1)
σ′

gk+1
=

gkpm−k + βm−k,m−k+1pm−k+1 + · · · + βm−k,mpm

gk+1

is an integer, where βm−k,j =
∑
σ

ασBσ,j. The construction of T ensures that it is a support

transformation for S. And one can find that

J(T ) = abs

∣∣∣∣∣∣∣∣∣∣∣∣∣∣

gm−1

gm

β1,2

gm
· · · β1,m

gm

0
gm−2

gm−1
· · · β2,m

gm−1
...

...
. . .

...

0 0 · · · 1
g1

∣∣∣∣∣∣∣∣∣∣∣∣∣∣

=
1

gm
.

By Lemma 1 and the above construction, then we have gm = IX(S), therefore IX(S)J(T ) = 1.
Furthermore, we have

IX(T (S)) = gcd{NV (NP ((S′′)) : 0 ∈ S′′ ⊆ T (S), |S′′| = m + 1}

= gcd{NV (NP ((T (S′)) : 0 ∈ S′ ⊆ S, |S′| = m + 1}

= J(T ) gcd{NV (NP ((S′)) : 0 ∈ S′ ⊆ S, |S′| = m + 1}

= IX(S)J(T ) = 1.

Thus, T (S) is a proper lattice support.
Example 1 Let S = {(0, 0, 0), (1, 1, 0), (0, 2, 0), (0, 1, 2)} (see Figure 1(a)), which is a

simplex support. We easily find IX(S) = NV (NP (S)) = 4.
By (4), we find g1 = 2, g2 = 2, gm = g3 = 4, and the transformation is

T (p1, p2, p3) =
(

2p1 − 2p2 + p3

4
,
2p2 − p3

2
,
p3

2

)
.

Then T (S) = {(0, 0, 0), (0, 1, 0), (−1, 2, 0), (0, 0, 1)} and NV (NP (T (S))) = 1 (see Figure 1(b)).

4 Structure of Improper Lattice Support

In this section, we study the structure of an improper lattice support. This leads to a more
efficient algorithm to find a proper lattice support from an improper one.

We now consider the lattice S = span(S) = {∑
i

ripi : ri ∈ Z, pi ∈ S} generated by the lattice

support S as a free Z-module. Then S has a basis as {s1, s2, · · · , sm} ∈ Zm and determinant of
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(0,2,0)

(0,0,0)

(0,1,2)

(1,1,0)

(−1,2,0)

(0,1,0)

(0,0,0)

(0,0,1)

 

(a) improper support (b) proper support

Figure 1 support transformation

the lattice is defined by d(S) = abs(det(s1, s2, · · · , sm)), which does not depend on the choice
of its basis[18−19].

From a full rank generating set S ⊂ Zm, we can get a basis by computing the its Hermite
normal form. Since the Hermite normal form often involves large numbers, we can obtain an
LLL-reduced basis by the MLLL algorithm[17−18]. The vectors of LLL-reduced basis will be
much shorter in Euclidean length and the running time is at most O(m + |S|)4 log Θ , ‖p‖ ≤ Θ .

Now, we can obtain the transformation of S by two steps. The first step is to find a basis of
S and the second step is to construct the shrinking transformation T as in Section 2 with the
basis.

Theorem 2 Let S be a lattice support, S the lattice generated by S, and B = {s1, s2, · · · , sm}
a basis of S, TB the transformation obtained as in (4) from B. Then TB is a support transfor-
mation for S and TB(S) is a proper lattice support.

Proof Since S is the generating set of S, we have

d(S) = abs

∣∣∣∣∣∣∣∣∣

s1

s2

...
sm

∣∣∣∣∣∣∣∣∣
= abs

∣∣∣∣∣∣∣∣∣∣

∑|S|
j=1 α1,jpj∑|S|
j=1 α2,jpj

...∑|S|
j=1 αm,jpj

∣∣∣∣∣∣∣∣∣∣
=

∑
βkNV (NP (S′)),

where pj ∈ S, 0 ∈ S′ ⊂ S, |S′| = m + 1, and αi,j , βk are integers. It means that IX(S)|d(S).
On the other hand, {s1, s2, · · · , sm} is also a basis of S, and so we have d(S)|IX(S). Hence,
IX(S) = d(S).

For p ∈ S, p =
∑m

j=1 αjsj , then TB(p) =
∑m

j=1 αjTB(sj) ∈ Zm, which means TB is a support
transformation for S. By Theorem 1, J(TB) = 1/NV (NP ({B, 0})) = 1/d(S) = 1/IX(S). We
have IX(TB(S)) = 1.

The above theorem leads to a new transformation algorithm. The complexity of generating
B is polynomial in |S|. Since |B| = m, if |S| is much larger than m, then the new algorithm is
of great advantage over the algorithm proposed in Section 2. On the other hand, if |S| and m
are almost the same, then we can still use the algorithm in Section 2, because that algorithm
is much simpler.

The following result describes the structure of a lattice support.
Theorem 3 Let S be a lattice support, S the lattice spanned by S, {s1, s2, · · · , sm} a basis

of the lattice S. Then there exist integers ai,j such that S = {(x1, x2, · · · , xm) :
∑m

j=1 ai,jxj =
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0 mod d(S), 1 ≤ i ≤ m}.
Proof Considering the hyperplanes determined by the origin and m − 1 points from

{s1, s2, · · · , sm}, si = (si,1, si,2, · · · , si,m), we get m hyperplanes
∑m

j=1 s∗i,jxj = 0, where s∗i,j
are algebraic co-minors of si,j in the determinant

∣∣∣∣∣∣∣
s1,1 · · · s1,m

...
. . .

...
sm,1 · · · sm,m

∣∣∣∣∣∣∣
and not all are zero because any m − 1 points of the basis are linearly independent.

It is clear that L = {(x1, x2, · · · , xm) ∈ Zm :
∑m

j=1 s∗i,jxj = Zd(S), 1 ≤ i ≤ m} is a lattice.
Since {s1, s2, · · · , sm} ⊂ L, we have S ⊂ L and d(L)|d(S).

Let {l1, l2, · · · , lm} be a basis of L, then
⎛
⎜⎝

s∗1,1 · · · s∗1,m
...

. . .
...

s∗m,1 · · · s∗m,m

⎞
⎟⎠

⎛
⎜⎝

l1,1 · · · lm,1

...
. . .

...
l1,m · · · lm,m

⎞
⎟⎠ = d(S)

⎛
⎜⎝

k1,1 · · · k1,m

...
. . .

...
km,1 · · · km,m

⎞
⎟⎠ .

But

abs

∣∣∣∣∣∣∣
s∗1,1 · · · s∗1,m
...

. . .
...

s∗m,1 · · · s∗m,m

∣∣∣∣∣∣∣
= d(S)m−1, abs

∣∣∣∣∣∣∣
d(S)

⎛
⎜⎝

k1,1 · · · k1,m

...
. . .

...
km,1 · · · km,m

⎞
⎟⎠

∣∣∣∣∣∣∣
= | det(ki,j)|d(S)m.

Thus, d(S)|d(L) and so we have d(S) = d(L), then L = S. To simplify the representation, we
can write L in modular form which is exact the form in Theorem 3.

As a consequence, we can produce new lattice supports with a given improper index.
Corollary 1 Let S be a lattice support. If we add more lattice points satisfying the linear

congruent equations given in Theorem 3 to S, the improper index of the new lattice support is
the same as that of S.

In practice, we could design an improper design lattice support with its improper index
divisible by a given number with the follow proposition.

Proposition 1 Let S = {(x1, x2, · · · , xm) ∈ Zm :
∑m

i=1 aixi = 0 mod p} be a lattice with
d(S) = p/ gcd(a1, a2, · · · , am, p), where ai, p are integers. For any lattice support S ⊂ S we
have d(S)|IX(S).

Proof The first part of the proposition can be directly generalized from Lemma 2 in [20].
And similar to the proof of Theorem 2, we can get second part.

Example 2 We construct an improper lattice support as follows. Let m = 3, a1 = 2, a2 =
2, a3 = 3 and p = 4. Consider the lattice support S ⊂ {(p1, p2, p3)|2p1+2p2+3p3 = 0 mod 4}, by
Proposition 1, we have 4|IX(S). Construct a simplex lattice support as S = {(0, 0, 0), (1, 1, 0),
(0, 2, 0), (0, 1, 2)}. We have IX(S) = NV (NP (S)) = 4, following Proposition 1.

5 Generic Rational Parametrization on Improper Supports

In this section, we study rational parametrizations on lattice supports with generic coeffi-
cients.
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5.1 Rational Parametrizations on Lattice Supports

Let C be the field of complex numbers. A rational parametrization on a lattice support S,
written RP (S), is a set of rational equations defining a map from Cm to Cn, m < n:

(X1(t), X2(t), · · · , Xn(t)) =
(

x1(t)
x0(t)

, · · · , xn(t)
x0(t)

)
=

∑
p∈S

(x1,p, x2,p, · · · , xn,p)tp

∑
p∈S

x0,ptp
, (6)

where 0 
= (x0,p, x1,p, · · · , xn,p) ∈ Kn+1 are coefficients from some field K ⊆ C; and t =
(t1, t2, · · · , tm), p = (p1, p2, · · · , pm), tp = (tp1

1 , tp2
2 , · · · , tpm

m ).
Since the parametric equations are rational, a rational parametrization on S is invariant

under integer translations of S. Thus, for any lattice support S, we may translate S such that
either S contains the origin or S is nonnegative meaning the coordinates of the lattice points in
S are nonnegative. The following lemma ensures that we may assume simultaneously a support
contains the origin and is nonnegative without loss of generality.

Lemma 2 Let S be a nonnegative lattice support. The rational parametrization RP (S) on
S has a bi-rational reparametrization on a lattice support S′ such that S′ contains the origin
and is nonnegative.

Proof Suppose 0 /∈ S. Consider the monomials tp, p ∈ S, of least total degree |p| = d.
We can assume t1 appears in some of these monomials. (For otherwise, there is some tk that
appears in these monomials. The bi-rational transformation:

t1 = sk; tk = s1; ti = si, i 
= 1, k;

would have s1 appear in these monomials.) Consider the bi-rational transformation:

t1 = s1, t2 = s1s2, · · · , tm = s1sm. (7)

After the transformation, the least degree of s1 in all the transformed monomials of S is d.
After dividing out sd

1, the least total degree of all the transformed monomials of S is at most
d − 1.

The above process can be repeated and eventually the least total degree has to become zero,
that is, the eventual transformed S′ contains the origin and is nonnegative.

A rational parametrization RP (S) on a lattice support S is non-degenerate if it defines
an m dimensional unirational variety when m < n. For the rest of the paper we restrict
our discussion to non-degenerate unirational varieties when the coefficients of RP (S) are in a
subfield of C. This loses no generality as we can always check if a rational parametrization is
non-degenerate[2,9].

The following lemma states that a support transformation reparamet rizes a rational paramet
-rization.

Lemma 3 A support transformation T of a lattice support S induces a reparametriza-
tion of the original unirational variety on the lattice support T (S). Furthermore, the induced
reparametrization preserves the dimension of the variety since J(T ) > 0.

Proof Let T given by (2) be a support transformation with respect to the lattice support
S. Let

t1 = s
a1,1
1 s

a2,1
2 · · · sam,1

m , · · · , tm = s
a1,m

1 s
a2,m

2 · · · sam,m
m . (8)

By making t a function of s, we obtain a reparametrization RP (t(s)) from the parametrization
RP (t).
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Next, we show that the support of RP (t(s)) is T (S). A direct calculation shows that the
transformation changes the monomial tp to sT (p)−(a1,0,a2,0,···,am,0). Since the parametrization
is rational we may regard the transformed monomials as sT (p). Thus, the parametric equation∑
p∈S

xi,pt
p becomes the parametric equation

∑
T (p)∈T (S)

xi,ps
T (p), that is, the support of RP (t(s))

is T (S).
The transformation (8) is invertible since J(T ) > 0, thus, the reparametrization does not

change the dimension of the variety.

5.2 Improper Indices of Generic Rational Parametrization

Consider a generic rational parametrization RP (S) defined in (6) with generic coefficients
xi,p, i = 0, 1, · · · , n, p ∈ S. This is equivalent to treating the coefficients as indeterminates. The
actual algebraic degree of the implicit variety defined by (6) is denoted by AD(RP (S)), which
is the number of generic intersection points between the implicit variety and a generic affine
space of dimension n − m[4].

Similar to the definition of AD(RP (S)), we define the apparent algebraic degree of a generic
rational parametrization RP (S) as the number of intersection points of RP (S) and a generic
dimension n − m affine space determined by m generic hyperplanes:

⎧⎪⎨
⎪⎩

u10 + u11X1 + u12X2 + · · · + u1nXn = 0,
...

um0 + um1X1 + um2X2 + · · · + umnXn = 0.

(9)

Lemma 4 The apparent algebraic degree of a generic rational parametrization (6) is
NV (NP (S)).

Proof Consider the solutions of the polynomial equations obtained by substituting (6)
into (9) and multiplying x0(t):⎧⎪⎨

⎪⎩
u10x0(t) + u11x1(t) + u12x2(t) + · · · + u1nxn(t) = 0,

...
um0x0(t) + um1x1(t) + um2x2(t) + · · · + umnxn(t) = 0,

(10)

The intersection points of (9) and (6) are the solutions of (10) by removing the solutions
⎧⎪⎪⎪⎨
⎪⎪⎪⎩

u11x1(t) + u12x2(t) + · · · + u1nxn(t) = 0,
...

um1x1(t) + um2x2(t) + · · · + umnxn(t) = 0,
x0(t) = 0.

(11)

Since (11) has m + 1 equations with m variables, (11) has common solutions if and only if its
non-identical zero resultant is zero (Theorem 2.3 on page 86 of [21]), which is impossible because
the equations in (11) have generic coefficients and generic constant items without relating to
the variables. So the intersection points of (9) and (6) are exactly the solutions of (10) for a
generic rational parametrization.

According to a modified version of Bernstein’s Theorem[22], for an equation system on
a support S containing the origin and with generic coefficients, its number of solutions is
NV (NP (S)) which is known as the BKK bound.

By Lemma 4, the BKK bound allows us to use the explicit value NV (NP (S)) for the
apparent algebraic degree of a support in this paper. Consequently, we define the improper
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index of a generic rational parametrization RP (S) to be

IX(RP (S)) =
NV (NP (S))
AD(RP (S))

.

For a generic parametrization (6) on S, the improper index IX(RP (S)) gives the number
of parameter points (t1, t2, · · · , tm) corresponding to a generic point (X1, X2, · · · , Xn) of the
unirational variety defined by RP (S). We state this fundamental property as a lemma.

Lemma 5 For a generic rational parametrization RP (S) on a lattice support S, there are
IX(RP (S)) parametric points corresponding to a generic variety point.

Thus, RP (S) is proper if IX(RP (S)) = 1 and improper if IX(RP (S)) > 1. The following
lemma asserts that a shrinkable support is improper.

Lemma 6 If there is a support transformation T for a lattice support S with J(T ) < 1,
then RP (S) is improper and

IX(RP (S))
IX(RP (T (S)))

=
1

J(T )
.

Proof By Lemma 3, the induced parametrization RP (T (S)) on the support T (S) is a
reparametrization of RP (S) on the support S. Thus, AD(RP (T (S))) = AD(RP (S)) and

IX(RP (S))
IX(RP (T (S)))

=
NV (NP (S))AD(RP (T (S)))
NV (NP (T (S)))AD(RP (S))

=
NV (NP (S))

NV (NP (T (S)))
=

1
J(T )

.

Since IX(RP (T (S))) ≥ 1, we have IX(RP (S)) > 1 and RP (S) is improper.
Example 3 m = 3, n = 4, S = { (0, 0, 0), (2, 0, 0), (0, 2, 0), (0, 0, 2), (0, 2, 2), (2, 0, 2),

(2, 2, 0), (1, 1, 1), (2, 2, 2)} (Figure 2).

(0,2,0)

(0,2,2)

(0,0,0)

(0,0,2)

(1,1,1)

(2,2,0)

(2,2,2)

(2,0,0)

(2,0,2)

Figure 2 A lattice support of m = 3

By using random coefficients or otherwise, we find AD(RP (S)) = 12. Thus, IX(RP (S)) =
3!×23

12 = 4. Indeed, four parameter points (t1, t2, t3), (t1,−t2,−t3), (−t1, t2,−t3), (−t1,−t2, t3)
correspond to a generic variety point (X1, X2, · · · , X4).

Lemma 7 Let S be a simplex support, that is, |S| = m + 1. Then IX(RP (S)) =
NV (NP (S))

Proof It is easily verified that a generic rational parametrization on S gives a hyperplane,
thus AD(S) = 1 and IX(RP (S)) = NV (NP (S)).

This means that the improper index of a simplex support is simply its normalized volume.
Consequently, a simplex support is parametric improper if and only if its normalized volume is
greater than 1.
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5.3 Generic Rational Parametrization on Improper Supports

In this subsection, we prove the main result for an inherently lattice support S and the its
corresponding generic rational parametrization:

IX(RP (S)) = IX(S).

The result allows us to find the improper index of a generic rational parametrization without
having to compute the non-trivial algebraic degree.

First, we give a lemma about the improper index of the generic parametrization on a support
and its sub-supports.

Lemma 8 Let S be a lattice support. If S′ ⊆ S is a sub-support, IX(RP (S))|IX(RP (S′)).
Proof To find the improper index IX(RP (S)) of generic rational parametrization (6), we

consider m + 1 generic hyperplanes:
⎧⎪⎪⎪⎨
⎪⎪⎪⎩

u00 + u01X1 + u02X2 + · · · + u0nXn = 0,
u10 + u11X1 + u12X2 + · · · + u1nXn = 0,

...
um0 + um1X1 + um2X2 + · · · + umnXn = 0.

(12)

The intersections of the hyperplanes and (6) are the solutions of
⎧⎪⎪⎪⎨
⎪⎪⎪⎩

u00x0(t) + u01x1(t) + u02x2(t) + · · · + u0nxn(t) = 0,
u10x0(t) + u11x1(t) + u12x2(t) + · · · + u1nxn(t) = 0,

...
um0x0(t) + um1x1(t) + um2x2(t) + · · · + umnxn(t) = 0,

(13)

where x0, x1, · · · , xn are the parametric polynomials defined in (6). By classical elimina-
tion theory, the resultant F (u0, u1, · · · , um), ui = (ui,0, ui,1, · · · , ui,n), of (13) with respect
to t1, t2, · · · , tm exists; it is known as the Chow form of (6)[4,23]. By the properties of resultants,
the resultant F is homogeneous in each ui,j with the apparent algebraic degree of (6), which is
the number of intersections of (6) and the other m hyperplanes involving uk, k 
= i. Since the
improper index IX(RP (S)) = μ is the multiplicity of each intersection point of (6) and any m
hyperplanes of (12), we can write F = fμ for some polynomial f(u0, u1, · · · , um).

Consider a sub-support S′ ⊆ S. The sub-support S′ can be obtained from S by setting
indeterminate coefficients x0,p, x1,p, · · ·, xn,p to zero for each p ∈ S \ S′. Correspondingly,
the Chow form F ′ of S′ can be obtained from the Chow form F of S by successively setting
these indeterminate coefficients in F to zero. Let fμl

l be the Chow form obtained after setting
l indeterminate coefficients to zero and the next indeterminate coefficient to be set to zero is c.
Then we can write fl = cg + ef

νl+1
l+1 where νl+1 ≥ 1, e is extraneous factors and fl+1 is a factor

of the Chow form after setting l + 1 indeterminate coefficients to zero. We see that the Chow
form after setting l + 1 indeterminate coefficients to zero is f

μlνl+1
l+1 . Consequently, we have

F ′ = fμν1···νL

L ,

where νj ≥ 1 and L is the number of indeterminate coefficients that have been set to zero to
obtain S′ from S. It follows that IX(RP (S′)) = μν1 · · · νL and thus IX(RP (S))|IX(RP (S′)).

The proof is completed.
Now, we are ready to prove the main result.
Theorem 4 Let S be a lattice support. We have IX(RP (S)) = IX(S).
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Proof Considering the transformation T of S in (4), we have

IX(T (S)) = gcd{NV (NP ((S′′)) : S′′ ⊆ T (S), |S′′| = m + 1} = 1.

By Lemma 7, we have IX(RP (S′′)) = NV (NP (S′′)) since S′′ ⊆ T (S) is a simplex sub-support.
By Lemma 8, IX(RP (T (S)))|IX(RP (S′′)) for all S′′ ⊆ T (S), so IX(RP (T (S)))|IX(T (S)).
We now get IX(RP (T (S))) = 1. But by Lemma 6, IX(RP (T (S))) = IX(RP (S))J(T ). Thus
we have IX(RP (S)) = 1/J(T ) = IX(S).

This theorem tells that the properness of a generic rational parametrization on a support is
equal to the properness of the support. And we can obtain the following theorem.

Theorem 6 For a lattice support S, there exists a support transformation T such that
IX(RP (S))J(T ) = 1 and RP (T (S)) is proper. Furthermore, there exists a proper reparametriza-
tion induced by the support transformation.

Proof According to Theorem 1, there exists a support transformation T such that T (S)
is proper. Then by Theorem 5, IX(RP (S))J(T ) = 1 and RP (T (S)) is proper. Furthermore,
by Lemma 3, transformation T induces a reparametrization. Since a rational parametrization
is invariant under integer translation of T (S) and and the reparametrization in Lemma 2 is
bi-rational, we can get a composite proper reparametrization for RP (S) on S to RR(S′) on S′,
where RR(S′) is proper, S′ is nonnegative and contains the origin.

Note that if S′ ⊆ S is a parametric sub-support then IX(S)|IX(S′). The following corol-
laries are immediate consequences of Theorem 5.

Corollary 2 Let S1,S2, · · ·, SN be sub-supports of a lattice support S. If gcd(IX(S1),IX(S2),
· · ·, IX(SN )) = 1, then a generic rational parametrization RP (S) is proper.

6 Arbitrary Parametrizations on Improper Supports

All the preceding results hold for a rational parametrization with generic coefficients. We
now investigate the situation when the coefficients are specialized to some values in the coeffi-
cient field.

In this section, we consider a rational parametrization RP (S) defined on a lattice support
S and with numerical coefficients C. Let IX(RP (S), C) be the improper index of RP (S).

Theorem 7 Let S be a lattice support, and T the transformation (4). Then IX(RP (S), C) =
IX(RP (T (S)), T (C)) IX(RP (S)), where T (C) is the set of coefficients of the reparametrization
by the transformation T . Consequently, if IX(RP (S)) > 1 then IX(RP (S), C) > 1.

Proof By (8), the reparametrization introduced by T in (4) is

t1 = s
gm−1

gm
1 ,

t2 = s
β1,2
gm

1 s

gm−2
gm−1
2 ,

...

tm = s
β1,m
gm

1 s

β2,m
gm−1
2 · · · s

1
g1
m .

(14)

The inverse of (14) can be represented as

s1 = t
gm

gm−1
1 ,

s2 = t
γ1,2
1 t

gm−1
gm−2
2 ,

...
sm = t

γ1,m

1 t
γ2,m

2 · · · tg1
m ,

(15)
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where γj,k are some rational numbers not important in the derivation.
The improper index of a rational parametrization is the number of parameter values cor-

responding to a generic point of the unirational variety V defined by the parametrization
RP (S). Since transformation T leads to a reparametrization, the transformed parametriza-
tion RP (T (S)) defines the same variety V . By definition, a generic point of V under the
reparametrization corresponds to IX(RP (T (S)), T (C)) parameter values (s1, s2, · · · , sm). We
may assume s1, s2, · · · , sm 
= 0 as this condition fails only on some lower dimensional subvariety
of V . By (15), a parameter point (s1, s2, · · · , sm) with s1, s2, · · · , sm 
= 0 leads to gm

gm−1
· · · g2

g1
g1 =

gm parameter points (t1, t2, · · · , tm). This completes the proof since gm = IX(RP (S)).
Theorem 8 Let S be a proper lattice support; that is, IX(RP (S)) = 1. For coefficients

C of (6) taken from a Zariski open set in the coefficient space K(n+1)|S|, rational parametriza-
tion (6) is proper; that is, IX(RP (S), C) = 1.

Proof By IX(RP (S)) = 1 and Lemma 5, the rational parametrization (6) with inde-
terminate coefficients is proper. By the proof of Lemma 8, the Chow form F of (6) involves
u0 = (u00, u01, · · · , u0n), u1, u2, · · · , um. Let Du00 be the discriminants of F as a univariate
polynomial in u00, which is not identical zero. When the indeterminate coefficients are spe-
cialized to C such that the improper index is μ = IX(RP (S), C) > 1, the Chow form of (6)
with coefficients C becomes Fμ

C . Since the specialized Chow form Fμ
C is no longer square-free,

then the discriminant Du00 vanishes when it is also specialized to C. But Du00 is a non-zero
polynomial in u01, u02, · · · , u0n; u1, u2, · · · , um. Then the coefficients of Du00 as polynomials in
u01, u02, · · · , u0n; u1, u2, · · · , um should be zero. Let D be such a coefficient which is a poly-
nomial in x0,p, x1,p, · · · , xn,p. From the above argument, we see that for a set C of numerical
values of the coefficients of (6), if D(C) 
= 0, (6) must be proper. The required Zariski open set
can be taken as K(n+1)|S| \ Zero(D).

Since a Zariski open set is the whole coefficient space minus a set with lower dimensions,
Theorem 8 means that for almost all numerical coefficients, transformation T in Theorem 1
gives a proper reparametrization. We state this result as a corollary.

Corollary 3 Let S be an improper lattice support. For coefficients C of (6) taken from a
Zariski open set in the coefficients space, the rational parametrization obtained with the trans-
formation (4) is proper.

Example 4 We give a support S with IX(RP (S)) = 2, IX(RP (S), C) = 8, IX(RP (T (S)),
T (C)) = 4. Let m = 2, S = {1, t21, t1t2, t

2
2, t

2
1t

2
2} and n = 4. Random integer values are generated

to construct three different polynomials in t1, t2 and arbitrarily take them to be x0(t1, t2),
x1(t1, t2), x2(t1, t2). We then set x3(t1, t2) = x1(t1, t2), x4(t1, t2) = x2(t1, t2). Computing the
Chow form using the Dixon resultant, we find both before and after the parametrizations to be
improper, but the reparametrization has only half of the original improper index.

To find the exact conditions for the coefficients C such that IX(RP (S), C) = 1 need more
subtle discussion, which is beyond the scope of this paper.

7 Conclusion

We identify a class of lattice supports in Zm, the properness and the structure of support
are considered. For improper supports, shrinking transformations are constructed. Considering
the parametrization problem on the lattice supports, we prove that the rational parametric
equations defined on them are always improper. And the proper reparametrization on the
lattice supports can be induced by shrinking transformations. The main results of the paper
are as follows.

We show that improper lattice supports can be described with a set of linear congruent
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equations. And we construct shrinking support transformations for the improper supports.
Based on theories of lattices, we give an algorithm of transformation with better complexities.

If the coefficients of a rational parametrization are generic or indeterminates, then the im-
proper index of S is IX(RP (S)) = IX(S). Furthermore, we can find a proper reparametrization
by constructing a support transformation.

If the coefficients of the rational parametrization are numerical values, we can re-parameterize
the parametrization such that the improper index of the new parametrization is reduced by a
factor of IX(RP (S)). Furthermore, almost all rational specialized parametrizations on a lattice
support S with IX(RP (S)) = 1 are proper.
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