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Abstract In this paper, a multiplicity-preserving triangular set decomposition algorithm is proposed

for a system of two polynomials, which involves only computing the primitive polynomial remainder

sequence of two polynomials once and certain GCD computations. The algorithm decomposes the

unmixed variety defined by two polynomials into square free and disjoint (for non-vertical components,

see Definition 4) algebraic cycles represented by triangular sets, which may have negative multiplicities.

Thus, the authors can count the multiplicities of the non-vertical components. In the bivariate case,

the authors give a complete algorithm to decompose the system into zeros represented by triangular

sets with multiplicities. The authors also analyze the complexity of the algorithm in the bivariate

case. The authors implement the algorithm and show the effectiveness of the method with extensive

experiments.

Keywords Algebraic cycle, multiplicity-preserving, primitive polynomial remainder sequence, trian-

gular set decomposition.

1 Introduction

Decomposing a polynomial system into triangular sets is a classical method to solve poly-
nomial systems. The method was first introduced in [1] and revised by Wu in his work of
elementary geometry theorem proving[2, 3]. There exists extensive work about this topic[4–21].
The main tool to decompose a polynomial system is pseudo-division. In most existing trian-
gular decomposition methods based on pseudo-division, one needs to deal with the initial of
certain polynomial(s), say h, which will bring extraneous zeros. Usually, one decomposes a
given system into two systems corresponding to the cases h = 0 and h �= 0, respectively. In
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doing so, the number of the components increases quickly, leading to an un-elementary worst
case complexity bound[10].

It is well known that the multiplicity of a component or a zero of a polynomial system
contains important information which helps us to obtain a deeper understanding of the structure
of the variety defined by the polynomial system. While, most triangular set decomposition
algorithms do not preserve the multiplicities of the zeros or the components. One approach
remedying this drawback is to decompose the polynomial system into triangular sets first and
then recover the multiplicities. Li proposed a method to compute the multiplicities of zeros
of a zero-dimensional polynomial system after obtaining a triangular decomposition of the
system[22]. Recently, Li, et al. proved that the main component in the decomposition in Wu’s
sense for a zero-dimensional polynomial system is actually multiplicity-preserving[23]. They also
gave a multiplicity-preserving decomposition, but some of the components are not in triangular
form.

In [24], Bates, et al. proposed a numerical-symbolic algorithm to compute the multiplicity
of a component (may not be zero-dimensional) of an algebraic set. Given a general point on
the component, they constructed a zero-dimensional system which had the same multiplicity
at the point as the component in the algebraic set. Computing the multiplicity of the zero-
dimensional system at the point numerically, they derived the multiplicity of the component
in the algebraic set. And there are some other methods to compute multiplicities of zeros of
polynomial systems, which are not by triangular set theories, for example, [25]. In [26], the
author took a primary decomposition for a system with two variables by Gröbner basis method,
then derived triangular forms of the output.

In this paper, we give an algorithm to decompose the variety defined by two polynomials into
algebraic cycles represented by triangular sets, that is, the components and their multiplicities
in the original polynomial system. During the decomposition, the initials bring some extraneous
algebraic cycles in each pseudo-division step during the computation of primitive polynomial
remainder sequences. We record them during the computation and remove them later, which
helps us to recover the algebraic cycles in triangular forms of the original system. This avoids
some redundant computation during the decomposition. Currently, the theory is complete
for polynomial systems consisting of two polynomials, which are decomposed into square free
and disjoint algebraic cycles in triangular forms. Thus the multiplicities of the non-vertical
components are obtained directly. In particular, we provide an algorithm to compute the
zeros of a zero-dimensional bivariate system consisting of two polynomials as well as their
multiplicities. We also analyze the complexity of the algorithm under certain conditions.

The proposed algorithm has two nice properties. First, the algorithm can find all the
components by computing the primitive polynomial remainder sequence of the two polynomials.
Second, the multiplicities of the components in the system can be found directly.

Kalkbrener[16] also used primitive polynomial remainder sequences to decompose zero-
dimensional bivariate polynomial systems. But his method ignores multiplicities. Our method
preserves multiplicities and removes the extraneous zeros.

The paper is organized as follows. In Section 2, we provide some properties of primitive
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polynomial remainder sequences. In Section 3, we give the definition of algebraic cycles of an
unmixed ideal. In Section 4, we provide the theories to decompose a polynomial system with
two polynomials into square free and disjoint triangular sets which preserve the multiplicities
of the components of the original system. We provide a multiplicity-preserving algorithm to
decompose a zero-dimensional bivariate polynomial system into multiplicative-zeros in trian-
gular forms in Section 5. The complexity of the algorithm under some conditions is analyzed.
Algorithms and examples are used to illustrate the effectiveness and efficiency of our method.
We also compare our method with other related methods. We draw a conclusion in the last
section.

2 Primitive Polynomial Remainder Sequence

In this section, we introduce some basic properties for primitive polynomial remainder se-
quences. There are many references to this topic, in particular, [15, 16, 27]. We modify the
procedure for our own purpose.

Let K be a computable field with characteristic zero, such as the field of rational num-
bers and K[y1, y2, · · · , yn] the polynomial ring in the indeterminates y1, y2, · · · , yn. For p, q ∈
K[y1, y2, · · · , yn], we set gcd(p, q) = 1 if gcd(p, q) ∈ K \ {0}.

Let p ∈ K[x1, x2, · · · , xn, x]. We define

Cont(p, x) = gcd(coeff(p, xi), i = 0, 1, · · · , deg(p, x)),

Prim(p, x) = p/Cont(p, x),

where coeff(p, xi) means the coefficient of xi in p and deg(p, x) means the degree of p in x. p is
called primitive w.r.t. x if Cont(p, x) = 1.

The pseudo-division procedure can be extended to the following form.

Lemma 1 Let f, g ∈ K[x1, x2, · · · , xn, x], deg(f, x) = d1, deg(g, x) = d2, d1 ≥ d2 > 0,
and gcd(f, g) = 1. There exist q, r ∈ K[x1, x2, · · · , xn, x] such that

lδ+1f + q g = r, (1)

where l is the leading coefficient of g in x, δ = d1 − d2, deg(g, x) > deg(r, x). Denote r =
Prem(f, g, x). Furthermore, q has the form:

q = l t x + s, (2)

where t ∈ K[x1, x2, · · · , xn, x], s ∈ K[x1, x2, · · · , xn]. Moreover, if r1 = Cont(f, x), r2 =
Cont(g, x), then

r1|q, rd1−d2
2 |q, r1|r, rd1−d2+1

2 |r. (3)

Proof Write f, g as univariate polynomials in x,

f = a1 xd1 + a2 xd1−1 + · · ·+ ad1+1,

g = b1 xd2 + b2 xd2−1 + · · ·+ bd2+1.
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Note that l = b1. We prove the lemma by induction on δ = d1 − d2. To eliminate the terms of
f with degree d1 in x, we have

T0(x) = b1 f + q0 g = h0 xd1−1 + lower powers in x,

where q0 = −a1 xd1−d2 , h0 = b1 a2 − a1b2. It is clear that r1|q0. Since r1|a1, r0
2(= 1)|q0 and

r1|T0, r2|T0. Set r = T0 when δ = 0. We can find that the lemma holds when δ = 0. Now, we
need to eliminate h0 ∗ xd1−1 from T0(x). If h0 �= 0,

T1(x) = b1 T0(x)− h0 xd1−d2−1g

= b2
1 f + (b1 q0 − (b1 a2 − a1b2)xd1−d2−1)g

= b2
1 f + q1 g

= h1 xd1−2 + lower powers in x,

where h1 ∈ K[x1, x2, · · · , xn] and q1 = −b1 a1 xd1−d2 − (b1 a2− a1b2)xd1−d2−1. Each term of q1

contains a factor of the form ai bj . So r1|q1, r2|q1 and r1|T1, r
2
2|T1. If h0 = 0, T1(x) = b1 T0(x),

and the result is still true. So the lemma holds when δ = 1. Assuming that the lemma holds
for the cases δ ≤ i(i > 1), then we have

Tδ(x) = bδ+1
1 f + qδ g,

where qδ = l tδ x + sδ, r1|qδ, r
δ
2|qδ, r1|Tδ, r

δ+1
2 |Tδ. Then when δ = i + 1, that is, deg(f, x) −

deg(g, x) = i + 1, we set g′ = x ∗ g. Thus δ = i for f and g′. So we have

S(x) = bi+1
1 f − qi g′,

and r1|qi, r
i
2|qi, r1|S, ri+1

2 |S by the assumption.
If deg(S, x) < d2 = deg(g, x), then

r = b1 S(x) = b1 bi+1
1 f − b1 qi g′ = bi+2

1 f − b1 qi x g = bi+2
1 f − qi+1 g.

It is easy to find that r1|qi+1, r
i
2|qi+1, r1|qi+1, r

i+2
2 |qi+1.

Otherwise, deg(S, x) = d2 = deg(g, x). Let p be the leading coefficient of S w.r.t. x. It is
clear that r1|p, ri+1

2 |p. We have

r = b1 S(x) − p g = bi+2
1 f − (b1 qi x− p) g = bi+2

1 f − qi+1 g.

We can find that r1|qi+1, r
i
2|qi+1, r1|qi+1, r

i+2
2 |qi+1. Thus the lemma is proved.

The following corollary is obvious.

Corollary 2 Let f, g ∈ K[x1, x2, · · · , xn, x] be primitive, d1 = deg(f, x) ≥ d2 = deg(g, x) >

0, and gcd(f, g) = 1. Regard f, g as univariate polynomials in x. Then there exists an
m ∈ K[x1, x2, · · · , xn] such that

m f = q g + r,

and gcd(m, q) = gcd(m, r) = 1. Furthermore,

(m f, g) = (g, r),

where (P ) represents the ideal generated by a polynomial system P .
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The result below is a necessary condition to check whether g has factors in K[x1, x2, · · · , xn].

Corollary 3 Cont(g, x) = 1 if gcd(l, s) = 1 and d1 > d2, where l and s are from (1) and
(2).

Proof Regard f, g as univariate polynomials in x, and q a polynomial in x and ai, bj, where
i = 1, 2, · · · , d1 + 1, j = 1, 2, · · · , d2 + 1. Let r2|g and r2 ∈ K[x1, x2, · · · , xn]. From Lemma 1,
r2|q if d1 > d2. So r2|s. Since r2|l, r2| gcd(l, s). We have r2 = 1 if gcd(l, s) = 1. The corollary
is proved.

Lemma 4 Let f1, f2 ∈ K[x1, x2, · · · , xn, x], d1 = deg(f1, x) ≥ d2 = deg(f2, x) > 0.
Assume that Cont(fi, x) = 1, i = 1, 2. Regarding f1, f2 as polynomials in x, we can obtain a
polynomial sequence {f1, f2, · · · , fk+2} such that

mifi + qifi+1 = mi−1pifi+2, i = 1, 2, · · · , k, (4)

where m0 = 1, pk = 1, mi, pi, fk+2 ∈ K[x1, x2, · · · , xn], qi ∈ K[x1, x2, · · · , xn, x], i = 1, 2, · · · , k,
and Cont(fi, x) = 1(1 ≤ i ≤ k + 1), gcd(mi, pi) = 1.

Proof When i = 1, from Lemma 1, there exist q ∈ K[x1, x2, · · · , xn, x], r ∈ K[x1, x2, · · · , xn,
x] such that lδ+1

2 f1 + qf2 = r, where li is the leading coefficient of fi in x, δ = d1 − d2.

Let t = gcd(lδ+1
2 , q), m1 = lδ+1

2
t , q1 = q

t . If deg(r, x) = 0, set f3 = r
t , m0 = p1 = 1 and

k = 1. We have obtained the sequence and the lemma is proved. Else, let p1 = Cont(r,x)
t and

f3 = Prim(r, x). It is clear that gcd(m1, p1) = 1. Denote di = deg(fi, x). For fi, fi+1, we
have lθ+1

i+1 fi + qtfi+1 = ri+2 by Lemma 1, where θ = di − di+1, di+1 > 0. If mi−1 is a factor of
ri+2, set p′i as the product of all the factors of ri+2

mi−1
in K[x1, x2, · · · , xn]. Let h = gcd(lθ+1

i+1 , p′i).

Then mi =
lθ+1
i+1
h , qi = qt

h , pi = p′
i

h , gcd(mi, pi) = 1. Let fi+2 = ri+2
mi−1 p′

i
. If deg(fi+2, x) = 0,

set fi+2 = pi and pi = 1. Thus k = i. If mi−1 is not a factor of ri+2, we can multiply
g = mi−1

gcd(mi−1,ri+2)
to the two sides of the equation. Then doing the same operation as before,

we can derive mifi + qifi+1 = mi−1pifi+2 which satisfies all the conditions. Doing the same
computation recursively, the operation will end for some k such that deg(fk+2, x) = 0. This
proves the lemma.

In most cases, we have gcd(mi, qi) = 1 and pi = 1 which help us to design efficient algorithms.
We call the algorithm to compute the sequence f1, f2, · · · , fk+1, fk+2 the extended Euclidean
algorithm.

Corollary 5 Let f1, f2 ∈ K[x1, x2, · · · , xn, x], gcd(f1, f2) = 1, Cont(fi, x) = 1, i = 1, 2,
and deg(f1, x) ≥ deg(f2, x) > 0. From the extended Euclidean algorithm, we can obtain

mifi + qifi+1 = gifi+2, i = 1, 2, · · · , k, (5)

(mi fi, fi+1) = (fi+1, gi fi+2), (6)

where mi, gi ∈ K[x1, x2, · · · , xn], gcd(mi, gi) = 1, gk = 1, gcd(mk, gkfk+2) = 1, and fi+2(1 ≤
i ≤ k − 1) are primitive.

Proof From Lemma 4, we have (4). Note that gcd(mi, pi) = 1. Let h = gcd(mi, mi−1),
denote mi = mi

h , qi = qi

h , gi = mi−1pi

h . Then we have gcd(mi, gi) = 1. Since fk+2 ∈
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K[x1, x2, · · · , xn], we can set gk = 1. We can delete gcd(mk, gkfk+2) if it exists. Thus we
obtain (5). (6) is obvious. So the corollary holds.

The following corollary is clear and useful.

Corollary 6 We can rewrite (5) and (6) as below.

mifi + qifi+1 =
mi−1

wi
pifi+2, i = 1, 2, · · · , k, (7)

(mi fi, fi+1) =
(

fi+1,
mi−1

wi
pi fi+2

)
, (8)

where wi is a factor of mi−1, gi = mi−1
wi

pi, and pk = 1.

3 Algebraic Cycles of Unmixed Ideals

A d-dimensional algebraic cycle is generally defined to be a formal linear combination∑
i miVi of d-dimensional irreducible algebraic varieties Vi with non-negative integer coeffi-

cients mi
[28, 29]. This definition does not suit for our computational approach of algebraic

cycles. In this section, we will define the algebraic cycle associated with an unmixed ideal,
which will be served as the basis for our decomposition algorithm to be presented in this paper.

3.1 Algebraic Cycle in Projective Space

We will define the multiplicities of the irreducible components of an unmixed homogenous
polynomial system in this subsection, which will be used to define multiplicative varieties in
affine case in the next subsection.

We first recall the concept of multiplicity of a point of a zero-dimensional polynomial system
in affine case.

Let I be a zero-dimensional ideal in K[x1, x2, · · · , xn] such that the affine variety V (I)
defined by I consists of finitely many points in K

n
, where K is the algebraic closure of K,

and assume p = (a1, a2, · · · , an) ∈ V (I). Then the multiplicity of p[30] as a zero of I, denoted
by m(p), is the dimension of the vector field obtained by localizing K[x1, x2, · · · , xn] at the
maximal ideal M = I(p) = (x1 − a1, x2 − a2, · · · , xn − an) corresponding to p, that is,

m(p) = dimKK[x1, x2, · · · , xn]M/IK[x1, x2, · · · , xn]M .

We can easily extend the above definition to projective space, since for any zero η =
(η0, η1, · · · , ηn) of a zero-dimensional polynomial system Σ in projective space, there is one
coordinate, say η0, which is not equal to zero. Then (1, η1

η0
, η2

η0
, · · · , ηn

η0
) is still a zero of Σ . Let

Σ ′ be the corresponding system of Σ in affine space such that Γ = (η1
η0

, η2
η0

, · · · , ηn

η0
) is a zero of

Σ ′. The multiplicity of η in Σ is defined to be the multiplicity of Γ in Σ ′.
Let P ⊂ K[x0, x1, · · · , xn] be a zero-dimensional homogenous polynomial system, which has

a finite number of solutions in projective space:

(ξ(j)
0 , ξ

(j)
1 , · · · , ξ(j)

n ), j = 1, 2, · · · , s (9)
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with multiplicity mj in some extension K of K. Let

L = u0 x0 + u1 x1 + · · ·+ un xn = 0,

where u = (u0, u1, · · · , un) are indeterminates. Then the u-resultant of P (see p.172 of [31] and
p.144 of [30]) is a homogenous polynomial D(u) in K[u], which can be factored as

D(u) = Πs
j=1(u0 ξ

(j)
0 + u1 ξ

(j)
1 + · · ·+ un ξ(j)

n )mj . (10)

The u-resultant has the property that for a specialization u→ u, P = 0 and L = u0 x0 +u1 x1 +
· · ·+ un xn = 0 have common solutions if and only if D(u) = 0.

In order to extend the concept of multiplicity to the case of an irreducible component of an
unmixed homogenous polynomial ideal, we need the following result. A polynomial ideal I is
called unmixed if it has no embedded associated primes. Equivalently, all associated primes of
an unmixed I have the same dimension. It is clear that if I is an unmixed ideal of dimension
d, then all irredundant irreducible varieties of I are of dimension d.

Lemma 7 (Theorem IV of [28]) Let IH
d ⊂ K[x0, x1, · · · , xn] be a prime homogeneous

ideal of dimension d and

Li = vi0x0 + vi1x1 + · · ·+ vinxn, i = 1, 2, · · · , d, (11)

d generic hyperplanes. Then I = (IH
d , L1, L2, · · · , Ld) is a prime zero-dimensional ideal in

K∗[x0, x1, · · · , xn], where K∗ = K(v1, v2, · · · , vd) and vi = (vi0, vi1, · · · , vin). Furthermore,
each zero of I is a generic point of I.

Let IH
d ⊂ K[x0, x1, · · · , xn] be an unmixed homogenous ideal of dimension d and

V (IH
d ) =

t∑
i=1

Vi (12)

be an irredundant decomposition of V (IH
d ). Then each Vi is an irreducible variety of dimension

d. Let L1, L2, · · · , Ld be the generic hyperplanes in (11) and

I
H

d = (IH
d , L1, L2, · · · , Ld).

Then it is easy to show that

V(I
H

d ) =
t∑

i=1

Vi ∩ V(L1, L2, · · · , Ld).

By Lemma 7, each V i = Vi ∩ V(L1, L2, · · · , Ld) is an irreducible variety of dimensional zero
over K∗. As a consequence, I

H

d is also zero-dimensional over K∗. We have

Lemma 8 Using the notations introduced above. Let V i = Vi ∩ V(L1, L2, · · · , Ld) =
{ηij , j = 1, 2, · · · , si} where ηij = (ηij0, ηij1, · · · , ηijn). Then the multiplicities of ηij , j =
1, 2, · · · , si as zeros of I

H

d are all the same.
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Proof According to the definition of multiplicities, we need only to show that the lemma
is valid in affine case, which will be proved below. Let Mj be the maximal ideal associated
with ηij . It suffices to show that the localization rings RMj for different j are the same,
where R = K[x1, x2, · · · , xn]. RMj can be written as {P/Q |P, Q ∈ R&Q(ηij) �= 0}. Since
ηij , j = 1, 2, · · · , si are the zeros of an irreducible variety V i, RMj are the same for all j, which
proves the lemma.

Let D(u) be the u-resultant of I
H

d . Then by Lemma 8 and (10), we have

D(u) = Πt
i=1Π

si

j=1(u0 ηij0 + u1 ηij1 + · · ·+ un ηijn)mi , (13)

where mi is the multiplicity of ηij as a zero of I
H

d , t is from (12), si is from Lemma 8. Now,
we can define the algebraic cycle of IH

d .

Definition 1 Let IH
d ⊂ K[x0, x1, · · · , xn] be an unmixed homogenous ideal of dimension

d, Vi the irreducible components of V(IH
d ) defined in (12), and D(u) the u-resultant of I

H

d given
in (13). Then the multiplicity of Vi in IH

d is defined to be mi and the algebraic cycle of IH
d is

defined to be

M(IH
d ) =

h∑
i=1

mi Mi, (14)

where Mi corresponds to Vi and has multiplicity mi in M(IH
d ).

Consider two algebraic cycles with the forms Md =
∑h

i=1 aiM
(i)
d and Nd =

∑h
i=1 biM

(i)
d ,

where M
(i)
d are irreducible algebraic cycles. Without loss of generality, we assume that some of

the ai or bi maybe zero, meaning that the corresponding M
(i)
d is not in Md or Nd. It is clear

that we can define “+” between algebraic cycles:

Md + Nd =
h∑

i=1

(ai + bi)M
(i)
d .

Let Fm and Fn be the u-resultant of Md and Nd, respectively. Then, the u-resultant of Md +Nd

is Fm Fn.
Nd is called a subvariety of Md if ai ≥ bi(i = 1, 2, · · · , h). If Nd is a subvariety of Md, then

we can define “−” as follows

Md − Nd =
h∑

i=1

(ai − bi)M
(i)
d ,

where ai− bi ≥ 0. Then, the u-resultant of Md −Nd is Fm/Fn. Note that Fn is a factor of Fm.

3.2 A Product Formula of Affine Algebraic Cycles

We will define the multiplicities of the irreducible components of an unmixed polynomial
system in the affine case and prove a property of algebraic cycles which is the basis for the
decomposition algorithm to be proposed in this paper.

We first define the algebraic cycle of an unmixed ideal in the affine case under certain
conditions.
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Definition 2 Let Id ⊂ K[x1, x2, · · · , xn] be an unmixed polynomial ideal of dimension
d in affine space and IH

d ⊂ K[x0, x1, · · · , xn] the homogenization of Id by introducing a new
variable x0. If IH

d is unmixed and dim(Id) = dim(IH
d ) = d, the algebraic cycle of Id is defined

to be a representation similar as (14) but removing the components at infinity.

We need to mention that an ideal corresponds to an algebraic cycle uniquely, but an algebraic
cycle may corresponds to many different ideals. For example, I1 = (x2, y) �= I2 = (x, y2), but
M(I1) = M(I2) = 2M(I), where I = (x, y).

In the rest of this section, we will concentrate on the algebraic cycles of two polynomials.
Let f, g ∈ K[x1, x2, · · · , xn] such that gcd(f, g) = 1 and fH , gH be the homogenization of f

and g respectively. As a consequence of Macaulay’s unmixed theorem[32], we have

Lemma 9 If f and g are not conflict and gcd(f, g) = 1, then (f, g) is an unmixed ideal
of dimension n− 2.

As a consequence, (fH , gH) is an unmixed homogenous ideal of dimension n− 2. Thus, we
can always define M(f, g) = M((f, g)). The following is a key result of this paper.

Theorem 10 Let f, g, h ∈ K[x1, x2, · · · , xn]. If gcd(f g, h) = 1, then

M(f g, h) = M(f, h) + M(g, h). (15)

Proof It is not difficult to find that V (f g, h) = V (f, h) ∪ V (g, h). Thus the components of
M(f g, h) and M(f, h)+M(g, h) are the same. We need only to prove that the multiplicity of each
component on the two sides is the same. Since gcd(f g, h) = 1, dim(V (f g, h)) = dim(V (f, h)) =
dim(V (g, h)) = n − 2. Let I = (f g, h) and IH = (fH gH , hH) be the homogenization of
I (in x0, x1, x2, · · · , xn) by introducing the new variable x0. We can find that dim(V (I)) =
dim(V (IH)). Denote Li = ui,0 x0 + ui,1 x1 + · · · + uj,n xn(i = 0, 1, · · · , n − 2), and ui =
(ui,0, ui,1, · · · , ui,n). Then

Σ = (fH gH , hH , L1, L2, · · · , Ln−2)

is a zero-dimensional system in the field extension K∗ = K(u1, u2, · · · , un−2). Then by the
property of multi-polynomial resultants[30], we have

Res(L0, f
H gH , hH , L1, L2, · · · , Ln−2)

= Res(L0, f
H , hH , L1, L2, · · · , Ln−2)Res(L0, g

H , hH , L1, L2, · · · , Ln−2), (16)

where Res(L0, f
H gH , hH , L1, L2, · · · , Ln−2), Res(L0, f

H , hH , L1, L2, · · · , Ln−2), Res(L0, g
H , hH ,

L1, L2, · · · , Ln−2) are u-resultants of (fH gH , hH), (fH , hH), and (gH , hH) in K∗, respectively.
Thus the multiplicities of the components in M(fH gH , hH) and M(fH , hH) + M(gH , hH) are
the same, which means that the lemma is true when f, g, h are homogeneous.

We can rewrite the zero ξj = (ξ(j)
0 , ξ

(j)
1 , · · · , ξ(j)

n ) of Σ = 0 into two forms by deciding
whether ξ

(j)
0 = 0 or not. If ξ

(j)
0 = 0, then

ξj = (0, ξ
(j)
1 , ξ

(j)
2 , · · · , ξ(j)

n ).
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These are the solutions of {f g, h, L1, L2, · · · , Ln−2} = 0 at infinity. If ξ
(j)
0 �= 0, then

ξj =
(

1,
ξ
(j)
1

ξ
(j)
0

,
ξ
(j)
2

ξ
(j)
0

, · · · , ξ
(j)
n

ξ
(j)
0

)
= (1, ξ

′(j)
1 , ξ

′(j)
2 , · · · , ξ′(j)n ).

These correspond to the solutions of {f g, h, L1, L2, · · · , Ln−2} = 0 in the affine space. Thus,
the u-resultant of (fH gH , hH , L1, L2, · · · , Ln−2) can be written as the following form for some
C ∈ K∗ and 1 ≤ t ≤ s:

D(u0) = C Πt
j=1(u0,0 + u0,1 ξ

′(j)
1 + u0,2 ξ

′(j)
2 + · · ·+ u0,n ξ′(j)n )mj

Πs
j=t+1(u0,1 ξ

(j)
1 + u0,2 ξ

(j)
2 + · · ·+ u0,n ξ(j)

n )mj . (17)

We can get a similar representation for (fH , hH , L1, L2,· · · ,Ln−2) and (gH , hH , L1, L2,· · · ,Ln−2).
From (16) and (17), we can see that the multiplicity for an irreducible component V of {f g, h}
is the sum of the multiplicities of V in {f, g} and {g, h}. This proves the theorem.

In the case of two variables, the above theorem is a direct consequence of Theorem 3 of [33].
There do exist general results similar to Theorem 10, for instance in [28]. But due to the

different definition of algebraic cycles in [28] and in our paper, such results cannot be used
directly to deduce Theorem 10.

4 Multiplicity-Preserving Triangular Set Decomposition of Two Poly-

nomials

In this section, we will give a method to decompose a system consisting of two polynomials
into square free and disjoint triangular sets, which preserves the multiplicities of the components
in the system.

4.1 Triangular Decomposition of Two Polynomials

Let x1 ≺ x2 ≺ · · · ≺ xn be ordered variables and K[x1, x2, · · · , xn] the ring of polynomials
in xi. A variable xc is said to be the main variable of t ∈ K[x1, x2, · · · , xn] if xc is the largest
variable occurring in t. Let xc be the main variable of t. Then t can be written uniquely as a
univariate polynomial in xc:

t = adx
d
c + ad−1x

d−1
c + · · ·+ a0,

where ai ∈ K[x1, x2, · · · , xc−1]. Then, ad is called the initial of t and adx
d
c is called the leading

term of t.
A polynomial system T = {t1, t2, · · · , ts} ⊂ K[x1, x2, · · · , xn] is said to be a triangular set

if ti ∈ T (1 ≤ i ≤ s) are non-constant and have distinct main variables.
A triangular set T = {t1, t2, · · · , ts} ⊂ K[x1, x2, · · · , xn] such that ti(i = 1, 2, · · · , s) are

listed in order of their main variables, say xmi , from low to high, is said to be regular[15, 20] if

Res(I, T ) = Resxm1
(· · · (Resxms

(I, ts), · · · ), tm1) �= 0,

where I is the product of all the initials of ti. Regular triangular sets have the following
properties.
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Lemma 11 If T = {f, g} ⊂ K[x1, x2, · · · , xn] is a regular triangular set, then M(T ) is a
nonempty algebraic cycle of dimension n− 2.

Proof Let I be the initial of g. Then gcd(h, I) = 1. As a consequence, gcd(g, h) = 1. Then
it suffices to show that V(T ) is not empty. It is well known that V(T/I) is not empty[15]. Since
V(T/I) ⊂ V(T ), the lemma is proved.

From the definition, we can easily decompose a triangular set {h, f} (h ∈ K[x1, x2, · · · , xn],
f ∈ K[x1, x2, · · · , xn, x]) into regular ones. Let the initial of f be p ∈ K[x1, x2, · · · , xn], t the
leading term of f in x, and q = gcd(p, h) ∈ K[x1, x2, · · · , xn]. If q is a constant in K, {h, f} is
regular. Otherwise, by Theorem 10

M(h, f) = M(h/q, f) + M(q, f − t).

And we can continue to decompose M(q, f − t) until it is regular. Therefore, in the rest of the
paper, a triangular set consisting of two polynomials is always assumed to be regular.

Definition 3 A multiplicity-preserving triangular set decomposition of an unmixed poly-
nomial system Σ of dimension d is a decomposition like

M(Σ) =
m+∑
i=1

M(T +
i )−

m−∑
j=1

M(T−
i ), (18)

where {T +
i , T−

j , i = 1, 2, · · · , m+, j = 1, 2, · · · , m−} are regular triangular sets such that M(T +
i )

and M(T−
i ) are algebraic cycles of dimension d.

We will show that a multiplicity-preserving triangular sets decomposition exists for systems
with two polynomials in the rest of this section. Note that for a zero-dimensional polynomial
system, the existence of (18) is obvious. The existence of (18) in the general case (dimension
mixed, more polynomials) is our future work.

We can strengthen the decomposition in Definition 3 in the two polynomials case.

Definition 4 Let T = {h, f} be a triangular set such that h ∈ K[x1, x2, · · · , xn], f ∈
K[x1, x2, · · · , xn, x]. Denote all the zeros of the coefficients of f in x as Vcoef(f, x) ⊂ K

n
, where

K is the algebraic closure of K and V (P ) is the zeros of P ∈ K[x1, x2, · · · , xn] in K
n
. We call

the corresponding algebraic cycles of Vcoef(f, x) ∩ V (h) the vertical components of M(T ). The
components of M(T ) removing the vertical components are called non-vertical components. Let
T1, T2 ⊂ K[x1, x2, · · · , xn, x] be two triangular sets of dimension n−1, each has two polynomial
elements. And let Vi be the zero set of the vertical components of Ti, i = 1, 2. We say T1, T2 or
M(T1), M(T2) are disjoint if dim((V (T1)\V1)∩ (V (T2)\V2)) < n−2. We call {h, f} or M(h, f)
square free if h is square free, and {h, f}, {h, ∂f

∂x} or M(h, f), M(h, ∂f
∂x ) are disjoint.

For example, T1 = {x2−x2
1, x2 x−x1} and T2 = {x2−x2

1, x1 x+x2−x1} are disjoint. Note
that x1 = x2 = 0 is their common vertical component of dimension 1 and dim(T1) = dim(T2) =
1 in C

3.
The following theorem and its corollary are key results of the paper.
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Theorem 12 Let f1, f2 ∈ K[x1, x2, · · · , xn, x] such that gcd (f1, f2) = 1, Cont(fi, x) =
1, i = 1, 2, and deg(f1, x) ≥ deg(f2, x) > 0. Then, we have the following multiplicity-preserving
triangular decomposition

M(f1, f2) = M(fk+1, fk+2) +
k∑

i=1

M(gi, fi+1)−
k∑

i=1

M(mi, fi+1), (19)

where fi, gi, mi are defined in Corollary 5.

Proof From (6), we have

M(mifi, fi+1) = M(fi+1, gi fi+2),

and gcd(mifi, fi+1) = gcd(fi+1, gi fi+2) = 1. Then by Theorem 10, for 1 ≤ i ≤ k, we have

M(mi, fi+1) + M(fi, fi+1) = M(gi, fi+1) + M(fi+1, fi+2), (20)

M(fi, fi+1) = M(fi+1, fi+2) + M(gi, fi+1)−M(mi, fi+1). (21)

From (20), M(mi, fi+1) is a subvariety of M(gi, fi+1)+ M(fi+1, fi+2). Then we can do subtrac-
tion in (21). So we have

M(f1, f2) = M(f2, f3) + M(g1, f2)−M(m1, f2)

= M(f3, f4) + M(g1, f2) + M(g2, f3)−M(m1, f2)−M(m2, f3)
...

= M(fk+1, fk+2) +
k∑

i=1

M(gi, fi+1)−
k∑

i=1

M(mi, fi+1).

The proof is completed.
By the definition of algebraic cycle, the decomposition in (19) is about the (n−1)-dimensional

component of M(f1, f2). The following corollary is very useful in practice.

Corollary 13 Use the notations in Corollary 6, we have

M(f1, f2) = M(fk+1, fk+2) +
k∑

i=1

(M(pi, fi+1)−M(wi, fi+1))

−
k−1∑
i=1

(
M

(
mi,

mi−1

wi

)
+ M(mi, pi)−M(mi, qi)

)
−M(mk, fk+1). (22)

Proof From Corollary 6, we have wi gi = mi−1pi. So by Theorem 10, we have

M(gi, fi+1) = M(pi, fi+1) + M(mi−1, fi+1)−M(wi, fi+1). (23)
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This helps us simplifying the computation. By (20), we have

M(f1, f2) = M(fk+1, fk+2) +
k∑

i=1

(M(pi, fi+1) + M(mi−1, fi+1)

−M(wi, fi+1))−
k∑

i=1

M(mi, fi+1)

= M(fk+1, fk+2) +
k∑

i=1

M(pi, fi+1)−
k∑

i=1

M(wi, fi+1) + M(m0, f2)

+
k−1∑
i=1

M(mi, fi+2)−
k−1∑
i=1

M(mi, fi+1)−M(mk, fk+1). (24)

From
mifi + qifi+1 =

mi−1

wi
pifi+2,

we have
M(mi, qifi+1) = M

(
mi,

mi−1

wi
pifi+2

)
.

By Theorem 10, we have

M(mi, fi+1) = M(mi, fi+2) + M

(
mi,

mi−1

wi

)
+ M(mi, pi)−M(mi, qi).

And m0 = 1, so M(m0, f2) = ∅. Then we have (22).
Remark 1 The components M(mi,

mi−1
wi

), M(mi, pi), and M(mi, qi) only involve polyno-
mials in K[x1, x2, · · · , xn]. Note that by Lemma 1, the coefficient of qi in xt for t > 0 is zero
when mi = 0. These components can also be decomposed into triangular sets recursively. This
corollary is very important since it provides a method to eliminate the main variable x in fi’s,
which simplifies the decomposition.

4.2 Disjoint and Square Free Decomposition

In this subsection, we will discuss how to decompose algebraic cycles in triangular forms
into disjoint and square free ones.

In the following lemma, we will show how to decompose algebraic cycles in triangular forms
into disjoint ones.

Lemma 14 Let f1, f2 ∈ K[x1, x2, · · · , xn, x] be primitive, deg(f1, x) ≥ deg(f2, x) > 0,
gcd(f1, f2) = 1. And h ∈ K[x1, x2, · · · , xn] be square free and primitive. There exists an
algorithm to decompose M(h, f1), M(h, f2) into disjoint algebraic cycles in triangular forms.

Proof From f1, f2, we can derive a sequence like (5) such that Cont(fi, x) = 1, gcd(mi, gi) =
1, for i = 1, 2, · · · , k, gcd(h, gi) = 1 for i = 1, 2, · · · , k − 1. Assume that gcd(h, mi) = 1 for
i = 1, 2, · · · , k. Otherwise, we can split h such that the condition holds. Let r = gcd(h, gk). If
r ∈ K and deg(fk+1, x) = 0, it is obvious that M(h, f1) and M(h, f2) are disjoint. If r �∈ K and
h � gk, we can split h into r, r′ = h/r. Thus r|gk. And we can continue to decompose M(r′, f1),
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M(r′, f2). The last case is h|gk. So we consider the case that there exists a k such that h|gk.
Denote mi fi + qi fi+1 = gi fi+2 as formula Fi. Simplifying mk Fk−1 − qk−1 Fk, we have

mk mk−1 fk−1 − (qk−1 qk + mk gk−1) fk+1 = −qk+1 gk fk+2.

Recursively, we have
mk mk−1 · · ·m2f2 −Q2 fk+1 = gk R2.

Since h|gk, we have
(h, mk mk−1 · · ·m2f2) = (h, Q2 fk+1).

Thus we have a decomposition for M(h, f2) by Theorem 10:

M(h, f2) = M(h, Q2) + M(h, fk+1)−
k∑

i=2

M(h, mi). (25)

Similarly, we have the following equation:

mk mk−1 · · ·m1f1 −Q1 fk+1 = gk R1

and decomposition:

M(h, f1) = M(h, Q1) + M(h, fk+1)−
k∑

i=1

M(h, mi). (26)

From the property of Euclidean algorithm over algebraic extension (see [34, 35] and related
work), M(h, Q1) and M(h, Q2) are disjoint. Recursively, we can ensure that M(h, fk+1) and
M(h, Q1), M(h, fk+1) and M(h, Q2) are disjoint. We can decompose M(h, mi) into disjoint alge-
braic cycles in triangular forms recursively. Since the degrees of f1, f2 are finite, the algorithm
will terminate in the end. Thus we prove the lemma.

Based on the lemma, we have an algorithm to find out the common components with
dimension n− 1 in M(h, f1) and M(h, f2).

Theorem 15 Let f, g ∈ K[x1, x2, · · · , xn] and gcd(f, g) = 1. There exists an algorithm
to decompose M(f, g) into square free and disjoint algebraic cycles in triangular forms as (18).

Proof For the resulting algebraic cycles in Corollary 13, we can check whether any two of
them, say M(p1, q1), M(p2, q2), r = gcd(p1, p2) is a constant or not. If so, M(pi, qi), i = 1, 2 are
disjoint. If not, decompose them as below: M(pi, qi) = M(r, qi) + M(pi/r, qi), i = 1, 2. From
Lemma 14, we can decompose M(r, q1) and M(r, q2) into disjoint algebraic cycles in triangular
forms. Thus in the end we can decompose M(f, g) into disjoint algebraic cycles in triangular
forms. Now we are going to show that each algebraic cycle M(p, q) can be made square free.
Let p ∈ K[x1, x2, · · · , xn−1], q ∈ K[x1, x2, · · · , xn]. Still with the result in Lemma 14, we can
decompose M(p, q) into lower degree algebraic cycles such that the non-vertical components
of M(p, q) and M(p, ∂q

∂xn
) are disjoint as (26). And continuously decompose the non-vertical

components of M(h, fk+1) in (26) into square free algebraic cycles. In a similar way, we can
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decompose the algebraic cycles in triangular forms without the variable xn into disjoint and
square free ones. And the method mentioned below Lemma 11 can help us to decompose a
triangular set into regular ones. So we can obtain a decomposition as (18) in the end. The
decomposition will terminate since the number of the variables are finite. Thus we prove the
theorem.

We can also make the algebraic cycles square free at first and then make them disjoint in
practice. The theorem allows us to count the multiplicities of the non-vertical components of
M(f, g).

We do not write an algorithm for decomposing two polynomials system. The algorithm is
similar to that of two bivariate polynomial system, which will be given in the next section. Here
we will give an illustrative example.

Example 1 Consider the system [f1, f2] = [x3 + x1
2 + x2

2 − 1, x1 x2 − x2 x + 1] using the
result in Corollary 13, we have

f3 =
(−x1 + x2

2
)
x + x1

4 + x1
2x2

2 − x1
2 − x2,

f4 = 1− 3 x1
3x2 − 3 x1 x2

3 + 3 x1 x2 + x2
3x1

2 + x2
5 − x2

3 + x1
7 + 2 x1

5x2
2

−2 x1
5 + x1

3x2
4 − 2 x1

3x2
2 + x1

3.

m1 = x1
2, q1 = x1 x+x2, m0 = w1 = p1 = 1, m2 = (−x1+x2

2)2, q2 = −x1
2x+x1x2

2x+2 x1x2−
x2

3 − x1
5 − x1

3x2
2 + x1

3, w2 = p2 = 1. By Corollary 13, we have the following decomposition.

M(f1, f2) = M(f4, f3) + M(m1, q1)−M(m2, f3).

Simplifying the algebraic cycles, using Theorem 10, we have

M(m1, q1) = 2 M(x1, x1 x + x2) = 2 M(x1, x2),

M(m2, f3) = 2 M(x2
2 − x1, x1

4 + x1
2x2

2 − x1
2 − x2)

= 2 M(x2
2 − x1, x

4
1 + x3

1 − x2
1 − x2)

= 2 M(x1, x2) + 2 M(x1 − 1, x2 − 1) + 2 M(h1, h2),

where h1 = x1
6 + 3 x1

5 + 2 x1
4 + x1

2 + x1 + 1, h2 = x2 − x1
4 − x1

3 + x2
1. Both M(m1, q1) and

M(m2, f3) have an algebraic cycle M(x1, x2) with multiplicity 2. With the method in Theorem
15, we can find that M(x1 − 1, x2 − 1), M(h1, h2), and M(f4, f3) are square free and disjoint.
So we have the following disjoint decomposition for M(f1, f2):

M(f1, f2) = M(f4, f3)− 2M(x1 − 1, x2 − 1)− 2M(h1, h2).

Note that the component with negative multiplicity cannot be removed if using the triangu-
lar form. The last two algebraic cycles are zero-dimensional in C

2, but they are 1-dimensional in
C

3. It is clear that M(f4, f3) contains the vertical lines defined by M(x1− 1, x2− 1), M(h1, h2).
From this example, we can find that we can use our result to study the intersection of two

algebraic hypersurfaces, for example, algebraic space curves. It is our future work.
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5 Multiplicity Preserving Decomposition of Two Bivariate Polynomi-

als

In this section, we will consider the triangular set decomposition of a zero-dimensional bi-
variate polynomial system with two polynomials, that is, Σ = {f, g} ⊂ K[x, y]. The method
provided here is complete for a zero-dimensional bivariate polynomial system with two polyno-
mials.

5.1 The Algorithm

In the bivariate case, we have the following triangular set decomposition.

Lemma 16 Using the similar notations as Corollary 6, if gcd(f1, f2) = 1, we have

M(f1, f2) = M(fk+1, fk+2) +
k∑

i=1

M(pi, fi+1)−
k∑

i=1

M(wi, fi+1)−M(mk, fk+1). (27)

Proof The lemma is a consequence of Corollary 13. Note that M(mi,
mi−1

wi
) = M(mi, pi) =

M(mi, qi) = ∅ since gcd(mi, pi), gcd(mi,
mi−1

wi
), and gcd(mi, qi) are constants.

The following corollary is useful.

Corollary 17 If wi(1 ≤ i ≤ k) are constants and fk+1 = l1(x) yt + l0(x) for t > 0 and
l0, l1 ∈ K[x] in (27), then we have

M(f1, f2) = M(fk+1, fk+2) +
k∑

i=1

M(pi, fi+1). (28)

Furthermore, if pi(1 ≤ i ≤ k) are constants, we have

M(f1, f2) = M(fk+1, fk+2). (29)

Proof Since fk+1 = l1(x) yt + l0(x) and Cont(fk+1, y) = 1, M(mk, fk+1) = ∅. Note that mk

is a factor of ln1 for some positive integer n. Thus M(m0, f2) = ∅, M(mk, fk+1) = ∅. So from
(27), we have (28). If pi = 1, (29) is a consequence of (28).

Lemma 16 gives a multiplicity-preserving triangular decomposition of a bivariate polynomial
system. But there exist some triangular sets with negative multiplicities. A special property of
bivariate polynomials is that there is no vertical components, that is, the zero set defined by
the coefficients of a bivariate primitive polynomial in the main variable is empty. Thus we can
remove the negative components for bivariate polynomial systems. The following result gives
an algorithm to remove the triangular sets with negative multiplicities.

Theorem 18 There exists an algorithm to decompose a zero-dimensional bivariate poly-
nomial system {f1, f2} ⊂ K[x, y] into a set of square free and disjoint triangular sets, i.e.,

M(f1, f2) =
N∑

i=1

mi M(gi, hi), (30)

such that mi > 0, M(gi, hi) is square free, M(gi, hi) ∩M(gj , hj) = ∅, 1 ≤ i �= j ≤ N , where
gi ∈ K[x], hi ∈ K[x, y].
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Proof In the case f1 = h1f
′
1, f2 = h2f

′
2 having factors in K[x] but gcd(f1, f2) = 1, where

hi = Cont(fi, y), i = 1, 2, we have

M(f1, f2) = M(h1, f
′
2) + M(f ′

1, h2) + M(f ′
1, f

′
2). (31)

Since gcd(h1 f ′
1, h2 f ′

2) = 1, M(h1, h2) = ∅.
By Theorem 15, we can decompose M(h1, f

′
2), M(f ′

1, h2), and M(f ′
1, f

′
2) into a square free

and disjoint algebraic cycles in triangular forms.

Remark 2 The method in [36] can be used to decompose a triangular sets into irreducible
ones. Thus we can have a stronger decomposition. We can simplify the computation by the
following techniques. For some M(g, h) in the triangular form, ensure that h is unchanged after
modulo g. Theorem 10 can be used to simplify the algebraic cycles (into lower degree).

We will give a multiplicity-preserving algorithm to decompose a bivariate polynomial system
into zeros in triangular forms as well as their multiplicities based on the theory above. At first,
we give the following basic subalgorithm below.

Algorithm 1 DisjointDecompositon(S, t1M(h, Ft+1), t2M(h, Ft+2)), where S = {mi, Fi, qi,
gi, for i = 1, 2, · · · , t} ⊂ K[x, y], mi Fi + qi Fi+1 = gi Fi+2 satisfying the condition as (5), and
gcd(h, mi) = gcd(h, gi) = 1 for i = 1, 2, · · · , t. t = 0 if S is an empty set. This algorithm is to
decompose t1M(h, F1) + t2M(h, F2) (t1, t2 ∈ Z are integers and may be negative) into disjoint
algebraic cycles in triangular forms.

Input S, h, Ft+1, Ft+2, t1, t2 as mentioned above.
Output a group of algebraic cycles in triangular forms P = {liM(gi(x), hi(x, y)), i =

1, 2, · · · , n} such that

• M(gi(x), hi(x, y)), i = 1, 2, · · · , n are disjoint.

• t1M(h, F1) + t2M(h, F2) =
∑n

i=1 li M(gi, hi).

1) Mo = ∅, {f1, f2} = {Ft+1, Ft+2} such that deg(f1, y) ≥ deg(f2, y).

2) While deg(f2, y) > 0, do

• Let r = gcd(l, h), where l is the leading coefficient of f2 in y. If r �∈ K, Mo ←
DisjointDecompositon(S, t1 M(r, f1), t2 M(r, Prem(f2, r, x))), where “A← {B}” means
for each element B1 of B, do the disjoint decomposition of B1 and one element A1

of A, for the resulting elements of DisjointDecompositon(∅, B1, A1) from B1, do the
disjoint decomposition for them and one element in A = A\A1, respectively. Do the
similar operation until A is empty, and still denote all the resulting elements as A.
And h = h/r.

• By pseudo-division, we have m f1 + q f2 = f3 and g = Cont(f3, y). f3 = f3
g , v =

gcd(m, g), m = m
v , g = g

v . If f3 = 1, f3 = g, g = 1. Else, S ← {m, f1, q, g}.
• Let s = gcd(g, h). If h � g and s �∈ K,

Mo ← DisjointDecompositon(S, t1M(h/s, f2), t2M(h/s, f3)). And h = s.
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• If h | g, we have two formulae as (25), (26), where M(h, mi) = ∅.
Mo ← {t1M(h, Q1), t2M(h, Q2), (t1 + t2)M(h, fk+1)}. f3 = 0.

• f1 = f2, f2 = f3.

3) If deg(f2, y) = 0 and f2 is not a constant, then:
Mo ← {t1M(h, F1), t2M(h, F2)}.

4) Output Mo.

Proof The termination and correctness of the algorithm are guaranteed by Lemma 14.
In order to derive a square free decomposition for a triangular set {h, f}, where h ∈ K[x], f ∈

K[x, y], we can ensure that {h, f}, {h, ∂f
∂y } are disjoint at first. Thus we have a decomposition

for {h, f}. And then decompose the non-square free part recursively with the same steps. In
the end, we can obtain a square free and disjoint decomposition for {h, f}. We denote the
operation on {h, f} as SqrfreeDecompositon(t M(h, f)) in the rest of the paper, where t ∈ Z.

Based on the subalgorithms above, we have the main algorithm, where “A← {B}” has the
same meaning as in Algorithm 5.1, and we also require the triangular sets added into A to be
regular, that is, do a regular decomposition for these triangular sets before adding into A.

Algorithm 2
Input a zero-dimensional bivariate polynomial system P1 = {F1(x, y), F2(x, y)} ∈ K[x, y].
Output a group of algebraic cycles in triangular forms P = {mi M(gi(x), hi(x, y)), i =

1, 2, · · · , n} such that M(F1, F2) = Σn
i=1 mi M(gi, hi), mi > 0 and {gi, hi} is irreducible and

regular.

1) Mo = ∅. {f1, f2} = {F1, F2} such that deg(f1, y) ≥ deg(f2, y).

2) Let hi = Cont(fi, y), fi = fi/hi, i = 1, 2. Mo ← {M(h1, f2), M(h2, f1)}.

3) Let m0 = 1. While deg(f2, y) > 0, do

• By pseudo-division, we have m1 f1 + q1f2 = f3 and h = Cont(f3, y). f3 = f3
h , v =

gcd(m1, h), m1 = m1
v , h = h

v . Let q = gcd(m0, h), w = m0
q , p = h

q . If f3 = 1,
f3 = p, p = 1. If p �∈ K, Mo ← {M(p, f2)}. If w �∈ K, Mo ← {−M(w, f2)}.
• f1 = f2, f2 = f3, m0 = m1.

4) If deg(f1, y) > 1, Mo ← {−M(m0, f1)}.

5) Let M
′
o = ∅. For any element A of Mo, M

′
o ← SqrfreeDecompositon(A).

6) Output M
′
o.

Proof The termination of the algorithm is clear since the degrees of f1 and f2 are finite.
The correctness of the algorithm is guaranteed by Theorem 18 and Lemma 16.
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Remark 3 −M(w, f2) and −M(m0, f1) in Steps 3) and 4) mean the multiplicities are
negative.

Example 2 Let C be the curve defined by

f = 2 y4 − 3 y2x + x2 − 2 x3 + x4.

We will compute the y-critical points (f = ∂f
∂y = 0) of C.

fy =
∂f

∂y
= 8 y3 − 6 yx.

Delete the content 2, fy = fy

2 . In the following, we will solve the system Σ = {f, fy}. Following
our algorithm, we have

m1 f + q1 fy = p1 f3,

where m1 = 4, p1 = x, q1 = −y, f3 = −3 y2 +2 x−4 x2 +2 x3. Thus we have Mo = {M(p1, fy)}.
Simplifying M(p1, fy), we have M(x, y3). Taking a square free decomposition for Mo, we have
Mo = {M(x, y) + M(x, y) + M(x, y)}. We do not know the three elements in Mo are the same
or not until we use Algorithm 5.1. So we have Mo = {3 M(x, y)}. Continuing to compute with
the algorithm, we have

m2 fy + q2 f3 = p2 f4,

where m2 = 3, q2 = 4 y, p2 = x (−1 − 16 x + 8 x2), f4 = y. Note that here w2 = 4. We ignore
it since it is a constant. We have a new algebraic cycle M(p2, f3). We would like to illustrate
the decomposition of M(p2, f3), which is not square free. Note that ∂f3

∂y = −6 y, denote its
primitive part y as f ′

3. Then we have

1 f3 − 3 yf ′
3 = 2 x (x− 1)2.

We can find that p2 � r = 2 x (x− 1)2 but gcd(p2, r) = x. So we can split M(p2, f3):

M(p2, f3) = M(x, f3) + M(−1− 16 x + 8 x2, f3).

Thus by disjoint and square free decomposition, we have

M(x, f3) = M(x,−3 y) + M(x, y) −M(x, 1) = 2 M(x, y).

Since f3 modulo −1− 16 x + 8 x2 equals 48 (−4 y2 + 3 x),

M(−1 − 16 x + 8 x2, f3) = M(−1− 16 x + 8 x2,−4 y2 + 3 x).

Thus we have
M(p2, f3) = 2M(x, y) + M(−1− 16 x + 8 x2,−4 y2 + 3 x).

Adding these algebraic cycles into Mo, we have

Mo = 5M(x, y) + M(−1 − 16 x + 8 x2,−4 y2 + 3 x).
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Continuing the computation, we have

m3 f3 + q3 f4 = f5,

where m3 = 1, q3 = 3 y, f5 = 2 x (x − 1)2. Similarly, we ignore w3 = 3. We have an algebraic
cycle M(f5, f4) which should be added into Mo. Decomposing it, we have

M(f5, f4) = M(x (x − 1), y) + M(x − 1, y) = M(x, y) + 2 M(x− 1, y).

Adding them into Mo by Algorithm 5.1, we have the disjoint and square free multiplicity-
preserving decomposition for M(f, fy):

M(f, fy) = 6 M(x, y) + 2 M(x− 1, y) + M(−1− 16 x + 8 x2,−4 y2 + 3 x).

We find that M(x, y) and M(x − 1, y) are zeros with multiplicities 6, 2, respectively. And the
other zeros are with multiplicity 1.

5.2 Complexity Analysis

Now we will consider the complexity of our method under the condition of Lemma 16.
Then we can directly obtain the complexity under Corollary 17. We consider this case due to
two reasons. First, it is usually the case for almost all zero-dimensional bivariate polynomial
systems with two polynomials. Second, it is easy to see that the bottleneck computation in our
algorithm is to compute the primitive polynomial remainder sequence of f1 and f2. Therefore,
Corollary 8 represents the complexity of the bottleneck step of the algorithm. So the result is
interesting.

At first, we need to introduce some notations, which can be found in [37]. Let L(f) bound the
bitsize of the coefficients of f ∈ K[x, y] (including a bit for the sign). We assume lg(deg(f)) =
O(L(f)). For a ∈ Q, L(a) is the maximum bitsize of a’s numerator and denominator. Let M(τ)
denote the bit complexity of multiplying two integers of size τ , and M(d, τ) the complexity of
multiplying two univariate polynomials of degrees ≤ d and coefficient bitsize ≤ τ . Using FFT,
M(τ) = ÕB(τ) and M(d, τ) = ÕB(dτ).

Lemma 19 (see [37, 38]) Let f, g ∈ Z[x], deg(f), deg(g) ≤ n, and L(f),L(g) ≤ τ . We
can compute gcd(f, g) in ÕB(n2τ).

Lemma 20 (see [37, 38]) Let f, g ∈ Z[x, y], deg(f), deg(g) ≤ n, and L(f),L(g) ≤ τ . We
can compute the subresultant sequence of f and g in ÕB(n6τ).

Theorem 21 Let K = Z. We can decompose a zero-dimensional bivariate system with
two polynomials into multiplicity-preserving triangular sets as Lemma 16 in ÕB(n7τ).

Proof We can compute a subresultant sequence of f and g at first. It can be computed
in ÕB(n6τ) by Lemma 20. Then we simplify each pseudo-division step to derive (7) from
the highest degree of the sequence in y to the lowest degree. Let {F1, F2, · · · , Fk+2} be the
subresultant sequence of f and g. We need only consider the case of regular subresultant
sequence since we can find below that the complexity of the regular case also bounds the



1340 CHENG JIN-SAN · GAO XIAO-SHAN

degenerate case. Consider the formula

l2i+1Fi + QiFi+1 = l2i Fi+2. (32)

Assume that we have computed the contents of Fi and Fi+1, say ri, ri+1. F1, F2 are f1, f2.
And the contents of f or g can be computed in ÕB(n3τ) by Lemma 19, which can be ignored
comparing to ÕB(n6τ). For each Fi, it is well known that deg(Fi) ≤ n2,L(Fi) = O(nτ) (for
reference see [37]). And deg(Fi, y) ≤ n−1 for i ≥ 3. Thus for any coefficient of Fi, say h ∈ Z[x],
we have deg(h) ≤ n2,L(h) = O(nτ). So to compute the content of Fi with deg(Fi, y) = m,
we need to compute at most m gcd each in ÕB(n5τ). Let ri+2 = Cont(Fi+2, y). In order
to derive (7), we need to delete gcd(l2i+1Fi, QiFi+1, l

2
i Fi+2) from the two sides of (32). So we

need to bound gcd(l2i+1 ri, l
2
i ri+2). Note that deg(s) ≤ n2,L(s) = O(nτ) holds for s = li or

s = li+1 and we can not optimize the degree of lk+1. But we can compute r = gcd(li, li+1),
which is bounded by ÕB(n5τ). And gcd(( li

r )2, ri) can be bounded by 2 ÕB(n5τ) as below. We
can compute w = gcd( li

r , ri+2), and then gcd( li
r , ri+2

w ). Similarly, gcd(( li+1
r )2, ri) is bounded

by 2 ÕB(n5τ). So to delete gcd(l2i+1Fi, QiFi+1, l
2
i Fi+2) from (32) for deg(Fi, y) = m, we need

(m + 5)ÕB(n5τ). Note that the computations of those divisions can be ignored comparing to
the gcd’s computation. Then we can decide mi, gi in (5). In order to derive (7), we only need to
compute gcd(mi−1, gi) and two divisions. The computation of l = gcd(mi−1, gi) can be bounded
by 9 ÕB(n5τ). In fact, from the analysis above, both mi−1 and gi can be split into three factors
each bounded by the degree n2 and the coefficients bitsize O(nτ), corresponding to l2i ri−1 and
l2i ri+2. Denoted as mi−1 = u1 u2 u3, gi = v1 v2 v3. The computation of e1 = gcd(u1, v1) is
bounded by ÕB(n5τ). And the computations of e2 = gcd(u1

e1
, v2) and e3 = gcd( u1

e1 e2
, v3) are

also bounded by ÕB(n5τ). In the end, we can find that the computations of wi = mi−1
l and

pi = gi

l are bounded by 9 ÕB(n5τ). Thus in each pseudo-division step for deg(Fi, y) = m to
obtain (7), we need (m + 14)ÕB(n5τ). When m changes from n to 1, we can bound it by
1
2 n2 + 29

2 n ÕB(n5τ), that is, ÕB(n7τ). Then the total complexity is ÕB(n7τ).
The following corollary is obvious.

Corollary 22 Let K = Z. We can decompose a zero-dimensional bivariate system with
two polynomials under the conditions of Corollary 17 into positive algebraic cycles in triangular
forms in ÕB(n7τ).

For many f, g ∈ K[x, y], the last two elements of the subresultant sequence Fk+1, Fk+2

form a multiplicity-preserving triangular decomposition of f, g. Thus, we can compute the
decomposition in ÕB(n6τ).

5.3 Implementation and Comparison

We implemented our algorithm in Maple. We compare the computing times of our method
with several other related methods. One is the regular chains method[7, 14] (package Regular-
Chains in Maple 13), one is characteristic set method in Epsilon[39], the other is a package
Wsolve (see [40]). All the results are collected on a PC with 2.83 GHz quad CPU, 3.37 GB
memory, and running Microsoft Windows XP. We use Maple 13 in the experiments.
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We run 100 examples in each case and compute their average computing time in seconds.
The results are in Tables 1–3. The timings in the tables are in seconds. Here MPTD means
the method provided in this paper, RC means the regular chains method of the function “Tri-
angularize”, CS means the characteristic set method (“charsets”) in Epsilon, and WS means
Wsolve method. The first column represents the methods. “-” means out of memory or out of
time (half an hour). In Table 1, we take random dense polynomials with coefficients bounded
by [−100, 100] for each example.

Table 1 Timings for different methods on the examples with simple roots

[deg(f), deg(g)] [7, 5] [9,7] [13, 11] [19, 17] [20,19] [25,23] [33,31]

MPTD 0.021 0.080 1.446 21.024 26.818 152.846 834.740

RC 0.062 0.141 1.451 18.073 22.184 126.325 618.865

CS 0.795 19.305 - - - - -

WS 3.324 396.870 - - - - -

In order to study the influence of multiple zeros to the methods, we test second group of
examples. For these examples, we take h(x, y, z) as a random dense polynomial with bounded
coefficients and bounded total degree. And set f be the discriminant of h w.r.t. z, g the
derivative of f w.r.t. y and ensure that {f, g} is zero-dimensional. Then we decompose {f, g}
into triangular sets with the methods above. “Ceoff. bound (10m)” means the coefficients of f

and g are bounded by 10m. We set deg(h) = d = 3, 4, 5 and the coefficients of h are bounded
by 10. Timings for these examples are given in Table 2.

Table 2 Timings for different methods on the examples with multiple roots

deg(h) [deg(f), deg(g)] Ceoff. bound (10m) MPTD RC CS WS

3 [6, 5] 7 0.028 0.154 0.854 4.197

4 [12,11] 11 2.664 10.790 - -

5 [20,19] 15 104.949 477.142 - -

In order to study the influence of the coefficients of f, g on the timings, we take the third
group of examples, where the total degree of f and g are unchanged, deg(f) = 20, deg(g) =
deg(∂f

∂y ) = 19. We generate f, g here in the same way as that in Table 2. The total degrees of
h’s are set to be 5. And the coefficients of h’s are bounded by i = 10, 4, 3, 2, 1 respectively. Thus
the coefficients of f, g are bounded by different numbers. Testing these examples for MPTD
and RC, we have Table 3.

Table 3 Timings for examples with same type but different coefficient ranges

Ceoff. range of h −10..10 −4..4 −3..3 −2..2 −1..1

Ceoff. bound (10m) 15 12 11 10 8

MPTD 104.949 73.673 65.484 50.561 39.111

RC 477.142 317.093 287.366 212.213 163.102
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We need to mention that only MPTD can compute the multiplicities of the zeros of the
bivariate polynomial system. MPTD is only for bivariate polynomial system but other meth-
ods work for general systems. Note that MPTD can give a multiplicity-preserving triangular
decomposition for systems with two multivariate polynomials.

We can conclude from the tables that MPTD are always faster than RC, CS, and WS
for systems with many multiple roots. MPTD is a little faster than RC for systems without
multiple roots and with low degree. It is a little slower than RC for systems without multiple
roots and with high degree. The bitsizes of the coefficients of the systems influence much for
both MPTD and RC.

6 Conclusion

We present an algorithm to decompose the zero set for a polynomial system consisting of
two polynomials into algebraic cycles in triangular forms. Different from the existing methods
for triangular decomposition, our method preserves the multiplicity of the zeros or components
of the systems based on the concept of algebraic cycles. We can obtain the decomposition
by computing a primitive polynomial remainder sequence once. We implement the method for
bivariate polynomial systems. We will extend the method to the systems with more polynomials
in the future.
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[7] Dahan X, Moreno Maza M, Schost É, Wu W, and Xie Y, Lifting techniques for triangular de-

compositions, Proceedings of the 2005 International Symposium on Sympolic and Algebraic Com-

putation, ACM, Beijing, 2005.

[8] Gao X S and Chou S C, On the dimension of an arbitrary ascending chain, Chinese Sci. Bull.,

1993, 38: 799–804.

[9] Gerdt V P and Blinkov Y A, Involutive bases of polynomial ideals, Mathematics and Computers

in Simulation, 1998, 45(5–6): 519–541.



MULTIPLICITY PRESERVING TRIANGULAR SET DECOMPOSITION 1343

[10] Golubitsky O, Kondratieva M, Ovchinnikov A, and Szanto A, A bound for orders in differential

Nullstellensatz. Journal of Algebra, 2009, 322: 3852–3877.

[11] Hubert E, Notes on triangular sets and triangulation-decomposition algorithms I: Polynomial

systems, Chapter of Symbolic and Numerical Scientific Computations Edited by Langer U and

Winkler F, Lecture Notes in Computer Science, Springer-Verlag Heidelberg, 2003, 2630: 1–39.

[12] Lazard D, A new method for solving algebraic systems of positive dimension, Discrete Appl.

Math., 1991, 33: 147–160.
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