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In this paper, we give the first polynomial time algorithm to compute the generalized 
Hermite normal form for a matrix F over Z[x], or equivalently, the reduced Gröbner basis 
of the Z[x]-module generated by the column vectors of F . The algorithm has polynomial 
bit size computational complexities and is also shown to be practically more efficient than 
existing algorithms. The algorithm is based on three key ingredients. First, an F4 style 
algorithm to compute the Gröbner basis is adopted, where a novel prolongation is designed 
such that the sizes of coefficient matrices under consideration are nicely controlled. Second, 
the complexity bound of the algorithm is achieved by a nice estimation for the degree 
and height bounds of the polynomials in the generalized Hermite normal form. Third, 
fast algorithms to compute Hermite normal forms of matrices over Z are used as the 
computational tool.

© 2018 Elsevier B.V. All rights reserved.

1. Introduction

The Hermite normal form (abbr. HNF) is a standard representation for matrices over principal ideal domains such as 
Z and Q[x], which has many applications in algebraic group theory, integer programming, lattices, linear Diophantine 
equations, system theory, and analysis of cryptosystems [5,17,21]. Efficient algorithms to compute HNF have been stud-
ied extensively until recently [2,5,9,15,17,22–24]. Note that Z[x] is not a PID and a matrix over Z[x] cannot be reduced to 
an HNF. In [12,13], the concept of generalized Hermite normal form (abbr. GHNF) is introduced and it is shown that any 
matrix over Z[x] can be reduced to a GHNF. Furthermore, a matrix F = [f1, . . . , fs] ∈ Z[x]n×s is a GHNF if and only if the 
set of its column vectors f = {f1, . . . , fs} forms a reduced Gröbner basis of the Z[x]-module generated by f in Z[x]n under 
certain monomial order. Similar to the concept of lattice [5], a Z[x]-module in Z[x]n is called a Z[x]-lattice which plays the 
same role as lattice does in the study of binomial ideals and toric varieties [7]. For instance, the decision algorithms for 
some of the major properties of Laurent binomial difference ideals and toric difference varieties are based on the computa-
tion of GHNFs of the exponent matrices of the difference ideals [12,13]. This motivates the study of efficient algorithms to 
compute the GHNFs.

The reduced Gröbner basis for a Z[x]-lattice can be computed with the Gröbner basis methods for modules over rings 
[6,16,19]. However, such general algorithms do not take advantage of the special properties of Z[x]-modules and do not 
have a complexity analysis. Also note that the worst case complexity of computing Gröbner bases in Q[x1, . . . , xn] is double 
exponential [20].
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The main contribution of this paper is to give an algorithm to compute the GHNF of a matrix F ∈ Z[x]n×s or the reduced 
Gröbner basis of the Z[x]-lattice generated by the column vectors of F , which is both practically efficient and has polynomial 
bit size computational complexity. The algorithm consists of three main ingredients.

The first ingredient comes from the powerful idea in Faugère’s F4 algorithm [11] and the XL algorithm [8] of Courtois 
et al. To compute the Gröbner basis of the ideal generated by p1, . . . , pm ∈ Q[x1, . . . , xn], these algorithms apply efficient 
elimination algorithms from linear algebra to the coefficient matrix of xk

j pi for certain k. Although the F4 algorithm can 
not improve the worst case complexity, it is generally faster than the classical Buchberger algorithm [4]. In this paper, to 
compute the GHNF of F = [f1, . . . , fs] ∈ Z[x]n×s with columns fi , due to the special structure of the Gröbner bases in Z[x], 
we design a novel method to do certain prolongations xkfi such that the sizes of the coefficient matrices of those xkfi are 
nicely controlled.

The second ingredient is a nice estimation for the degree and height bounds of the polynomials in the GHNF G ∈
Z[x]n×s of F ∈ Z[x]n×m . We show that the degrees and the heights of the key elements of G are bounded by nd and 
6n3d2(h + 1 + log(n2d)), respectively, where d and h are the maximal degree and maximal height of the polynomials in F , 
respectively. Furthermore, we show that G = F U for a matrix U ∈ Z[x]m×s and the degrees of the polynomials in U are 
bounded by a polynomial in n, d, h, which is a key factor in the complexity analysis of our algorithm. Note that the degree 
bound also depends on the coefficients of F . The bounds about the GHNF are obtained based on the powerful methods 
introduced by Aschenbrenner in [1], where the first double exponential algorithm for the ideal membership problem in 
Z[x1, . . . , xn] is given. In order to find the degree and height bounds for the GHNF, we need to find solutions of linear 
equations over Z[x], whose degree and height are bounded. Due to the special structure of the Gröbner basis in Z[x], we 
give better bounds than those in [1].

The third ingredient is to use efficient algorithms to compute the HNF for matrices over Z. The computationally dominant 
step of our algorithm is to compute the HNF of the coefficient matrices of those prolongations xkfi obtained in the first 
ingredient. The first polynomial-time algorithm to compute HNF was given by Kannan and Bachem [17] and there exist 
many efficient algorithms to compute HNFs for matrices over Z [5,9,23,24] and matrices over Q[x] [2,15,22]. Note that 
the GHNF for a matrix over Z[x] cannot be recovered from its HNF over Q[x] directly. In the complexity analysis of our 
algorithm, we use the HNF algorithm with the best bit size complexity bound [23].

The algorithm is implemented in Magma and Maple and their default HNF commands are used in our implementation. 
In the case of Z[x], our algorithm is shown to be more efficient than the Gröbner basis algorithm in Magma and Maple. In 
the general case, the proposed algorithm is also very efficient in that quite large problems can be solved.

The rest of this paper is organized as follows. In Section 2, we introduce several notations for Gröbner bases of Z[x]
lattices. In Section 3, we give degree and height bounds for the GHNF of a matrix over Z[x]. In Section 4, we give the 
algorithm to compute the GHNF and analyze its complexity. Experimental results are shown in Section 5. Finally, conclusions 
are presented in Section 6.

2. Preliminaries

In this section, some basic notations and properties about Gröbner bases for Z[x] lattices will be given. For more details, 
please refer to [6,12,16].

For brevity, a Z[x] module in Z[x]n is called a Z[x] lattice. Any Z[x] lattice L has a finite set of generators {f1, . . . , fs} ⊂
Z[x]n and this fact is denoted as L = (f1, . . . , fs)Z[x] . If fi = [ f1,i, . . . , fn,i]τ , then we call M = [f1, . . . , fs] = [ f i, j]n×s a matrix 
representation of L = (f1, . . . , fs)Z[x] . If n = 1, M is called a polynomial vector.

A monomial m in Z[x]n is an element of the form xkei ∈ Z[x]n , where k ∈ N, and ei is the canonical i-th unit vector in 
Z[x]n . A term in Z[x]n is a product of an integer a ∈ Z and a monomial m, that is am. The admissible order ≺ on monomials 
in Z[x]n can be defined naturally: xαei ≺ xβe j if i < j or i = j and α < β . The order ≺ can be naturally extended to terms: 
axαei ≺ bxβe j if and only if xαei ≺ xβe j or i = j, α = β and |a| < |b|.

With the admissible order ≺, any non-zero f ∈ Z[x]n can be written in a unique way as a Z-linear combination of 
monomials,

f =
s∑

i=1

cimi,

where ci �= 0 and m1 ≺ m2 ≺ · · · ≺ ms . We define the leading coefficient, leading monomial, and leading term of f as LC(f) = cs , 
LM(f) = ms , and LT(f) = csms , respectively.

The order ≺ can be extended to elements of Z[x]n in a natural way: for f,g ∈ Z[x]n, f ≺ g if and only if LT(f) ≺ LT(g). We 
will use the order ≺ throughout this paper.

For two terms axαei and bxβe j in Z[x]n with b �= 0, axαei is called {bxβe j}-reduced if one of the following conditions is 
valid: i �= j; i = j and α < β; or i = j, α ≥ β , and 0 ≤ a < |b|. For any f, g ∈ Z[x]n with g �= 0, f is called g-reduced if any 
term of f is LT(g)-reduced. If f is not g-reduced, then by the reduction algorithm for the polynomials in Z[x] [19], one can 
compute a unique r and a quotient q ∈ Z[x] such that r = f − qg is g-reduced and is denoted as r = f

g
. If f is g-reduced, 

then set f
g

to be f. For f ∈ Z[x]n and G = [g1, . . . , gm] ∈ Z[x]n×m with g1 ≺ . . . ≺ gm , f is called G-reduced if every term 
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of f is LT(gi)-reduced for i = 1, . . . , m. Let rm+1 = f and for i = m, m − 1, . . . , 1, set ri = ri+1
gi . Denote r1 = f

G
and say f is 

reduced to r1 by G .

Definition 2.1. Let f,g ∈ Z[x]n , LT(f) = axkei , LT(g) = bxse j , s ≤ k. Then the S-vector of f and g is defined as follows: if i �= j
then S(f,g) = 0; otherwise

S(f,g) =

⎧⎪⎪⎨⎪⎪⎩
f − a

b xk−sg, if b|a;
b
a f − xk−sg, if a|b;

uf + vxk−sg, if a � b and b � a, where gcd(a,b) = ua + vb.

(1)

If n = 1, the S-vector is called S-polynomial, which is the same with the definition in [16].

Definition 2.2. A finite set G ⊂ Z[x]n is called a Gröbner basis for the Z[x] lattice L generated by G if for all f ∈ L, there 
exists g ∈ G , such that LT(g)|LT(f). A Gröbner basis G is called reduced if for any g ∈ G , g is G \ {g}-reduced. A Gröbner basis 
G is called minimal if for any g ∈ G , LT(g) is G \ {g}-reduced.

It is easy to see that G is a Gröbner basis if and only if gG = 0 for any g ∈ (G)Z[x] . The Buchberger criterion for Gröbner 
basis is still true: G is a Gröbner basis if and only if S(f,g)

G = 0 for all f, g ∈ G . Gröbner bases in this paper are assumed to 
be ranked in an increasing order with respect to the admissible order ≺. That is, if G = {g1, . . . , gs} is a Gröbner basis, then 
g1 ≺ . . . ≺ gs . To make the reduced Gröbner basis unique, we further assume that LC(gi) > 0 for any gi ∈ G .

We need the following property from [12] for Gröbner bases in Z[x].

Proposition 2.3. Let B = {b1, . . . , bk} be the reduced Gröbner basis of a Z[x] module in Z[x], b1 ≺ · · · ≺ bk, and LT(bi) = ci xdi ∈N[x]. 
Then

1. 0 ≤ d1 < · · · < dk.
2. ck| · · · |c1 and ci �= ci+1 for 1 ≤ i ≤ k − 1.
3. ci

ck
|bi for 1 ≤ i < k. Moreover, if b̃1 is the primitive part of b1, then b̃1|bi , for 1 < i ≤ k.

This proposition also applies to the minimal Gröbner bases. Here are three Gröbner bases in Z[x]: {2, x}, {12, 6x +6, 3x2 +
3x, x3 + x2}, {9x + 3, 3x2 + 4x + 1}.

For a polynomial set F = { f1, . . . , fm} in Z[x], we denote by Content(F ) the GCD of the contents of f i and Primpart(F ) =
gcd(F )/Content(F ) the primitive part of F . Now, we give a refined description of Gröbner bases for ideals in Z[x] [18].

Proposition 2.4. G = {g1, . . . , gn} with deg(g1) < · · · < deg(gn) is a minimal Gröbner basis of ( f1, . . . , fm) in Z[x] if and only if 
g1 = ab1 · · ·bn−1 g̃1 , gn = ahn g̃1 , and gi = abi · · ·bn−1hi g̃1, 2 ≤ i ≤ n − 1, such that

i) a = Content( f1, . . . , fm);
ii) g̃1 = Primpart( f1, . . . , fm);

iii) hi ∈ Z[x] is monic with degree di , and 0 < d2 < · · · < dn;
iv) bi ∈ Z, bi �= ±1, and hi+1 ∈ (hi, bi−1hi−1, . . . , b2 . . .bi−1h2, b1 . . .bi−1), for 1 ≤ i ≤ n − 1, where h1 = 1.

Next, we introduce the concept of generalized Hermite normal form. Let

C =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎝

c11 ... c1,l1 c1,l1+1 ... ... ... ... ... ... ...

... ... ... ... ... ... ... ... ... ... ...

cr1,1 ... cr1,l1 cr1,l1+1 ... ... ... ... ... ... ...

0 ... 0 cr1+1,1 ... cr1+1,l2 ... ... ... ... ...

... ... ... ... ... ... ... ... ... ... ...

0 ... 0 cr2,1 ... cr2,l2 ... ... ... ... ...

... ... ... ... ... ... ... ... ... ... ...

0 ... 0 0 ... 0 ... 0 crt−1+1,1 ... crt−1+1,lt
... ... ... ... ... ... ... ... ... ... ...

0 ... 0 0 ... 0 ... 0 crt ,1 ... crt ,lt

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎠
n×m

(2)

whose elements are in Z[x]. It is clear that n = rt and m = ∑t
i=1 li . Assume

ci, j = ci, j,0xdij + · · · + ci, j,dij ,

and assume ci, j,0 ≥ 0. Then the leading term of cr , j is cr , j,0xdri , j eri , where cr , j is the (l1 + · · · + li−1 + j)-th column of C .
i i i
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Definition 2.5. The matrix C is called a generalized Hermite normal form (abbr. GHNF) if it satisfies the following condi-
tions:

1) 0 ≤ dri ,1 < dri ,2 < · · · < dri ,li for any i.
2) cri ,li ,0| . . . |cri ,2,0|cri ,1,0.

3) S(cri , j1 , cri , j2 ) = xdri , j2 −dri , j1 cri , j1 − cri , j1,0

cri , j2,0
cri , j2 can be reduced to zero by the column vectors of the matrix for any 

1 ≤ i ≤ t , 1 ≤ j1 < j2 ≤ li .
4) cri , j is reduced with respect to the column vectors of the matrix other than cri , j , for any 1 ≤ i ≤ t , 1 ≤ j ≤ li .

We have the following result [12].

Theorem 2.6. {f1, . . . , fs} ⊂ Z[x]n is a reduced Gröbner basis under the monomial order ≺ and f1 ≺ f2 ≺ . . . ≺ fs if and only if the 
polynomial matrix [f1, . . . , fs] is a GHNF.

3. Degree and height bounds for the GHNF

We first give some notations. Let f ∈ R[x], where R is a subring of C. Denote by | f | the maximal absolute value of the 
coefficients of f . Let height( f ) = log | f |, with height(0) = 0. For F = { f1, . . . , fm} ⊂ R[x], let deg(F ) = max1≤i≤m deg( f i) and 
height(F ) = max1≤i≤m height( f i).

For a prime p ∈ Z, let Z(p) be the local ring of Z at (p). For a = upt ∈ Z where u is a unit in Z(p) , let v p(a) = t be the 
p-adic valuation. Let Ẑ(p) be the completion [1,10] of Z(p) and Ẑ(p)[x] the polynomial ring with coefficients in Ẑ(p) . Denote 
by Ẑ(p)〈x〉 the completion of Ẑ(p)[x] [1,10].

For any subring R of C or Ẑ(p) and f1, . . . , fs in R[x]n , let (f1, . . . , fs)R[x] be the R[x] module generated by f1, . . . , fs in 
R[x]n .

3.1. Degree and height bounds in Z[x]

In this section, we give several basic degree and height bounds in Z[x]. By the extended Euclidean algorithm, we have

Lemma 3.1. Let k be a field, f1, . . . , fm ∈ k[x], and d = max1≤i≤m deg( f i). Then there exist g1, . . . , gm ∈ k[x] with deg(gi) < d for 
any i, satisfying gcd( f1, . . . , fm) = f1 g1 + · · · + fm gm.

In this section, we assume f1, . . . , fm ∈ Z[x], d = max1≤i≤m deg( f i), and h = height( f1, . . . , fm), unless specified other-
wise explicitly.

Lemma 3.2. If 1 ∈ ( f1, . . . , fm)Q[x] , then δ = f1 g1 + · · ·+ fm gm for some δ ∈ Z \ {0} with height(δ) ≤ d(2h + log(d + 1)) and some 
g1, . . . , gm ∈ Z[x] with degree < d. In this case, the height of the GHNF of [ f1, . . . , fm] is ≤ d(2h + log(d + 1)).

Proof. By Lemma 3.1, we have 1 = f1u1 + · · · + fmum , where ui ∈ Q[x] of degree < d. Assume f i = ai0 + · · · + aidxd , u j =
b j0 + · · · + b j,d−1xd−1. Then we have the matrix equation Ab = [1, 0, . . . , 0]τ ∈ Z2d , where A = [A1, . . . , Am] with

Ai =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎝

ai0
ai1 ai0
...

. . .

ai,d ai0
. . .

...

ai,d

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎠
2d×d

for i = 1, . . . , m, and b = [b1,0, . . . , b1,d−1, . . . , bm,0, . . . , bm,d−1]τ ∈ Qmd . Let t = rank(A) ≤ 2d. By the Cramer’s rule, δ can 
be bounded by the nonzero t × t minors of A. By the Hadamard’s inequality, we have 0 < δ ≤ ((d + 1)a2)d , where a =
maxi, j |aij |. So height(δ) ≤ d(2h + log(d + 1)). In this case, δ ∈ ( f1, . . . , fm)Z[x] . Hence, the height of GHNF of [ f1, . . . , fm] is 
≤ height(δ). �

The following lemma is given by Gel’fond [14] and a simpler proof can be found in [25, p. 178].

Lemma 3.3. Let P1 and P2 be two monic polynomials in C[x], such that deg(P1) +deg(P2) = d. Then |P1||P2| ≤ (d +1)1/22d|P1 P2|.
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The following lemma gives a height bound for the gcd in Z[x].

Lemma 3.4. Let f1, . . . , fm ∈ Z[x] and g = gcd( f1, . . . , fm) in Z[x]. Then the height of g is bounded by 1
2 log(d + 1) + d log 2 + h.

Proof. Since g = gcd( f1, . . . , fm) is in Z[x], for each i = 1, . . . , m, there exists a gi ∈ Z[x] such that ggi = f i . Let g′ =
g/LC(g) and g′

i = gi/LC(gi). Then f ′
i = f i/LC( f i) = f i/LC(g)LC(gi) and | f i | = | f ′

i ||LC( f i)|. Let di = deg( f i). By Lemma 3.3, 
we have |g′||g′

i | ≤ (di + 1)1/22di | f ′
i | for each 1 ≤ i ≤ m, where di = deg( f i). Then |g||gi| = |LC(g)LC(gi)||g′||g′

i | ≤ (di +
1)1/22di |LC(g)LC(gi)|| f ′

i | = (di + 1)1/22di | f i |. We have

height(g) ≤ height(g) + height(gi)

≤ 1

2
log(di + 1) + di log 2 + height( f i) for any i (3)

≤ 1

2
log(d + 1) + d log 2 + h. �

Remark 3.5. By equation (3), we have height( f i/g) ≤ 1
2 log(d + 1) + d log 2 + h for any i.

We now give the degree and height bounds for the GHNF in Z[x].

Lemma 3.6. Let f1, . . . , fm ∈ Z[x] and [g1, . . . , gs] the GHNF of [ f1, . . . , fm]. Then deg(gi) ≤ d and height(gi) ≤ (2d + 1)(h +
d log 2 + log(d + 1)).

Proof. Obviously, the degree bound of the GHNF in Z[x] is d by the procedure of the Gröbner basis computation. Let g =
gcd( f1, . . . , fm) in Z[x], then, [g1/g, . . . , gs/g] is the GHNF of [ f1/g, . . . , fm/g]. By Lemma 3.4 and Remark 3.5, height(g)

and height( f i/g) are both ≤ 1
2 log(d + 1) + d log 2 + h. Moreover, 1 ∈ ( f1/g, . . . , fm/g)Q[x] . By Lemma 3.2, height(gi/g) ≤

d(2( 1
2 log(d + 1) + d log 2 + h) + log(d + 1)) = 2d(h + d log 2 + log(d + 1)). So, height(gi) ≤ 2d(h + d log 2 + log(d + 1)) +

1
2 log(d + 1) + d log 2 + h ≤ (2d + 1)(h + d log 2 + log(d + 1)). �

Finally, we consider an effective Nullstellensatz in Z(p)[x], whose proof follows that of Lemma 6.4 in [1].

Lemma 3.7. If 1 ∈ ( f1, . . . , fm)Z(p)[x] , then there exist h1, . . . , hn ∈ Z(p)[x] of degree at most 3d2(2h + log(d + 1))/ log p such that 
1 = f1h1 + · · · + fmhm.

Proof. Suppose 1 ∈ ( f1, . . . , fm)Z(p)[x] , then 1 ∈ ( f1, . . . , fm)Q[x] . By Lemma 3.2, there exist δ ∈ Z \ {0} with height ≤ d(2h +
log(d + 1)) and g1, . . . , gm ∈ Z[x] with degrees < d satisfying

δ = f1 g1 + · · · + fm gm. (4)

If δ is a unit in Z(p) , then

1 = f1(g1/δ) + · · · + fm(gm/δ).

Let hi = gi/δ for i = 1, . . . , m. Then we have the required properties. Suppose that δ is not a unit. Let μ = v p(δ) ≥ 1. Clearly 
we have 1 ∈ ( f1, . . . , fm)(Z(p)/pZ(p))[x]. Then by the Extended Euclidean Algorithm, there exist r1, . . . , rm ∈ Z[x] with

1 − (r1 f1 + · · · + rm fm) ∈ (p)Z(p)[x]
and deg(r j) < d for all j = 1, . . . , m. So there exist s1, . . . , sm ∈ Z(p)[x] and s ∈ (pμ)Z(p)[x] such that

1 − ( f1s1 + · · · + fmsm) = s. (5)

We have deg(s j) ≤ μ(2d − 1) − d for all j; hence deg(s) ≤ μ(2d − 1). By equations (4) and (5), we have

1 = f1s1 + · · · + fmsm + s = f1h1 + · · · + fmhm

with h j = s j + (s/δ)g j ∈ Z(p)[x]. We have

deg(sg j) ≤ μ(2d − 1) + d ≤ 3μd.

Since μ log p ≤ height(δ) ≤ d(2h + log(d + 1)), it follows that deg(h j) is bounded by 3d2(2h + log(d + 1))/ log p. �
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Then we can give the degree bound for the global case.

Lemma 3.8. If 1 ∈ ( f1, . . . , fm)Z[x] , then there exist h1, . . . , hm ∈ Z[x] such that 1 = f1h1 + · · · + fmhm, with deg(hi) ≤ 3d2(2h +
log(d + 1)) for i = 1, . . . , m.

Proof. By Lemma 3.2, we have g1, . . . , gm ∈ Z[x] with degrees < d and δ ∈ Z satisfying

δ = f1 g1 + · · · + fm gm.

Let p1, . . . , pk be all the prime factors of δ. Since 1 ∈ ( f1, . . . , fm)Z[x] , we have 1 ∈ ( f1, . . . , fm)Z(pi )
[x] . By Lemma 3.7, there 

exist h(pi)
1 , . . . , h(pi)

m ∈ Z[x] with degrees ≤ 3d2(2h + log(d + 1))/ log pi and δ(pi) ∈ Z \ (p)Z satisfying δ(pi ) = f1h(pi)
1 + · · · +

fmh(pi)
m . Then there exist a, a1, . . . , ak ∈ Z satisfying

1 = aδ + a1δ
(p1) + · · · + akδ

(pk).

Hence letting h j = ag j + a1h(p1)

j + · · · + akh(pk)

j ∈ Z[x] for j = 1, . . . , m, we get 1 = f1h1 + · · · + fmhm . From this, we can 
easily get deg(hi) ≤ 3d2(2h + log(d + 1)) for i = 1, . . . , m. �
3.2. Degree and height bounds for solutions to linear equations over Z[x]

Throughout this section, let F = ( f i j) ∈ Z[x]n×m , d = deg(F ) the maximal degree of entries in F , and h = height(F ) the 
maximal height of elements in F . For any subring R of C, let

SolR[x](F ) = {Y ∈ R[x]m | F Y = 0}
which is an R[x]-module in R[x]m . Let r be the rank of F and F1 the matrix consisting of r linear independent rows of F . 
Then, SolR[x](F ) = SolR[x](F1). So, we assume F is of rank n unless mentioned otherwise in the rest of this section. In this 
section, we will show that SolR[x](F ) has a set of generators whose degrees and heights can be nicely bounded.

For a prime p, f = ∑∞
v=0 f v xv ∈ Ẑ(p)〈x〉 is called regular of degree s with respect to p, or simply, regular of degree s when 

there is no confusion, if its reduction f ∈ Ẑ(p)〈x〉/pẐ(p)〈x〉 is unit-monic of degree s, that is, f s �= 0, and v p( f i) > 0 for all 
i > s, where v p is the p-valuation. Now we describe the Weierstrass Division Theorem for Ẑ(p)〈x〉 [1,3]:

Theorem 3.9. Let g ∈ Ẑ(p)〈x〉 be regular of degree s. Then for each f ∈ Ẑ(p)〈x〉, there are uniquely determined elements q ∈ Ẑ(p)〈x〉
and r ∈ Ẑ(p)[x] with deg(r) < s such that f = qg + r.

Lemma 3.10. SolẐ(p)〈x〉(F ) has a set of generators in Z[x]m with degrees ≤ nd.

Proof. Since F is of rank n, we have n ≤ m. Let 
 be an n × n-submatrix of F with δ = det(
) �= 0 having the least 
p-valuation among all the nonzero n × n minors of F . After permutating the unknowns of y1, · · · , ym in F y = 0, we may 
assume 
 = ( f i j)1≤i, j≤n . Multiplying both sides of F y = 0 on the left by the adjoint of 
, the system F y = 0 becomes⎛⎜⎝ δ c1,n+1 · · · c1,m

. . .
...

...

δ cn,n+1 · · · cn,m

⎞⎟⎠
⎛⎜⎝ y1

...

ym

⎞⎟⎠ =
⎛⎜⎝ 0

...

0

⎞⎟⎠ (6)

where δ and all the ci j are in Z[x] with degrees ≤ nd. Note that, v p(ci j) ≥ v p(δ) for all i, j, by the choice of 
. Let

v(1) =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

−c1,n+1
...

−cn,n+1
δ

0
...

0

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
, . . . , v(m−n) =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

−c1,m
...

−cn,m

0
...

0
δ

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
. (7)

Then, F v(i) = 0 for i = 1, . . . , m −n and v(1), . . . , v(m−n) are in the Ẑ(p)〈x〉-module SolẐ(p)〈x〉(F ). Let μ = v p(δ), u(i) = p−μv(i)

for i = 1, . . . , m − n. Then u(1), . . . , u(m−n) are also in SolẐ(p)〈x〉(F ). Multiplying the equation (6) by p−μ , we have B y = 0, 
where
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B =
⎛⎜⎝ ε d1,n+1 · · · d1,m

. . .
...

...

ε dn,n+1 · · · dn,m

⎞⎟⎠
and ε is regular of degree s for some integer s ≤ nd. Clearly, the (n + i)-th element of u(i) is ε. Moreover, ε and all the dij
are in Z[x] with degrees ≤ nd.

In the system F y = 0, let

f i j = f i j0 + · · · + f i jdxd, y j = y j0 + · · · + y j,nd−1xnd−1

for 1 ≤ i ≤ n, 1 ≤ j ≤ m, where f i jk ∈ Z(p) and y jk are the new unknowns in Ẑ(p)〈x〉. The i-th equation in F y = 0 may then 
be written as

k∑
l=0

m∑
j=1

f i jl y j,k−l = 0, 0 ≤ k < (n + 1)d,

where we put f i jl = 0 for l > d and y jl = 0 for l ≥ nd. Then we obtain a new system F ′ y′ = 0, where F ′ ∈ Z
(nd(n+1))×(mnd)
(p) , 

y′ = [y10, . . . , y1,nd−1, . . . , ym0, . . . , ym,nd−1]τ , whose solutions in ̂Z(p) are in a one to one correspondence with the solutions 
of F y = 0 in Ẑ(p)[x] of degrees < nd. We have a set of finite generators for F ′ y′ = 0, thus we have finitely many solutions 
y(1), . . . , y(M′) ∈ Z(p)[x]m of F y = 0 such that each solution to F y = 0 of degree < nd is a Ẑ(p) linear combination of 
y(1), . . . , y(M′) .

We claim that the above u(1), . . . , u(m−n), y(1), . . . , y(M′) generate the Ẑ(p)〈x〉-module SolẐ(p)〈x〉(F ). So SolẐ(p)〈x〉(F ) can be 
generated by elements in Z(p)[x]m of degrees ≤ nd.

Now we prove the claim. Let w = [w1, . . . , wm]τ ∈ Ẑ(p)〈x〉m be any solution to F y = 0. Since ε is regular of degree s for 
some integer s ≤ nd, by Theorem 3.9, there exist Q n+1, . . . , Q m ∈ Ẑ(p)〈x〉 and Rn+1, . . . , Rm ∈ Ẑ(p)[x] whose degrees are less 
than s such that R j = w j − Q jε for j = n + 1, . . . , m. Let z = w − Q n+1u(1) − · · · − Q mu(m−n) = [h1, . . . , hn, Rn+1, . . . , Rm], 
which is obvious a solution to B y = 0. So we have εhi = −di,n+1 Rn+1 − · · · − di,m Rm for i = 1, . . . , n. Since ε, dij are in 
Ẑ(p)[x] with degrees ≤ nd and R j ∈ Ẑ(p)[x] are of degrees < s, we have deg(hi) < nd for i = 1, . . . , n. Hence deg(z) < nd, 
therefore it can be expressed as the Ẑ(p)[x] combination of y(1), . . . , y(M′) . Now it is clear that w is the Ẑ(p)[x] com-
bination of u(1), . . . , u(m−n), y(1), . . . , y(M′) . Hence SolẐ(p)〈x〉(F ) as a Ẑ(p)〈x〉-module can be generated by u(1), . . . , u(m−n) , 
y(1), . . . , y(M′) . �

In the proof of Lemma 3.10, if we choose 
 to be any n × n-submatrix of F whose determinant is nonzero, let μ = 0
and do the computations in Q[x], we can easily give the following lemma:

Lemma 3.11. SolQ[x](F ) can be generated by elements in Z[x]m of degrees ≤ nd.

Now we describe Corollary 2.7 of [1] in our notations [1]:

Lemma 3.12. Let F be an n × m matrix over Z(p)[x]. If y(1), . . . , y(L) ∈ Z(p)[x]m generate the Q[x]-module SolQ[x](F ) and 
z(1), . . . , z(M) ∈ Z(p)[x]m generate the ̂Z(p)〈x〉-module SolẐ(p)〈x〉(F ). Then y(1), . . . , y(L) , z(1), . . . , z(M) generate the Z(p)[x]-module 
SolZ(p)[x](F ).

By Lemmas 3.10, 3.11, and 3.12, we have the following corollary:

Corollary 3.13. SolZ(p)[x](F ) can be generated by elements in Z[x]m of degrees ≤ nd.

We describe Lemma 4.2 of [1] in our notations as follows:

Lemma 3.14. Let M be a Z[x]-submodule of Z[x]m. For each maximal ideal (p) of Z, let u(1)
p , . . . , u(K p)

p ∈ M generate the 
Z(p)[x]-submodule (M)Z(p)[x] of Z(p)[x]m. Then u(1)

p , . . . , u(K p)
p , where (p) ranges over all maximal ideals of Z, generate the 

Z[x]-module M.

We now give a degree bound for the solutions of linear equations over Z[x].

Corollary 3.15. Let F = ( f i j) ∈ Z[x]n×m and d = deg(F ). Then SolZ[x](F ) can be generated by a finite set of elements whose degrees 
are ≤ nd.
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Proof. By Lemmas 3.13 and 3.14, we know that SolZ[x](F ) can be generated by elements whose degrees are ≤ nd. Since 
SolZ[x](F ) ⊂ Z[x]m and Z[x]m is Noetherian, the set of generators must be finite. �
Remark 3.16. In results 3.10, 3.11, and 3.13, 3.15, if F is of rank r, then the generators can be bounded by rd.

In the rest of this section, we give height bounds for SolZ[x](F ). By Remarks of Corollary 1.5 and Lemma 5.1 in [1], we 
have the following result [1].

Lemma 3.17. Let A ∈ Zn×m, r = rank(A), and h = height(A). Then SolZ(A) can be generated by m − r vectors whose heights are 
bounded by 2r(h + log r + 1).

Let F = ( f i j) ∈ Z[x]n×m , d = deg(F ), h = height(F ), and F is of full rank. Then, we have

Theorem 3.18. SolZ[x](F ) can be generated by vectors whose degrees are bounded by nd and heights are bounded by 2(n(n + 1)d +
n)(h + log(n(n + 1)d + n) + 1).

Proof. By Corollary 3.15, SolZ[x](F ) can be generated by elements of degrees ≤ nd. Let [y1, . . . , ym]τ ∈ SolZ[x](F ). Assume 
f i j = aij0 + aij1x + · · · + aijdxd , y j = y j0 + y j1x + · · · + y j,ndxnd , where aijk ∈ Z, y jk are indeterminants taking values in Z. 
Then, F y = 0 can be written as the following matrix equation⎛⎜⎝ A1

...

An

⎞⎟⎠ y′ = 0, (8)

y′ = [y10, . . . , y1,nd, . . . , ym0, . . . , ym,nd]τ , Ai = [Ai1, . . . , Aim]((n+1)d+1)×(m(nd+1)) , and

Aij =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎝

aij0
aij1 aij0
...

. . .

aijd ai j0
. . .

...

aijd

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎠
((n+1)d+1)×(nd+1)

for i = 1, . . . , n. So 

⎛⎜⎝ A1
.
.
.

An

⎞⎟⎠ ∈ Z(n(n+1)d+n)×(m(nd+1)) . By Lemma 3.17, we have that the equation system (8) can be generated 

by vectors whose heights are bounded by 2(n(n + 1)d + n)(h + log(n(n + 1)d + n) + 1). �
Remark 3.19. Let D = Z[x1, . . . , xN ] and A ∈ Dn×m . In [1], Aschenbrenner proved that SolD(A) has a set of generators whose 
degrees and heights are bounded by (2nd)2((N+1)N −1) and C2(2n(d + 1))(N+1)O (N)

(h + 1), respectively, where C2 is a constant 
only depending on A, d = deg(A), h = height(A). Setting N = 1 in these bounds, we obtain the degree and height bounds 
(2nd)2 and C2(2n(d + 1))2O (1)

(h + 1), respectively. Due to the special structure of the Gröbner basis in Z[x], our results are 
much better than that of [1] in the Z[x] case.

Let F ∈ Z[x]n×m , b ∈ Z[x]m . Denote d = deg(F , b) = max(deg(F ), deg(b)), h = max(height(F ), height(b)). Similar to Theo-
rem 6.5 in [1], we have the following degree bound.

Theorem 3.20. If the system F y = b has a solution in Z[x]m, then it has such a solution of degree ≤ 3n2d2(h2 + log(nd + 1)) + nd, 
where h2 = 2(n(n + 1)d + n)(h + log(n(n + 1)d + n) + 1).

Proof. By Theorem 3.18, there exist generators z(1), . . . , z(K ) for the Z[x]-module of solutions to the system of (F , −b)z = 0, 
where z(k) = [z(k)

1 , . . . , z(k)
m+1]τ is a vector of m + 1 unknowns, with deg(z(k)) ≤ nd and

height(z(k)) ≤ 2(n(n + 1)d + n)(h + log(n(n + 1)d + n) + 1) = h2

for all k = 1, . . . , K . For each k, let z(k)
m+1 ∈ Z[x] be the last component of z(k) . Clearly, F y = b is solvable in Z[x] if and only 

if 1 ∈ (z(1)
m+1, . . . , z

(K )
m+1). Moreover, if h1, . . . , hK are elements of Z[x] such that 1 = h1z(1)

m+1 + · · · + hK z(K )
m+1, then [y, 1]τ =

h1z(1) + · · · + hK z(K ) is a solution to F y = b. By Lemma 3.8, we have
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deg(hk) ≤ 3n2d2(2h2 + log(nd + 1)),

where h2 = 2(n(n + 1)d + n)(h + log(n(n + 1)d + n) + 1). It follows that deg(y) ≤ 3n2d2(2h2 + log(nd + 1)) + nd. �
3.3. Degree and height bounds in Z[x]n

In this section, we assume F = ( f i j) ∈ Z[x]n×m , d = deg(F ), h = height(F ), and F is of full rank. Let C in (2) be the GHNF 
of F . We will give degree and height bounds for C .

In our analysis of the complexity, only the degree and height bounds of cri ,ki in the ri -th rows of C will be used. So, we 
define deg(C ) = maxi,ki deg(cri ,ki ) and height(C ) = maxi,ki height(cri ,ki ). The following theorem gives the degree and height 
bounds for the GHNF of F .

Theorem 3.21. We have deg(cri ,li ) ≤ (n − ri +1)d and height(cri , j) ≤ 6(n − ri +1)3d2(h +1 + log((n − ri +1)2d)) for any 1 ≤ i ≤ t, 
1 ≤ j ≤ li .

Proof. Without loss of generality, we need only to prove the theorem for r1 = 1, in which case deg(c1 j) ≤ nd and 
height(c1 j) ≤ 6n3d2(h + 1 + log(n2d)) for 1 ≤ j ≤ l1.

For any [a, 0, · · · , 0]τ ∈ (F ), which is the Z[x] lattice generated by the columns of F , there exists a u ∈ Z[x]m , such that 
[a, 0, · · · , 0]τ = F u and hence u ∈ SolZ[x](Fn−1), where Fn−1 is the last n − 1 rows of F . By Theorem 3.18, SolZ[x](Fn−1) can 
be generated by polynomials of degrees ≤ (n −1)d and heights ≤ h1 = 2(n(n −1)d + (n −1))(h + log(n(n −1)d + (n −1)) +1), 
say {v(1), . . . , v(s)}. Then, [a, 0, . . . , 0]τ ∈ (F ) can be generated by {F v(1), . . . , F v(s)} and deg(F v( j)) ≤ nd and height(F v( j)) ≤
h +h1. Let F v( j) = [t j, 0, . . . , 0]τ for some t j ∈ Z[x], 1 ≤ j ≤ s. Then, [c1,1, . . . , c1,l1 ] is the GHNF of [t1, . . . , ts], and deg(t j) ≤
nd, height(t j) ≤ h + h1. By Lemma 3.6, we have deg(c1, j) ≤ nd, i.e. deg(c1, j) ≤ nd for 1 ≤ j ≤ l1. Moreover,

height(c1 j)

≤ (2nd + 1)(h + h1 + nd log 2 + log(nd + 1))

= (2nd + 1)(h + 2(n(n − 1)d + (n − 1))(h + log(n(n − 1)d + (n − 1)) + 1)

+ nd log 2 + log(nd + 1))

≤ (2nd + 1)(h + 2n2d(h + log(n2d) + 1) + nd log 2 + log(n2d))

≤ 6n3d2(h + 1 + log(n2d)). �
Remark 3.22. Note that, since the last n − ri + 1 rows of F have rank t − i + 1, by the above proof, we have deg(cri , j) ≤
(t − i + 1)d and height(cri , j) ≤ 6(t − i + 1)3d2(h + 1 + log((t − i + 1)2d)) where h = height(F ), for 1 ≤ i ≤ t , 1 ≤ j ≤ li .

We have the following degree bound for the transformation matrix U , which satisfying C = F U .

Theorem 3.23. Let F ∈ Z[x]n×m, C be its GHNF, and U ∈ Z[x]m×s the transformation matrix satisfying C = F U . Then, deg(U ) ≤ D, 
where D = 73n8d5(h + 1 + log(n2d)).

Proof. By Theorem 3.21, we have deg(cri , j) ≤ (n − ri + 1)d, height(cri , j) ≤ 6(n − ri + 1)3d2(h + 1 + log((n − ri + 1)2d)) for 
i = 1, . . . , t , j = 1, . . . , li . Denote by Uri , j the column vector of U , satisfying F Uri , j = [∗, . . . , ∗, cri , j, 0, . . . , 0]τ . Then Uri , j

can be determined by Fn−ri+1Uri , j = [cri , j, 0, . . . , 0]τ , where Fn−ri+1 is the last n − ri + 1 rows of F . In Theorem 3.20, let 
deg(F , b) = maxi, j deg(F , cri , j) ≤ nd, height(F , b) = maxi, j height(F , cri , j) ≤ 6n3d2(h + 1 + log(n2d)). Then we have deg(U ) ≤
3n2d2(h2 + log(nd + 1)) + nd, where h2 = 2(n(n + 1) deg(F , b) + n)(height(F , b) + log(n(n + 1) deg(F , b) + n) + 1). First, we 
have the following inequality:

h2 = 2(n(n + 1)deg(F ,b) + n)(height(F ,b) + log(n(n + 1)deg(F ,b) + n) + 1)

≤ 2(n2(n + 1)d + n)(6n3d2(h + 1 + log(n2d)) + log(n2(n + 1)d + n) + 1)

≤ 24n6d3(h + 1 + log n2d) for any n ≥ 2. (9)

One can verify that the above inequality is still valid for n = 1, in which case deg(F , b) ≤ d and height(F , b) ≤ d(2h + log(d +
1)) + 1

2 log(d + 1) + d log d + h. So we have deg(U ) ≤ 3n2d2h2 + 3n2d2 log(nd + 1) + nd ≤ 73n8d5(h + 1 + log n2d). �
We give an example to illustrate the main idea of the proof.
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Example 3.24. Let F =
(

1 x
6x3 + 1 8x2

)
, and h = 3 log 2 = 3 the height of F , where we choose the logarithm with 2 as a 

base.
If a = [a1, a2]τ with a2 �= 0 is a column vector of C , then a2 is an element of the GHNF of [6x3 + 1, 8x2]. Thus, deg(a2) ≤

max(deg(6x3 + 1), deg(8x2)) = 3 and by Theorem 3.4, height(a2) ≤ 4 log 2 + h = 7.
If b = [b1, 0]τ with b1 �= 0 is a column of C , then there exists a U = [u1, u2]τ ∈ Z[x]2 satisfying

b = F U , i.e.

{
b1 = u1 + xu2

0 = (6x3 + 1)u1 + 8x2u2

Let g1, . . . , gs be the generators of the solutions to 0 = (6x3 + 1)u1 + 8x2u2. By Theorem 3.18, deg(gi) ≤ 3 and height(gi) ≤
14(h + log 7 +1). Thus, b1 is an element of the GHNF of [1, x] · [g1, . . . , gs] = [h1, . . . , hs], where deg(hi) ≤ 4, and height(hi) ≤
28(h + log 7 + 1) < 196. Hence, by Theorem 3.21, deg(b1) ≤ 4 and height(b1) ≤ 432(h + 1 + log 12) < 3456. Moreover, by 
Theorem 3.23, we know that the degree bound for the transformation matrix is D = 4478976(h + 1 + log 12) < 35831808.

Actually, the solutions to 0 = (6x3 + 1)u1 + 8x2u2 can be generated by [8x2, −(6x3 + 1)]τ . Thus, b1 is in the GHNF of 
[1, x] · [8x2, −(6x3 + 1)]τ = [−6x4 + 8x2 − x]. The GHNF and the transformation matrix are

C =
(

6x4 − 8x2 + x 3x8 − 4x6 + 5x5 − 6x3 + 1
0 1

)
, U =

( −8x2 −4x6 − 6x3 + 1
6x3 + 1 3x7 + 5x4

)
.

So for some examples, the bounds are far from optimal, and this is the reason we will give an incremental algorithm in 
the next section to compute the GHNF.

4. Algorithms to compute the GHNF

In this section, we give an algorithm to compute the GHNF of F ∈ Z[x]n×m . Roughly speaking, the algorithm works as 
follows. We will compute the HNF G ∈ Zs×k for the coefficient matrix of F and check whether a GHNF can be retrieved 
from G . In the negative case, certain prolongations are done to G and the procedure is repeated. The key idea is how to do 
the prolongation so that the sizes of the matrices G are nicely controlled.

4.1. HNF of integer matrix

In this section, we will introduce several basic results about HNF of an integer matrix, which will be used as the main 
computational tool in our GHNF algorithm.

Definition 4.1. A matrix H = (hi, j) ∈ Zn×m is called an (column) HNF if there exists an r ≤ m and a strictly increasing map 
f from [r + 1, m] to [1, n] satisfying: (1) for j ∈ [r + 1, m], h f ( j), j ≥ 1, hi, j = 0 if i > f ( j) and h f ( j), j > h f ( j),k ≥ 0 if k > j; 
and (2) the first r columns of H are equal to zero.

Let A ∈ Zn×m and Hn×m be the HNF of A. Then there exists a U ∈ GLm(Z) [5] such that

H = AU . (10)

Note that H is obtained from A by doing column elementary operations which are represented by the matrix U . We need 
the following lemma [5] on the syzygy module of A.

Lemma 4.2. Let (10) be given and assume that the first r columns of H are the 0 columns of H. Then a Z-basis for the Z-module 
Syz(A) = {Y ∈ Zm | AY = 0} is given by the first r columns of U .

We will measure the cost of our algorithms in numbers of bit operations. We need the function M(k) = O (k log k log log k)

which is the cost of multiplications and quotients of two integers a and b with |a|, |b| < 2k . We will give complexity results 
in terms of the function B(k) = M(k) log k = O (k(log k)2(log log k)). We use a parameter θ such that the multiplication of 
two n × n integer matrices needs O (nθ ) arithmetic operations. The best known upper bound for θ is about 2.376.

The following result from [23] gives the complexity of computing HNF over Z.

Theorem 4.3. Let A ∈ Zn×m with rank r and height h, and H be the HNF of A. Then height(H) ≤ log β = r( 1
2 log r + h). The bit 

complexity to compute H from A is O (mnrθ−2 logβM(log log β)/ log logβ + mnB(logβ) log r).
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4.2. The Z[x] case

In this section, we will show how to compute the GHNF in Z[x]. Throughout this section, let F = [ f1, . . . , fm] be a 
polynomial vector over Z[x], d = deg(F ), and h = height(F ). C ∈ Z(d+1)×m is called the coefficient matrix of F if its columns 
represent the polynomials in F such that

F = XdC, where Xd = [1, x, . . . , xd].
Let [0, H] ∈ Z(d+1)×m be the HNF of C , where H ∈ Z(d+1)×s contains no zero columns. Then, there is a unimodular matrix 
U = [U1, U2] such that [0, H] = C U , 0 = C U1, and H = C U2. We call G = Xd H the polynomial Hermite normal form (abbr. 
PHNF) of F . For simplicity, we denote C = CMAT(F ) and

G = PHNF(F ) = Xd H =XdC U2 = F U2. (11)

Let G = [g1, . . . , gs] ∈ Z[x]1×s . From the definition of HNF, we have deg(g1) < deg(g2) < · · · < deg(gs). We now give the 
algorithm.

Algorithm 1 GHNF1(F ).
Require: F = [ f1, . . . , fm], f i ∈ Z[x] and d = maxi deg( f i).
Ensure: The GHNF, or the reduced Gröbner basis, of F .
1: Let G0 = PHNF(F ) and k = 0.
2: (loop) k = k + 1.

Pk = [Gk−1, xGk−1,d−1], where Gk−1,d−1 is the set of polynomials in Gk−1 with degrees ≤ d − 1.
Gk = PHNF(Pk).
If Gk �= Gk−1, repeat Step 2.

3: Let Gk = [g1, . . . , gs] and R = [g1]. For j from 2 to s, if LC(g j−1) �= LC(g j), R = R ∪ {g j}.
4: Return R .

(For F = [ f1, . . . , fm] and G = [g1, . . . , gm], we use the notation [F , G] = [ f1, . . . , fm, g1, . . . , gm].)

Example 4.4. F = [6x3 + 3x2 + 12, 6x3 + 3x2 + 6x, 6x3 + 15x2, 6x3 + 3x2].
Step 1: G0 = PHNF(F ) = [12, 6x, 12x2, 6x3 + 3x2]. We have d = 3.
1-st loop: P1 = [G0, 12x, 6x2, 12x3], G1 = PHNF(P1) = [12, 6x, 6x2, 6x3 + 3x2].
2-nd loop: P2 = [G1, 12x, 6x2, 6x3], G2 = PHNF(P2) = [12, 6x, 3x2, 6x3].
3-rd loop: P3 = [G2, 12x, 6x2, 3x3], G3 = PHNF(P3) = [12, 6x, 3x2, 3x3].
4-th loop: P4 = [G3, 12x, 6x2, 3x3], G4 = PHNF(P4) = [12, 6x, 3x2, 3x3]. The loop is terminated.
Step 3: R = [12, 6x, 3x2] is the GHNF of F .

In the rest of this section, we will prove the correctness of the algorithm and give its complexity.
For a polynomial vector F = [ f1, . . . , fm], we denote (F )Z to be Z-module generated by the elements of F . If deg( f i) <

deg( f j) for all i < j, F is called a Z-Gröbner basis for the following reason: if F is a Z-Gröbner basis and f ∈ (F )Z , then 
there exists an fk such that LT( fk)|LT( f ), or equivalently, f can be reduced to zero by F over Z. Furthermore, if LT( f i) is 
not a Z-factor of any monomial of f j for j �= i, then F is called a reduced Z-Gröbner basis. By Definition 4.1 and (10), we 
have

Lemma 4.5. Let G = PHNF(F ). Then (F )Z = (G)Z and G is a reduced Z-Gröbner basis of (F )Z.

In Step 2 of Algorithm GHNF1, if using the following “full” prolongation in the k-th loop, we have

P̃k = [G̃k−1, xG̃k−1], G̃k = PHNF( P̃k), (12)

where G̃0 = G0. Due to (10), it is easy to check that

( P̃k)Z = (G̃k)Z = (F ∪ {xi F | i = 1, . . . ,k})Z. (13)

Remark 4.6. Note that {xi F | i = 1, . . . , k} in (13) are the standard prolongation used in the XL algorithm [8] or a naive 
F4 style algorithm. The degree of G̃k is d + k which increases with the loop number k, while the degree of Gk in Algo-
rithm GHNF1 is always d, and this is the main advantage of our new prolongation. A key idea in the F4 algorithm and the 
XL algorithm is that when k is large enough, a Gröbner basis of F can be obtained by doing Gaussian elimination to the 
coefficient matrix of P̃k . We will prove that this is also true for the “partial prolongation” Pk in Step 2 of the algorithm.

Let Gk,s and G̃k,s be the sets of polynomials in Gk and G̃k with degrees ≤ s, respectively. Denote gk, j and g̃k, j to be the 
polynomials in Gk and G̃k with degree j, respectively. If there exist no such polynomials, gk, j and g̃k, j are set to be zero. 
Clearly, gk,d �= 0 and g̃k,d+i �= 0 for i = 0, . . . , k.
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Lemma 4.7. We have LC(̃gk,d)|LC(̃gk,d+1)| · · · |LC(̃gk,d+k) and for f ∈ ( P̃k+1)Z with l = deg( f ), if d < l ≤ d + k + 1 then f ∈
(G̃k,d, xG̃k,l−1)Z; if l ≤ d then f ∈ (G̃k,d, xG̃k,d−1)Z .

Proof. For convenience, denote Si,k = G̃ i,d ∪ xG̃i,k for d − 1 ≤ k ≤ d + i − 1. Since deg(Si,k) = k + 1, Si,k ⊂ (G̃ i+1)Z , and G̃ i+1
is a Z-Gröbner basis, we have Si,k ⊂ (G̃ i+1,k+1)Z .

We prove the lemma by induction on the number of loops. For k = 0, since xg0,d is the only element in P̃1 with degree 
d + 1, we have LT(̃g1,d+1) = LT(x̃g0,d). As a consequence, if f ∈ ( P̃1)Z and deg( f ) ≤ d then f ∈ (S0,d−1)Z . If f ∈ ( P̃1)Z and 
deg( f ) = d + 1, then it is obvious that f ∈ (S0,d)Z = ( P̃1)Z . The lemma is proved for k = 0.

Suppose the lemma is valid for k ≤ i. By the induction hypothesis, since g̃i+1, j ∈ P̃ i+1, we have g̃i+1, j ∈ (Si, j−1)Z if 
d < j ≤ d + i + 1 and ̃gi+1, j ∈ (Si,d−1)Z if j ≤ d. We first assume that d < j ≤ d + i. Since x̃gi, j−1 is the only polynomial with 
degree j in S j−1, we have

g̃i+1, j = x̃gi, j−1 + li, j (14)

for some li, j ∈ (Si, j−2)Z ⊂ (G̃ i+1, j−1)Z . Then, LC(̃gi+1, j) = LC(̃gi, j−1), and thus LC(̃gi+1, j)|LC(̃gi+1, j+1) for j = d + 1, . . . , d + i
by the induction hypothesis. Moreover, since g̃i+1,d ∈ (Si,d−1)Z and g̃i,d and x̃gi,d−1 are the only polynomials in Si,d−1 with 
degree d, we have LC(̃gi+1,d)|LC(̃gi,d). Then LC(̃gi+1,d)|LC(̃gi+1,d+1) follows from LC(̃gi+1,d+1) = LC(̃gi,d). The first part of 
the lemma is proved.

To prove the second part, we first show that if d < q ≤ d + i + 1, then

g̃i+1,q ∈ (G̃ i+1,q−1, xG̃i+1,q−1)Z. (15)

Since LC(̃gi+1,q−1)|LC(̃gi+1,q), a = LC(̃gi+1,q)

LC(̃gi+1,q−1)
is in Z. By (14), ̃gi+1,q − ax̃gi+1,q−1 = x(̃gi,q−1 − ax̃gi,q−2) + li,q − axli,q−1. Since 

deg(̃gi,q−1 − ax̃gi,q−2) ≤ q − 1, we have g̃i,q−1 − ax̃gi,q−2 ∈ (G̃ i+1,q−1)Z . Also note li, j ∈ (G̃ i+1, j−1)Z . Then (15) is proved. Let 
f ∈ ( P̃ i+2)Z = (G̃ i+1,d+i+1, xG̃i+1,d+i+1)Z with l = deg( f ). Using (15) repeatedly, we may assume f ∈ (G̃ i+1,d, xG̃i+1,s)Z for 
some s. Since deg(G̃ i+1,d) = d and deg(xG̃i+1,s) = s + 1, we have s = l − 1 if l > d and s = d − 1 if l ≤ d, and the lemma is 
proved. �
Lemma 4.8. We have Gk = G̃k,d for any k ≥ 0.

Proof. This lemma is obviously valid for k = 0. Suppose it is valid for k = i − 1, that is, G̃ i−1,d = Gi−1. Since deg(Gi) ≤ d, 
Gi ⊂ (G̃ i)Z , and G̃ i is a Z-Gröbner basis, we have (Gi)Z = (Pi)Z ⊂ (G̃ i,d)Z . By Lemma 4.7 and the induction hypothesis, 
we have G̃ i,d ⊂ (G̃ i−1,d, xG̃i−1,d−1)Z = (Gi−1, xGi−1,d−1)Z = (Pi)Z . Hence, (Gi)Z = (G̃ i,d)Z . By Lemma 4.5, Gi and G̃ i,d are 
reduced Z-Gröbner bases. Hence Gi = G̃ i,d . �
Lemma 4.9. Suppose that Step 2 of Algorithm GHNF1 terminates at the k-th loop. Then (G̃ i)Z ⊂ (Gk, xgk,d, . . . , xi gk,d)Z for i ≥ 0.

Proof. We have Gk = Gk+1 = · · · . We prove the lemma by induction on i. The lemma is valid for i = 0, since G̃0 =
G0 ⊂ (Gk)Z . Suppose that the lemma is valid for i = t . From (12), (G̃t+1)Z = (G̃t , xG̃t)Z . By the induction hypothesis, 
G̃t ⊂ (Gk, xgk,d, . . . , xt gk,d)Z . Then any f ∈ G̃t can be written as f = f0 + ∑t

j=0 c j x j gk,d , where f0 ∈ Gk,d−1 and c j ∈ Z. 
Then xf = xf0 + ∑t

j=0 ci xi+1 gk,d . Since xf0 ∈ (xGk,d−1)Z ⊂ (Gk+1)Z = (Gk)Z , we have xf ∈ (Gk, xgk,d, . . . , xt+1 gk,d)Z and the 
lemma is proved. �
Theorem 4.10. Algorithm GHNF1 is correct. Furthermore, Step 2 of Algorithm GHNF1 terminates in at most D + d loops, where 
D = 73d5(h + log d + 1).

Proof. Suppose Step 2 of the algorithm terminates in the k-th loop. Then, Gk = Gk+1 = · · · . We will show that Gk is a 
Gröbner basis of (F )Z[x] . By (13), (F )Z[x] = (Gk)Z[x] = (G̃k)Z[x] . To show that Gk is a Gröbner basis, we will prove that any 
f ∈ (F )Z[x] can be reduced to zero by Gk . By (13), there exists an integer l, such that f ∈ (G̃l)Z . Since (G̃ i)Z ⊂ (G̃ j)Z for 
i < j, we may assume that l ≥ k. By Lemma 4.9 f ∈ (Gk, xgk,d, . . . , xl gk,d)Z . Since {Gk, xgk,d, . . . , xl gk,d} is a Z-Gröbner basis, 
we have f

Gk = 0 and Gk is a Gröbner basis of (F )Z[x] . Step 3 of the algorithm picks a reduced Gröbner basis, or the GHNF 
of F , from Gk .

We now prove the termination of the algorithm. By Theorem 3.23 and (13), G̃ D contains the GHNF of F and hence a 
Gröbner basis of (F )Z[x] by Theorem 2.6. By Lemma 3.6, the reduced Gröbner basis of (F )Z[x] has degree ≤ d. By Lemma 4.8, 
G D = G̃ D,d contains the reduced Gröbner basis of (F )Z[x] . From Example 4.4, the termination condition may not be satisfied 
immediately even if Gi is a Gröbner basis of (F )Z[x] . We will show that Step 2 will run at most d extra loops after Gk is 
a Gröbner basis. Suppose Gk = [gk,sk , . . . , gk,d] is already a Gröbner basis of (F )Z[x] for some k ≤ D and suppose Hk,1 =
[gk,sk , . . . , gk,p] such that p is the maximal integer satisfying gk,p = gk+1,p . Then, Hk,1 is also a Gröbner basis of (F )Z[x] . If 
p = d, then, Hk,1 = Gk , clearly Gk = Gk+1 and Step 2 terminates at (k + 1)-th loop. Otherwise, p < d and Hk,1 ⊂ Gl for l ≥ k. 
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Let hk,p+1 be the remainder of xgk,p reduced by Hk,1 over Z and Hk,2 = [gk,sk , . . . , gk,p, hk,p+1]. Then LT(hk,p+1) = LT(xgk,p)

and CMAT(Hk,2) is an HNF. Since hk,p+1 is the minimal element in (F ) with degree p + 1 and reduced w.r.t. Hk,1, we have 
gk+l,p+1 = hk,p+1 for l > 1, or equivalently Hk,2 ⊂ Gl for l ≥ k + 1. Similarly, we can prove that after each loop of Step 2, at 
least one more element of Gl will become stable. As a consequence, Step 2 will terminate at most D + d loops. �
Theorem 4.11. The bit size complexity of Algorithm GHNF1 is O (d11+θ+ε(h + log d)2+ε + d7+ε(h + log d)B(d6(h + log d))), where 
ε > 0 is any sufficiently small number.

Proof. The computationally dominant step of the algorithm is Step 2 and we will estimate the complexity of this step. In the 
k-th loop of Step 2, we need to compute the HNF of the coefficient matrix Ck of Pk . It is clear that Ck is of size (d + 1) × s
for some s ≤ 2d + 1. Also note that the height of Ck is the same as that of CMAT(Gk). By Lemma 4.8 and (13), CMAT(Gk) is 
part of the HNF of CMAT(∪k

i=0xk F ). By Theorem 4.3, the height of Ck is ≤ (k +d)( 1
2 log(k +d) +h) ≤ h1 = (D +2d)( 1

2 log(D +
2d) + h) = O (d5(h + log d)2), since the loop will terminate at most D + d steps. Let n = d + 1, t = 2d + 1, r = d + 1, then 
the log β in Theorem 4.3 is log β = r( 1

2 log r + h1) = O (d6(h + log d)). To simplify the formula for the complexity bound, we 
replace O (log2(s) log log(s) log log log(s)) by O (sε) for a sufficiently small number ε. Hence, the complexity for each loop is

O (tnrθ−2(logβ)M(log logβ)/ log logβ + kn log rB(log β))

≤ O (d6+θ+ε(h + log d)1+ε + d2+ε B(d6(h + log d))) for any ε > 0.

By Theorem 4.10, the number of loops is bounded by D + d. So the worst complexity of the Algorithm GHNF1 is (D +
d)O (d6+θ+ε(h + log d)1+ε + d2+ε B(d6(h + log d))) = O (d11+θ+ε(h + log d)2+ε + d7+ε(h + log d)B(d6(h + log d))). �

In Theorem 4.11, setting θ = 2.376 and ε = 0.004 and noticing that d7+ε(h + log d)B(d2(h + d))) can be omitted now 
comparing to the first term, we have

Corollary 4.12. The bit size complexity of Algorithm GHNF1 is O (d13.38(h + log d)2.004).

Remark 4.13. The number m in the input of Algorithm GHNF1 is not in the complexity bound. The reason is that the size of 
the polynomial vector Pk in Step 2 of the algorithm depends on d only. Only the complexity of Step 1 depends on m and by 
Theorem 4.3, the complexity of Step 1 is O ∼(mdθ+1(h + d)) which is comparable to the complexity bound in Theorem 4.11
only when m = O ∼(d10). We therefore omit this term.

Finally, we prove a property of the syzygy modules of Z[x] ideals, which will be used in the next section. In Algo-
rithm GHNF1, for any k ≥ 1, let vk−1 = #(Gk−1) be the number of columns of Gk−1. Then uk = #(Pk) = 2vk−1 − 1. Let

Xk =

⎛⎜⎜⎜⎝
1 x

. . .

1 x
1

⎞⎟⎟⎟⎠
vk−1×uk

.

Then Pk = Gk−1 Xk = Xd Mk , where Mk = CMAT(Pk). Let [0, Hk] = MkUk be the HNF of Mk , where Uk = [Uk,1, Uk,2] is a 
unimodular matrix satisfying 0 = MkUk,1, Hk = MkUk,2. By (11),

Gk = PkUk,2 = F U0,2 X1 · · · Uk−1,2 XkUk,2, Pk = F U0,2 X1 · · · Uk−1,2 Xk,

where G0 = PHNF(F ) = F U0,2. For any k ≥ 1, we define a map

ϕk : Z[x]uk → Z[x]m

u �→ U0,2 X1 · · · Uk−1,2 Xku.

In particular, let ϕ0 : Z[x]m → Z[x]m be the identity map. The following result shows how to find a set of generators for the 
syzygy module Syz(F ).

Proposition 4.14. For any u ∈ Syz(F ) ⊂ Z[x]m and deg(u) = l, we have u ∈ (
⋃l

k=0
⋃l−k

j=0 x jϕk(Uk,1))Z . Moreover, Syz(F ) =
(
⋃d

k=0 ϕk(Uk,1))Z[x] .

Proof. By Theorem 3.18, Syz(F ) can be generated by elements in Z[x]m with degrees ≤ d. We need only to show the first 
statement. Let P0 = F , u′ = u.
0
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Since Fϕk(Uk,1) = F U0,2 X1 · · · Uk−1,2 XkUk,1 = PkUk,1 = Xd MkUk,1 = 0 for any k ≥ 0, we have ϕk(Uk,1) ⊂ Syz(F ). By 
Lemma 4.2, the lemma is valid for l = 0. If l > 0, it suffices to show that, for any 0 ≤ q ≤ l, there exists a u′

q ∈ Z[x]uq with 
deg(u′

q) ≤ l − q, such that u = ϕq(u′
q) mod (

⋃q−1
k=0

⋃l−k
j=0 x jϕk(Uk,1))Z . In this case, Pqu′

q = F U0,2 X1 · · · Uq−1,2 Xqu′
q = F u = 0. 

It is valid for q = 0. Suppose it is also valid for q = i. Let u′
i ∈ Z[x]v ′

i with deg(u′
i) ≤ l − i, such that u = ϕi(u′

i)

mod (
⋃i−1

k=0

⋃l−k
j=0 x jϕk(Uk,1))Z and Piu′

i = 0. Let u′′
i = U−1

i u′
i = [u1, . . . , uv ′

i−vi
, 0, . . . , 0]τ + [0, . . . , 0, uv ′

i−vi+1, . . . , uv ′
i
]τ . 

Then, u′
i = Uiu′′

i = Ui,1[u1, . . . , uv ′
i−vi

]τ + Ui,2[uv ′
i−vi+1, . . . , uv ′

i
]τ . Take ui = [uv ′

i−vi+1, . . . , uv ′
i
]τ . Then, u′

i = Ui,2ui

mod (
⋃l−i

j=0 x j Ui,1)Z , Giui = Pi Ui,2ui = Piu′
i = 0.

For simplicity, denote ui as ui = [u1, . . . , uvi ]τ . Then deg(uvi ) ≤ l − i − 1 and deg(u j) ≤ l − i for 1 ≤ j < vi . Let 
u j = u j,0 + p j x for 1 ≤ j < vi , where u j,0 ∈ Z and p j ∈ Z[x] and deg(p j) ≤ deg(u j) − 1 ≤ l − i − 1. Take u′

i+1 = [u1,0, p1,

. . . , uvi−1,0, pvi−1, uvi ]τ . Then deg(u′
i+1) ≤ l − i − 1 and ui = Xi+1u′

i+1. Hence, u = ϕi+1(u′
i+1) mod (

⋃i
k=0

⋃l−k
j=0 x jϕk(Uk,1))Z

and Pi+1u′
i+1 = Gi Xi+1u′

i+1 = Giui = 0. The lemma is proved. �
4.3. The Z[x]n case

In this section, an algorithm will be given to compute the GHNFs for Z[x]-lattices in Z[x]n , which is a generalization of 
Algorithm GHNF1.

In this section, we assume F = ( f i j)n×m = [f1, . . . , fm] ∈ Z[x]n×m and denote by m = #(F ) the number of columns of F . 
Let vi = max1≤ j≤m(deg( f i j)), i = 1, . . . , n, and

XF =

⎛⎜⎜⎜⎝
1 x . . . xv1

1 x . . . xv2

. . .

1 x . . . xvn

⎞⎟⎟⎟⎠
n×s

, (16)

where s = ∑n
i=1(vi +1). Then, F can be written in the matrix form: F = XF C , where C ∈ Zs×m is called the coefficient matrix

of F and is denoted by C = CMAT(F ). Let [0, H] = C[U1, U2] be the HNF of C , where H has no zero columns and 0 = C U1

and H = C U2. Then F1 =XF H is called the PHNF of F and is denoted by

F1 = PHNF(F ) = XF H = XF C U2 = F U2. (17)

For a matrix M ∈ Z[x]n×m , denote M(·, i) to be the i-th column of M and M(i, ·) to be the i-th row of M . For f ∈ Z[x]n , 
denote f(t) to be the polynomial in the t-th row of f. For F = [f1, . . . , fm] ∈ Z[x]n×m , define the operation Partition as follows

Partition(F ) = (Q 1, . . . , Q n),

where Q t = [fkt,1 , . . . , fkt,st
] ∈ Z[x]n×st is a matrix consisting of columns fkt,	 of F , satisfying fkt,i (t) �= 0 and fkt,i ( j) = 0

for i = 1, . . . , st and j > t; and Q t = ∅ if such fkt,	 do not exist. In other words, Q t consists of those columns f of F
such that the t-th entry of f is non-zero and the j-th entry is zero for all j > t . Furthermore, it is always assumed that 
deg(fkt,1 (t)) ≤ · · · ≤ deg(fkt,st

(t)). For d ∈N, denote

Q (d)
t = [fkt,1 , . . . , fkt,s ]

such that deg(fkt,i (t)) ≤ d for i = 1, . . . , s and deg(fkt, j (t)) > d for j = s + 1, . . . , st . We now give the algorithm.

Algorithm 2 GHNFn(F ).
Require: F ∈ Z[x]n×m and with d = deg(F ).
Ensure: G ∈ Z[x]n×s , which is the GHNF of F .
1: G0 = PHNF(F ), k = 0.
2: (loop) k = k + 1;

(Gk−1,1, . . . , Gk−1,n) = Partition(Gk−1).

Pk,t = [G(dt )

k−1,t , xG(dt −1)

k−1,t ], t = 1, . . . , n, where dt = (n − t + 1)d.
Pk = [Pk,1, . . . , Pk,n]. Gk = PHNF(Pk).
If Gk �= Gk−1, repeat Step 2.

3: For t from 1 to n, let Gk−1,t = [gk−1,1, . . . , gk−1,kt ], Pt = [gk−1,1];
for j from 2 to kt , if LC(gk−1, j−1(t)) �= LC(gk−1, j(t)), Pt = Pt ∪ {gk−1, j

Pt }.
4: Return G = [P1, . . . , Pn].

Note that the number dt is from Theorem 3.21. We give the following illustrative example.
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Example 4.15. Let F =
(

6x + 1 3x
2x 5x + 1

)
. We have d = 1.

Step 1: G0 = PHNF(F ) =
(

24x + 5 −9x − 2
−2 x + 1

)
.

1-st loop: (G0,1, G0,2) = Partition(G0), where

G0,1 = [ ], G0,2 = G0. Also, we have d1 = 2,d2 = 1.

P1,1 = [ ], P1,2 =
(

24x + 5 24x2 + 5x −9x − 2
−2 −2x x + 1

)
.

P1 = [P1,1, P1,2], G1 = PHNF(P1) =
(

24x2 + 11x + 1 −24x − 5 −9x − 2
0 2 x + 1

)
.

2-nd loop: (G1,1, G1,2) = Partition(G1), where

G1,1 =
(

24x2 + 11x + 1
0

)
, G1,2 =

( −24x − 5 −9x − 2
2 x + 1

)
.

P2,1 =
(

24x2 + 11x + 1
0

)
, P2,2 =

( −24x − 5 −24x2 − 5x −9x − 2
2 2x x + 1

)
.

P2 = [P2,1, P2,2], G2 = PHNF(P2) =
(

24x2 + 11x + 1 −24x − 5 −9x − 2
0 2 x + 1

)
.

G2 = G1 and the loop terminates.

In Step 3, we can easily get the GHNF of F : G = G2.

Similar to GHNF1, we consider the following “full prolongation”

P̃k,t = [G̃k−1,t, xG̃k−1,t], t = 1, . . . ,n,

P̃k = [ P̃k,1, . . . , P̃k,n] = [G̃k−1, xG̃k−1], (18)

G̃k = PHNF( P̃k), [G̃k,1, . . . , G̃k,n] = Partition(G̃k),

where G̃0 = G0. Due to (10), it is easy to check that

(G̃k)Z = ( P̃k)Z = (F ∪ {xi F | i = 1, . . . ,k})Z. (19)

We define a new monomial order as follows: xαei ≺′ xβe j if and only if α < β or α = β and i < j. Similar to the order ≺, 
the order ≺′ can be extended to the polynomial vectors of Z[x]n . Moreover, the S-vector of f, g ∈ Z[x]m is similar to the one 
described in (1). A nice property of the order ≺′ is: if max(deg(f), deg(g)) ≤ d, then deg(S≺′ (f, g)) ≤ d. We can easily obtain 
the following result.

Lemma 4.16. Let F ∈ Z[x]n×m and d = deg(F ). Then Syz(F ) has a Gröbner basis with degree ≤ nd w.r.t. ≺′ .

Proof. Let S = {u | u ∈ Syz(F ), deg(u) ≤ nd}. By Theorem 3.18, S generates Syz(F ). Then, S contains a Gröbner basis G of 
Syz(F ) w.r.t. ≺′ , since the S-vector of any u, v ∈ S w.r.t. ≺′ is still in S . �

Let F(t) ∈ Z[x]t×m be the last t rows of F and

St = {u ∈ Z[x]m |u ∈ Syz(F(t)),deg(u) ≤ td}. (20)

By Lemma 4.16, St contains a Gröbner basis Gt with deg(Gt) ≤ td. Then, for any u ∈ Syz(F(t)) with deg(u) ≤ k, we have 
u ∈ (St , xSt , . . . , xmax(0, k−td) St)Z . Moreover, we have (S1)Z[x] ⊇ (S2)Z[x] ⊇ · · · ⊇ (Sn)Z[x] .

Let uk,t = #(G(dt )

k,t ), vk,t = #(G(dt−1)

k,t ), wk,t = #(Gk,t), and rk,t = uk−1,t + vk−1,t = #(Pk,t). Define a matrix Xk,t = (xi, j) ∈
Z[x]wk,t×rk,t as follows. If Gk,t = [ ], then Xk,t = [ ]. Otherwise, xi,i = 1 for i = 1, . . . , uk,t , xi,uk,t+i = x for i = 1, . . . , vk,t , and 
all other xi, j are zero. Then, we have

Pk,t = Gk−1,t Xk−1,t (21)

for any k and t . Let Mk = CMAT(Pk) and [0, Hk] = MkUk the HNF of Mk . From (17), we have [0, Gk] = PkUk .
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For each k > 0, let Uk be defined as above and Ũk,n be the last rk,n rows of Uk . We rewrite Ũk,n as Ũk,n = [Vk,1, Vk,2], 
where Vk,1 consists of the column vectors of Ũk,n ∩ Syz(F(1)). Let Q k = [Pk,1, . . . , Pk,n−1] and Uk =

(
Wk,1 Wk,2
Vk,1 Vk,2

)
. From 

[0, Gk] = PkUk , we have

[0, Gk,1, . . . , Gk,n−1] = Pk

(
Wk,1
Vk,1

)
= [Q k, Pk,n]

(
Wk,1
Vk,1

)
= Q k Wk,1 + Pk,n Vk,1.

Gk,n = Pk

(
Wk,2
Vk,2

)
= [Q k, Pk,n]

(
Wk,2
Vk,2

)
= Q k Wk,2 + Pk,n Vk,2.

From the above equations, we have Gk,n(n, ·) = Pk,n(n, ·)Vk,2, since the elements in the last row of Q k are all 0. Since 
Pk,n Vk,1 ∈ (Pk)Z = (Gk)Z and the last row of Pk,n Vk,1 is zero, we have

(Pk,n Vk,1)Z ∈ (Gk,1, . . . , Gk,n−1)Z. (22)

Similarly, Gk,n − Pk,n Vk,2 = Q k Wk,2 ∈ (Gk,1, . . . , Gk,n−1)Z , that is, Gk,n = Pk,n Vk,2 mod (Gk,1, . . . , Gk,n−1)Z . Similar to the 
Z[x] case, for k > 0, we define a map φk:

φk : Z[x]rk,n → Z[x]m

u �→ V 0,2 X1,n · · · Vk−1,2 Xk,nu,

where Xk,n is from (21). Let P0,n = F , r0,n = m and φ0 : Z[x]m → Z[x]m be the identity map in particular. Thus, we have

Gk,n(n, ·) = Pk,n(n, ·)Vk,2 = F (n, ·)V 0,2 X1,n · · · Vk−1,2 Xk,n Vk,2,

Pk,n(n, ·) = Gk−1,n(n, ·)Xk−1,n = F (n, ·)V 0,2 X1,n · · · Vk−1,2 Xk,n.

From (22), we have

Fφk(Vk,1) = F V 0,2 X1,n · · · Vk−1,2 Xk,n Vk,1 = Pk,n Vk,1 ⊂ (Gk,1, . . . , Gk,n−1)Z (23)

for each k ≥ 0. Hence, φk(Vk,1) ⊂ Syz(F(1)).

Lemma 4.17. Let F ∈ Z[x]n×m. For any u ∈ Syz(F(1)) and deg(u) = l > 0, we have u ∈ (
⋃l

k=0
⋃l−k

j=0 x jφk(Vk,1))Z for k > 0. Moreover, 
if l ≤ d, we have F u ∈ (Gl,1, . . . , Gl,n−1)Z .

Proof. The proof of the first statement is similar to the proof of Proposition 4.14. Assume l ≤ d. We have x j(Gk,1, . . . ,
Gk,n−1)Z ⊂ (Gk+ j,1, . . . , Gk+ j,n−1)Z for any j ≤ d −k, by our prolongation. By (23), we have F u ∈(

⋃l
k=0

⋃l−k
j=0 x j Fφk(Vk,1))Z ⊂

(
⋃l

k=0
⋃l−k

j=0 x j(Gk,1, . . . , Gk,n−1)Z)Z ⊂ (Gl,1, . . . , Gl,n−1)Z . �
Lemma 4.18. For any 1 ≤ s ≤ n − 1, we have Gk, j = G̃k, j for k ≤ sd and 1 ≤ j ≤ n − s.

Proof. First, let s = 1. G0 = G̃0 = F U0,2. Then, G0, j = G̃0, j for 1 ≤ j ≤ n. This lemma is valid for k = 0. Suppose it is 
valid for k = l < d, i.e., Gl, j = G̃l, j for 1 ≤ j ≤ n − 1. We need to show Gl+1, j = G̃l+1, j for 1 ≤ j ≤ n − 1. For any f ∈
(G̃l+1,1, . . . , ̃Gl+1,n−1)Z ⊂ ( P̃ l+1)Z = (F , xF , . . . , xl+1 F )Z , there exists a u ∈ Z[x]m , such that f = F u with deg(u) ≤ l + 1, and 
u ∈ Syz(F(1)). By Lemma 4.17, we have f = F u ∈ (Gl+1,1, . . . , Gl+1,n−1)Z . Thus, we have Gl+1, j = G̃l+1, j for 1 ≤ j ≤ n − 1, 
since Gl+1, j ⊂ G̃l+1, j and both of them are reduced Z-Gröbner bases. The lemma is valid for s = 1.

Suppose the lemma is valid for s = p − 1. Then we have G(p−1)d, j = G̃(p−1)d, j for 1 ≤ j ≤ n − p + 1. By (20) and (19), 
F S p−1 ⊂ (G̃(p−1)d,1, . . . , ̃G(p−1)d,n−p+1)Z = (F ′)Z , where F ′ = [G(p−1)d,1, . . . , G(p−1)d,n−p+1].

When s = p, for any (p − 1)d < k ≤ pd and f ∈ (G̃k,1, . . . , ̃Gk,n−p)Z ⊂ ( P̃k)Z , there exists a u ∈ Z[x]m with deg(u) ≤ k, 
such that f = F u and u ∈ Syz(F(p)) ⊂ Syz(F(p−1)). By Lemma 4.16, u ∈ (S p−1)Z[x] and u ∈ (S p−1, . . . , xk−(p−1)d S p−1)Z . Then, 
f = F u ∈ (F ′, . . . , xk−(p−1)d F ′)Z . Hence we have f = F ′v for some v ∈ Syz(F ′

(p)) with deg(v) ≤ k − (p − 1)d ≤ d and F ′
(p)

being the last p rows of F ′ . Since the last p − 1 rows of F ′ are all zeros, it can be reduced to the s = 1 case. Considering 
the algorithm GHNFn(F ′) and the analysis for the s = 1 case, we have f = F v′ ∈ (Gk,1, . . . , Gk,n−p)Z . Thus, Gk, j = G̃k, j for 
1 ≤ j ≤ n − p. �

The following lemma asserts that the last s rows of P̃k do not contribute to the first (n − s) rows of G̃k for k > sd.

Lemma 4.19. Let R = [Gsd,1, . . . , Gsd,n−s]. Then we have G̃k,n−s ⊂ (R)Z[x] for 1 ≤ s ≤ n − 1 and k > sd. In particular, G̃k,n−s ⊂
(R, xR, . . . , xk−sd R)Z ⊂ ( P̃k,1, . . . , ̃Pk,n−s)Z for 1 ≤ s ≤ n − 1 and k > sd.
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Proof. Let k > sd. For any f ∈ G̃k,n−s ⊂ ( P̃k)Z , there exists a u ∈ Syz(F(t)) with deg(u) ≤ k, such that f = F u. By Theorem 3.18, 
u ∈ (Ss)Z[x] . By Lemma 4.16, u ∈ (Ss, . . . , xk−sd Ss)Z . By Lemma 4.18, Gsd, j = G̃sd, j for 1 ≤ j ≤ n − s, 1 ≤ s < n. Then, by (20)
and (19), F Ss ⊂ (G̃sd,1, . . . , ̃Gsd,n−s)Z = (R)Z . Thus, f = F u ⊂ (R, xR, . . . , xk−sd R)Z ⊂ (R)Z[x] .

To show the second statement, first, let k = sd + 1. We have f ∈ (R, xR)Z = ( P̃td+1,1, . . . , ̃P sd+1,n−s)Z . The lemma is valid 
for k = sd + 1. Suppose the lemma is valid for k = l > sd. Then, G̃l,n−s ⊂ (R, xR, . . . , xl−sd R)Z ⊂ ( P̃ l,1, . . . , ̃Pl,n−s)Z . We need 
to show G̃l+1,n−s ⊂ ( P̃ l+1,1, . . . , ̃Pl+1,n−s)Z . For any f ∈ G̃l+1,n−s , we have f ∈ (R, xR, . . . , xl−sd+1 R)Z = ((R, xR, . . . , xl−sd R) ∪
x(R, xR, . . . , xl−sd R))Z ⊂ (G̃l,1, . . . , ̃Gl,n−s, xG̃l,1, . . . , xG̃l,n−s)Z = ( P̃ l+1,1, . . . , ̃Pl+1,n−s)Z . The lemma is also valid for k =
l + 1. �
Lemma 4.20. For any k ≥ 1 and 1 ≤ t ≤ m, let Rk,t = [G̃(dt )

k−1,t , xG̃
(̃pk−1,t−1)

k−1,t ], where ̃pk−1,t = max(dt , maxg∈G̃k−1,t
deg(g(t))). Then 

we have f ∈ (Rk,1, . . . , Rk,n−s)Z whenever f = [ f1, . . . , fn−s, 0, . . . , 0]τ ∈ ( P̃k,1, . . . , ̃Pk,n−s)Z .

Proof. First, let s = n − 1. If k ≤ (n − 1)d, by Lemma 4.18, we have Rk,1 = P̃k,1. Then, f ∈ ( P̃k,1)Z = (Rk,1)Z . Otherwise, 
k > (n − 1)d, by Lemma 4.19, f ∈ ( P̃k,1)Z ⊂ (G(n−1)d,1)Z[x] . By Lemma 4.7, ( P̃k,1)Z = (Rk,1)Z . The lemma is valid for s = n − 1.

Suppose the lemma is valid for s = l + 1 ≤ n − 1, i.e. for any k > 0 and f ∈ ( P̃k,1, . . . , ̃Pk,n−l−1)Z , f ∈ (Rk,1, . . . , Rk,n−l−1)Z . 
Let s = l, f = [ f1, . . . , fn−l, 0, . . . , 0]τ ∈ ( P̃k,1, . . . , ̃Pk,n−l)Z . If k ≤ ld, then, Rk, j = P̃k, j for 1 ≤ j ≤ n − l. Thus, f ∈
(Rk,1, . . . , Rk,n−l)Z . Otherwise, k > ld. If fn−l = 0, f ∈ (G̃k,1, . . . , ̃Gk,n−l−1)Z . In this case, if k ≤ (l + 1)d, Rk, j = P̃k, j = Pk, j for 
1 ≤ j ≤ n − l − 1 by Lemma 4.18. f ∈ ( P̃k,1, . . . , ̃Pk,n−l)Z = (Rk,1, . . . , Rk,n−l−1, ̃Pk,n−l)Z ⊂ (Rk,1, . . . , Rk,n−l)Z by Lemmas 4.7
and 4.17. If k > (l + 1)d, by Lemma 4.19, f ∈ ( P̃k,1, . . . , ̃Pk,n−l−1)Z . By the induction hypothesis, f ∈ (Rk,1, . . . , Rk,n−l−1)Z . 
If fn−l �= 0, by Lemma 4.19 we have f ∈ ( P̃k,1, . . . , ̃Pk,n−l)Z ⊂ (Gld,1, . . . , Gld,n−l)Z[x] . Then, for k > ld we have f ∈
( P̃k,1, . . . , ̃Pk,n−l−1, Rk,n−l)Z by Lemmas 4.7 and 4.17. Thus, by induction, f ∈ (Rk,1, . . . , Rk,n−l)Z . The lemma is proved. �
Lemma 4.21. We have G(dt )

k,t (t, ·) = G̃(dt )

k,t (t, ·) for any k ≥ 0, 1 ≤ t ≤ n.

Proof. Note that dn = d and for the n-th row of F , Algorithm GHNFn and Algorithm GHNF1 are exactly the same. Hence, 
by Lemma 4.8, we have G(dn)

k,n (n, ·) = G̃(dn)

k,n (n, ·) for any k ≥ 0. Set s = n − t in Lemma 4.18, we have Gk, j = G̃k, j for any 
1 ≤ t ≤ n − 1, k ≤ (n − t)d, and 1 ≤ j ≤ t . We thus proved the lemma when k ≤ (n − t)d. Set s = n − t in Lemmas 4.19 and 
4.20, we have G̃k,t ⊂ ( P̃k,1, . . . , ̃Pk,t)Z ⊂ (Rk,1, . . . , Rk,t)Z for 1 ≤ t ≤ n − 1 and k > (n − t)d. Note that Lemma 4.20 is the 
analog of Lemma 4.7 in the case of n > 1. Thus, similar to Lemma 4.8, we can prove G(dt )

k,t (t, ·) = G̃(dt )

k,t (t, ·) for k > (n − t)d. 
The lemma is proved. �
Lemma 4.22. Suppose Step 2 of Algorithm GHNFn terminates at the k-th loop and let gk,t,dt be the last column vector of G(dt )

k,t . Then 
deg(gk,t,dt ) = dt and for any i ≥ 0, (G̃ i)Z ⊂ (Hi,1, . . . , Hi,n)Z , where Hi,t = (G(dt )

k,t , xgk,t,dt , . . . , xmax(i,k)−(n−t)dgk,t,dt ).

Proof. It is sufficient to show G̃ i,t ⊂ (Hi,1, . . . , Hi,t)Z for any i ≥ 0 and 1 ≤ t ≤ n. If deg(Gk−1,t) < dt , then deg(Gk,t) ≥
deg(Pk,t) > deg(Gk−1,t) and the algorithm does not terminate. Therefore, if Gk,t �= ∅, then we have k ≥ dt − d = (n − t)d and 
hence deg(gk,t,dt ) = dt .

First, let t = 1. Clearly, for any i ≤ (n − 1)d, G̃ i,1 = Gi,1 ⊂ (G(d1)

k,1 )Z , where = is based on Lemma 4.18 and ⊂ is 
valid because (G(d1)

j,1 )Z ⊂ (G(d1)
j+1,1)Z for any j ≥ 0. Thus, we have G̃(n−1)d,1 = G(n−1)d,1 ⊂ (G(d1)

k,1 )Z ⊂ (H(n−1)d,1)Z . Sup-

pose it is valid for i = j > (n − 1)d. From (18) and Lemma 4.19, (G̃ j+1,1)Z = (G̃ j,1, xG̃ j,1)Z . By induction hypothe-

sis, G̃ j,1 ⊂ (H j,1)Z where H j,1 = (G(d1)

k,1 , xgk,1,d1 , . . . , x
max( j,k)−(n−1)dgk,1,d1)Z . Then, any g ∈ G̃ j,1 can be written as g =

g0 + ∑max( j,k)−(n−1)d
l=0 clxlgk,1,d1 , where g0 ∈ G(d1−1)

k,1 and cl ∈ Z. Since xg0 ∈ (xG(d1−1)

k,1 )Z ⊂ (G(d1)

k+1,1)Z = (G(d1)

k,1 )Z , we have 
(G̃ j+1,1)Z ⊂ (G(d1)

k,1 , xgk,1,d1 , . . . , x
max( j+1,k)−(n−1)dgk,1,d1)Z . The lemma is valid for any i ≥ 0 and t = 1.

Suppose the lemma is valid for any i ≥ 0 and t ≤ s < n. Then (G j,1, . . . , G j,s)Z ⊂ (G̃ j,1, . . . , ̃G j,s)Z ⊂ (H j,1, . . . , H j,s)Z for 
any j ≥ 0.

By induction, (G̃ i,1, . . . , ̃Gi,s+1)Z = (Gi,1, . . . , Gi,s+1)Z ⊂ (Hi,1, . . . , Hi,s, Gi,s+1)Z for i ≤ (n − s −1)d. Moreover, (G(ds+1)

i,s+1 )Z ⊂
(Gi+1,1, . . . , Gi+1,s, G

(ds+1)

i+1,s+1)Z ⊂ (Hi+1,1, . . . , Hi+1,s, G
(ds+1)

i+1,s+1)Z for any i ≥ 0. Since d + i ≤ ds+1 and H j,t = Hk,t for any j ≤ k

and 1 ≤ t ≤ n, we have (G̃ i,1, . . . , ̃Gi,s+1)Z ⊂ (Hk,1, . . . , Hk,s, G
(ds+1)

k,s+1 )Z ⊂ (Hi,1, . . . , Hi,s, Hi,s+1)Z and the lemma is valid for 
i ≤ (n − s − 1)d.

Suppose the lemma is valid for i = j > (n − s − 1)d. From (18), (G̃ j+1,s+1)Z = (G̃ j,s+1, xG̃ j,s+1)Z . By the induction hy-

pothesis, G̃ j,s+1 ⊂ (H j,1, . . . , H j,s+1)Z . Then, any g ∈ G̃ j,s+1 can be written as g = ∑s+1
t=1(gt,0 + ∑max( j,k)−(n−t)d

l=0 ct,lxlgk,t,dt ), 
where gt,0 ∈ G(dt−1) , and ct,l ∈ Z. Moreover, since for any i ≥ 0 and t ≤ s + 1, (G(dt ))Z ⊂ (Gi+1,1, . . . , Gi+1,t−1, G

(dt ) )Z ⊂
k,t i,t i+1,t
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(Hi+1,1, . . . , Hi+1,t−1, G
(dt )
i+1,t)Z , we have xgt,0 ∈ (Gk+1,1, . . . , Gk+1,t−1, G

(dt )

k+1,t)Z ⊂ (Hk+1,1, . . . , Hk+1,t−1, G
(dt )

k+1,t)Z = (Hk+1,1,

. . . , Hk+1,t−1, G
(dt )

k,t )Z . Then, (G̃ j+1,s+1)Z ⊂ (Hk+1,1, . . . , Hk+1,s+1)Z . Since deg(G̃ j+1,s+1) ≤ d + j + 1, we have (G̃ j+1,s+1)Z ⊂
(H j+1,1, . . . , H j+1,s+1)Z . �

Notice that in the proof of Lemma 4.22, we need only G(dt )

k,t = G(dt )

k+1,t for 1 ≤ t ≤ n. Then, we have the following corollary.

Corollary 4.23. In the Algorithm GHNFn, if G(dt )

k,t = G(dt )

k+1,t for 1 ≤ t ≤ s for some positive integer s ≤ n, then (G̃ i,s)Z ∈
(Hi,1, . . . , Hi,s)Z , where Hi,t = (G(dt )

k,t , xgk,t,dt , . . . , xmax(i,k)−(n−t)dgk,t,dt )Z for any i ≥ 0, 1 ≤ t ≤ s.

By this result, we obtain an equivalent termination condition for the Algorithm GHNFn:

Lemma 4.24. In the Algorithm GHNFn, Gk = Gk+1 is equivalent to Gk,t(t, ·) = Gk+1,t(t, ·) for 1 ≤ t ≤ n.

Proof. Clearly, if Gk = Gk+1, we have Gk,t(t, ·) = Gk+1,t(t, ·) for 1 ≤ t ≤ n. We just need to show the opposite direction. 
In this condition, we prove Gk,t = Gk+1,t by induction on t . Since G j,1(1, ·) = G j,1 for any j, the lemma is valid for 
t = 1. Suppose Gk,t = Gk+1,t for 1 ≤ t ≤ s < n. Since Gk,t(t, ·) = Gk+1,t(t, ·) for 1 ≤ t ≤ n, for any g′ ∈ Gk+1,s+1, there 
exists a g ∈ Gk,s+1 satisfying g(s + 1) = g′(s + 1). If g ∈ G(ds+1)

k,s+1 , we have g ∈ (Gk+1)Z . Then, g − g′ ∈ (Gk+1)Z . Since 

(g − g′)(t) = 0 for s + 1 ≤ t ≤ n, we have g − g′ ∈ (Gk+1,1, . . . , Gk+1,s)Z = (Gk,1, . . . , Gk,s)Z . Thus, g′ ∈ (Gk,1, . . . , G
(ds+1)

k,s+1 )Z

and (Gk+1,1, . . . , Gk+1,s, G
(ds+1)

k+1,s+1)Z = (Gk,1, . . . , Gk,s, G
(ds+1)

k,s+1 )Z . Then, G(ds+1)

k,s+1 = G(ds+1)

k+1,s+1 since both of them are reduced 

Z-Gröbner bases. If g /∈ G(ds+1)

k,s+1 , we have g ∈ (Gk,1, . . . , Gk,s, G
(ds+1)

k,s+1 , xgk,s+1,ds+1 , . . . , x
lgk,s+1,ds+1 )Z for some l ≥ 0 by 

Corollary 4.23. So is g′ since G(ds+1)

k,s+1 = G(ds+1)

k+1,s+1. Thus we have g − g′ ∈ (Gk,1, . . . , Gk,s) since (Gk,1, . . . , Gk,s, G
(ds+1)

k,s+1 ,

xgk,s+1,ds+1 , . . . , x
lgk,s+1,ds+1)Z is a Z-Gröbner basis. Then (Gk,1, . . . , Gk,s+1)Z = (Gk+1,1, . . . , Gk+1,s+1)Z . Since both of them 

are reduced Z-Gröbner bases, we have Gk,s+1 = Gk+1,s+1. �
We now show the correctness of the algorithm.

Theorem 4.25. Algorithm GHNFn is correct. Furthermore, Step 2 of Algorithm GHNFn terminates in at most D + nd loops, where 
D = 73n8d5(h + log(n2d) + 1).

Proof. Suppose Step 2 of the algorithm terminates in the k-th loop. The fact that Gk is a Gröbner basis of (F )Z[x] can be 
proved similarly to that of Theorem 4.10, where instead of Lemma 4.9, we use Lemma 4.22.

We now prove the termination of the algorithm. By Theorem 3.23 and (19), G̃ D contains the GHNF of F and hence 
a Gröbner basis of (F )Z[x] by Theorem 2.6. By Lemma 3.6, if C is the GHNF of F and has form (2), then deg(C (ri, ·)) ≤
dri = (n − ri + 1)d, i = 1, . . . , t . Hence, G D also contains a Gröbner basis of (F )Z[x] by Lemma 4.21. Similar to the Z[x]
case, the termination condition may not be satisfied immediately even if Gi is a Gröbner basis of (F )Z[x] . By Lemma 4.24, 
Algorithm GHNFn terminates at the (k + 1)-th loop if and only if Gk,t(t, ·) = Gk+1,t(t, ·) for 1 ≤ t ≤ n. By Lemma 4.19
and Lemma 4.21, after the nd-th loop, deg(Gi,t(t, ·)) = dt and the computation of Gi,t(t, ·) only depends on Gi,t(t, ·) for 
1 ≤ t ≤ n. Also note that if Gi is a Gröbner basis, then Gi,t is either empty or a Gröbner basis. Then, similar to the proof of 
Theorem 4.10, we can show that after D-loop, Gi,t(t, ·) are Gröbner bases for t = 1, . . . , n and after that the loop terminates 
for at most d1 = dn extra steps. �
Theorem 4.26. The worst bit size complexity of Algorithm GHNFn is

O (n26+2θ+εd15+θ+ε(h + log(n2d))4+ε + n19d11(h + log(n2d))2 log(n2d)B(n11d6(h + log(n2d))2)),

where h = height(F ) and ε > 0 is a sufficiently small number.

Proof. In the k-th loop in Step 2, we need to compute the HNF of an integer matrix Mk whose size is n(d + k + 1) × s, 
where s ≤ (2d + 1) + (4d + 1) + · · · + (2nd + 1) = n(n + 1)d + n. By Theorems 4.3, 4.25, and (19), the height of Mk ≤
n(D + nd + 1)( 1

2 log(n(D + nd + 1)) + h) = O (n9d5(h + log(n2d))2) := h2. The log β in Theorem 4.3 can be taken as log β =
(n(n + 1)d + n)( 1

2 log(n(n + 1)d + n) + h2) = O (n11d6(h + log(n2d))2). To simplify the formula for the complexity bound, we 
replace O (log2(s) log log(s) log log log(s)) by O (sε) for a sufficiently small number ε. The complexity in the k-th loop is

O (n(d + k + 1) · (n(n + 1)d + n)θ−1(log β)M(log logβ)/(log logβ)

+ n(d + k + 1) · (n(n + 1)d + n) log(n(n + 1)d + n)B(log β))

= (d + k + 1)O (n10+2θ+εd5+θ+ε(h + log(n2d))2+ε + n3d log(n2d)B(n11d6(h + log(n2d))2)),
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Fig. 1. Comparison of GHNF1 and GröbnerBasis in Magma and Maple: the Z[x] case.

for any ε > 0. Hence the total complexity is

D+nd∑
k=0

(d + k + 1)O (n10+2θ+εd5+θ+ε(h + log(n2d))2+ε + n3d log(n2d)B(n11d6(h + log(n2d))2))

= O (n26+2θ+εd15+θ+ε(h + log(n2d))4+ε + n19d11(h + log(n2d))2 log(n2d)B(n11d6(h + log n2d)2)). �
Similar to Corollary 4.12, by setting θ = 2.376 and ε = 0.001, we have

Corollary 4.27. The worst bit size complexity of Algorithm GHNFn is O (n30.753d17.377(h + log(n2d))4.001).

Similar to Remark 4.13, the number m in the input is omitted in the complexity bound.

5. Experimental results

The algorithms presented in Section 4 have been implemented in both Maple 18 and Magma 2.21-7. The timings given 
in this section are collected on a PC with Intel(R) Xeon(R) CPU E7-4809 with 1.90 GHz. For each set of input parameters, we 
use the average timing of ten experiments for random polynomials with coefficients between [−100, 100].

Fig. 1 shows the timings of the Algorithm GHNF1 in Magma 2.21-7 and Maple 18, and that of the GröbnerBasis command 
in Magma 2.21-7. From Theorem 4.11, the degree of the input polynomials is the dominant factor in the computational 
complexity of the algorithm. In the experiments, the length of the input polynomial vectors is fixed to be 3. The degrees 
are in the range [45, 80].

From the figure, we have the following observations. The new algorithm is much more efficient than the GröbnerBasis 
algorithm in Magma. As far as we know, the GröbnerBasis algorithm in Magma also uses an F4 style algorithm to compute 
the Gröbner basis and is also based on the computation of HNF of the coefficient matrices. In other words, the GröbnerBasis 
algorithm in Magma is quite similar to our algorithm and the comparison is fair. The reason for Algorithm GHNF1 to be 
more efficient is due to the way how the prolongation is done in Step 2 of algorithm GHNF1. By prolonging xg1, . . . , xgt−1
instead of xg1, . . . , xgt , the size of the coefficient matrices is nicely controlled. This fact is more important in Algorithm 
GHNFn . Our second observation is that the complexity bound O (d13.38h2.004) in Corollary 4.12 is not reached in most cases 
and the algorithm terminates in a much smaller number of loops. So a further problem is to find a better complexity bound 
or the average complexity for the algorithm.

In Table 1, we give the timings for several inputs where the polynomials have larger degrees. Other parameters are the 
same. We see that for input polynomials with degree larger than 150, the GröbnerBasis algorithm in Magma cannot compute 
in the GHNF in reasonable time. The difference for the timings of Algorithm GHNF1 in Magma and Maple is mainly due to 
the different implementations of the HNF algorithms.

Fig. 2 plots the timings of Algorithm GHNFn implemented in Magma 2.21-7 and Maple 18, where the input random 
polynomial matrices are of size 3 × 3 with degrees in [2, 30]. There is no implementation of Gröbner bases methods in 
Magma for Z[x]-modules, so we cannot make a comparison with Magma in this case. In line with our complexity analysis 
given in Section 4, algorithm GHNFn slows down rapidly when n > 1.
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Table 1
Comparison of GHNF1 and GröbnerBasis in Magma and Maple: the Z[x] case.

d GHNF1 in Maple 18 GHNF1 in Magma 2.21-7 GB in Magma 2.21-7

100 50.5932 19.048 214.91
150 202.8135 104.827 >1000
200 590.7763 384.946 >1000

Fig. 2. Timings of GHNFn in Magma and Maple.

Table 2
Timings of GHNFn in Magma and Maple.

d GHNFn in Maple 18 GHNFn in Magma 2.21-7

40 245.689 236.029
50 554.452 637.05

In Table 2, we list the timings of Algorithm GHNFn for several examples with larger degrees. This shows the polynomial-
time nature of the algorithm, because the algorithm works for quite large d. Also, for large d, the Maple implementation 
becomes faster.

6. Conclusion

In this paper, a polynomial-time algorithm is given to compute the GHNFs of matrices over Z[x], or equivalently, the 
reduced Gröbner basis of a Z[x]-lattice. The algorithm adopts the well-known F4 strategy to compute Gröbner bases, where 
a novel prolongation is designed so that the coefficient matrices under consideration have smaller sizes than existing meth-
ods. Existing efficient algorithms are used to compute the HNF for these coefficient matrices. Finally, nice degree and height 
bounds of elements of the reduced Gröbner basis are given and the complexity of the algorithm is obtained from these 
bounds. The algorithm is implemented in Maple and Magma and is shown to be more efficient than existing algorithms.
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