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Abstract In this paper, the concept of toric difference varieties is defined and four equivalent de-

scriptions for toric difference varieties are presented in terms of difference rational parametrization,

difference coordinate rings, toric difference ideals, and group actions by difference tori. Connections

between toric difference varieties and affine N[x]-semimodules are established by proving the one-to-one

correspondence between irreducible invariant difference subvarieties and faces of N[x]-semimodules and

the orbit-face correspondence. Finally, an algorithm is given to decide whether a binomial difference

ideal represented by a Z[x]-lattice defines a toric difference variety.

Keywords Affine N[x]-semimodule, difference torus, T -orbit, toirc difference ideal, toric difference

variety, Z[x]-lattice.

1 Introduction

The theory of toric varieties has been extensively studied since its foundation in the early
1970s by Demazure[1], Miyake and Oda[2], Kempf, et al.[3], and Satake[4], due to its deep
connections with polytopes, combinatorics, symplectic geometry, topology, and its applications
in physics, coding theory, algebraic statistics, and hypergeometric functions[5–7].

In this paper, we initiate the study of toric difference varieties and expect that they will
play similar roles in difference algebraic geometry to their algebraic counterparts in algebraic
geometry. Difference algebra and difference algebraic geometry[8–11] were founded by Ritt and
Doob[12] and Cohn[8], who aimed to study algebraic difference equations as algebraic geometry
to polynomial equations.
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As in the algebraic case, a difference variety is said to be toric if it is the Cohn closure of the
values of a set of Laurent difference monomials. To be more precise, we introduce the notion
of symbolic exponents. For p =

∑s
i=0 cix

i ∈ Z[x] and a in a difference ring over a difference
field k with the difference operator σ, denote ap =

∏s
i=0(σ

i(a))ci . Then a Laurent difference
monomial in the difference indeterminates T = (t1, t2, · · · , tn) has the form T

u =
∏n

i=1 t
ui

i ,
where u = (u1, u2, · · · , un) ∈ Z[x]n. For

U = {u1,u2, · · · ,um}, where ui ∈ Z[x]n, i = 1, 2, · · · ,m, (1)

define the following map

θK : (K∗)n −→ (K∗)m,T �→ T
U = (Tu1 , T

u2 , · · · ,Tum), (2)

where K is any difference extension field of k and K∗ = K \ {0}. Then, the toric difference
variety XU defined by U is the Cohn closure of the image of θ.

A Z[x]-lattice is a Z[x]-submodule of Z[x]n, which plays the similar role as lattices do in
the study of toric algebraic varieties. A Z[x]-lattice L ⊆ Z[x]n is said to be toric if gu ∈ L

implies u ∈ L for any g ∈ Z[x]\{0} and u ∈ Z[x]n. We will show that a difference variety
X ⊆ A

m is toric if and only if the defining difference ideal for X is IL = [Yu − Yv | u,v ∈
N[x]m with u − v ∈ L], where L is a toric Z[x]-lattice and Y = (y1, y2, · · · , ym) is a tuple of
difference indeterminants. An algorithm is given to decide whether a Z[x]-lattice is toric, and
consequently, to decide whether IL defines a toric difference variety.

As in the algebraic case, a difference variety X is toric if and only if X contains a differ-
ence torus T as a Cohn open subset and with a difference algebraic group action of T on X

extending the natural group action of T on itself. Unlike the algebraic case, a difference torus
is not necessarily isomorphic to (A∗)m, and this makes the definition of difference tori more
complicated.

Many properties of toric difference varieties can be described using affine N[x]-semimodules.
An affine N[x]-semimodule S generated by U in (1) is {∑m

i=1 giui | gi ∈ N[x]}. We will show that
a difference variety X is toric if and only if X � Specσ(k[S]) for some affine N[x]-semimodule
S in Z[x]n, where k[S] = {∑u∈S αuT

u|αu ∈ k, αu �= 0 for finitely many u}. Furthermore,
there is a one-to-one correspondence between the irreducible invariant difference subvarieties
of a toric difference variety and the faces of the corresponding affine N[x]-semimodule. A one-
to-one correspondence between the T -orbits of a toric difference variety and the faces of the
corresponding affine N[x]-semimodule is also established for a class of affine N[x]-semimodules.

Toric difference varieties connect difference Chow forms[13] and sparse difference resultants[14].
Actually, the difference Chow form of XU is the difference sparse resultant of the generic dif-
ference polynomials with monomials Tu1 ,Tu2 , · · · ,Tum . As a consequence, a Jacobi style order
bound for a toric difference variety XU is given.

The rest of this paper is organized as follows. In Section 2, preliminaries for difference
algebra are introduced. In Section 3, the concept of difference toric variety is defined and
its coordinate ring is given in terms of affine N[x]-semimodules. In Section 4, the one-to-one
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correspondence between toric difference varieties and toric difference ideals is given. In Section
5, a description of toric difference varieties in terms of group actions is given. In Section 6,
deeper connections between toric difference varieties and affine N[x]-semimodules are given. In
Section 7, an order bound for a toric difference variety is given. In Section 8, an algorithm is
given to decide whether a given Z[x]-lattice is Z[x]-saturated. Conclusions are given in Section 9.

2 Preliminaries

We recall some basic notions from difference algebra. Standard references are [8, 10, 11].
All rings in this paper will be assumed to be commutative and unital.

A difference ring, or σ-ring for short, is a ring R together with a ring endomorphism σ : R →
R. If R is a field, then we call it a difference field, or a σ-field for short. A morphism between
σ-rings R and S is a ring homomorphism ψ : R → S which commutes with the difference
operators. In this paper, all σ-fields will be assumed to be of characteristic 0.

Let k be a σ-field. A k-algebraR is called a k-σ-algebra if the algebraic structure map k → R

is a morphism of σ-rings. A morphism of k-σ-algebras is a morphism of k-algebras which is also
a morphism of σ-rings. A k-subalgebra of a k-σ-algebra is called a k-σ-subalgebra if it is closed
under σ. If a k-σ-algebra is a σ-field, then it is called a σ-field extension of k. Let R and S be
two k-σ-algebras. Then R ⊗k S is naturally a k-σ-algebra by defining σ(r ⊗ s) = σ(r) ⊗ σ(s)
for r ∈ R and s ∈ S.

Let k be a σ-field and R a k-σ-algebra. For a subset A of R, the smallest k-σ-subalgebra of
R containing A is denoted by k{A}. If there exists a finite subset A of R such that R = k{A},
we say that R is finitely σ-generated over k. If moreover R is a σ-field, the smallest k-σ-subfield
of R containing A is denoted by k〈A〉.

Now we introduce the following useful notation. Let x be an algebraic indeterminate and
p =

∑s
i=0 cix

i ∈ Z[x]. For a in a σ-ring R, denote ap =
∏s

i=0(σ
i(a))ci with σ0(a) = a and

a0 = 1. It is easy to check that for p, q ∈ Z[x], ap+q = apaq, apq = (ap)q.
Suppose Y = {y1, y2, · · · , ym} is a set of σ-indeterminates over k. Then the σ-polynomial

ring over k in Y is the polynomial ring in the variables σi(yj) for i ∈ N and j = 1, 2, · · · ,m. It is
denoted by k{Y} = k{y1, y2, · · · , ym} and has a natural k-σ-algebra structure. A σ-polynomial
ideal, or simply a σ-ideal, I in k{Y} is an algebraic ideal which is closed under σ, i.e., σ(I) ⊆ I.
If I also has the property that σ(a) ∈ I implies a ∈ I, it is called a reflexive σ-ideal. A σ-prime
ideal is a reflexive σ-ideal which is prime as an algebraic ideal. A σ-ideal I is called perfect if
for any g ∈ N[x]\{0} and a ∈ k{Y}, ag ∈ I implies a ∈ I. It is easy to prove that every σ-prime
ideal is perfect. If S is a set of σ-polynomials in k{Y}, we use (S), [S], and {S} to denote the
algebraic ideal, the σ-ideal, and the perfect σ-ideal generated by S respectively.

For u = (u1, u2, · · · , um) ∈ Z[x]m, Yu =
∏m

i=1 y
ui

i is called a Laurent σ-monomial and u is
called its support. A Laurent σ-polynomial in Y is a linear combination of Laurent σ-monomials
and k{Y±} denotes the set of all Laurent σ-polynomials, which is obviously a k-σ-algebra.

Let k be a σ-field. We denote the category of σ-field extensions of k by Ek. Let F ⊆ k{Y}



176 GAO XIAO-SHAN, et al.

be a set of σ-polynomials. For any K ∈ Ek, define the solutions of F in K to be

VK(F ) := {a ∈ Km | f(a) = 0 for all f ∈ F}.

Note that K � VK(F ) is naturally a functor from the category of σ-field extensions of k to the
category of sets. Denote this functor by V(F ).

Definition 2.1 Let k be a σ-field. An (affine) difference variety or σ-variety over k is a
functor X from the category of σ-field extensions of k to the category of sets which is of the
form V(F ) for some subset F of k{Y}. In this situation, we say that X is the (affine) σ-variety
defined by F .

Since in this paper we only consider the affine case, we will omit the word “affine” for short.
The functor Am

k given by Am
k (K) = Km for K ∈ Ek is called the σ-affine (m-)space over k.

If the base field k is specified, we often omit the subscript k.
By definition, a morphism of σ-varieties φ : X → Y consists of maps φK : X(K) → Y (K)

for any K ∈ Ek. If X and Y are two σ-varieties over k, then we write X ⊆ Y to indicate that
X is a subfunctor of Y . This simply means that X(K) ⊆ Y (K) for every K ∈ Ek. In this
situation, we also say that X is a σ-subvariety of Y .

Let X be a σ-subvariety of Am
k . Then

I(X) := {f ∈ k{Y} | f(a) = 0 for all a ∈ X(K) and all K ∈ Ek}

is called the vanishing ideal of X . It is well known that σ-subvarieties of Am
k are in a one-to-one

correspondence with perfect σ-ideals of k{Y} and we have I(V(F )) = {F} for F ⊆ k{Y} (see
reference [8, p.113]).

Definition 2.2 Let X be a σ-subvariety of Am
k . Then the k-σ-algebra

k{X} := k{Y}/I(X)

is called the σ-coordinate ring of X .

A k-σ-algebra is called an affine k-σ-algebra if it is isomorphic to k{Y}/I(X) for some
σ-variety X . Then by definition, k{X} is an affine k-σ-algebra.

As in the case of affine algebraic varieties, the category of affine k-σ-varieties is antiequivalent
to the category of affine k-σ-algebras (see [11, Theorem 2.1.21]). The following lemma is from
[11, p.27].

Lemma 2.3 Let X be a k-σ-variety. Then for any K ∈ Ek, there is a natural bijection
between X(K) and the set of k-σ-algebra homomorphisms from k{X} to K. Indeed,

X � Hom(k{X},−)

as functors.

Suppose that X is a k-σ-variety. Let Specσ(k{X}) be the set of all σ-prime ideals of k{X}.
Let F ⊆ k{X}. Set

V(F ) := {p ∈ Specσ(k{X}) | F ⊆ p} ⊆ Specσ(k{X}).
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It can be checked that Specσ(k{X}) is a topological space with closed sets of forms V(F ). Then
the topological space of X is Specσ(k{X}) equipped with the above Cohn topology.

Let k be a σ-field and F ⊆ k{Y}. Let K,L ∈ Ek. Two solutions a ∈ VK(F ) and b ∈ VL(F )
are said to be equivalent if there exists a k-σ-isomorphism between k〈a〉 and k〈b〉 which maps a
to b. Obviously, this defines an equivalence relation. The following theorem gives a relationship
between equivalence classes of solutions of I and σ-prime ideals containing I ([11, Theorem
2.2.1]).

Theorem 2.4 Let X be a k-σ-variety. There is a natural bijection between the set of
equivalence classes of solutions of I(X) and Specσ(k{X}).

Because of Theorem 2.4, we shall not strictly distinguish between a σ-variety and its topo-
logical space. In other words, we use X to mean the σ-variety or its topological space.

3 Toric σ-Varieties

In this section, we will define toric σ-varieties and give a description of their coordinate
rings in terms of affine N[x]-semimodules.

Let k be a σ-field. Let (A∗)n be the functor from Ek to E n
k satisfying (A∗)n(K) = (K∗)n,

where K ∈ Ek and K∗ = K\{0}. In the rest of this section, we always assume

U = {u1,u2, · · · ,um} ⊆ Z[x]n and T = (t1, t2, · · · , tn), (3)

a tuple of σ-indeterminates. We define the following map

θ : (A∗)n −→ (A∗)m, T �→ T
U = (Tu1 ,Tu2 , · · · ,Tum). (4)

Define the functor T ∗
U from Ek to E m

k with T ∗
U (K) = Im(θK) for each K ∈ Ek which is called

the quasi σ-torus defined by U .

Definition 3.1 A σ-variety over the σ-field k is said to be toric if it is the Cohn closure
of a quasi σ-torus T ∗

U ⊆ Am in Am. Precisely, let

IU := {f ∈ k{Y} = k{y1, y2, · · · , ym} | f(Tu1 ,Tu2 , · · · ,Tum) = 0}. (5)

Then the (affine) toric σ-variety defined by U is XU = V(IU ).

Lemma 3.2 XU defined above is an irreducible σ-variety of σ-dimension rk(U), where
U = [u1,u2, · · · ,um] is the matrix with ui as the i-th column.

Proof It is clear that TU in (4) is a generic zero of IU in (5). Then IU is a σ-prime ideal.
By Theorem 3.20 of [14], the σ-dimension of IU is the difference transcendental degree of k〈TU 〉
over k, which is rk(U).

Let T± = {t1, t2, · · · , tn, t−1
1 , t−1

2 , · · · , t−1
n }. Let IU,T± = [y1 − Tu1 ,Tu2 , · · · , ym − Tum ] be

the σ-ideal generated by yi − Tui , i = 1, 2, · · · ,m in k{Y,T±}. Then it is easy to check

IU = IU,T± ∩ k{Y}. (6)
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Alternatively, let z be a new σ-indeterminate and IU,T = [Tu+
1 y1−Tu−

1 ,Tu+
2 y2−Tu−

2 , · · · ,Tu+
mym

−Tu−
m ,

∏n
i=1 tiz − 1] be a σ-ideal in k{Y,T, z}, where u+

i ,u
−
i ∈ N[x]n are the postive and neg-

ative parts of ui = u+
i − u−

i respectively, i = 1, 2, · · · ,m. Then

IU = IU,T ∩ k{Y}. (7)

Equation (7) can be used to compute a characteristic set (see [15]) for IU as shown in the
following example.

Example 3.3 Let M =
[

2 x−1 0 0
0 0 2 x−1

]
and U the set of column vectors of M . Let I1 =

[y1 − t21, t1y2 − tx1 , y3 − t22, t2y4 − tx2 , t1t2z − 1]. By (7), IU = I1 ∩ k{y1, y2, y3, y4}. With the
characteristic set method (see [15]), under the variable order y2 < y4 < y1 < y3 < t1 < t2 < z,
a characteristic set of I1 is y1y2

2 − yx
1 , y3y

2
4 − yx

3 , y1 − t21, t1y2 − tx1 , y3 − t22, t2y4 − tx2 , t1t2z − 1.
Then IU = I1 ∩ k{y1, y2, y3, y4} = [y1y2

2 − yx
1 , y3y

2
4 − yx

3 ].

The following example shows that some yi might not appear effectively in IU .

Example 3.4 Let U = {[1, 1]τ , [x, x]τ , [0, 1]τ}. By (7), IU = [y1 − t1t2, y2 − tx1t
x
2 , y3 −

t2, t1t2z − 1] ∩ k{y1, y2, y3} = [yx
1 − y2] and y3 does not appear in IU .

Next, we will give a description for the coordinate ring of a toric σ-variety in terms of
affine N[x]-semimodules. A subset S ⊆ Z[x]n is called an N[x]-semimodule if it satisfies (i) for
a, b ∈ S, a+b ∈ S; (ii) for g ∈ N[x] and a ∈ S, ga ∈ S. Moreover, if there exists a finite subset
U = {u1,u2, · · · ,um} ⊆ Z[x]n such that S = N[x](U) = {∑m

i=1 giui | gi ∈ giui | gi ∈ N[x]},
then S is called an affine N[x]-semimodule. A map φ : S → S′ between two N[x]-semimodules
is an N[x]-semimodule morphism if φ(a + b) = φ(a) + φ(b) and φ(ga) = gφ(a) for all a, b ∈
S, g ∈ N[x].

Let k be a σ-field. For every affine N[x]-semimodule S, we associate it with the following
N[x]-semimodule algebra k[S] which is the vector space over k with S as a basis and has the
multiplication induced by the addition of S. More concretely,

k[S] :=
⊕

u∈S

kTu =
{ ∑

u∈S

cuT
u | cu ∈ k and cu = 0 for all but finitely many u

}

with the multiplication induced by Tu ·Tv = T
u+v, for u,v ∈ S. Make k[S] to be a k-σ-algebra

by defining σ(Tu) = Txu, for u ∈ S.

If S = N[x](U) = N[x]({u1,u2, · · · ,um)}, then k[S] = k{Tu1 ,Tu2 , · · · ,Tum}. Therefore,
k[S] is a finitely σ-generated k-σ-algebra. When an embedding S → Z[x]n is given, it induces
an embedding k[S] → k[Z[x]n] � k{t±1

1 , t±1
2 , · · · , t±1

n } = k{T±}. So k[S] is a k-σ-subalgebra of
k{T±} generated by finitely many Laurent σ-monomials and it follows that k[S] is a σ-domain.
We will see that k[S] is actually the σ-coordinate ring of a toric σ-variety.

Theorem 3.5 Let X be a σ-variety. Then X is a toric σ-variety if and only if there
exists an affine N[x]-semimodule S such that X � Specσ(k[S]). Equivalently, the σ-coordinate
ring of X is k[S].

Proof Let X = XU be a toric σ-variety defined by U in (3) and IU defined in (5). Let
S = N[x](U) be the affine N[x]-semimodule generated by U . Define the following morphism of
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σ-rings
θ : k{Y} −→ k[S], where θ(yi) = T

ui , i = 1, 2, · · · ,m.
The map θ is surjective by the definition of k[S]. If f ∈ ker(θ), then f(Tu1 ,Tu2 , · · · ,Tui) = 0,
which is equivalent to f ∈ IU . Then, ker(θ) = IU and k{Y}/IU � k[S]. Therefore X �
Specσ(k{Y}/IU) = Specσ(k[S]). Conversely, if X � Specσ(k[S]), where S ⊆ Z[x]n is an affine
N[x]-semimodule, and S = N[x]({u1,u2, · · · , um}) for ui ∈ S. Let XU be the toric σ-variety
defined by U = {u1,u2, · · · ,um}. Then as we just proved, the σ-coordinate ring of X is
isomorphic to k[S]. Then X � XU .

Suppose that S is an affine N[x]-semimodule. For each K ∈ Ek, a map ϕ : S → K is a
morphism from S to K if ϕ satisfies ϕ(

∑
i giui) =

∏
i ϕ(ui)gi , for ui ∈ S and gi ∈ N[x].

Proposition 3.6 Let S = N[x]({u1,u2, · · · ,um}) ⊆ Z[x]n be an affine N[x]-semimodule
and let X = Specσ(k[S]) be the toric σ-variety associated with S. Then there is a one-to-one
correspondence between X(K) and Hom(S,K), for all K ∈ Ek. Equivalently, X � Hom(S,−)
as functors.

Proof Let K ∈ Ek. By Lemma 2.3, an element of X(K) is given by a k-σ-algebra
homomorphism f : k[S] → K, where K ∈ Ek. Then f induces a morphism f : S → K

such that f(u) = f(Tu) for u ∈ S. Conversely, given a morphism ϕ : S → K, let p =
(ϕ(u1), ϕ(u2), · · · , ϕ(um)) ∈ Km. One can check that p ∈ X(K).

In the rest of this paper, we will identity elements of X(K) with morphisms from S to K.

4 Toric σ-Ideal

In this section, we will show that toric σ-varieties are defined exactly by toric σ-ideals. We
first define the concept of Z[x]-lattice which is introduced in [16].

A Z[x]-lattice is a Z[x]-submodule of Z[x]m for some m. Since Z[x]m is Noetherian as a
Z[x]-module, we see that any Z[x]-lattice is finitely generated. Let L be generated by � =
{f1,f2, · · · ,fs} ⊆ Z[x]m, which is denoted as L = (�)Z[x]. Then the matrix with fi as the i-th
column is called a matrix representation of L. Define the rank of L, rk(L), to be the rank of
its any representing matrix. Note that L may not be a free Z[x]-module, thus the number of
minimal generators of L can be larger than its rank.

A Z[x]-lattice L ⊆ Z[x]m is said to be toric if it is Z[x]-saturated, that is, for any nonzero
g ∈ Z[x] and u ∈ Z[x]m, gu ∈ L implies u ∈ L.

Definition 4.1 Given a Z[x]-lattice L ⊆ Z[x]m, we define a binomial σ-ideal IL ⊆ k{Y} =
k{y1, y2, · · · , ym}

IL := [Yu+ − Yu− | u ∈ L] = [Yu − Yv | u,v ∈ N[x]mwith u − v ∈ L],

where u+,u− ∈ N[x]m are the positive part and the negative part of u = u+−u−, respectively.
If L is toric, then the corresponding Z[x]-lattice ideal IL is called a toric σ-ideal.

IL has the following properties.
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1) Since a toric Z[x]-lattice is both Z-saturated and x-saturated, by Corollary 6.22 in [16],
IL is a σ-prime ideal of σ-dimension m− rk(L).

2) By Theorem 6.19 in [16], toric σ-ideals IL in k{Y} are in a one-to-one correspondence
with toric Z[x]-lattices L in Z[x]m, that is, L = {u−v |Yu−Yv ∈ IL} . L is called the support
lattice of IL.

In the rest of this section, we will prove the following result which can be deduced from
Lemmas 4.3 and 4.5.

Theorem 4.2 A σ-variety X is toric if and only if I(X) is a toric σ-ideal.

Lemma 4.3 Let XU be the toric σ-variety defined in (5). Then IU = I(XU ) is a toric σ-
ideal whose support lattice is L = Syz(U) = {f ∈ Z[x]m |Uf = 0}, where U = [u1,u2, · · · ,um]
is the matrix with columns ui.

Proof L is clearly a toric Z[x]-lattice. Then it suffices to show that IU = IL, where IU is
defined in (5). For f ∈ L, we have (Yf −1)|Y=TU = (TU )f −1 = TUf −1 = 0. As a consequence,
(Yf+ − Yf−

)|Y=TU = 0 and Yf+ − Yf− ∈ IU . Since IL is generated by Yf+ − Yf−
for f ∈ L,

we have IL ⊆ IU .
To prove the other direction, consider a total order ≤ for σ-monomials {Yf ,f ∈ N[x]m} (see

reference [15]), which leads to a strict order ≺ on F{Y}: for f, g ∈ F{Y}, define f ≺ g if the
largest σ-monomial of f is strictly less than that of g w.r.t ≤. We will prove IU ⊆ IL. Assume
the contrary, and let f = ΣaiY

fi ∈ IU be a minimal element in IU \ IL under the above
order. Let a0Y

g be the largest σ-monomial in f . From f ∈ IU , we have f(TU ) = 0. Since
Y

g |Y=TU = T
Ug is a σ-monomial on T and f(TU ) = 0, there exists another σ-monomial b0Yh in

f such that Yh|Y=TU = Y
g|Y=TU . As a consequence, (Yg −Yh)|Y=TU = TUh(TU(g−h) − 1) = 0,

from which we deduce g−h ∈ L and hence Yg−Yh ∈ IU ∩IL. Then f−a0(Yg−Yh) ∈ IU \IL,
which contradicts to the minimal property of f , since f − a0(Yg − Yh) ≺ f .

Let L ⊆ Z[x]m be a Z[x]-lattice. Define the orthogonal complement of L to be

LC := {f ∈ Z[x]m | for all g ∈ L, 〈f , g〉 = 0}

where 〈f , g〉 = fτ · g is the dot product of f and g. It is easy to show that

Lemma 4.4 Let Am×r be a matrix representation of L. Then LC = ker(Aτ ) = {f ∈
Z[x]m | Aτf = 0} and hence rk(LC) = m − rk(L). Furthermore, if L is a toric Z[x]-lattice,
then L = (LC)C .

The following lemma shows that the inverse of Lemma 4.3 is also valid.

Lemma 4.5 If I is a toric σ-ideal in k{Y}, then V(I) is a toric σ-variety.

Proof Since I is a toric σ-ideal, then the Z[x]-lattice corresponding to I, denoted by L, is
toric. Suppose that V = {v1,v2, · · · ,vn} ⊆ Z[x]m is a set of generators of LC . Regard V as a
matrix with columns vi and let U = {u1,u2, · · · ,um} ⊆ Z[x]n be the set of the row vectors of
V . Consider the toric σ-variety XU defined by U . To prove the lemma, it suffices to show XU =
V(I) or IU = I. Since toric σ-ideals and toric Z[x]-lattices are in a one-to-one correspondence,
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we only need to show Syz(U) = L. This is clear since Syz(U) = ker(V ) = (LC)C = L by
Lemma 4.5.

Example 4.6 Use notations introduced in Example 3.3. Let f1 = (1 − x, 2, 0, 0)τ ,f2 =
(0, 0, 1 − x, 2)τ . Then L = ker(M) = (f1,f2)Z[x] ⊆ Z[x]4. By Lemma 4.3, we have IU = IL =
[y1y2

2 − yx
1 , y3y

2
4 − yx

3 ]. In Example 3.3, we need to use the difference characteristic set method
to compute IU . Here, the only operation used to compute IU is the Gröbner basis method for
Z[x]-lattices (see [17]).

Finally, we have the following effective version of Theorem 4.2.

Theorem 4.7 A toric σ-variety X has the parametric representation XU and the implicit
representation IL, where U is given in (3) and L = (�)Z[x] for � = {f1,f2, · · · ,fs} ⊆ Z[x]m.
Then, there is a polynomial-time algorithm to compute U from � and vise versa.

Proof The proofs of Lemmas 4.3 and 4.5 give the algorithms to compute � from U , and
vice versa, provided we know how to compute a set of generators of ker(A) for a matrix A with
entries in Z[x]. In [17], a polynomial-time algorithm to compute Gröbner bases for Z[x]-lattices
is given. Combining this with Schreyer’s Theorem on page 224 of [18], we have an algorithm
to compute a Gröbner basis for ker(A) as a Z[x]-module. Note that, when a Gröbner basis of
the Z[x]-lattice generated by the column vectors of A is given, the complexity to compute a
Gröbner basis of ker(A) using Schreyer’s Theorem is clearly polynomial.

In other words, toric σ-varieties are unirational σ-varieties, and we have efficient impliciti-
zation and parametrization algorithms for them.

5 σ-Torus and Toric σ-Variety in Terms of Group Actions

In this section, we will define σ-tori and give another description of toric σ-varieties in
terms of group actions by σ-tori.

Let T ∗
U be the quasi σ-torus and XU the toric σ-variety defined by U ⊆ Z[x]n in (4). In the

algebraic case, T ∗
U is a variety. That is, T ∗

U = XU ∩ (C∗)m, where C is the field of complex
numbers and C∗ = C \ {0}. The following example shows that this is not valid in the difference
case.

Example 5.1 In Example 3.3, XU = V({y1y2
2 − yx

1 , y3y
2
4 − yx

3}). Let P = (−1, 1,−1,−1)
∈ C

4. Then P ∈ XU (C). On the other hand, assume P ∈ T ∗
U (C) which means ((t1)2,

(t1)x−1, (t2)2, (t2)x−1) = (−1, 1,−1,−1) or the σ-equations t21 + 1 = 0, tx1 − t1 = 0, t22 + 1 =
0, tx2 + t2 = 0 have a solution in (C∗)2. In what below, we will show that this is impossible.
That is, T ∗

U � XU ∩ (C∗)4.
Let I = [t21 + 1, tx1 − t1, t

2
2 + 1, tx2 + t2]. We have t22 − t21 = t22 + 1 − (t21 + 1) ∈ I. Then,

V(I) = V(I ∪{t2 − t1})∪V(I ∪{t2 + t1}). Since tx2 + t2 − (t2− t1)x − (t2− t1)− (tx1 − t1) = 2t1.
Then V(I ∪ {t2 − t1}) = V(I ∪ {t2 − t1, t1}) = ∅. Similarly, V(I ∪ {t2 + t1}) = ∅ and hence
V(I) = ∅.

In order to define σ-tori, we need to introduce the concept of Cohn ∗-closure. (A∗)m is
isomorphic to the σ-variety defined by I0 = [y1z1 − 1, y2z2 − 1, · · · , ymzm − 1] ⊆ k{Y,Z} in
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(A)2m, where Z = (z1, z2, · · · , zm) is a tuple of σ-indeterminants. Furthermore, σ-varieties in
(A∗)m are in a one-to-one correspondence with σ-varieties contained in V(I0) via the map

θ : (A∗)m −→ (A)2m (8)

defined by θ(a1, a2, · · · , am) = (a1, a2, · · · , am, a
−1
1 , a−1

2 , · · · , a−1
m ). Let V ⊆ (A∗)m and V1 be

the Cohn closure of θ(V ) in (A)2m. Then θ−1(V1) is called the Cohn ∗-closure of V .
Example 5.1 gives the motivation for the following definition.

Definition 5.2 A σ-torus is a σ-variety which is isomorphic to the Cohn ∗-closure of a
quasi σ-torus in (A∗)m for some m.

Lemma 5.3 Let T ∗
U be the quasi σ-torus defined by U , TU the Cohn ∗-closure of T ∗

U , and
IU defined in (5). Then TU is isomorphic to Specσ(k{Y,Z}/ĨU ) where Z = (z1, z2, · · · , zm) is
a tuple of σ-indeterminates and ĨU = [IU , y1z1 − 1, y2z2 − 1, · · · , ymzm − 1] in k{Y,Z}. We
say TU is the σ-torus defined by U .

Proof Let θ be defined in (8). Let T̃ ∗
U = θ(T ∗

U ) ⊆ A
2m and T̃U the Cohn closure of T̃ ∗

U

in A2m. Then TU = θ−1(T̃U ) is the Cohn ∗-closure of T ∗
U in (A∗)n. Since θ is clearly an

isomorphism between T̃U and TU , it suffices to show that I(T̃U ) = ĨU .
We have I(T̃U ) = {f ∈ k{Y,Z} | f(Tu1 ,Tu2 , · · · ,Tum ,T−u1 ,T−u2 , · · · ,T−um) = 0}. It is

clear that ĨU ⊆ I(T̃U ). If f ∈ I(T̃U ), eliminate z1, z2, · · · , zm from f by replacing zi with 1
yi

and
clear the denominates, we have f1 =

∏m
i=1 y

ti

i f + f0, where f0 ∈ I0. Substituting yi by Tui and
zi by T−ui , we have f1(Tu1 ,Tu2 , · · · ,Tum) = 0, and f1 ∈ IU follows. Then

∏m
i=1 y

ti

i f ∈ ĨU

and hence
∏m

i=1 z
ti

i y
ti

i f =
∏m

i=1(yizi − 1 + 1)tif = f + f0 ∈ ĨU , where f0 ∈ I0. Thus, f ∈ ĨU .
Corollary 5.4 Let TU and XU be the σ-torus and the toric σ-variety defined by U , respec-

tively. Then TU = XU ∩ (A∗)m. As a consequence, TU is a Cohn open subset of XU .

Proof From Lemma 5.3 and the fact IU = I(XU ), we have TU = XU ∩ (A∗)m.
Theorem 5.5 Let T be a σ-variety. Then T is a σ-torus if and only if there exists a

Z[x]-lattice L such that T � Specσ(k[L]).

Proof We follow the notations in Lemma 5.3. Suppose that T is defined by U and let
L = (U)Z[x]. Since T � T̃U , we just need to show the σ-coordinate ring of T̃U is k[L]. By
definition, T̃U is the toric σ-variety defined by U ∪ (−U). Thus, the affine N[x]-semimodule
corresponding to T̃U is N[x](U ∪ (−U)) = L and hence the σ-coordinate ring of T̃U is k[L].
Conversely, suppose U is a finite subset of Z[x]n and L = (U)Z[x]. Then by the proof of the
above necessity, U defines a σ-torus TU whose σ-coordinate ring is k[L]. Since T � TU , T is a
σ-torus.

As a consequence, a σ-torus is also a toric σ-variety. An algebraic torus is isomorphic to
(C∗)m for some m ∈ N (see [5]). The following example shows that this is not valid in the
difference case.

Example 5.6 Let u1 = (2), u2 = (x), and U = {u1,u2}. We claim that TU is not
isomorphic to (A∗)1. By Theorem 5.5, we need to show that E1 = k{t, t−1} is not isomorphic to
E2 = k{s2, s−2, sx, s−x}, where t and s are σ-indeterminates. Suppose that the contrary, there
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is an isomorphism θ : E1 → E2 and θ(t) = p(s) ∈ E2. Then there exists a q(z) ∈ k{z} such that
s2 = q(p(s)) which is possible only if q = z, p = s2. Since sx ∈ E2, there exists an r(z) ∈ k{z}
such that sx = r(s2) which is impossible.

Suppose that S is an affine N[x]-semimodule. Let (S)Z[x] be the Z[x]-lattice generated by
S. Let X = Specσ(k[S]) and T = Specσ(k[(S)Z[x]]). Following Proposition 3.6, let γ : S → K

be an element of X(K) which lies in T (K). Since elements of T (K) are invertible, γ(S) ⊆ K∗

and hence γ can be extended to γ̃ : (S)Z[x] → K∗.
Proposition 5.7 There is a one-to-one correspondence between T (K) and Hom((S)Z[x],K

∗),
for all K ∈ Ek. Equivalently, T � Hom((S)Z[x],−) as functors. So we can identity an element
of T (K) with a morphism from (S)Z[x] to K∗.

A σ-variety G is called a σ-algebraic group if G has a group structure and the group multi-
plication and the inverse map are both morphisms of σ-varieties (see [19]).

Lemma 5.8 A σ-torus T is a σ-algebraic group.

Proof For each K ∈ Ek and ϕ, ψ ∈ T (K), define ϕ ·ψ = ϕψ. It is easy to check that T (K)
becomes a group under the multiplication. Note that if T ⊆ (A∗)m, the group multiplication of
T is just the usual termwise multiplication ofAm, namely, for (x1, x2, · · · , xm), (y1, y2, · · · , ym) ∈
T, (x1, x2, · · · , xm) · (y1, y2, · · · , ym) = (x1y1, x2y2, · · · , xmym). So it is obviously a morphism
of σ-varieties and so is the inverse map due to (8). Therefore, T is a σ-algebraic group.

We now interpret what is a σ-algebraic group action on a σ-variety.
Definition 5.9 Let G be a σ-algebraic group and X a σ-variety. We say G has a σ-algebraic

group action on X if there exists a morphism of σ-varieties

φ : G×X −→ X

such that for any K ∈ Ek,
φK : G(K) ×X(K) −→ X(K)

is a group action of G(K) on X(K).
The following theorem gives a description of toric σ-varieties in terms of group actions.
Theorem 5.10 A σ-variety X is toric if and only if X contains a σ-torus T as an open

subset and with a σ-algebraic group action of T on X extending the natural σ-algebraic group
action of T on itself.

Proof “ ⇒ ”. By Corollary 5.4, TU is an open subset of XU . By Lemma 5.8, TU is a
σ-algebraic group. To show that TU acts on XU as a σ-algebraic group, define a map φ : X ×
X → X,φ((x1, x2, · · · , xm), (y1, y2, · · · , ym)) = (x1y1, x2y2, · · · , xmym). It can be described
using N[x]-semimodule morphisms as follows: For each K ∈ Ek, let ϕ, ψ : S → K be two
elements of X(K), then φ((ϕ, ψ)) = ϕψ. This corresponds to the k-σ-algebra homomorphism
Φ : k[S] → k[S] ⊗k k[S] such that Φ(Tu) = T

u ⊗ Tu, for u ∈ S. Via the embedding T ⊆ X ,
the operation on X induces a map φ : T ×X → X which is clearly a σ-algebraic group action
on X and extends the group action of T on itself.

“ ⇐ ”. There is a Z[x]-lattice L such that T � Specσ(k[L]). The open immersion T ⊆ X

induces k{X} ⊆ k[L]. Since the action of T on itself extends to a σ-algebraic group action on
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X , we have the following commutative diagram:

T × T
φ ��

��

T

��
T ×X

φ̃ �� X

(9)

where φ is the group action of T , φ̃ is the extension of φ to T ×X . From (9), we obtain the
following commutative diagram of the corresponding σ-coordinate rings:

k{X} Φ̃ ��

��

k[L] ⊗k k{X}

��
k[L] Φ �� k[L] ⊗k k[L]

where the vertical maps are inclusions, and Φ(Tu) = T
u ⊗ Tu for u ∈ L. It follows that if

∑
u∈L αuT

u with finitely many αu �= 0 is in k{X}, then
∑

u∈L αuT
u ⊗Tu is in k[L]⊗k k{X},

so αuT
u ∈ k{X} for every u ∈ L. This shows that there is a subset S of L such that

k{X} = k[S] =
⊕

u∈S kT
u. Since k{X} is a k-σ-subalgebra of k[L], it follows that S is an

N[x]-semimodule. And N[x]-semimodule. And since k{X} is a finitely σ-generated k-σ-algebra,
S is finitely generated, thus it is an affine N[x]-semimodule. So by Theorem 3.5, X is a toric
σ-variety.

6 Toric σ-Varieties and Affine N[x]-Semimodules

In this section, deeper connections between toric σ-varieties and affine N[x]-semimodules
will be established. We first show that the category of toric σ-varieties with toric morphisms is
antiequivalent to the category of affine N[x]-semimodules with N[x]-semimodule morphisms.

Note that if φ : S1 → S2 is a morphism between two affine N[x]-semimodules, we have an
induced k-σ-algebra homomorphism φ : k[S1] → k[S2] such that φ(Tu) = T

φ(u),u ∈ S, which
gives a morphism between toric σ-varieties φ∗ : X2 = Specσ(k[S2]) → X1 = Specσ(k[S1]).

Definition 6.1 Let Xi = Specσ(k[Si]) be the toric σ-varieties coming from affine N[x]-
semimodules Si, i = 1, 2 with σ-tori Ti, respectively. A morphism φ : X1 → X2 is said to be
toric if φ(T1) ⊆ T2 and φ|T1 is a σ-algebraic group homomorphism.

Proposition 6.2 Let φ : X1 → X2 be a toric morphism of toric σ-varieties. Then φ

preserves group actions, namely, φ(t · p) = φ(t) · φ(p) for all t ∈ T1 and p ∈ X1.

Proof Suppose the action of Ti on Xi is given by a morphism ϕi : Ti ×Xi → Xi, i = 1, 2.
Preserving group action means that the following diagram is commutative:

T1 ×X1
ϕ1 ��

φ|T1×φ

��

X1

φ

��
T2 ×X2

ϕ2 �� X2

(10)
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If we replace Xi by Ti in the diagram, then it certainly commutes since φ|T1 is a group homo-
morphism. Since T1 × T1 is dense in T1 ×X1, the whole diagram is commutative.

Lemma 6.3 Let Ti = Specσ(k[Li]) be two σ-tori defined by the Z[x]-lattices Li, i = 1, 2.
Then a map φ : T1 → T2 is a σ-algebraic group homomorphism if and only if the correspond-
ing map of σ-coordinate rings φ∗ : k[L2] → k[L1] is induced by a Z[x]-module homomorphism
φ̂ : L2 → L1.

Proof “⇐”. Suppose that φ̂ : L2 → L1 is a Z[x]-module homomorphism and it induces a
morphism of σ-varieties φ : T1 → T2 via φ∗. Then, for any ϕ, ψ ∈ T1, φ(ϕ · ψ) = (ϕ · ψ) ◦ φ̂ =
(ϕ ◦ φ̂) · (ψ ◦ φ̂) = φ(ϕ) · φ(ψ). So φ preserves group multiplications and hence is a morphism
of σ-algebraic groups.

“⇒”. Suppose that φ : T1 → T2 is a morphism of σ-algebraic groups. Then we have the
following commutative diagram:

k[L2] ��

φ∗

��

k[L2] ⊗k k[L2]

φ∗⊗φ∗

��
k[L1] �� k[L1] ⊗k k[L1]

Given v ∈ L2, there is a finite subset S of L1 such that φ∗(Tv) =
∑

u∈S αuT
u. It follows from

the commutativity of the diagram that
∑

u∈S αuT
u ⊗ Tu =

∑
u1∈S,u2∈a αu1αu2T

u1 ⊗ Tu2 .
This shows that there is at most one u with αu �= 0 and in this case αu = 1. Note that Tv is
invertible in k[L2], so φ∗(Tv) �= 0. So we have φ∗(Tv) = T

u for some u ∈ L1. Then we can
define a map φ̂ : L2 → L1, v �→ u. It is easy to check that φ̂ is a Z[x]-module homomorphism.

Lemma 6.4 Let Xi = Specσ(k[Si]) be the toric σ-varieties coming from affine N[x]-
semimodules Si, i = 1, 2, 2 with σ-tori Ti respectively. Then a morphism φ : X1 → X2 is toric
if and only if it is induced by an N[x]-semimodule morphism φ̂ : S2 → S1.

Proof “⇐”. Suppose that φ̂ : S2 → S1 is an N[x]-semimodule morphism. Then φ̂ extends to
a Z[x]-module homomorphism φ̂ : L2 → L1, where L1 = (S1)Z[x], L2 = (S2)Z[x]. By Lemma6.3,
it induces a morphism of σ-algebraic groups φ : T1 → T2. So φ is toric.

“⇒”. Since φ is toric, φ|T1 is a σ-algebraic group homomorphism. By Lemma 6.3, it is
induced by a Z[x]-module homomorphism φ̂ : L2 → L1. This, combined with φ∗(k[S2]) ⊆ k[S1],
implies that φ̂ induces an N[x]-semimodule morphism φ̂ : S2 → S1.

Combining Theorem 3.5 with Lemma 6.4, we have the following theorem.
Theorem 6.5 The category of toric σ-varieties with toric morphisms is antiequivalent to

the category of affine N[x]-semimodules with N[x]-semimodule morphisms.
In the rest of this section, we establish a one-to-one correspondence between irreducible T -

invariant σ-subvarieties of a toric σ-variety and faces of the corresponding affine N[x]-semimodule.
Also, a one-to-one correspondence between T -orbits and faces of affine N[x]-semimodules is given
for a class of affine N[x]-semimodules.

Definition 6.6 Let S be an affine N[x]-semimodule. Define a face of S to be an N[x]-
subsemimodule F ⊆ S such that
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1) for u1,u2 ∈ S, u1 + u2 ∈ F implies u1,u2 ∈ F ;
2) for u ∈ S, xu ∈ F implies u ∈ F ,

which is denoted by F � S.
Note that if S = N[x]({u1,u2, · · · ,um}) and F is a face of S, then F is generated by a subset

of {u1,u2, · · · ,um} as an N[x]-semimodule. It follows that F is an affine N[x]-semimodule and
S has only finitely many faces. S is a face of itself. It is easy to prove that the intersection
of two faces is again a face and a face of a face is again a face. S is said to be pointed if
S ∩ (−S) = {0}, i.e., {0} is a face of S.

Example 6.7 Let S = N[x]({u1 = (x, 1),u2 = (x, 2),u3 = (x, 3)}). Then S has four faces:
F1 = {0}, F2 = N[x]({u1}), F3 = N[x]({u3}) and F4 = S. Since 2u2 = u1 + u3, u2 does not
generate a face.

For an N[x]-semimodule S ⊆ Z[x]n, a σ-monomial in k[S] is an element of the form T
u with

u ∈ S. If we define a degree map by deg(Tu) = u, for u ∈ S, then k[S] becomes an S-graded
ring. A σ-ideal of k[S] is called S-homogeneous if it can be generated by homogeneous elements,
i.e., σ-monomials.

Lemma 6.8 A subset of F of S is a face if and only if k[S\F ] is a σ-prime ideal of k[S].

Proof Let I = k[S\F ]. Since I is S-homogeneous, we just need to consider homogeneous
elements, that is σ-monomials (see [20, Propsition 3.6]). The conditions for I to be a σ-ideal
are that 1) if u1 ∈ S\F or u2 ∈ S\F , then u1 +u2 ∈ S\F , and 2) if u ∈ S\F , then xu ∈ S\F ,
i.e., 1) u1 + u2 ∈ F implies u1,u2 ∈ F , and 2) xu ∈ F implies u ∈ F . The condition for I
to be prime is that if u1 + u2 ∈ S\F , then u1 ∈ S\F or u2 ∈ S\F , i.e., u1,u2 ∈ F implies
u1 +u2 ∈ F . The condition for I to be reflexive is that if xu ∈ S\F , then u ∈ S\F , i.e., u ∈ F

implies xu ∈ F . Putting all above together, we have that F is a face of S if and only if I is a
σ-prime ideal.

Let X = Specσ(k[S]) be a toric σ-variety and T the σ-torus of X . A σ-subvariety Y

of X is said to be invariant under the action of T if T · Y ⊆ Y . For a face F of S, let
Y = Specσ(k[F ]). Without loss of generality, assume that S = N[x]({u1,u2, · · · ,um}) and
F = N[x]({u1,u2, · · · ,ur}). We always view Y as a σ-subvariety of X through the embedding
j : Y → X, γ ∈ Y (K) �→ (γ(u1), γ(u2), · · · , γ(ur), 0, 0, · · · , 0) ∈ X(K) for each K ∈ Ek. The
following theorem gives a description for irreducible invariant σ-subvarieties of X .

Theorem 6.9 Let X = Specσ(k[S]) be a toric σ-variety and T the σ-torus of X. The
irreducible invariant σ-subvarieties of X under the action of T are in an inclusion-preserving
bijection with the faces of S. More precisely, if we denote the irreducible invariant σ-subvariety
corresponding to the face F by D(F ), then D(F ) is defined by the σ-ideal k[S\F ] =

⊕
u∈S\F kT

u

and the σ-coordinate ring of D(F ) is k[F ] =
⊕

u∈F kT
u.

Proof For a face F of S, let Y = Specσ(k[F ]). It is clear that Y is invariant under the
action of T . The defining ideal of Y is I = k[S\F ]. Hence by Lemma 6.8, Y is irreducible.

On the other hand, let L = (S)Z[x]. Suppose that Y is an invariant irreducible σ-subvariety
of X and is defined by the σ-ideal I. Then k{Y } = k[S]/I. By definition, Y is invariant under
the σ-torus action if and only if the action of T on X induces an action on Y , that is, we have
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the following commutative diagram:

k[S]
φ ��

��

k[L] ⊗ k[S]

��
k{Y } �� k[L]⊗ k{Y }

Since k[L]⊗ k{Y } = k[L]⊗ (k[S]/I) � k[L]⊗ k[S]/k[L]⊗ I, we must have φ(I) ⊆ k[L]⊗ I. As
in the proof of Theorem 5.10, this is equivalent with the fact that I is an L-graded ideal of k[S].
That is to say, we can write I = ⊕u∈S′kTu, where S′ is a subset of S. Since I is a σ-prime ideal,
by Lemma 6.8, F = S\S′ is a face of S. Moreover, since I = k[S\F ], k{Y } = k[S]/I = k[F ].

Note that an element γ : S → K of X(K) lies in D(F )(K) if and only if γ(S\F ) = 0 for
any K ∈ Ek.

Suppose that X is a toric σ-variety with σ-torus T . By Theorem 5.10, for each K ∈ Ek,
T (K) has a group action on X(K), so we have orbits of T (K) in X(K) under the action.
To construct a correspondence between orbits and faces, we need a new kind of affine N[x]-
semimodules. An affine N[x]-semimodule S is said to be face-saturated if for any face F of S, a
morphism γ : F → K∗ can be extended to a morphism γ̃ : S → K∗ for any K ∈ Ek. A necessary
condition for S to be face-saturated is that for any face F of S, (F )Z[x] is N[x]-saturated in
(S)Z[x], that is, for g ∈ N[x]\{0} and u ∈ (S)Z[x], gu ∈ (F )Z[x] implies u ∈ (F )Z[x].

Example 6.10 Let S = N[x]({(2, 0), (1, 1), (0, 1)}) and F = N[x]({(2, 0)}) a face of S. We
have (1, 0) ∈ (S)Z[x]. Since (1, 0) /∈ F and 2(1, 0) ∈ F , S is not face-saturated.

Now we prove the following Orbit-Face correspondence theorem.
Theorem 6.11 Suppose that S is a face-saturated affine N[x]-semimodule. Let X =

Specσ(k[S]) be the toric σ-variety of S and T the σ-torus of X. Then for each K ∈ Ek,
there is a one-to-one correspondence between the faces of S and the orbits of T (K) in X(K).

Proof For a face F of S, let Y = Specσ(k[F ]). The inclusion F ⊆ S induces a morphism of
toric σ-varieties f : X → Y and a morphism of σ-tori g : T → TY , where TY = Specσ(k[(F )Z[x]]).
For each K ∈ Ek, an element of TY (K) is a morphism γ : S → K such that γ(F ) ⊆ K∗ and
γ(S\F ) = 0. Since S is face-saturated, γ can be extended to a morphism γ̃ : S → K∗ which is
an element of T (K). So gK : T (K) → TY (K) is surjective. Suppose that ψ : S → K∗ is another
element of T (K), then the action of ψ on γ is ψγ which is still an element of TY (K). So TY (K)
is closed under the action of T (K). Suppose that e is the identity element of TY (K), then
T (K) · e = gK(T (K)) · e. Since gK is surjective, gK(T (K)) = TY (K) and T (K) · e = TY (K).
Therefore, TY (K) is transitive under the action of T (K). Thus, TY (K) is an orbit for the action
of T (K) on X(K).

On the other hand, for each K ∈ Ek, given a morphism ϕ : S → K in X(K), let F :=
ϕ−1(K∗). Then for u1,u2 ∈ F and g1, g2 ∈ N[x], since ϕ(u1g1+u2g2) = ϕ(u1)g1ϕ(u2)g2 ∈ K∗,
u1g1 + u2g2 ∈ F . Therefore, F is an N[x]-subsemimodule of S. Moreover, for u1,u2 ∈ S, if
u1 + u2 ∈ F , then ϕ(u1 + u2) = ϕ(u1)ϕ(u2) ∈ K∗, from which it follows ϕ(u1), ϕ(u2) ∈ K∗

and hence u1,u2 ∈ F . For u ∈ S, if xu ∈ F , then ϕ(xu) = ϕ(u)x ∈ K∗, from which it follows
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ϕ(u) ∈ K∗ and hence u ∈ F . So F is a face of S. Let Y = Specσ(k[F ]), TY = Specσ(k[(F )Z[x]]).
It is clear that ϕ ∈ TY (K) and TY (K) is the orbit of ϕ in X(K).

It is clear that two different faces give two discrete orbits, which proves the one-to-one
correspondence.

7 An Order Bound of Toric σ-Variety

In this section, we show that the σ-Chow form (see [13, 21]) of a toric σ-variety XU is the
sparse σ-resultant (see [14]) with support U . As a consequence, we can give a bound for the
order of XU .

Let U = {u1,u2, · · · ,um} be a subset of Z[x]n and XU the toric σ-variety defined by U . In
order to establish a connection between the σ-Chow form of XU and the sparse σ-resultant with
support U , we assume that U is Laurent transformally essential (see [14]), that is rk(U) = n

by regrading U as a matrix with ui as the i-th column.
Let T = {t1, t2, · · · , tn} be a set of σ-indeterminates. Here, the fact that U is Laurent

transformally essential means that there exist indices k1, k2, · · · , kn ∈ {1, 2, · · · ,m} such that
the Laurent σ-monomials Tuk1 ,Tuk2 , · · · ,Tukn are transformally independent over k (see [14]).

Let A = {M1 = T
u1 ,M2 = T

u2 , · · · ,Mm = Y
um} and

Pi = ai0 + ai1M1 + · · · + aimMm, i = 0, 1, · · · , n. (11)

n+1 generic Laurent σ-polynomials with the same support U . Denote ai = (ai0, ai1, · · · , aim),
i = 0, 1, · · · , n. Since A is Laurent transformally essential, the sparse σ-resultant of P0,P1, · · · ,
Pn exists (see [14]), which is denoted by RU ∈ k{a0,a1, · · · ,an}.

By Lemma 3.2, XU ⊆ A
m is an irreducible σ-variety of dimension rk(U) = n. Then, the

σ-Chow form of XU , denoted by CU ∈ k{a0,a1, · · · ,an}, can be obtained by intersecting XU

with the following generic σ-hyperplanes (see [13])

Li = ai0 + ai1y1 + · · · + aimym, i = 0, 1, · · · , n.
We have

Theorem 7.1 Up to a sign, the sparse σ-resultant RU of Pi (i = 0, 1, · · · , n) is the same
as the σ-Chow form CU of XU .

Proof All σ-ideals in this proof are supposed to be in R = k{a0,a1, · · · ,an,Y,T
±}, unless

specifically mentioned otherwise. From [14],

[P0,P1, · · · ,Pn] ∩ k{a0,a1, · · · ,an} = sat(RU , R1, R2, · · · , Rl)

is a σ-prime ideal of codimension one in k{a0,a1, · · · ,an}. Let IU = I(XU ). From [13],

[IU ,L0,L1, · · · ,Ln] ∩ k{a0,a1, · · · ,an} = sat(CU , C1, C2, · · · , Ct)

is a σ-prime ideal of codimension one in k{a0,a1, · · · ,an}. By Theorem 7 of [14], in order to
prove CU = RU , it suffices to show

[P0,P1, · · · ,Pn] ∩ k{a0,a1, · · ·an} = [IU ,L0, ,L1, · · · ,Ln] ∩ k{a0,a1, · · ·an}.
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Let IT = [y1−M1, y2−M2, · · · , ym−Mm]. By (6), IU = IT∩k{Y}. Then, [IU ,L0,L1, · · · ,Ln]∩
k{a0,a1, · · · ,an} = [y1−M1, y2−M2, · · · , ym−Mm,L0,L1, · · · ,Ln]∩k{a0,a1, · · · ,an} = [y1−
M1, y2−M2, · · · , ym−Mm,P0,P1, · · · ,Pn]∩k{a0,a1, · · · ,an}. Since Pi ∈ k{a0,a1, · · · ,am,T

±}
does not contain any yxj

i , we have [y1−M1, y2−M2, · · · , ym−Mm,P0,P1, · · · ,Pn]∩k{a0,a1, · · · ,
an} = [P0,P1, · · · ,Pn] ∩ k{a0,a1, · · · ,an}, and the theorem is proved.

To give a bound for the order of XU , we need to introduce the concept of Jacobi number.
Let M = (mij) be an n× n matrix with elements either in N or −∞. A diagonal sum of M is
any sum m1τ(1) +m2τ(2) + · · ·+mnτ(n) with τ a permutation of 1, 2, · · · , n. The Jacobi number
of M is the maximal diagonal sum of M , denoted by Jac(M) (see [14]).

Let U = {u1,u2, · · · ,um} ⊆ Z[x]n and U = (aij)m×n the matrix with ui as the i-th column.
For each i ∈ {1, 2, · · · , n}, let oi = maxn

k=1deg(aik, x) and assume that deg(0, x) = −∞. Since
U does not contain zero rows, no aij is −∞. For a p(x) ∈ Z[x], let deg(p, x) = min{k ∈
N | s.t. coeff(p, xk) �= 0} and deg(0, x) = 0. For each i ∈ {1, 2, · · · , n}, let oi = minn

k=1 deg(aik, x)
and o =

∑n
i=1 oi.

Theorem 7.2 Use the notations just introduced. Let XU be the toric σ-variety defined
by U . Then ord(XU ) ≤ ∑n

i=1(oi − oi).

Proof Use the notations in Theorem 7.1. Since Pi in (11) have the same support for
all i, ord(RU ,ai) are the same for all i. The order matrix for Pi given in (11) is O =
(ord(Pi, tj))(n+1)×n = (oij)(n+1)×n, where oij = oj . That is, all rows of O are the same. Let O
be obtained from O by deleting any row of O. Then J = Jac(O) =

∑n
i=1 oi. By Theorem 4.17

of [14], ord(RU ,ai) ≤ J − o =
∑n

i=1(oi − oi). By Theorem 6.12 of [13], ord(XU ) = ord(CU ,ai)
for each i = 0, 1, · · · , n. By Theorem 7.1, CU = RU . Then the theorem is proved.

8 Algorithms

In this section, we give algorithms to decide whether a given Z[x]-lattice L is toric and in
the negative case to compute the Z[x]-saturation of L. Using these algorithms, for a Z[x]-lattice
L generated by U = {u1,u2, · · · ,um} ⊆ Z[x]n, we can decide whether the binomial σ-ideal IL

is toric and in the negative case, to compute a toric Z[x]-lattice L′ ⊇ L such that IL′ ⊇ IL is
the smallest toric σ-ideal containing IL.

We first introduce the concept of Gröbner bases for Z[x]-lattices. For the details, please refer
to [16, 18]. Denote εi to be the i-th standard basis vector (0, 0, · · · , 0, 1, 0, · · · , 0)τ ∈ Z[x]n,
where 1 lies in the i-th row of εi. A monomial m in Z[x]n is an element of the form axkεi ∈
Z[x]n, where a ∈ Z and k ∈ N. The following monomial order < of Z[x]n will be used in this
paper: axαεi < bxβεj if i < j, or i = j and α < β, or i = j, α = β, and |a| < |b|.

For any f ∈ Z[x]n, the largest monomial in f is called the leading term of f , which is denoted
by LT(f). The order < can be extended to elements of Z[x]n as follows: For f , g ∈ Z[x]n, f < g

if and only if LT(f) < LT(g).
A monomial axαεi is said to be reduced w.r.t another nonzero monomial bxβεj if one of the

following three conditions holds:
1) i �= j,
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2) i = j, α < β,
3) i = j, α ≥ β, and 0 ≤ a < |b|.
Let G ⊆ Z[x]n and f ∈ Z[x]n. We say that f is reduced with respect to G if any monomial

of f is not a multiple of LT(g) by an element in Z[x] for any g ∈ G.
A finite set � = {f1,f2, · · · ,fs} ⊆ Z[x]n is called a Gröbner basis for the Z[x]-lattice L

generated by � if for any g ∈ L, there exists an i, such that LT(g)|LT(fi). A Gröbner basis �

is called reduced if for any f ∈ �, f is reduced with respect to � \ {f}.
Let � be a Gröbner basis. Then any f ∈ Z[x]n can be reduced to a unique normal form by

�, denoted by grem(f , �), which is reduced with respect to �.
Let f , g ∈ Z[x]n, LT(f) = axkei, LT(g) = bxsej , s ≤ k. The S-polynomial of f and g is

defined as follows: if i �= j then S(f , g) = 0; otherwise

S(f , g) =

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

f − a

b
xk−sg, if b | a;

b

a
f − xk−sg, if a | b;

uf + vxk−sg, if a � band b � a, where gcd(a, b) = ua+ vb.

(12)

Then, it is known that � ⊆ Z[x]n is a Gröbner basis if and only if grem(S(fi,fj), �) = 0
for all i, j (see [17, 18]).

Next, we will give the structure for the matrix representation for the Gröbner basis of a
Z[x]-lattice. Let

C =

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

c1,1 · · · c1,l1 c1,l1+1 · · · · · · · · · · · · · · · · · · · · ·
· · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · ·
cr1,1 · · · cr1,l1 cr1,l1+1 · · · · · · · · · · · · · · · · · · · · ·
0 · · · 0 cr1+1,1 · · · cr1+1,l2 · · · · · · · · · · · · · · ·
· · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · ·
0 · · · 0 cr2,1 · · · cr2,l2 · · · · · · · · · · · · · · ·
· · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · ·
0 · · · 0 0 · · · 0 · · · 0 crt−1+1,1 · · · crt−1+1,lt

· · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · ·
0 · · · 0 0 · · · 0 · · · 0 crt,1 · · · crt,lt

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

n×s

,

(13)

whose elements are in Z[x]. We denote by ci to be the i-th column of C and by ci,j to be the
column whose ri-th element is cri,j for i = 1, 2, · · · , t; j = 1, 2, · · · , lt. Let cri,j be

cri,j = ci,j,0x
dij + · · · + ci,j,dij . (14)

Definition 8.1 The matrix C in (13) is called a generalized Hermite normal form if it
satisfies the following conditions:

1) 0 ≤ dri,1 < dri,2 < · · · < dri,li for any i.



TORIC DIFFERENCE VARIETY 191

2) cri,li,0| · · · |cri,2,0|cri,1,0.
3) S(cri,j1 , cri,j2) = xdri,j2−dri,j1 cri,j1 − cri,j1,0

cri,j2,0
cri,j2 can be reduced to zero by the column

vectors of the matrix for any 1 ≤ i ≤ t, 1 ≤ j1 < j2 ≤ li.
4) ci is reduced w.r.t. the column vectors of the matrix other than ci, for any 1 ≤ i ≤ s.
It is proved in [16] that � = {f1,f2, · · · ,fs} ⊆ Z[x]n is a reduced Gröbner basis such that

f1 < f2 < · · · < fs if and only if the matrix [f1,f2, · · · ,fs] is a generalized Hermite normal
form. From [17], generalized Hermite normal forms can be computed in polynomial-time.

For S ⊆ Z[x]n, we use (S)D to denote the D-module generated by S in Dn, where D = Z[x]
or D = Q[x]. When D = Z[x], (S)D is the Z[x]-lattice generated by S. Similarly, let A be a
matrix with entries in Z[x]. We use (A)D to denote the D-module generated by the column
vectors of A.

A Z[x]-lattice L ⊆ Z[x]n is said to be Z-saturated if, for any a ∈ Z∗ and f ∈ Z[x]n, af ∈ L

implies f ∈ L. The Z-saturation of L is defined to be

satZ(L) = {f ∈ Z[x]n | ∃a ∈ Z∗ s.t. af ∈ L}.

We need the following algorithm from [16].
• ZFactor(C): for a generalized Hermite normal form C, the algorithm returns ∅ if L =

(C)Z[x] is Z-saturated, or a finite set S ⊆ satZ(L) \ (L).
The following algorithm checks whether L = (C)Z[x] is Z[x]-saturated and in the negative

case returns elements of satZ[x](L) \ L.

Algorithm 1 — ZXFactor(C)

Input A generalized Hermite normal form C ∈ Z[x]n×s given in (13).

Output ∅, if L = (C)Z[x] is Z[x]-saturated; otherwise, a finite set {h1,h2, · · · ,hr} ⊆ Z[x]n such
that hi ∈ satZ[x](L) \ L, i = 1, 2, · · · , r.

1) Let S =ZFactor(C). If S �= ∅ return S.
2) For any prime factor p(x) ∈ Z[x] \ Z of

∏t
i=1 cri,1, execute Steps 2.1)–2.3), where cri,1 are

from (13).
2.1) Set M = [cr1,1, cr2,1, · · · , crt,1] ∈ Z[x]n×t, where cri,1 can be found in (13).
2.2) Compute a finite basis B = {b1, b2, · · · , bl} of Ker(M) = {X ∈ Q[x]t |MX = 0}

as a K-vector space in Kt, where K = Q[x]/(p(x)).
2.3) If B �= ∅,

2.3.1) For each bi, let Mbi = p(x) gi

mi
, where gi ∈ Z[x]n and mi ∈ Z.

2.3.2) Return {g1, g2, · · · , gl}
3) Return ∅.

The Z[x]-saturation of a Z[x]-lattice L is defined to be

satZ[x](L) = {f ∈ Z[x]n | ∃p ∈ Z[x]\{0} s.t. pf ∈ L}.
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The following algorithm compute satZ[x](L).

Algorithm 2 — SatZX(u1,u2, · · · ,um)

Input A finite set U = {u1,u2, · · · ,um} ⊆ Z[x]n.

Output A set of generators of satZ[x](L), where L = (U)Z[x].

1) Compute a generalized Hermite normal form � of U [17].
2) Set S =ZXFactor(�).
3) If S = ∅, return �; otherwise set U = � ∪ S and go to Step 1).

Example 8.2 Let

C =

⎡

⎢
⎢
⎣

x x2 + 1

2x2 + 1 0

0 4x2 + 2

⎤

⎥
⎥
⎦ .

Apply Algorithm ZXFactor to C. In Step 1), S = ∅ and C is Z-saturated. In Step 2), the only
irreducible factor of

∏t
i=1 cri,1 ∈ Z[x] is p(x) = 2x2 + 1. In Step 2.1), M = C and in Step 2.2),

B = {[−1, 2x]τ}. In Step 2.3.1), M · [−1, 2x]τ = 2xc2,1 − c1,1 = p(x)[x,−1, 4x]τ = 0 mod p(x)
and {[x,−1, 4x]τ} is returned.

In Algorithm SatZX, h = [x,−1, 4x]τ is added into C and the generalized Hermite normal
form of C ∪ {h} is

C1 =

⎡

⎢
⎢
⎣

x 1

2x2 + 1 x

0 2

⎤

⎥
⎥
⎦ .

Apply Algorithm ZXFactor to C1, one can check that C1 is Z[x]-saturated.
In the rest of this section, we will prove the correctness of the algorithm. As with the

definition of satZ[x](L), we can define satQ[x](LQ[x]). LQ[x] is said to be Q[x]-saturated if
satQ[x](LQ[x]) = LQ[x]. The following lemma gives a criterion for whether L is Z[x]-saturated.

Lemma 8.3 A Z[x]-lattice L is Z[x]-saturated if and only if satZ(L) = L and satQ[x](LQ[x]) =
LQ[x].

Proof “ ⇒ ”. If L = ({u1,u2, · · · ,um})Z[x] is Z[x]-saturated, then satZ(L) = L. If
satQ[x](LQ[x]) �= LQ[x], then there exist an h(x) ∈ Q[x] and a g ∈ Q[x]n, such that h(x)g ∈ LQ[x]

but g �∈ LQ[x]. From h(x)g ∈ LQ[x], we have h(x)g =
∑s

i=1 qi(x)ui, where qi(x) ∈ Q[x].
Clearing the denominators of the above equation, there exist m1,m2 ∈ Z such that m1h(x) ∈
Z[x], m2g ∈ Z[x]n, andm1h(x)·m2g ∈ L. Since L is Z[x]-saturated,m2g ∈ L, which contradicts
to g �∈ LQ[x].

“ ⇐ ”. For any h(x) ∈ Z[x] and g ∈ Z[x]n, if h(x)g ∈ L, we have h(x)g ∈ LQ[x], and hence
g ∈ LQ[x] since satQ[x](LQ[x]) = LQ[x]. Since g ∈ LQ[x], there exists an m ∈ Z such that mg ∈ L,
which implies g ∈ L since L is Z-saturated.

In the following two lemmas, C is the generalized Hermite normal form given in (13).
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Lemma 8.4 (C)Q[x] = (cr1,1, cr2,1, · · · , crt,1)Q[x].

Proof We will prove (C)Q[x] = (cr1,1, cr2,1, · · · , crt,1)Q[x] by induction. By 3) of Defini-
tion 8.1, S(cr1,1, cr1,2) = xucr1,1 − acr1,2 (u ∈ N and a ∈ Z) can be reduced to zero by cr1,1,
which means cr1,2 = q(x)cr1,1 where q(x) ∈ Q[x]. Hence, (cr1,1, cr1,2)Q[x] = (cr1,1)Q[x] as
Q[x]-modules. Suppose for k < l1, (cr1,1, cr2,1, · · · , cr1,k)Q[x] = (cr1,1)Q[x] as Q[x]-modules.
We will show that (cr1,1, cr2,1, · · · , cr1,k+1)Q[x] = (cr1,1)Q[x] as Q[x]-modules. Indeed, by 3) of
Definition 8.1, S(cr1,1, cr1,k+1) = xvcr1,1−bcr1,k+1 (v ∈ N and b ∈ Z) can be reduced to zero by
cr1,1, cr2,1, · · · , cr1,k and hence, cr1,k+1 ∈ (cr1,1)Q[x]. Then we have (cr1,1, cr2,1, · · · , cr1,l1)Q[x] =
(cr1,1)Q[x]. For the rest of the polynomials in C, the proof is similar.

The following lemma gives a criterion for a Q[x]-module to be Q[x]-saturated.
Lemma 8.5 Let L = (C)Q[x]. Then satQ[x](L) = L if and only if C1 = {cr1,1, cr2,1, · · · , crt,1}

is linear independent over Kp(x) = Q[x]/(p(x)) for any irreducible polynomial p(x) ∈ Z[x].

Proof “ ⇒ ”. Assume the contrary, that is, C1 are linear dependent over Kp(x) for some
p(x). Then there exist gi ∈ Q[x] not all zero in Kp(x), such that

∑t
i=1 gicri,1 = 0 in Kn

p(x) and
hence

∑t
i=1 gicri,1 = p(x)g in Q[x]n. Since C1 is in upper triangular form and is clearly linear

independent in Q[x]n, we have g �= 0. Since satQ[x](L) = L, we have g ∈ L. Then, there exist
fi ∈ Q[x] such that g =

∑t
i=1 ficri,1. Hence

∑t
i=1(gi−pfi)cri,1 = 0 in Q[x]n. Since C1 is linear

independent in Q[x]n, gi = pfi and hence gi = 0 in Kp(x), a contradiction.
“ ⇐ ”. Assume the contrary, that is, there exists g ∈ Q[x]n, such that g �∈ L and p(x)g ∈ L

for an irreducible polynomial p(x) ∈ Z[x]. Then by Lemma 8.4, we have pg =
∑t

i=1 ficri,1,
where fi ∈ Q[x]. p cannot be a factor of all fi. Otherwise, g =

∑t
i=1

fi

p cri,1 ∈ L. Then some
of fi is not zero in Kp(x), which means

∑t
i=1 ficri,1 = 0 is a nontrivial linear relation among

C1 over Kp(x), a contradiction.
From the “ ⇒ ” part of the above proof, we have the following corollary.
Corollary 8.6 Let C be the generalized Hermite normal form given in (13) and

∑t
i=1 ficri,1 =

0 a nontrivial linear relation among cri,1 in (Q[x]/(p(x)))n, where p(x) is an irreducible poly-
nomial in Z[x] and fi ∈ Q[x]. Then, in Q[x]n,

∑r
i=1 ficri,1 = p(x)g and g �∈ (C)Q[x].

Theorem 8.7 Algorithms SatZX and ZXFactor are correct.

Proof In Step 3) of Algorithm SatZX, if (�)Z[x] is not Z[x]-saturated, then S �= ∅ and
(�)Z[x] � (� ∪ S)Z[x] ⊆ satZ[x]((�)Z[x]). Since Z[x]n is Notherian, the algorithm will terminate
and output satZ[x](L). Thus, it suffices to prove the correctness of Algorithm ZXFactor.

In Step 1) of Algorithm ZXFactor, if S �= ∅, then from properties of Algorithm ZFactor,
S ⊆ satZ((C)Z[x]) \ (C)Z[x] ⊆ satZ[x]((C)Z[x]) \ (C)Z[x]. The algorithm is correct. In Step 2), we
claim that L is Q[x]-saturated if and only if B = ∅, and if B �= ∅ then gi in Step 2.3.1) is not
in L. In Step 3), L is both Z- and Q[x]-saturated. By Lemma 8, L is Z[x]-saturated and the
algorithm is correct. So, it suffices to prove the claim about Step 2).

Let L = (C)Z[x]. In Step 2), L is already Z-saturated. Then by Lemma 8.3, L is Z[x]-
saturated if and only if (C)Q[x] is Q[x]-saturated. By Lemma 8.5, to check whether (C)Q[x] is
Q[x]-saturated, we only need to check whether for any irreducible polynomial p(x) ∈ Z[x],
C1 = {cr1,1, cr2,1, · · · , crt,1} is linear independent over Kp(x) = Q[x]/(p(x)). If p(x) is not a
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prime factor of
∏t

i=1 cri,1, then the leading monomials of cri,1, i = 1, 2, · · · , t are nonzero and
C1 is in upper triangular form. As a consequence, C1 must be linear independent over Kp(x).
Then, in order to check whether L is Q[x]-saturated, it suffices to consider the prime factors of
∏t

i=1 cri,1 in Step 2) of the algorithm. In Step 2.3), it is clear that if B = ∅ then C1 is linear
independent over Kp(x). For bi ∈ B, since Mbi = 0 over Kp(x), Mbi = p(x)hi where hi ∈ Q[x]t.
Hence hi = gi

mi
for gi ∈ Z[x]t and mi ∈ Z. By Corollary 8.6, gi �∈ L. Therefore, Step 2) returns

a set of nontrivial factors of L if L is not Z[x]-saturated. The claim about Step 2) is proved.

9 Conclusion

In this paper, we initiate the study of toric σ-varieties. A toric σ-variety is defined as the
Cohn closure of the values of a set of Laurent σ-monomials. Three characterizing properties of
toric σ-varieties are proved in terms of their coordinate rings, their defining ideals, and group
actions. In particular, a σ-variety is toric if and only if its defining ideal is a toric σ-ideal,
meaning a binomial σ-ideal whose support lattice is Z[x]-saturated. Algorithms are given to
decide whether the binomial σ-ideal IL with the support lattice L is toric.

We establish connections between toric σ-varieties and affine N[x]-semimodules. We show
that the category of toric σ-varieties with toric morphisms is antiequivalent to the category of
affine N[x]-semimodules with N[x]-semimodule morphisms. We also show that there is a one-
to-one correspondence between the irreducible T -invariant σ-subvarieties of a toric σ-variety
X and the faces of the corresponding affine N[x]-semimodule, where T is the σ-torus of X .
Besides, there is also a one-to-one correspondence between the T -orbits of a toric σ-variety X
and the faces of the corresponding affine N[x]-semimodule S, when S is face-saturated.
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