
QDNN: DNN with Quantum Neural Network Layers∗

Chen Zhao1,2 and Xiao-Shan Gao1,2

1KLMM, Academy of Mathematics and Systems Science, Chinese Academy of
Sciences, Beijing 100190, China

2University of Chinese Academy of Sciences, Beijing 100049, China

Abstract

The deep neural network (DNN) became the most important and power-
ful machine learning method in recent years. In this paper, we introduce
a general quantum DNN, which consists of fully quantum structured lay-
ers with better representation power than the classical DNN and still
keeps the advantages of the classical DNN such as the non-linear activa-
tion, the multi-layer structure, and the efficient backpropagation training
algorithm. We prove that the quantum structured layer can not be simu-
lated efficiently by classical computers unless universal quantum comput-
ing can be classically simulated efficiently and hence our quantum DNN
has more representation power than the classical DNN. Moreover, our
quantum DNN can be used on near-term noisy intermediate scale quan-
tum (NISQ) processors. A numerical experiment for image classification
based on quantum DNN is given, where high accurate rate is achieved.

Keywords. Quantum DNN, quantum neural network layer, hybrid quantum-
classical algorithm, NISQ computing.

1 Introduction

Quantum computers use the principles of quantum mechanics for computing,
which are more powerful than classical computers in many computing problems
[1, 2]. Noisy intermediate scale quantum (NISQ) [3] devices will be the only
quantum devices that can be used in near-term, where we can only use a limited
number of qubits without error correcting. So developing NISQ algorithms is a
new challenge.

In this paper, we will focus on quantum machine learning. Many quantum
machine learning algorithms, such as qSVM, qPCA and quantum Boltzmann
machine, have been developed [4–10], and these algorithms were shown to be
more efficient than their classical versions. Recently, several NISQ quantum ma-
chine learning algorithms, such as QuGAN, QCBM and quantum kernel meth-
ods, have been proposed [11–15]. However, these algorithms did not aim to
build quantum deep neural networks.

∗Partially supported by a NSFC grant no. 11688101 and a NKRDP grant no.
2018YFA0306702.

1

ar
X

iv
:1

91
2.

12
66

0v
1

 [
qu

an
t-

ph
]

 2
9

D
ec

 2
01

9

In recent years, deep neural network [16] became the most important and
powerful method in machine learning, which was widely applied in computer
vision [17], natural language processing [18], and many other fields. The basic
unit of DNN is the perception, which is an affine transform together with an
activation function. The non-linearity of the activation function and the depth
give the DNN more representation power. Approaches have been proposed to
build classical DNNs on quantum computers [19–21]. They achieved quantum
speed-up under certain assumptions. But the structure of classical DNNs is still
used, since only some operations are speeded up by quantum algorithms, for
instance, to speedup the inner product using the swap test [20].

In this paper, we introduce the first quantum analog to classical DNN, which
consists of fully quantum structured layers with better representation power
than the classical DNN and still keeps the advantages of the classical DNN
such as the non-linear activation, the multi-layer structure, and the efficient
backpropagation training algorithm.

The main contribution of this paper is to introduce the concept of quantum
neural network layer (QNNL) as a quantum analog to the classic neural network
layer in DNN. As all quantum gates are unitary and hence linear, the main dif-
ficulty of building a QNNL is introducing non-linearity. We solved this problem
by encoding the input vector to a quantum state non-linearly with a PQC. A
QNNL is a quantum circuit which is totally different from the classical neural
network layer. A quantum DNN (QDNN) can be easily built with QNNLs, since
the input and output of a QNNL are classical values.

The advantage of introducing QNNLs is that we can access vectors of expo-
nential dimensional Hilbert spaces with only polynomial resources on a quantum
computer. We proved that this model can not be classically simulated efficiently
unless universal quantum computing can be classically simulated efficiently. So
QDNNs have more representation power than classical DNNs. We also give
training algorithms of QDNNs which are similar to backpropagation (BP) al-
gorithm. Moreover, QNNLs use the hybrid quantum-classical scheme. Hence,
a QDNN with a reasonable size can be trained efficiently on NISQ processors.
Finally, a numerical experiment for an image recognition is given using QDNNs,
where high accurate rate is achieved.

We finally remark that all tasks using DNN can be turned into quantum
algorithms with more representation powers by replacing the DNN by QDNN.

2 Hybrid quantum-classical algorithm

The hybrid quantum-classical algorithm scheme [22] consists of a quantum part
and a classical part. In the quantum part, one uses parametric quantum circuits
(PQCs) to prepare quantum states using quantum processors. In the classical
part, one uses classical computers for optimizing the parameters of the PQCs
in the quantum parts.

2

2.1 Hybrid quantum-classical scheme based on PQCs

PQCs are quantum circuits with parametric gates. In general, a PQC is of the
form

U(~θ) =

l∏
j=1

Uj(θj)

where ~θ = (θ1, . . . , θl) are the parameters, each Uj(θj) is a rotation gate Uj(θj) =

exp(−i θj2 Hj), and Hj is a 1-qubit or a 2-qubits gate such that H2
j = I. For

example, in this paper we will use the Pauli gates X,Y, Z, and the CNOT gate.

In practical tasks such as VQE [23] and quantum machine learning [12], we
want to find a quantum state |ψ〉 with certain desired properties. This can
be done with the following three steps based on the hybrid quantum-classical
scheme. First, we need to choose an appropriate ansatz, that is, designing the
circuit structure of a PQC U(~θ). All parameters ~θ are initialized randomly.
Then we apply this PQC to a fixed initial state |ϕ0〉, for instance |0〉. Second,

by measuring the final state |ψ〉 = U(~θ) |ϕ0〉 repeatedly, we can estimate the
expected value L = 〈ψ|H |ψ〉 for an Hamiltonian H. H will be designed differ-
ently in different tasks. In many tasks, the ground state of H is our goal. To
achieve this goal, in the final step, we optimize the loss function L, by updating
parameters ~θ on classical computers.

|ψ0� U(�θ)
H

Quantum processors

Classical processors
L(�θ)

�θ�

update parameters

Figure 1: Hybrid quantum-classical scheme.

In summary, a hybrid quantum-classical scheme, as shown in Figure 1, con-
sists of a PQC U(θ) and a loss function of the form L = 〈ψ|H |ψ〉 together with
a classical algorithm for updating parameters, where H is a Hamiltonian.

2.2 Optimization in hybrid quantum-classical scheme

There are many methods for optimizing the loss function for a hybrid quantum-
classical scheme based on PQCs. Some are gradient-based [24] and some are
gradient-free [25]. We will focus on gradient-based algorithms in this paper.

The gradient ∇~θL can be estimated by shifting parameters of PQCs without
changing the circuit structure. The detail of the gradient estimation algorithm
can be found in Appendix A. Once the gradient is obtained, we can use the
gradient descent method to update the parameters.

3

3 DNNs with quantum neural network layers

In this section, we will introduce the concepts of quantum neural network layer
(QNNL) and quantum DNN, and give a training algorithm for the quantum
DNN.

3.1 QNNL and QDNN

A DNN consists of a large number of neural network layers, and each neural
network layer is a non-linear function f−→

W,~b
(~x) : Rn → Rm with parameters

{
−→
W,~b}. In the classical DNN, f−→

W,~b
takes the form of σ ◦L−→

W,~b
, where L−→

W,~b
is an

affine transform and σ is a non-linear activation function. The power of DNNs
comes from the non-linearity of the activation function. Without activation
functions, DNNs will be nothing more than affine transforms.

However, all quantum gates are unitary matrices and hence linear. So the
key point of developing QNNLs is introducing non-linearity.

Suppose that the input data ~x ∈ Rn is classical. We introduce non-linearity
to our QNNL by encoding the input ~x to a quantum state |ψ(~x)〉 non-linearly.
Concretely, we will use a PQC for this process. Choose a PQC U(~x) with at
most O(n) qubits and apply it to an initial state |ψ0〉. We obtain a quantum
state

|ψ(~x)〉 = U(~x) |ϕ0〉 (1)

encoded from ~x. The PQC is naturally non-linear in the parameters. For
example, the encoding process

|ψ(x)〉 = exp(−ix
2
X) |0〉

from x to |ψ(x)〉 is non-linear. Moreover we can compute the gradient of each
component of ~x efficiently. This is very important, since we need the gradient
of the input in each layer when training the QNNL. The encoding step is the
analog to the classical activation step.

After encoding the input data, we apply a linear transform as the analog
of linear transform in the classical DNNs. This part is natural on quantum

computers, because all quantum gates are linear. We use another PQC V (
−→
W)

with parameters
−→
W for this step. We assume that the number of parameters in

V (
−→
W) is O(poly(n)).

Finally, the output of a QNNL will be computed as follow. We choose m of
fixed Hamiltonians Hj (which means we will not change them during training),
j = 1, . . . ,m, and output

~y =

 y1 + b1
...

ym + bm

 , yj = 〈ψ(~x)|V †(
−→
W)HjV (

−→
W) |ψ(~x)〉 , bj ∈ R. (2)

Here, the bias term ~b = (b1, . . . , bm) is an analog of bias in classical DNNs. Also,
each yj is a hybrid quantum-classical scheme with PQC U and Hamiltonian

V †(
−→
W)HjV (

−→
W).

4

U(�x) V (�W)

{Hj}mj=1

...
...

...

|ψ0�

INPUT

�x ∈ Rn

Encoder Transform

Parameters

�W , �b ⊕

Output

�y ∈ Rm

OUTPUT
Q

Figure 2: The structure of a QNNL Q

To compute the output efficiently, we assume that the expectation value of
each of these Hamiltonians can be computed in O(poly(n, 1ε)), where ε is the
precision. It is easy to show that all Hamiltonianss of the following form satisfy
this assumption

H =

O(poly(n))∑
i=1

Hi,

where Hi are tensor products of Pauli matrices or k-local Hamiltonians.

In summary, a QNNL is a function

Q−→
W,~b

(~x) : Rn → Rm

defined by (1) and (2), and shown in Figure 2. Note that a QNNL is a function
with classic input and output, and can be determined by a tuple

Q = (U, V, [Hj]j=1,...,m)

with parameters (
−→
W,~b). Notice that the QNNLs activate before affine trans-

forms while classical DNNLs activate after affine transforms. But this difference
can be ignored when we consider multi-layers.

Since the input and output of QNNLs are classical, these QNNLs can be
naturally embedded in classical DNNs. A DNN consists of the composition of
multiple compatible QNNLs and classical DNN layers is called quantum DNN
(QDNN):

QDNN = L
1,
−→
W 1, ~b1

◦ · · · ◦ L
l,
−→
W l,~bl

where L
i,
−→
Wi,~bi

is a classical or quantum layer from Rni−1 to Rni for i = 1, . . . , l

and {
−→
Wi, ~bi, i = 1, . . . , l} are the parameters of the QDNN.

3.2 Training algorithms of QDNNs

We will use gradient descent to update the parameters. In classical DNNs,
the gradient of parameters in each layer is computed by the backpropagation
algorithm (BP). Suppose that we have a QDNN. Consider a QNNL Q with

5

parameters ~W,~b whose input is ~x, output is ~y. Refer to (1) and (2) for details.
To use the BP algorithm, we need to compute ∂~y

∂
−→
W
, ∂~y
∂~b

and ∂~y
∂~x .

∂~y

∂~b
is trivial. And because U, V are PQCs and each component of ~y is an

output of a hybrid quantum-classical scheme, both ∂~y

∂
−→
W

and ∂~y
∂~x can be estimated

by the algorithm in section 2.2. Hence, QDNNs can be trained with the BP
algorithm.

4 Representation power of QDNNs

In this section, we will show that QDNNs have more representation power than
that of classical DNNs.

According to the definition of QNNLs in (2), each element of the outputs in
a QNNL is of the form

yj = bj + 〈ψ0|U†(~x)V †(
−→
W)HjV (

−→
W)U(~x) |ψ0〉 . (3)

In general, estimation of 〈ψ0|U†(~x)V †(
−→
W)HjV (

−→
W)U(~x) |ψ0〉 on a classical com-

puter will be difficult by the following theorem.

Theorem 1. Estimation (3) with precision c < 1
3 is BQP-hard, where BQP is

the bounded-error quantum polynomial time complexity class.

Proof. Consider any language L ∈ BQP. There exists a polynomial-time Tur-
ing machine which takes x ∈ {0, 1}n as input and outputs a polynomial-sized
quantum circuit C(x). Moreover, x ∈ L if and only if the measurement result
of C(x) |0〉 of the first qubit has the probability ≥ 2

3 to be |1〉.
Because {Rx, Ry, Rz,CNOT} are universal quantum gates, C(x) can be ex-

pressed as a polynomial-sized PQC: Ux(~θ) = C(x) with proper parameters.
Consider H = Z ⊗ I ⊗ · · · ⊗ I, then

〈0|Ux(~θ)HUx(~θ) |0〉 ≤ −1

3
(4)

if and only if x ∈ L, and

〈0|Ux(~θ)HUx(~θ) |0〉 ≥ 1

3
(5)

if and only if x /∈ L.

As it is generally believed that quantum computers can not be simulated
efficiently by classical computers, according to Theorem 1, there exist QNNLs
which cannot be classically simulated efficiently. Hence, this QNNLs can repre-
sent functions which cannot be represented by classical DNNs with polynomial
units. Thus, adding QNNLs to DNNs will enhance the representation power of
DNNs.

6

5 Numerical experiments

In this section, we will use QDNN to conduct a numerical experiment for an
image classification task. The data comes from the MNIST data set. We built
a QDNN with 3 QNNLs. The goal of this QDNN is to recognize the digit in the
image is either 0 or 1 as a classifier.

We uses the Julia package Yao.jl as a quantum simulator [26] in our exper-
iments. All data were collected on a desktop PC with Intel CPU i7-4790 and
4GB RAM.

5.1 Details of the model

The data in the MNIST is 28 × 28 = 784 dimensional images. This dimension
is too large for the current quantum simulator. Hence, we first resize the image
to 8 × 8 pixels. We use three QNNLs in our QDNN, which will be called the
input layer, the hidden layer, and the output layer, respectively. Each layer is
made of 3 parts: encoder, transform, and output.

5.1.1 Input layer

The input layer uses an 8-qubit circuit. The encoder will accept an input vector
x ∈ R64 and use a PQC to map it to a quantum state |ψ(~x)〉 = Uin(~x) |0〉. The
structure of the PQC is like

Uin = Ent ◦RZ(~x57:64) ◦RX(~x49:56) ◦RZ(~x41:48)

◦ Ent ◦RZ(~x33:40) ◦RX(~x25:32) ◦RZ(~x17:24)

◦ Ent ◦RZ(~x9:16) ◦RX(~x1:8)

where

RH(~xa:b) = RH(xa)⊗RH(xa+1)⊗ · · · ⊗RH(xb), H = X,Z. (6)

Ent is a CNOT circuit which introduces entanglement to the circuit. In our
experiment, Ent is of the following form.

•
•

...
. . .
. . . •

•

The transform in the input layer is similar to the encoder. The structure of
the transform is like

Vin = (RZ ◦RX ◦RZ ◦ Ent)6 ◦RZ ◦RX . (7)

Also, the transform parameters
−→
W in will be input to Vin as the same way as ~x

were input to Uin.

7

The output of the input layer is of the form

~h1 =

〈ψ(~x,
−→
W in)|H1,X |ψ(~x,

−→
W in)〉

...

〈ψ(~x,
−→
W in)|H8,X |ψ(~x,

−→
W in)〉

〈ψ(~x,
−→
W in)|H1,Y |ψ(~x,

−→
W in)〉

...

〈ψ(~x,
−→
W in)|H8,Y |ψ(~x,

−→
W in)〉

〈ψ(~x,
−→
W in)|H1,Z |ψ(~x,

−→
W in)〉

...

〈ψ(~x,
−→
W in)|H8,Z |ψ(~x,

−→
W in)〉

+~bin ∈ R24, (8)

where |ψ(~x,
−→
W in)〉 = Vin(

−→
W in)Uin(~x) |0〉 and Hj,M denotes the result obtained

by applying the operator M on the j-th qubit for M ∈ {X,Y, Z}.

5.1.2 Hidden layer

The hidden layer uses 6 qubits. The structure of the hidden layer is almost the
same as the input layer, but with less qubit gates.

The encoder is of the form

Uh = Ent ◦RX ◦RZ ◦ Ent ◦RZ ◦RX . (9)

The transform is

Vh = RX ◦RZ ◦ Ent ◦ (RZ ◦RX ◦RZ ◦ Ent)4 ◦RZ ◦RX . (10)

The output of the hidden layer is

~h2 =

〈ψ(~h1,
−→
Wh)|H1,Y |ψ(~h1,

−→
Wh)〉

...

〈ψ(~h1,
−→
Wh)|H6,Y |ψ(~h1,

−→
Wh)〉

〈ψ(~h1,
−→
Wh)|H1,Z |ψ(~h1,

−→
Wh)〉

...

〈ψ(~h1,
−→
Wh)|H6,Z |ψ(~h1,

−→
Wh)〉

+ ~bh ∈ R12. (11)

5.1.3 Output layer

The output layer uses 4 qubits. The structure of the output layer is also similar
to the input layer. The only difference is that in the output is classification
result.

The encoder is
Uout = RZ ◦ Ent ◦RZ ◦RX . (12)

The transform is like

Vout = RX ◦RZ ◦ Ent ◦RZ ◦RX ◦RZ ◦ Ent ◦RZ ◦RX . (13)

8

The output of the output layer is

~y =

(
〈ψ(~h2,

−→
W out)| (|0〉 〈0| ⊗ I ⊗ I ⊗ I) |ψ(~h2,

−→
W out)〉

〈ψ(~h2,
−→
W out)| (|1〉 〈1| ⊗ I ⊗ I ⊗ I) |ψ(~h2,

−→
W out)〉 .

)
(14)

We do not add bias term here, and it will output a vector in R2. Moreover,
if the input ~x is from an image of digit 0, the output ~y should be close to |0〉,
otherwise it should be close to |1〉 after training.

In conclusion, the settings of these three layers are shown in table 1.

of
qubits

Input
dimension

Output
dimension

of parameters
(transform + bias)

Input layer 8 64 24 160 + 24
Hidden layer 6 24 12 96 + 12
Output layer 4 12 2 28 + 0

Table 1: Settings of three layers

Finally, the loss function is defined as

L =
1

|D|
∑

(~x,y)∈D

∣∣DNN(~x)− |y〉
∣∣2, (15)

where D is the training set.

5.2 Experiment results

All parameters were initialized randomly in (−π, π). We use Adam optimizer
[27] to update parameters. We train this QDNN for 400 iterations with batch
size of 240. In the first 200 of iterations, the hyper parameters of Adam is set
to be η = 0.01, β1 = 0.9, β2 = 0.999. In the later 200 of iterations, we change η
to 0.001.

The values of the loss function on the training set and test set during training
is shown in Figure 3. The accurate rate of this QDNN on the test set rise to
99.15% after training.

6 Discussion

We introduced the model of QNNL and built QDNN with QNNLs. We proved
that QDNNs have more representation power than classical DNNs. We pre-
sented a practical gradient-based training algorithm as the analog of BP algo-
rithms. Because the model is based on hybrid quantum-classical scheme, it can
be realized on NISQ processors. As a result, the QDNN has more representa-
tion powers than classical DNNs and still keeps most of the advantages of the
classical DNNs.

Due to the limited power the classical simulator for quantum computation,
only QDNNs with a small number of qubits can be used in practice. As a
consequence, we only trained a model for a simple task in our experiment.

9

0 100 200 300 400

0.1

0.2

0.3

0.4

0.5

Loss function

Iterations

training set
test set

Figure 3: Loss function

If we have more quantum resources in the future, we can access exponential
dimensional feature Hilbert spaces [13] with QDNNs and only uses polynomial
size of parameters. Hence, we believe that QDNNs will help us to extract
features more efficiently in exponential dimensional feature Hilbert spaces. This
idea is similar to ideas of kernel methods [28, 29].

References

[1] Peter W Shor. Algorithms for quantum computation: Discrete logarithms
and factoring. In Proceedings 35th Annual Symposium on Foundations of
Computer Science, pages 124–134. Ieee, 1994.

[2] Lov K. Grover. A fast quantum mechanical algorithm for database search.
In Proceedings of 28th Annual ACM Symposium on Theory of Computing,
STOC ’96, pages 212–219, New York, NY, USA, 1996. ACM.

[3] John Preskill. Quantum computing in the nisq era and beyond. Quantum,
2:79, 2018.

[4] Nathan Wiebe, Daniel Braun, and Seth Lloyd. Quantum algorithm for
data fitting. Physical review letters, 109(5):050505, 2012.

[5] Maria Schuld, Ilya Sinayskiy, and Francesco Petruccione. An introduction
to quantum machine learning. Contemporary Physics, 56(2):172–185, 2015.

[6] Jacob Biamonte, Peter Wittek, Nicola Pancotti, Patrick Rebentrost,
Nathan Wiebe, and Seth Lloyd. Quantum machine learning. Nature,
549(7671):195–202, 2017.

[7] Patrick Rebentrost, Masoud Mohseni, and Seth Lloyd. Quantum sup-
port vector machine for big data classification. Physical review letters,
113(13):130503, 2014.

[8] Seth Lloyd, Masoud Mohseni, and Patrick Rebentrost. Quantum principal
component analysis. Nature Physics, 10(9):631, 2014.

10

[9] Mohammad H Amin, Evgeny Andriyash, Jason Rolfe, Bohdan Kulchyt-
skyy, and Roger Melko. Quantum boltzmann machine. Physical Review X,
8(2):021050, 2018.

[10] Xun Gao, Zhengyu Zhang, and Luming Duan. A quantum machine learning
algorithm based on generative models. Science advances, 4(12):eaat9004,
2018.

[11] Seth Lloyd and Christian Weedbrook. Quantum generative adversarial
learning. Physical review letters, 121(4):040502, 2018.

[12] Jin-Guo Liu and Lei Wang. Differentiable learning of quantum circuit born
machines. Physical Review A, 98(6):062324, 2018.

[13] Maria Schuld and Nathan Killoran. Quantum machine learning in feature
hilbert spaces. Physical review letters, 122(4):040504, 2019.

[14] Vojtěch Havĺıček, Antonio D Córcoles, Kristan Temme, Aram W Harrow,
Abhinav Kandala, Jerry M Chow, and Jay M Gambetta. Supervised learn-
ing with quantum-enhanced feature spaces. Nature, 567(7747):209, 2019.

[15] Marcello Benedetti, Erika Lloyd, Stefan Sack, and Mattia Fiorentini. Pa-
rameterized quantum circuits as machine learning models. Quantum Sci-
ence and Technology, 4(4):043001, 2019.

[16] Yann LeCun, Yoshua Bengio, and Geoffrey Hinton. Deep learning. Nature,
521(7553):436–444, 2015.

[17] Athanasios Voulodimos, Nikolaos Doulamis, Anastasios Doulamis, and
Eftychios Protopapadakis. Deep learning for computer vision: A brief re-
view. Computational intelligence and neuroscience, 2018, 2018.

[18] Richard Socher, Yoshua Bengio, and Christopher D Manning. Deep learn-
ing for nlp (without magic). In Tutorial Abstracts of ACL 2012, pages 5–5.
Association for Computational Linguistics, 2012.

[19] Nathan Killoran, Thomas R Bromley, Juan Miguel Arrazola, Maria Schuld,
Nicolás Quesada, and Seth Lloyd. Continuous-variable quantum neural
networks. Physical Review Research, 1(3):033063, 2019.

[20] Jian Zhao, Yuan-Hang Zhang, Chang-Peng Shao, Yu-Chun Wu, Guang-
Can Guo, and Guo-Ping Guo. Building quantum neural networks based on
a swap test. Phys. Rev. A, 100:012334, Jul 2019.

[21] Iordanis Kerenidis, Jonas Landman, and Anupam Prakash. Quantum algo-
rithms for deep convolutional neural networks. In International Conference
on Learning Representations, 2020.

[22] Jarrod R McClean, Jonathan Romero, Ryan Babbush, and Alán Aspuru-
Guzik. The theory of variational hybrid quantum-classical algorithms. New
Journal of Physics, 18(2):023023, 2016.

[23] Jin-Guo Liu, Yi-Hong Zhang, Yuan Wan, and Lei Wang. Variational quan-
tum eigensolver with fewer qubits. Phys. Rev. Research, 1:023025, Sep
2019.

11

[24] Jun Li, Xiaodong Yang, Xinhua Peng, and Chang-Pu Sun. Hybrid
quantum-classical approach to quantum optimal control. Physical review
letters, 118(15):150503, 2017.

[25] Ken M Nakanishi, Keisuke Fujii, and Synge Todo. Sequential mini-
mal optimization for quantum-classical hybrid algorithms. arXiv preprint
arXiv:1903.12166, 2019.

[26] Xiu-Zhe Luo, Jin-Guo Liu, Pan Zhang, and Lei Wang. Yao.jl: Exten-
sible, efficient framework for quantum algorithm design. arXiv preprint
arXiv:1912.10877, 2019.

[27] Diederik P Kingma and Jimmy Ba. Adam: A method for stochastic opti-
mization. arXiv preprint arXiv:1412.6980, 2014.

[28] John Shawe-Taylor, Nello Cristianini, et al. Kernel methods for pattern
analysis. Cambridge university press, 2004.

[29] Dmitry Zelenko, Chinatsu Aone, and Anthony Richardella. Kernel methods
for relation extraction. Journal of machine learning research, 3(Feb):1083–
1106, 2003.

12

A Gradient Estimation of PQCs

Without the loss of generality, suppose that a PQC has the form

U(~θ) = Uj(θj) . . . U1(θ1).

Given a HamiltonianM , the expection value is defined by the following equation,

L(~θ) = 〈ψ0|U†(~θ)MU(~θ) |ψ0〉 .

The goal in hybrid quantum-classical computing is usually optimizing L. We
can use gradient descent for this problem. Thus, we need estimate

∇~θL =

∂L
∂θ1
...
∂L
∂θl

 .

Notice that Uj(θj) has the form Uj(θj) = exp(i
θj
2 Hj), where H2

j = I. Hence,
we have

Uj(θj) = cos(
θj
2

)I − i sin(
θj
2

)Hj .

We denote
Ua:b = Ub(θb) . . . Ua(θa), a < b,

and
|ψa〉 = U1:a |ψ0〉 , Mb = U†b:lMUb:l

By calculus,

∂L

∂θj
=

∂

∂θj
〈ψ0|U†(~θ)MU(~θ) |ψ0〉

= 〈ψj−1|
∂U†j (θj)

∂θj
Mj+1Uj(θj) |ψj−1〉+ 〈ψj−1|U†(θj)Mj+1

∂Uj(θj)

∂θj
|ψj−1〉

=
1

2
〈ψj−1|

(
− sin

θj
2
I + i cos

θj
2
Hj

)
Mj+1

(
cos

θj
2
I − i sin

θj
2
Hj

)
|ψj−1〉

+
1

2
〈ψj−1|

(
cos

θj
2
I + i sin

θj
2
Hj

)
Mj+1

(
− sin

θj
2
I − i cos

θj
2
Hj

)
|ψj−1〉

= − cos
θj
2

sin
θj
2
〈ψj−1|Mj+1 |ψj−1〉+ cos

θj
2

sin
θj
2
〈ψj−1|HjMj+1Hj |ψj−1〉

+
i

2

(
cos2

θj
2
− sin2 θj

2

)
〈ψj−1|HjMj+1 −Mj+1Hj |ψj−1〉 .

Denote

Lj,+(~θ) = L(θ1, . . . , θj−1, θj +
π

2
, θj+1, . . . , θl),

Lj,−(~θ) = L(θ1, . . . , θj−1, θj −
π

2
, θj+1, . . . , θl).

13

That is, we shift the j-th parameter. Then

L+,j(~θ) = 〈ψj−1|
[

cos(
θj
2

+
π

4
)I + i sin(

θj
2

+
π

4
)
]
Mj+1[

cos(
θj
2

+
π

4
)I − i sin(

θj
2

+
π

4
)
]
|ψj−1〉

=
1

2

(
cos

θj
2
− sin

θj
2

)2 〈ψj−1|Mj+1 |ψj−1〉

+
1

2

(
cos

θj
2

+ sin
θj
2

)2 〈ψj−1|HjMj+1Hj |ψj−1〉

+
i

2

(
cos2

θj
2
− sin2 θj

2

)
〈ψj−1|HjMj+1 −Mj+1Hj |ψj−1〉 .

By similar computation,

L−,j(~θ) =
1

2

(
cos

θj
2

+ sin
θj
2

)2 〈ψj−1|Mj+1 |ψj−1〉

+
1

2

(
cos

θj
2
− sin

θj
2

)2 〈ψj−1|HjMj+1Hj |ψj−1〉

− i

2

(
cos2

θj
2
− sin2 θj

2

)
〈ψj−1|HjMj+1 −Mj+1Hj |ψj−1〉 .

Thus, one can simply check that

∂L

∂θj
=

1

2

[
Lj,+(~θ)− Lj,−(~θ)

]
.

In conclusion, we can estimate gradient of parameters of a PQC by shifting
parameters and runing the same circuit.

14

	1 Introduction
	2 Hybrid quantum-classical algorithm
	2.1 Hybrid quantum-classical scheme based on PQCs
	2.2 Optimization in hybrid quantum-classical scheme

	3 DNNs with quantum neural network layers
	3.1 QNNL and QDNN
	3.2 Training algorithms of QDNNs

	4 Representation power of QDNNs
	5 Numerical experiments
	5.1 Details of the model
	5.1.1 Input layer
	5.1.2 Hidden layer
	5.1.3 Output layer

	5.2 Experiment results

	6 Discussion
	A Gradient Estimation of PQCs

