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Abstract
In this paper, a quantum extension of classical deep neural network (DNN) is introduced, which is called QDNN and consists
of quantum structured layers. It is proved that the QDNN can uniformly approximate any continuous function and has more
representation power than the classical DNN. Moreover, the QDNN still keeps the advantages of the classical DNN such as
the non-linear activation, the multi-layer structure, and the efficient backpropagation training algorithm. Furthermore, the
QDNN uses parameterized quantum circuits (PQCs) as the basic building blocks and hence can be used on near-term noisy
intermediate-scale quantum (NISQ) processors. A numerical experiment for an image classification task based on QDNN is
given, where a high accuracy rate is achieved.

Keywords Deep neural networks · Quantum machine learning · Hybrid quantum-classical algorithm · NISQ

1 Introduction

Quantum computers use the principles of quantum mechan-
ics for computing, which are more powerful than classical
computers in many computing problems (Shor 1994; Grover
1996). Many quantum machine learning algorithms, such as
quantum support vector machine, quantum principal com-
ponent analysis, and quantum Boltzmann machine, were
developed (Wiebe et al. 2012; Schuld et al. 2015a; Biamonte
et al. 2017; Rebentrost et al. 2014; Lloyd et al. 2014; Amin
et al. 2018; Gao et al. 2018), and these algorithms were
shown to be more efficient than their classical versions.

In recent years, DNNs (LeCun et al. 2015) became the
most important and powerful method in machine learning,
which were widely applied in computer vision (Voulodimos
et al. 2018), natural language processing (Socher et al.
2012), and many other fields. The basic unit of DNN is the
perceptron, which is an affine transformation together with
an activation function. The non-linearity of the activation
function and the depth give the DNN much representation
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power (Hornik 1991; Leshno et al. 1993). Approaches were
proposed to build classical DNNs on quantum computers
(Killoran et al. 2019; Zhao et al. 2019; Kerenidis et al.
2020). They achieved quantum speed-up under certain
assumptions. But the structure of classical DNNs is still
used, and only some local operations are speeded up by
quantum algorithms. For instance, the inner product was
speedup using the swap test (Zhao et al. 2019).

Several quantum analogs of DNNs were proposed. In
Schuld et al. (2015b) and Cao et al. (2017), quantum analogs
of the perceptron are demonstrated. However, methods of
building complex DNNs with these quantum perceptrons
are not developed. In Wan et al. (2017), a quantum gen-
eralization of the feedforward neural network is proposed.
However, non-linearity is not introduced in this model.
In Tacchino et al. (2020), the non-linearity is introduced
with measurement, as a consequence, the training cost is
increased. In Steinbrecher et al. (2019), a quantum ana-
log of the DNN which can be run on optical quantum
devices was proposed. A quantum analog of deep convolu-
tional neural networks was proposed in Li et al. (2020). In
many of these approaches, the inputs or outputs are quan-
tum states, and hence the quantum random access memory
(QRAM) (Giovannetti et al. 2008; Aaronson 2015) is used.
However, QRAM is difficult to be implemented on noisy
intermediate-scale quantum (NISQ) (Preskill 2018) devices.
It is known that NISQ will be the only quantum devices that
can be used in the near-term, where only a limited number
of qubits without error-correcting can be used.
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Recently, parameterized quantum circuits (PQCs) were
widely considered, because PQCs can be efficiently imple-
mented on NISQ devices. Several NISQ quantum machine
learning models based on PQCs, such as quantum gener-
ative adversarial networks, quantum circuit Born machine,
and quantum kernel methods, were proposed (Lloyd and
Weedbrook 2018; Dallaire-Demers and Killoran 2018; Liu
and Wang 2018; Schuld and Killoran 2019; Havlı́ček et al.
2019; Benedetti et al. 2019). Several approaches are shown
that PQCs have the potential abilities in machine learn-
ing tasks including approximating functions (Mitarai et al.
2018), classification (Farhi and Neven 2018; Schuld et al.
2020), and data generating (Liu and Wang 2018; Situ
et al. 2020). PQCs are also called quantum neural net-
works (QNNs) because of its layerwise circuit structure, and
QNNs are used for machine learning tasks (Farhi and Neven
2018; Beer et al. 2020). Several different structures of the
PQC were proposed (Grant et al. 2018; Liu et al. 2019a;
Cong et al. 2019).

In this paper, we introduce the quantum deep neural
network (QDNN) which is a composition of multiple
quantum neural network layers (QNNLs). We prove that the
QDNN can uniformly approximate any continuous function
and has more representation power than the classical DNN.
Unlike other approaches of quantum analogs of DNNs, our
QDNN still keeps the advantages of the classical DNN such
as the non-linear activation, the multi-layer structure, and
the efficient backpropagation training algorithm. The inputs
and the outputs of the QDNN are both classical which
makes the QDNN more practical. Because the QNNL is
based on PQCs, the QDNN has the potential to be used on
NISQ processors. As shown in our experiments, a QDNN
with a small number (eight) of qubits can be used in image
classification. In summary, QDNN provides a new class of
neural networks which can be used in near-term quantum
computers and is more powerful than classical DNNs.

The structure of the QNNL is similar to that of the QNN.
There usually exists only one Hamiltonian in the model of
QNN while there exist multiple Hamiltonians in the QNNL
and a bias term will be added at the output. The multiple
dimensional output of the QNNL makes it possible to build
multi-layer structure in QDNN. We use QNNLs as building
blocks of the QDNN and we use multiple PQCs which
will be trained simultaneously. The universal approximation
property of QDNN comes from its multi-layer structure.
The QNN can be regarded as a special 1-layer QDNN and
has no universal approximation property.

Our paper is organized as follows. We define the QNNL
in Section 2.1. The definition of the QDNN and its training
algorithms are presented in Section 2.2. In Section 3, we
discuss the representation power and potential quantum
advantages of the QDNN. In Section 4, a numerical

experiment for an image classification task based on QDNN
is used to show the effectiveness of QDNN.

2 The QDNN

A DNN consists of a large number of neural network layers,
and each neural network layer is a non-linear function
f−→

W ,�b(�x) : Rn → R
m with parameters

−→
W , �b. In the classical

DNN, f−→
W ,�b takes the form of σ ◦ L−→

W ,�b, where L−→
W ,�b is

an affine transformation and σ is a non-linear activation
function. The power of DNNs comes from the non-linearity
of the activation function. Without activation functions,
DNNs will be nothing more than affine transformations.

However, all quantum gates are unitary matrices and
hence linear. So the key point of developing QNNLs is
introducing non-linearity.

2.1 Quantum neural network layers

We build QNNLs using the hybrid quantum-classical algo-
rithm scheme (McClean et al. 2016), which is widely used
in many NISQ quantum algorithms (Liu and Wang 2018;
Liu et al. 2019b). As shown in Fig. 1, a hybrid quantum-
classical algorithm scheme consists of a quantum part and
a classical part. In the quantum part, parameterized quan-
tum circuits (PQCs) are used to prepare quantum states with
quantum processors. In the classical part, parameters of the
PQCs are optimized using classical computers.

A PQC is a quantum circuit with parametric gates, which
is of the form

U(�θ) =
l∏

j=1

Uj(θj )

where �θ = (θ1, . . . , θl) are the parameters, each Uj (θj ) is

a rotation gate Uj(θj ) = exp(−i
θj

2 Hj), and Hj is a 1-qubit
or a 2-qubits gate such that H 2

j = I . For example, when Hj

is one of Pauli matrices {X, Y, Z}, Uj(θj ) is the single qubit
rotation gates RX, RY , RZ .

As shown in Fig. 1, once fixed an ansatz circuit U(�θ)

and a Hamiltonian H , we can define the loss function of

Fig. 1 Hybrid quantum-classical scheme
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the form L = 〈0|U†(�θ)HU(�θ)|0〉. Then, we can optimize
L by updating parameters �θ using optimization algorithms
(Schuld et al. 2019; Nakanishi et al. 2019). With gradient-
based algorithms (Schuld et al. 2019), one can efficiently
compute the gradient information ∂L

∂ �θ which is essentially
important in our model. Hence, we will focus on gradient-
based algorithms in this paper.

Now, we are going to define a QNNL, which consists of
3 parts: the encoder, the transformation, and the output, as
shown in Fig. 2.

(1) The encoder. For a classical input data �x ∈ R
n,

we introduce non-linearity to our QNNL by encoding
the input �x to a quantum state |ψ(�x)〉 non-linearly.
Precisely, we choose a PQC U(�x) with at most O(n)

qubits and apply it to an initial state |ψ0〉 to obtain a
quantum state

|ψ(�x)〉 = U(�x)|ψ0〉 (1)

encoded from �x. The PQC is naturally non-linear in
the parameters. For example, the encoding process

|ψ(x)〉 = exp
(
−i

x

2
X

)
|0〉

from x to |ψ(x)〉 is non-linear. Moreover, we can
compute the gradient of each component of �x
efficiently. The gradient of the input in each layer is
necessary when training the QDNN. The encoding step
is the analog to the classical activation step.

(2) The transformation. After encoding the input data,
we apply a linear transformation as the analog of the
linear transformation in the classical DNNs. This part
is natural on quantum computers because all quantum
gates are linear. We use another PQC V (

−→
W ) with

parameters
−→
W for this purpose. We assume that the

number of parameters in V (
−→
W ) is O(poly(n)).

(3) The output. Finally, the output of a QNNL will be
computed as follow. We choose m fixed Hamiltonians
Hj , j = 1, . . . , m, and output

�y =
⎛

⎜⎝
y1 + b1

...
ym + bm

⎞

⎟⎠ ,

yj = 〈ψ(�x)|V †(
−→
W )HjV (

−→
W )|ψ(�x)〉, bj ∈ R. (2)

Note that the expectation value of a Hamiltonian is a
linear function of the density matrix. Here, the bias
term �b = (b1, . . . , bm) is an analog of bias in classical
DNNs. Also, each yj is a hybrid quantum-classical

scheme with a PQC U(�x)V (
−→
W ) and Hamiltonians Hj .

To compute the output efficiently, we assume that the
expectation value of each of these Hamiltonians can be
computed in O(poly(n, 1

ε
)), where ε is the precision. It is

easy to show that all Hamiltonians of the following form
satisfy this assumption

H =
O(poly(n))∑

i=1

Hi,

where Hi are tensor products of Pauli matrices or k-local
Hamiltonians.

In summary, a QNNL is a function

Q−→
W ,�b(�x) : Rn → R

m

defined by Eqs. 1) and 2, and shown in Fig. 2. Note that a
QNNL is a function with classic input and output, and can
be determined by a tuple

Q = (U, V, [Hj ]j=1,...,m)

with parameters (
−→
W , �b). Notice that the QNNLs activate

before affine transformations while classical DNNLs acti-
vate after affine transformations. But this difference can be
ignored when considering multi-layers.

Fig. 2 The structure of a QNNL
Q �W,�b
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2.2 QDNN and its training algorithms

Since the input and output of QNNLs are classical values,
they can be implemented without the assumption of QRAM.
Furthermore, the QNNLs can be naturally embedded
in classical DNNs. A neural network consists of the
composition of multiple compatible QNNLs and classical
DNN layers is called quantum DNN (QDNN):

QDNN = L
l,
−→
W l, �bl

◦ · · · ◦ L
1,

−→
W 1, �b1

where each L
i,
−→
Wi, �bi

is a classical or a quantum layer from

R
ni−1 to R

ni for i = 1, . . . , l and {−→Wi, �bi, i = 1, . . . , l} are
the parameters of the QDNN.

We will use gradient descent to update the parameters.
In classical DNNs, the gradient of parameters in each
layer is computed by the backpropagation algorithm (BP).
Suppose that we have a QDNN. Consider a QNNL Q with
parameters �W, �b, whose input is �x and output is �y. Refer to
Eqs. 1 and 2 for details.

To use the BP algorithm, we need to compute ∂ �y
∂
−→
W

,
∂ �y
∂ �b

and ∂ �y
∂ �x . Computing ∂ �y

∂ �b is trivial. Because U, V are PQCs
and each component of �y is an output of a hybrid quantum-
classical scheme, both ∂ �y

∂
−→
W

and ∂ �y
∂ �x can be estimated by

shifting parameters (Schuld et al. 2019).

We can use Algorithm 2 to estimate the gradient in each
quantum layer.

Hence, gradients can be backpropagated through the quan-
tum layer, and QDNNs can be trained with the BP algorithm.

Gradient-based methods are used to train QDNNs. As
a consequence, if the circuits in the QNNL reach unitary
2-design, then there exist barren plateaus, which makes
the model untrainable (McClean et al. 2018). Thus, the
structure of QNNLs should not be randomly chosen.
There are several techniques to avoid barren plateaus. For
instance, we can use circuits with special structures and
local Hamiltonians (Cerezo et al. 2020; Zhao and Gao
2021), or we can use certain initialization strategies and
introduce correlations between parameters to obtain large
gradients (Grant et al. 2019; Volkoff and Coles 2021).

3 Representation power of QDNNs

In this section, we will consider the representation power of
the QDNN. We will show that QDNN can approximate any
continuous function similar to the classical DNN. Moreover,
if quantum computing can not be classically simulated
efficiently, the QDNN has more representation power than
the classical DNN.

3.1 Universal approximation property of QDNNs

The universal approximation theorem ensures that DNNs
can approximate any continuous function (Cybenko 1989;
Hornik 1991; Leshno et al. 1993; Pinkus 1999). Since the
class of QDNNs is an extension of the class of classical
DNNs, the universal approximation theorem can be applied
to the QDNN trivially. Now, we show that QDNNs with only
QNNLs also have the universal approximation property.
Consider two cases

– DNN with only QNNLs.
– DNN with QNNLs and affine layers.

In the first case, let us consider a special type of
QNNLs which can represent monomials (Mitarai et al.
2018). Consider the circuit

U(x) = RY (2 arccos(
√

x)) =
(

x −√
1 − x2√

1 − x2 x

)
(3)
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and the Hamiltonian H0 = |0〉〈0|. The expectation value
of 〈0|U†(x)H0U(x)|0〉 is the monomial x for x ∈ [0, 1].
For multivariable monomial x = x

m1
1 · · · xmk

k , we use the
circuit

U(x) =
[
⊗m1

j1=1RY (2 arccos(
√

x1))
]

⊗ · · · ⊗
[
⊗mk

jk=1RY (2 arccos(
√

xk))
]

(4)

and the Hamiltonian H0 = |0 . . . 0〉〈0 . . . 0|, where ⊗ is the
tensor product and

⊗mk

jk=1RY (2 arccos(
√

xk))

=
mk︷ ︸︸ ︷

RY (2 arccos(
√

xk)) ⊗ · · · ⊗ RY (2 arccos(
√

xk)) .

Similarly, the expectation value of

〈0 . . . 0|U†(x)H0U(x)|0 . . . 0〉 is x
m1
1 · · · xmk

k

for x1, . . . , xk ∈ [0, 1].
With the above results and Stone-Weierstrass theorem

(Stone 1948), we can deduce the following theorem.

Theorem 1 The QDNN with only QNNLs can uniformly
approximate any continuous function

f : [0, 1]k → R
l .

Now, let us consider the second case. As the affine
transformation can map the hypercube [0, 1]k to [a1, b1] ×
· · ·× [ak, bk] for any ak < bk . Hence we have the following
result.

Corollary 1 The QDNN with QNNLs and affine layers can
uniformly approximate any continuous function

f : D → R
l ,

where D is a compact set in R
k .

Also, the QNNL can be used as a non-linear activation
function. For example, we consider a QNNL Qac with the
input circuit

⊗m
j=1RY (xj )

and the Hamiltonian

Hj = I ⊗ · · · ⊗ I ⊗ |0〉〈0| ⊗ I ⊗ · · · ⊗ I,

where the projection is on the j th qubit for j = 1, . . . , m.
By simple computation, we have

Qac(

⎛

⎜⎝
x1
...

xm

⎞

⎟⎠) =
⎛

⎜⎝
cos(x1)

...
cos(xm)

⎞

⎟⎠ . (5)

By the universal approximation property (Leshno et al.
1993; Kratsios 2019), neural networks with non-polynomial
activation functions can approximate any continuous func-
tion f : R

k → R
l . Thus, the QDNN with QNNLs and

affine layers can approximate any continuous function.
Similar to the classical case, QDNNs with one quantum

layer can approximate any continuous function (Hornik
1991). However, if we restrict the number of parameters
to be polynomial, then there exist functions which can
be approximated with large-depth DNNs and cannot be
approximated by small-depth neural networks (Eldan and
Shamir 2016; Daniely 2017; Vardi and Shamir 2020), and
this is the reason to use multilayer QDNNs.

3.2 Quantum advantages

According to the definition of QNNLs in Eq. 2, each
element of the outputs in a QNNL is of the form

yj = bj + 〈ψ0|U†(�x)V †(
−→
W )HjV (

−→
W )U(�x)|ψ0〉. (6)

In general, estimation of 〈ψ0|U†(�x)V †(
−→
W )HjV (

−→
W )U(�x)

|ψ0〉 on a classical computer will be difficult by the follow-
ing theorem.

Theorem 2 Estimation (6) with precision c < 1
3 is BQP-

hard, where BQP is the bounded-error quantum polynomial
time complexity class.

Proof Consider any language L ∈ BQP. There exists a
polynomial-time Turing machine which takes x ∈ {0, 1}n as
input and outputs a polynomial-sized quantum circuit C(x).
Moreover, x ∈ L if and only if the measurement result of
C(x)|0〉 of the first qubit has the probability ≥ 2

3 to be |1〉.
Because {RX, RZ, CNOT} are universal quantum gates,

C(x) can be expressed as a polynomial-sized PQC: Ux(�θ) =
C(x) with proper parameters. Consider H = Z⊗I⊗· · ·⊗I ,
then

〈0|Ux(�θ)HUx(�θ)|0〉 ≤ −1

3
(7)

if and only if x ∈ L, and

〈0|Ux(�θ)HUx(�θ)|0〉 ≥ 1

3
(8)

if and only if x /∈ L.

Given inputs, computing the outputs of classical DNNs is
polynomial time. Hence, functions represented by classical
DNNs are characterized by the complexity class Ppoly. On
the other hand, computing the outputs of QDNNs is BQP-
hard in general according to Theorem 2. The functions
represented by QDNNs are characterized by a complexity
class that has a lower bound BQP/poly. Here, BQP/poly is the
problems which can be solved by polynomial sized quantum
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circuits with bounded error probability (Aaronson et al.
2005). Under the hypothesis that quantum computers cannot
be simulated efficiently by classical computers, which is
generally believed, there exists a function represented by a
QDNN which cannot be computed by classical circuits of
polynomial size. Hence, QDNNs have more representation
power than DNNs.

4 Experimental results

We will use QDNNs to conduct a numerical experiment
for an image classification task. The data comes from the
MNIST data set. We built a QDNN with 3 QNNLs. The goal
of this QDNN is to recognize the digit in the image is either
0 or 1 as a classifier.

4.1 Experiment details

The data in the MNIST is 28 × 28 = 784 dimensional
images. This dimension is too large for the current quantum
simulator. Hence, we first resize the image to 8 × 8 pixels.
We use three QNNLs in our QDNN, which will be called
the input layer, the hidden layer, and the output layer,
respectively.

In the experiments, we use trainable QDNNs by adopting
local Hamiltonians and small depth structure. We set the
ansatz circuit to be the one in Fig. 3, which is similar to
the hardware efficient ansatz (Kandala et al. 2017) and has
small depth. Because of the small depth of the ansatz and
the local Hamiltonian, the QDNN is trainable (Cerezo et al.
2020). Also, the small depth makes the model possible to
be run on NISQ devices. The hyperparameters DT and DE

will be chosen depending on the problem to be solved.

4.1.1 Input layer

The input layer uses an 8-qubit circuit which accepts an
input vector x ∈ R

64 and outputs a vector �h1 ∈ R
24. The

structure in Fig. 3a is used, where DE = 2, DT = 5. We

denote Vin(
−→
W in) for

−→
W in ∈ R

136 to be the transformation
circuit in this layer.

Table 1 Settings of three layers

# of Input Output # of parameters

qubits dimension dimension (transformation + bias)

Input layer 8 64 24 136 + 24

Hidden layer 6 24 12 84 + 12

Output layer 4 12 2 32 + 0

The output of the input layer is of the form

�h1 =

⎛

⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

〈ψ(�x,
−→
W in)|H1,X|ψ(�x,

−→
W in)〉

...

〈ψ(�x,
−→
W in)|H8,X|ψ(�x,

−→
W in)〉

〈ψ(�x,
−→
W in)|H1,Y |ψ(�x,

−→
W in)〉

...

〈ψ(�x,
−→
W in)|H8,Y |ψ(�x,

−→
W in)〉

〈ψ(�x,
−→
W in)|H1,Z|ψ(�x,

−→
W in)〉

...

〈ψ(�x,
−→
W in)|H8,Z|ψ(�x,

−→
W in)〉

⎞

⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

+ �bin ∈ R
24, (9)

where |ψ(�x,
−→
W in)〉 = Vin(

−→
W in)|ψ(�x)〉 and Hj,M denote the

result obtained by applying the operator M on the j -th qubit
for M ∈ {X, Y, Z}.

4.1.2 Hidden layer

The hidden layer uses 6 qubits. It accepts an vector �h1 ∈ R
24

and outputs a vector �h2 ∈ R
12. The structure shown in

Fig. 3b is used, with DE = 1, DT = 4. Because there are
30 parameters in the encoder, we set the last column of RZ

gates to be RZ(0). Similar to the input layer, the output of
the hidden layer is

�h2 =

⎛

⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

〈ψ(�h1,
−→
Wh)|H1,Y |ψ(�h1,

−→
Wh)〉

...

〈ψ(�h1,
−→
Wh)|H6,Y |ψ(�h1,

−→
Wh)〉

〈ψ(�h1,
−→
Wh)|H1,Z|ψ(�h1,

−→
Wh)〉

...

〈ψ(�h1,
−→
Wh)|H6,Z|ψ(�h1,

−→
Wh)〉

⎞

⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

+ �bh ∈ R
12. (10)

Fig. 3 Ansatz circuits in each QNNL. a The ansatz circuit of the encoder. b The ansatz circuit of the transformation. c. The structure of gate Ent
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Fig. 4 Loss function

4.1.3 Output layer

The output layer uses 4 qubits. We use the structure in Fig. 3c
with DE = 1, DT = 2. Because there are 20 parameters in
the encoder, we set the last column of RZ and RX gates to
be RZ(0) and RX(0). The output of the output layer is

�y =
(
〈ψ( �h2,

−→
W out)|(|0〉〈0| ⊗ I ⊗ I ⊗ I )|ψ( �h2,

−→
W out)〉

〈ψ( �h2,
−→
W out)|(|1〉〈1| ⊗ I ⊗ I ⊗ I )|ψ( �h2,

−→
W out)〉.

)

(11)

Notice that we do not add bias term here, and it will output
a vector in R

2. Moreover, after training, we hope to see if
the input �x is from an image of digit 0, the output �y should

be close to

(
1
0

)
, otherwise it should be close to

(
0
1

)
.

In conclusion, the settings of these three layers are shown
in Table 1. Finally, the loss function is defined as

L = 1

|D|
∑

(�x,y)∈D
|QDNN(�x) − �y|2 , (12)

where D is the training set.

4.2 Experiments result

We used the Julia package Yao.jl (Luo et al. 2019) as
a quantum simulator in our experiments. All data were col-
lected on a desktop PC with Intel CPU i7-4790 and 4GB RAM.

Table 2 Training results
Training set Test set

nshots Loss Accurate rate Loss Accurate rate

100 0.15542687722068718 90.36% 0.15639276595744667 90.17%

1000 0.03284751330438213 98.32% 0.0294211153664303 98.91%

10000 0.020227478326095588 98.92% 0.017112455910165428 99.39%

∞ 0.015732338671740852 98.92% 0.013040602800738285 99.57%

All parameters were initialized randomly in (−π, π).
We use Adam optimizer (Kingma and Ba 2014) to update
parameters. We train this QDNN for 200 iterations with
batch size of 240. We set the number of samples when
evaluating the expectation value of Hamiltonian each time
to 100, 1000, 1000 and ∞. The hyper parameters of Adam
is set to be η = 0.01, β1 = 0.9, β2 = 0.999.

The values of the loss function on the training set during
training is shown in Fig˙ 4. The loss function and accurate
rate of this QDNN on both training set and test set after
training are shown in Table 2. It shows that when the number
of samples reaches 1000, we can train the QDNN with high
performance.

5 Discussion

We introduce the model of QNNL and built QDNN with
QNNLs. We proved that QDNNs have more representation
power than classical DNNs. We presented a practical
gradient-based training algorithm as the analog of BP
algorithms. As a result, the QDNN still keeps most of the
advantages of the classical DNNs. Because the model is
based on the hybrid quantum-classical scheme, it has the
potential to be realized on NISQ processors.

Since we use a classical simulator on a desktop PC for
quantum computation, only QDNNs with a small number
of qubits can be used and only simple examples can
be demonstrated. Quantum hardware is developing fast.
Google achieved quantum supremacy by using a super-
conducting quantum processor with 53 qubits (Arute et al.
2019). From Table 1, only 8 qubits are used in our exper-
iments described in the preceding section, so in principle,
our image classification experiment can be implemented
in Google’s quantum processor. However, due to the lack
of access to a real quantum computer, we are not able
to give simulation tests on how the QDNN works with
noises. With quantum computing resources, we can access
exponential dimensional feature Hilbert spaces (Schuld and
Killoran 2019) with QDNNs and only use polynomial-size
parameters. Hence, we believe that QDNNs will help us to
extract features more efficiently than DNNs.
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