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Abstract

In this paper, we present a robust classification-autoencoder (CAE) which has strong ability to recognize
outliers and defend adversaries. The basic idea is to change the autoencoder from an unsupervised
learning method into a classifier. The CAE is a modified autoencoder, where the encoder is used to
compress samples with different labels into disjoint compression spaces and the decoder is used to
recover a sample with a given label from the corresponding compression space. The encoder is used as
a classifier and the decoder is used to decide whether the classification given by the encoder is correct
by comparing the input sample with the output. Since adversary samples are seeming inevitable for the
current DNN framework, we introduce the list classification based on CAE to defend adversaries, which
outputs several labels and the corresponding samples recovered by the CAE. The CAE is evaluated using
the MNIST dataset in great detail. It is shown that the CAE network can recognize almost all outliers
and the list classification contains the correct label for almost all adversaries.

Keywords. Robust DNN, autoencoder, list classification, outlier, adversary sample.

1 Introduction

The deep neural network (DNN) [13] has become the most powerful machine learning method, which has
been successfully applied in computer vision, natural language processing, and many other fields. One
of the major problems of DNN is its robustness against noises, outliers, and adversaries. There exist vast
literature on improving the robustness of DNNs [1, 3, 5, 34]. In this paper, we present a new approach by
changing the autoencoder from an un-supervised learning model into a classifier.

1.1 Contribution

Intuitively, a neural network is robust if it has high accuracy at the input with noises. On the other hand,
robustness can also be considered in the following more general sense: a neural network is robust if it can
not only correctly classify samples containing noises but also has the ability to recognize outliers and to
defend adversaries [1, 3, 5, 34].

Outlier detection is a key issue in the open-world classification problem [34, 24], where the inputs to the
DNN are not necessarily satisfy the same distribution with the training set. On the contrary, the objects to
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be classified are usually consist of a low-dimensional subspace of the total input space to the DNN and the
majorities of the input are outliers. To be more precise, let us consider a classification DNN F : In → L for
certain object O ⊂ In, where I = [0, 1] and L = {0, 1, . . . , o} is the label set. For the MNIST benchmark
dataset, O is the hand-written numbers, L = {0, 1, . . . , 9}, and n = 784. In general, O is considered to
be a very low-dimensional subset of In and hence the majorities of elements in In are not in O, which are
called outliers. For each element x ∈ In, F will give a label in L to x, which will be wrong with high
probability if F is not specifically designed and trained to defend outliers.

A more subtle and difficult problem related to the robustness of DNN is the existence of adversaries [26],
that is, it is possible to intentionally make little modification to an image in O such that human can still rec-
ognize the object clearly, but the DNN outputs a wrong label or even any given label. Existence of adversary
samples makes the DNN vulnerable in safety-critical applications. Although many effective methods for
training DNN to defend adversaries were proposed [1, 3], it was shown that adversaries seem still inevitable
for current DNNs [2, 22].

In this paper, we present a DNN which has strong ability to recognize outliers and defend adversaries.
The autoencoder is a powerful DNN to learn compressed features for data in high dimensional spaces. The
basic idea of this paper is to change the autoencoder from an unsupervised learning model into a classifica-
tion network. The encoder E of the autoencoder is used to compress the input images into a low-dimensional
space Rm (m� n) such that the images with the same label are compressed into compression space of that
label and images with different labels are compressed into disjoint subsets of Rm. Furthermore, the images
in O can be approximately recovered by the decoder D from their compression spaces. The encoder E is
used both as a feature learner and a classifier, which is different from the usual classifiers in that several
coordinates instead of one are used to represent and classify images for each label. The decoder D can be
used to give the final classification by comparing the input image with the output.

The above network is called a classification-autoencoder (CAE). We prove that such a network exists in
certain sense. Precisely, we prove that there exists an autoencoder such that the encoder compresses images
with different labels into disjoint compression sets of of Rm for any m and the decoder approximately
recovers the input image from its compression set with any given precision.

The CAE is evaluated using the MNIST dataset in great detail. A major advantage of the CAE network
is that almost all outliers can be recognized. As an autoencoder, the outputs of a CAE are always like the
object O to be classified. By definition, an outlier is an image which is not considered to be an element of
O, so an image is treated as an outlier if the input and the output are different.

The CAE also works well for adversaries in the following sense. For most adversaries of MNIST, the
CAE can recognize them as problem images. Considering the fact that adversaries are seemly inevitable
for neural networks with moderate complex structures [2, 22], a possible way to alleviate the problem is to
give several answers instead of one. In a CAE, we can apply the decoder D to the compression space of
each label to recover images and output the labels and corresponding images which are similar to the input
image. This kind classification is called list classification and the output is a classification list, which tries to
give uncertain but lossless classifications. Our experimental results show that for almost all adversaries, the
classification list contains the correct label. A lossless classification is important in that, the classification
does not miss important information, which can be used for further analysis.

1.2 Related work

The autoencoder is one of the most important neural networks for unsupervised learning [4], which has
many improvements and applications. The autoencoder learns compressed features in a low-dimensional
space for high-dimensional data with minimum reconstruction loss, while our CAE makes classification
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at the same time of learning features. It is natural to use autoencoders for outlier detection due to its
reconstruction property [35]. We improve this in two aspects. First, by compressing images with different
labels into disjoint compression spaces, the robustness is increased and the classification can be given.
Second, we use the compression spaces to introduce the list classification. The robustness of autoencoder
was studied [28, 35, 20]. In principle, these methods can be applied to our CAE model to further improve
the robustness.

A simple approach to recognize outliers is to introduce a new label representing outliers and add outlier
samples [34]. The difficulty with this approach is that we need to add outlier samples and the distribution
of outliers is usually too complex to model in high dimensional spaces. As a consequence, a network based
on this approach works well for those outliers similar to those in the training set and works poorly for those
outliers different from those in the training set, as shown by the experimental results in section 3.2 of this
paper. Many approaches were proposed to detect outliers [34, 5, 24]. On the other hand, the CAE proposed
in this paper is more natural to detect outliers, because the output of the CAE are assumed to be similar to
the objects to be classified.

Effective methods were proposed to train more robust DNNs to defend adversaries [30]. In the ad-
versary training method proposed by Madry et al, the loss function is a min-max optimization problem
such that the maximal adversary in a small neighborhood of the training sample is minimized [17]. This
approach can reduce the adversaries significantly [17, 33]. Another similar approach is to generate adver-
saries and add them to the training set [9]. The ensembler adversarial training [27] was introduced for CNN
models, which can apply to large datasets such as ImageNet. A fast adversarial training algorithm was
proposed, which improves the training efficiency by reusing the backward pass calculations [23]. A less
direct approach to enhance the ability for the network to resist adversaries is to make the DNN more stable
by introducing Lipschitz constant or L2,∞ regulations of each layer [6, 26, 32].

Increase the robustness of the network in general will increase its ability to defend adversaries and
there exist quite a lot of work on the robustness of DNN [11, 34]. Adding noises to the training data is an
effective way to increase the robustness [8, Sec.7.5]. The L1 regulation and L1,∞ normalization are used to
increase the robustness of DNNs [31]. Knowledge distilling is also used to enhance robustness and defend
adversarial examples [11]. In [10, 16, 21, 29], methods to compute the robust regions of a DNN were given.

The rest of this paper is organized as follows. In section 2, we give the structure for F and prove the
existence of the CAE. In section 3, we give experimental results and show that the CAE indeed improves
robustness to resist outliers and adversaries. In section 4, we give the list classification algorithm and the
experimental results for it to defend adversaries. In section 5, the proof for the existence of CAE is given.
In section 6, conclusions are given

2 Structure of the classification-autoencoder

An autoencoder F is called a classification autoencoder (CAE),

F = D ◦ E : In → In

E : In → Rm (1)

D : Rm → In

if it satisfies the following properties: E compresses the input images with different labels into disjoint
subsets in Rm called compression spaces of the corresponding label and D will recover the input images
to any given precision from the values of E in their compression spaces. In the rest of this section, we will
give the structure of a CAE and prove its existence.
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2.1 The classifier-encoder E

The encoder E will be used as a classifier by trying to compress images with different labels into different
subspaces of Rm.

Let L = {0, 1, . . . , o} ⊂ N be the set of labels and m = om0, where m0 ∈ N>0 is a super-parameter
to be defined by the user. We try to use E to compress an image with label l to the compression space
of that label: the k-th coordinates of Rm for k = lm0 + 1, . . . ,m0l + m0. Define the mask vectors
Ml ∈ Rm, l = 0, . . . , o for the l-th compress space as follows

Ml[j] =

{
1, when lm0 + 1 ≤ j ≤ lm0 +m0

0, otherwise.

For y ∈ Rm and l ∈ L, the projection weight of y to the l-th compression space is

Wl(y) = y ·Ml

where · is the inner product. In order to realize the goal of CAE, we define the following loss function for
E

Loss1(x, l) = LossCE(A(x)/γ1, l) (2)

where x ∈ Rn, l ∈ L, A(x) = {W0(E(x)), . . . ,Wo(E(x))}, CE stands for CrossEntropy, and γ1 is a super
parameter.

We define the pseudo-label of x ∈ Rn as follows

L(x) = arg max
l∈L

Wl(E(x)) : Rn → L, (3)

that is, L(x) is the label l such that Wl(E(x)) achieves maximum value for all possible l ∈ L.

An image is called a problem image if it is either an outlier or an adversary. We define the following
criterion function C(x) : Rn → {0, 1} to identify problems images:

C(x) = 1 if and only if Wlx(E(x))−Wj(E(x)) > C0 (4)

for all j 6= lx, where lx = L(x) and C0 is a threshold super-parameter. If C(x) = 0, then x is considered
to be a problem image. If C(x) = 1, then x is treated as a candidate with label L(x) for further treatment
with the decoder D to be defined in the next section.

Note that it is possible to choose Ml adaptively as follows: if the objects with label l are more complex,
then Ml could be larger.

2.2 The decoder D

The decoder D : Rm → Rn in (1) tries to use the output E(x) of the network E to recover x from its
compression subspace. We first define a projection function

p(y, l) = y ◦Ml : Rm × L→ Rm

where ◦ is the Hadamard (element-wise) product. For an x ∈ In, the input to the networkD is p(E(x), L(x))
and the loss function for D is

Loss2(x, l) = LossMSE(D(p(E(x), l)), x).
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2.3 The whole network

The network F is certain composition of E and D:

F(x) = D(p(E(x), L(x))) (5)

and the loss function for F is

Loss(x, l) = Loss1(x, l) + γ2Loss2(x, l)

where γ1 and γ2 are super-parameters.

Let Θ1 and Θ2 be respectively the parameter sets ofD and E and Θ = Θ1∪Θ2. The training algorithm
for F is given below.

Algorithm 1 Training Network F
Require:

The super parameters γ1, γ2, γ;
The training set S;
The initial value of Θ: Θ0

1 and Θ0
2

Ensure: The trained parameters Θ̃1, Θ̃2.
Input Θ0

1 and Θ0
2

Given a sample (x, l) in a training set.
For all l in {0, 1, . . . , o}, do

A(x) = {W0(E(x)),W1(E(x)), . . . ,Wo(E(x))}
End for.
L1(x, l) = LossCE(A(x)/γ1, l)
L2(x, l) = LossMSE(D(p(E(x), l)), x)
L(x, l) = L1(x, l) + γ2L2(x, l)
Consider once gradient descent contains N samples. Let:
L =

∑
(x,l) in once gradient descent L(x, l)

Fixed all parameters of D, gradient descent Θ1 as:
Θk+1

1 = Θk
1 − γL5Θk

1

Fixed all parameters of E , gradient descent Θ2 as:
Θk+1

1 = Θk
2 − γL5Θk

2

γ is the step of gradient descent.
Output Θk+1

1 and Θk+1
2

In what below, we will give a termination criterion for the algorithm. Since a sample (x, l) should
satisfy C(x) = 1, we have E(x) ·Ml − E(x) ·Mi ≥ C0 for i 6= l. In this case,

L1(x, l) = − ln
eE(x)·Ml/γ1∑o
i=0 e

E(x)·Mi/γ1
= − ln

1∑o
i=0 e

−(E(x)·Ml−E(x)·Mi)/γ1
≤ ln (1 + 9e−C0/γ1).

So when L1(x, l) ≤ ln (1 + 9e−C0/γ1) for most (x, l) in the training set and L(x, l) is small enough, we
stop the algorithm.

2.4 The classification

We use the autoencoderF as a classifier as follows. By a problem image, we mean an outlier or an adversary
sample.
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Algorithm 2 CAE
The input: x ∈ In, super parameters C0, bs, bu.
The output: a label of x or “x is a problem image”.

S1 Compute F(x) with (5), and L(x) with (3), C(x) with (4).

S2 If C(x) = 0, then output: “x is a problem image.”

S3 If ||F(x)− x|| ≤ bs for a given threshold bs ∈ R>0, then output: “x has label L(x).”

S4 If ||F(x)− x|| ≥ bu for a given threshold bu ∈ R>0(bs < bu), then output: “x is a problem image.”

S5 This step treats those x satisfying bs < ||F(x)− x|| < bu.

S5.1 Let dl = ||D(p(E(x), l))− x||, for all l ∈ L.

S5.2 If dL(x) ≤ dl for all l ∈ L, then output: “x has label L(x).”

S5.3 Or output: “x is a problem image.”

We explain the algorithm as follows. In Step S2, we eliminate the inputs which do not have obvious
characteristic of the objects to be classified. In Step S3, when F(x) and x are similar enough, we think x
belongs to O and its label is given. In Step S4, when x is not anything like F(x), we think x should be
a problem image. In Step S5, we are not sure whether x is an element in O or a problem image. In this
case, we give a refined analysis by computing all D(p(E(x)), l) and checking if D(p(E(x)), L(x)) is more
similar to x than D(p(E(x)), l) for l 6= L(x).

2.5 Existence of the network

The main idea of the network designed in section 2 is that images with the same label are mapped into
a compression space and images with different labels are compressed into disjoint compression spaces.
Furthermore, the images in O can be approximately recovered from their compression spaces. In this
section, we prove that DNNs with such properties exist in certain sense.

Let x ∈ Rn and r ∈ R>0. When r is small enough, all images in

B(x, r) = {x+ η | η ∈ Rn, ||η|| < r}

can be considered to have the same label with x. Therefore, the object O to be classified can be considered
as bounded open sets in Rn. This observation motivates the existence result given below. The proof of the
theorem is given in the section 5.

Theorem 2.1. Suppose that the objects to be classified are a finite number of disjoint bounded open sets
Sl ⊂ In0 with labels l ∈ L = {0, . . . , o}. Then, for any m ∈ N>0 and for any ε > 0, γ > 0, there exist
DNNs E : Rn → Rm and D : Rm → Rn such that

1. Let K = {x ∈
⋃o
i=0 Si | E(x) ∈ E(Si) ∩ E(Sj) for some i 6= j} . Then V (K)∑

i V (Si)
< ε.

2. Let Ŝl = {x ∈ Sl | ||D(E(x))− x|| < γ} for l ∈ L. Then V (Ŝl)
V (Sl)

> 1− ε.
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3 Experimental results on classification

In this section, we will give experimental results based on MNIST dataset. The precise structures of the
networks used in the experiments are given in the Appendix, and the super-parameters are γ1 = 50 and
γ2 = 1, C = 80, bl = 0.04, and bu = 0.09.

3.1 Accuracy on the test set

The test set T of MNIST contains 10000 samples. Let Loss(x, l) = ||x − y||22/784 and LossB(x) =
Loss(F(x), x). Then we have: the average error for the samples in the test set is∑

(x,l)∈T LossB(x)

10000
≈ 0.023.

78 of them are considered to be problem images by S2. We give the distribution of the LossB of 9922
non-problem images in Table 1.

<0.04 0.04-0.05 0.05-0.06 0.06-0.07 0.07-0.8 0.08-0.09 0.09-0.10 >0.10
9581(31) 220(8) 85(4) 26(5) 4(0) 2(0) 1(0) 3(2)

Table 1: Distribution of LossB . The number inside the bracket is the number of samples given the wrong
label by F

We can see that 9550 samples are given the correct labels by S3, and some of then are given in Figure
1. 4 samples are considered as problem images by S4, which are given in Figure 2. In Figure 3, we give
the samples which are considered as problem images by S2. 31 samples are given the wrong labels by S3,
which are given in Figure 4. 337 samples need step S5.

(a) (b)

Figure 1: Correct label by S3. (a): the input, (b): the corresponding output

(a) (b)

Figure 2: Problem images by S4. (a): the input, (b): the corresponding output
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Figure 3: Problem images by S2

(a) (b)

Figure 4: Wrong label by S3. (a): the input, (b): the corresponding output

Among the 337 samples need step S5, 280 of them are given the correct labels, 49 of them are consid-
ered problem images, and 8 of them are given the wrong labels, some of which are given in Figures 5, 6,
and 7, respectively.

(a) (b)

Figure 5: Correct labels by S5. (a): the input, (b): the corresponding output
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(a) (b)

Figure 6: Problem images by S5. (a): the input, (b): the corresponding output

(a) (b)

Figure 7: Wrong label by S5. (a): the input, (b): the corresponding output

To summarize, 9830(=9550+280) samples are given the correct labels, 39=(31+8) samples are given
the wrong labels, and 131(=78+49+4) samples are considered as problem images.

3.2 Defend outliers

In this section, we use four types of outliers to check the ability of F on defending outliers.

For the type 1 outliers, we use randomly generated noise images. We use three kinds of random noise
images. Firstly, let Dn = αN + βU , where N is the normal distribution and U is the uniform distribution,
α, β ∈ R. Let S1 = {xnoise ∈ R28×28}, where every coordinate of xnoise ∈ S is generated by Dn (iid).
We set α = β = 1/2 in the experiment. The 64 type 1 outliers in Figure 8(a) are used as the input and the
output F(x) for these inputs are given in 8(b). It can be seen that the outputs are quite different from the
input and all type 1 samples are easily recognized as outliers by S4.

(a) (b)

Figure 8: Type 1.1 outliers. (a): Input, (b): output

Secondly, we give some random samples with structures. They are created by randomly generating a
row, a column, or the diagonal, and then by copying the row, column or the diagonal randomly to cover the
matrix. We give 64 samples created in this way, and their outputs in Figure 9. All of them were recognized
as problem images by S4.

9



(a) (b)

Figure 9: Type 1.2 outliers. (a): Input, (b): output

Thirdly, the middle 144 pixels of an image in O are given by the normal distribution N (iid). We give
64 samples created in this way and their outputs of F in Figure 10. It is easy to see that the input and the
output are quite different and all of them were recognized as problem images by S4.

(a) (b)

Figure 10: Type 1.3 outliers. (a): Input, (b): output

Finally, we reduce the sizes of images in Cifar-10 to 28× 28 and change the image from color to grey.
These images might be animals or ships, but not numbers, so they are outliers to F trained with MNIST.
We give 64 such samples in Figure 11.

(a) (b)

Figure 11: Type 1.4 outliers. (a): Input, (b): output

We compare our network with a network H which is trained with MNIST plus 60000 noise samples
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with a new label −1, representing outliers. The noise samples, denoted as N1, are generated by αN + βU ,
where α is a random number in (0, 1) and β = 1− α.

We compare F andH for four kinds of outliers given in Figures 8, 9, 10, and 11. It can be seen that our
network can defend all kind of outliers, but H can only defend the samples similar to the random training
samples.

Types of outliers Our network F NetworkH
Figure 8 100% 99%
Figure 9 100% 97%
Figure 10 100% 3%
Figure 11 100% 26%

Table 2: Percentages for F andH to recognize outliers

Finally, we compare the robustness of the two networks to defend outliers. Let Xn be a noise picture in
N1. ForH, we use gradient descent for Xn to make LCE(Xn,−1) smaller. For F , we use gradient descent
for Xn to make LMSE(D(p(E(Xn), L(Xn))−Xn)) smaller. Two types of outliers are generated: (1) each
pixel of Xn is changed up to 0.1; and (2) each pixel of Xn is changed up to 0.2. The network F can still
recognize 100% of them as outliers. H can only recognize 80% of samples (1) and 20% samples (2). So,
we can see that F is very robust to recognize outliers.

To summarize, the network F can recognize almost all outliers and this is one of the main advantages
of the network introduced in this paper.

3.3 Defend adversaries

In this section, we check the ability ofF to defend adversaries. ForF , E(x) is the network for classification,
so we create adversaries for E(x). We use samples in the training set to generate 3 types of adversaries.

The type 1 of adversaries (Linf adversary) are created with FGSM [9] and the change for each coordinate
is≤ 0.1. Some of type 1 adversaries are given in Figure 12. In Figure 13, we compare an enlarged adversary
and the standard image.

(a) (b)

Figure 12: Type 1 adversaries. (a): standard samples, (b): adversary.
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(a) (b) (c)

Figure 13: (a) adversaries, (b) standard sample, (c) the difference.

The creation rate for type 1 adversaries by E is about 35%. We use 1000 type 1 adversaries as input to
F . Among the 1000 type 1 adversaries, 733 samples are considered as problem images, 267 samples are
given wrong labels. So, for about 26.7% of the type 1 adversaries, F gives wrong labels and 73.3% of them
are considered as problem images. Therefore, for about 9.35% = 35% · 26.7% of the training samples. In
Figure 14, we give some samples which are given the wrong labels.

(a) (b) (c)

Figure 14: (a): adversaries, (b): output, (c) output of D(g(E(x), lx)), lx is the label of x.

The type 2 adversaries (L0 adversary) are obtained by changing 80 coordinates of a training sample.
Some type 2 adversaries are given in Figure 15(a) and Figure 15(a) gives the corresponding standard images.

(a) (b)

Figure 15: Type 2 adversaries. (a): adversaries, (b) standard samples.

For the encoder E , the creation rate for type 2 adversaries from the training set is about 96%, and we use
1000 adversaries as input to F . Among the 1000 adversaries, 751 are considered as problem images and
249 are given the wrong labels. So, for about 24.9% of the type 2 adversaries, F gives the wrong labels and
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75.1% of them are recognized as problem images by F . Then, the adversary creation rate of the training
set for F is 23.5% = 96% · 24.9%. In Figure 16, we give some samples which are given the wrong labels.

Figure 16: (a): adversaries, (b): output, (c) output of D(g(E(x), lx)), lx is the label of x.

The type 3 adversaries are called strong adversaries and are generated as follows. Let C be a standard
CNN classification network. First, generate an adversary of C with FGSM such that each pixel changes
≤ 0.2. Second, for the adversary x generated in step 1 with l as the wrong label, use gradient descent on x
to make LCE(F(x), l) bigger and the change for each pixel is ≤ 0.2.

Figure 17 contains 64 type 3 adversaries and their output by F . Among these adversaries, 31 are seen
as problem images (Figure18), 16 are given the correct labels (Figure 19), 17 are given the wrong labels
(Figure20). We try 1000 adversaries of this type, and F gives wrong labels for about 37% of them.

(a) (b)

Figure 17: Type 3 adversaries. (a) adversaries, (b) output from F .

(a) (b)

Figure 18: Problem images.
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(a) (b)

Figure 19: F gives correct labels.

(a) (b)

Figure 20: F gives wrong labels.

We will compare with the well-known min-max model of adversary training proposed in [17]. The
network structure of the min-max model can be found the Appendix. For the type 1.i adversaries, we mean
type 1 adversaries such that the change of each pixel is ≤ 0.i for i = 1, 2, 3. Similarly, type 2.i adversaries
are type 2 adversaries by changing i pixels for i = 40, 60, 80. The results in Table 3 are the creation rates
of adversaries from the training set.

Adversaries E CAE min-max model LCAE NLabels
1.1 38% 9% 6% < 1% 3.04
1.2 83% 21% 15% < 1% 3.10
1.3 96% 26% 55% 1% 3.13
2.40 85% 21% 55% < 1% 3.58
2.60 92% 24% 76% 1% 3.64
2.80 97% 29% 85% 2% 3.70

Table 3: Creation rates of adversaries

We have the following observations. (1) F is better than the min-max model for more difficult adver-
saries. The performance of F is more stable than that of the min-max model. (2) We should note that the
outputs of F and min-max models are different. For these adversaries, F can recognize them as “problem
images”, but cannot give them the correct label. This fact can be seen from the values in the second column
in Table 3, which means that for almost all samples, E and hence F cannot give the correct label. On
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the other hand, the min-max model gives the correct labels for 45% of the type 1.3 adversaries. (3) Also
note that E can be improved with the methods such as the min-max model to increase its ability to resist
adversaries. That is, combining the network introduced in this paper and the min-max model, it is possible
to gain more ability to resist adversaries.

Finally, we give the comparison results for three kinds of strong adversaries. They are generated as
follows: first generate an adversary such that the change of each pixel is ≤ 0.2 and then generate strong
adversaries by further changing each pixel up to 0, 0.1, 0.2. In Table 4, the wrong accuracy rates are given.
We can see that CAE gives lower wrong accuracies for strong adversaries.

Adversaries CAE min-max model LCAE NLabels
3 (0.2+0) 3% 2% <1% 2.87

3 (0.2+0.1) 12% 18% 1% 3.22
3 (0.2+0.2) 37% 51% 4% 3.94

Table 4: Wrong accuracy rates

3.4 Outliers with certain characteristics of numbers

Besides the outliers and adversaries considered in sections 3.3 and 3.2, there exist images which are not
numbers, but have certain characteristics of numbers. In this section, we give two classes of such samples.

3.4.1 Mixing two numbers

The outliers are obtained by adding two images from MNIST with different labels and 64 such samples and
their outputs are given in Figure 21. 29 of them are given the wrong labels and 35 of them are considered
as problem images, which are given in Figure 22 and Figure 23, respectively.

We have tried 1000 samples of this kind, and about 59% of them are recognized by F as problem
images, and only 2% of them are recognized byH in section 3.2 as outliers.

(a) (b)

Figure 21: Mixing two numbers. (a): Input, (b): output
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(a) (b)

Figure 22: F gives the wrong labels.

(a) (b)

Figure 23: F considers as problem images.

3.4.2 Adversary of outlier for E

The adversaries of outliers are intentionally generated such that the encoder E thinks them as numbers
with high probability, but they look quite different from numbers. Precisely, we select samples satisfying
|E(x) · Vlx − E(x) · Vj | > 200 for j 6= lx = L(x). Figure 24(a) gives 64 such outliers which will be used
as the input. 56 of them are considered as problem images, which are given in Figure 25. 8 of them are
considered as numbers, which are shown in Figures 26, respectively.

We try 500 samples of this type with CAE, and about 77% of them are seen as problem images by
F , but only 32% of them are recognized by H in section 3.2 as outliers. Thus, CAE has strong ability to
recognize adversaries of outliers, that is, although the encoder thinks them as numbers, the decoder can be
used to recognize them as outliers.
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(a) (b)

Figure 24: Type 2 outliers. (a): Input, (b): output

(a) (b)

Figure 25: Problem images.

(a) (b)

Figure 26: 8 outliers are considered as numbers. (a): input, (b): output.

4 List classification to resist adversaries

It is widely believed [2, 22] that adversaries are inevitable for the current DNN framework. A possible way
to alleviate the problem is to give several labels instead of one. In this section, we give such an approach
based on the CAE introduced in section 2.
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4.1 The list classification

The list classification algorithm is motivated by Figures 14 and 16, where the label L(x) is wrong, but
D(g(E(x), lx)) gives a very close approximation to the input x. Therefore, we will compare x with
D(g(E(x), l)) for all l and output those similar to x with “high probabilities”. We first define a distance
between two images.

Definition 4.1. Let x ∈ Rn, and A(x) the average of all coordinates of x. For a ∈ R, define S(a) = 1 if
a > 0, and S(a) = 0 if a ≤ 0. Define x̂ = (x̂1, . . . , x̂n) ∈ {0, 1}n, where x̂i = S(xi − A(x)). We call x̂
the standardization of x. Also define Dis(x, y) = A(x−y)

A(x+y) for x, y ∈ Rn.

Suppose that F in (1) is trained. We do the image classification by giving several possible answers.

Algorithm 3 LCAE
The input: x ∈ In, super-parameters B and D (in MNIST experiments, we choose B=14 and D=0.1).
The output: a list of labels and the corresponding output images of F .

S1 Compute F(x) with (5), and L(x) with (3).

S2 Let zl = D(g(E(x), l)), for all l ∈ L.

S3 Compute Ll = ||zl − x||, Dl = Dis(ẑl, x̂), and El = DlLl for l ∈ L.

S4 The probability for x to be an outlier is P−1 = 1−e−(BEm)2

1+e−(BEm)2
, where Em = minlEl.

S5 The probability for x to have label l is Pl = (1− P−1)P̄l, where P̄l = 1/El∑
j 1/Ej

and l ∈ L.

S6 Output (l, zl) if Pl > D for l ∈ L.

We give an illustrative example. In Figure 27, the images x, zl, x̂, ẑl are given. In Table 5, the proba-
bilities Pl are given. The probability of the picture to have label 1 is 88.80% and all other probabilities are
smaller than 0.1.

Figure 27: The first row is x and zl in S2; the second row is x̂ and ẑl.

l = −1 0 1 2 3 4 5 6 7 8 9
Dis(x, zl) 0.0473 0.0029 0.0290 0.0727 0.0266 0.0727 0.0515 0.0255 0.0357 0.0727
Dis(x̂, ẑl) 0.3848 0.069 0.2759 1 0.2820 1 0.4951 0.2902 0.2773 1

El 0.0182 0.0002 0.0080 0.0727 0.0075 0.0727 0.0255 0.0074 0.0099 0.0727
P̄l 0.0098 0.8881 0.0222 0.0024 0.0237 0.0024 0.0070 0.0240 0.0179 0.0024
Pl 0.01% 0.98% 88.80% 2.22% 0.24% 2.37% 0.24% 0.70% 2.40% 1.79% 0.24%

Table 5: The probabilities for x to have label l.
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4.2 Accuracy on the test set

We use LCAE to the test set of MNIST, which contains 10000 samples. The structure of the network F
is given in the Appendix. The number of samples whose output contains the correct label is 9997. The
number of samples whose output only contains the correct label is 5711. The number of samples whose
output contains outlier is 1. In Table 6, we give the number of labels. The average number of labels in the
output is 1.7228

Number of labels 1 2 3 4 5 6
Number of samples 5712 2122 1500 560 104 2

Table 6: Number of labels in the output

In Figure 28, we give the sample whose output contains outlier. In Figures 29, 30, 31, we give the
three samples whose outputs do not contain the correct label. In Table 7, we give the probabilities of these
figures.

Figure 28: Output contains outlier. (The first line is x and zl in S2, the second is x̂ and ẑl)

Figure 29: Output does not contain the correct label 5.

Figure 30: Output does not contain the correct label 5.

Figure 31: Output does not contain the correct label 5.
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l = −1 0 1 2 3 4 5 6 7 8 9

Pl 12.5% 13.1% 11.7% 12.9% 4.52% 4.20% 4.20% 9.39% 8.50% 11.7% 7.21%
Pl 0.25% 36.2% 1.91% 6.94% 14.7% 1.25% 8.27% 12.4% 1.34% 12.5% 4.08%
Pl 0.01% 0.63% 0.75% 0.43% 59.5% 0.43% 4.68% 0.43% 0.65% 2.64% 29.7%
Pl 0.01% 0.82% 0.96% 0.77% 76.6% 0.53% 7.42% 0.53% 0.56% 4.95% 6.77%

Table 7: The probabilities for the inputs in Figure 28, 29, 30, 31

4.3 Defend adversaries

We check the ability of the list classification model to defend adversaries for the three types of adversaries
given in section 3.3. The creation rates of adversaries for LCAE are given in the column “LCAE” of Tables
3 and 4, and the numbers of labels in the outputs of LCAE are given in column “NLabels”. From these
tables, we can see that the list classification can almost always give the correct labels for various adversaries
by outputting about 3.5 labels. Thus, the list classification can be considered to give an uncertain but lossless
classification. In the rest of this section, we give some examples.

In the following figures, we give six adversaries and the outputs of LCAE. In Table 8, we give the
probabilities for these adversaries.

Figure 32: This is a type 1.1 adversarial of 7; the correct label 7 is given. P7 = 27.24%. (The first row is x
and zl in S2, the second row is x̂ and ẑl)

Figure 33: This is a type 1.2 adversarial of 5; the wrong label is 6; P5 = 7.22%.

Figure 34: This is a type 2.20 adversarial of 5; the wrong label is 9; P5 = 12.17%.

Figure 35: This is a type 2.80 adversarial of 5; the wrong label is 8; P5 = 7.18%.
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Figure 36: This is a type 3 adversarial of 7; wrong label is 8; P7 = 14.97%.

Figure 37: This is a type 3 adversarial of 5; wrong label is 9; P5 = 9.03%.

l = −1 0 1 2 3 4 5 6 7 8 9

Pl 0.74% 6.79% 3.45% 3.45% 3.67% 12.2% 7.34% 3.45% 27.2% 10.6% 20.9%
Pl 0.41% 2.58% 15.8% 4.29% 7.86% 0.89% 7.22% 31.4% 0.89% 24.6% 3.92%
Pl 3.32% 4.13% 3.89% 3.89% 4.02% 15.0% 12.1% 11.2% 3.89% 16.6 21.7%
Pl 2.80% 6.92% 3.26% 9.11% 3.03% 18.4% 7.18% 11.6% 2.67% 21.8% 13.1%
Pl 3.84% 8.69% 4.69% 14.1% 8.86% 9.76% 4.69% 4.69% 14.9% 15.5% 10.1%
Pl 3.03% 4.18% 9.92% 3.84% 3.88% 15.9% 9.03% 13.2% 3.84% 15.5% 17.7%

Table 8: Probabilities for the samples in Figures 32, 33, 34, 35, 36, 37.

4.4 Recognize outliers

In section 3.2, it is already shown that CAE can recognize most outliers. In this section, we give a more
detailed analysis on the ability of F to defend outliers by giving the results of LCAE. In Table 9, we give
the percentages of the samples whose P−1 is lager than 50% and 80%, respectively. From the table, we see
that P−1 > 50% for all images. If a sample has P−1 > 50%, it is almost certain to be an outlier.

Outlier P−1 > 50% P−1 > 80%

Figure 8 100% 100%
Figure 9 100% 100%
Figure 10 100% 64%
Figure 11 100% 98%

Table 9: The percentages of outliers which have probability bigger than 50% and 80%

In Figures 38 and 39, two outliers in Figures 10 and 11 are given, respectively. Their corresponding
probabilities are given in Table 10.

Figure 38: An outlier from Figure 10 and the output.
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Figure 39: An outlier in Figure 11 and the output.

l = −1 0 1 2 3 4 5 6 7 8 9

Pl 79.5% 2.20% 2.44% 2.17% 2.20% 1.32% 2.73% 1.32% 2.45% 2.29% 1.36%
Pl 99.0% 0.01% 0.01% 0.01% 0.01% 0.01% 0.01% 0.01% 0.01% 0.01% 0.01%

Table 10: The probabilities for the images in Figures 38 and 39.

4.5 Outliers with certain characteristics of numbers

To apply LCAE to 1000 outliers in section 3.4.1, for only about 7% of the samples, P−1 ≥ 10%. This is
easy to understand: since the images are obtained by adding two numbers, they have strong characteristics
of numbers.

On the other hand, this class of outliers suggests another possible application of LCAE: find numbers
from outliers which have certain characteristics of numbers. We use 1000 this kind of outliers as input to
LCAE. For about 54% of these outliers, the two numbers used to form the images are found by LCAE, and
for 99% of them, one of the two numbers is found. We give three examples in Figures 40, 41, 42, and the
corresponding probabilities are given in Table 11.

Figure 40: LCAE finds the two number 2 and 9 used to form the image.

Figure 41: LCAE finds one of the two number 4 and 5 used to form the image.

Figure 42: LCAE finds none of the two numbers 0 and 4 used to form the image.
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l = −1 0 1 2 3 4 5 6 7 8 9

Pl 3.07% 3.25% 7.39% 20.4% 11.4% 12.2% 1.73% 1.73% 2.14% 15.41% 21.1%
Pl 2.50% 3.31% 3.99% 9.02% 10.0% 12.3% 4.44% 1.94% 6.83% 21.9% 23.6%
Pl 3.34% 6.92% 3.02% 7.64% 3.46% 7.73% 5.61% 10.83% 2.79% 25.4% 23.2%

Table 11: The probabilities for the images in Figures 40, 41, 42.

For the adversary of outliers given in section 3.4.2, the performance of LCAE is similar to that of CAE.
For 500 adversaries of outliers, we give the performance of LCAE in Table 12. That is, about 72% of them
are seen as outliers. We also give two samples in Figures 43 and 44, and their corresponding probabilities
are given in Table 44.

Outliers P−1 > 10% P−1 > 30% P−1 > 50%

4 72% 57% 22%

Table 12: The proportion of outlier that have probability bigger than 10%, 20%, 30%

Figure 43: The image is seen as an outlier: P−1 > 50%.

Figure 44: The image is seen as one of the numbers: 1, 4, 7, 8, 9.

l = −1 0 1 2 3 4 5 6 7 8 9

Pl 52.5% 2.39% 2.39% 2.48% 4.15% 7.52% 5.85% 2.39% 5.90% 6.89% 7.47%
Pl 1.68% 1.46% 12.5% 3.01% 7.04% 24.1% 1.46% 1.46% 15.1% 13.1% 18.9%

Table 13: The probabilities for the images in Figures 43 and 44.

5 Proof of Theorem 2.1

We first consider the case where the objects to be classified consist of a single connected open set. Introduce
the notations: I0 = (0, 1) and V (S) is the volume of S for S ⊂ Rn.

Lemma 5.1. Let S be a bounded and connected open set in Rn and A a bounded and connected open set
in Rm. For any ε, γ ∈ R>0 and any m ∈ N>0, there exist functions E : Rn → Rm and D : Rm → Rn,
which are sectional-continuous functions with a finite number of continuous regions and satisfy

0. E(x) = 0 if x 6∈ S and D(y) = 0 if y 6∈ A.

1. V1 = {x ∈ S ⊂ Rn |E(x) ∈ A} satisfies V (V1)
V (S) > 1− ε;
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2. V2 = {y ∈ A ⊂ Rm |D(y) ∈ S} satisfies V (V2)
V (A) > 1− ε;

3. V3 = {x ∈ S ⊂ Rn | ||x−D(E(x))|| < γ} satisfies V (V3)
V (S) > 1− ε.

Proof. Without loss of generality, assume S ⊂ In0 and A ⊂ Im0 . Let k ∈ N>0 and

Ck,d1,d2,...,dn = (
d1

k
,
d1 + 1

k
)× (

d2

k
,
d2 + 1

k
) · · · × (

dn
k
,
dn + 1

k
),

where di ∈ {0, 1, 2, . . . , k − 1}. Let

Sk = {Ck,d1,d2,...,dn |Ck,d1,d2,...,dn ⊂ S}.

It is easy to see that V (Sk) = tk/k
n, where tk is the number of cubes in Sk. When k becomes lager, V (Sk)

will increase and approach to V (S). Then, we can choose a k such that

k >

√
m

γ
and

V (Sk)

V (S)
=

tk
kn

V (S)
> 1− ε. (6)

For simplicity, let Sk = {Ci}tki=1. Let
Ak = {ai}tki=1 (7)

be tk distinct points in A. Define E and D as follows

E(x) : Rn → Rm, E(x) = ai if x ∈ Ci and E(x) = 0 otherwise. (8)

D(y) : Rm → Rn, D(y) = ci if y ∈ A and D(y) = 0 otherwise,

where ci is the center of Ci and i is determined as follows: ai is the point in Ak, which is nearest to y. It
is clear that E(x) is a constant function over each Ci and D(x) is a constant function over each Voronoi
polyhedron cell generated by Ak inside A.

We now prove that E and D satisfy the properties of the lemma. From the above construction, we have
V1 = ∪tki=1Ci and V (V1) = V (Sk). Then property 1 follows from (6). It is easy to see V2 = A. Then
V (V2)
V (A) = 1, and property 2 is proved. For Ci ∈ Sk, if x ∈ Ci, then D(E(x)) is the center of Ci, and hence

||D(E(x))− x|| <
√
m
k < γ by (6). Then V3 = V1 and the lemma is proved.

From the proof of Lemma 5.1, we have

Corollary 5.1. Use the notations in Lemma 5.1. There exists a number t such that

1. V1 = V3 = ∪ti=1Ci, where Ci ⊂ S are disjoint open cubes with center ci.

2. Let At = {ai}ti=1 be t distinct points inside A and Ri, i = 1, . . . , t the Voronoi polyhedron cells
generated by At inside A and ai ∈ Ri. Then V2 = A = ∪ti=1Ri.

3. E(x) = ai for x ∈ Ci and E(x) = 0 otherwise. D(y) = ci for y ∈ Ri and D(y) = 0 otherwise.

For a set W ⊂ Rn and a ∈ R>0, define W a = {x ∈W | ∃r > a, s.t. B(x, r) ⊂W}.

Lemma 5.2. Let F : In0 → Rm be a piece wise linear function with a finite number of linear regions. Then
for any ε > 0, γ > 0, α > 0, there exists a DNN F : In0 → Rm such that |F(x)− F (x)| < ε for x ∈ Aγ ,
where A is any linear region of F . Moreover, D = {x | F(x)− F (x)| > ε} satisfies V (D) < α.
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Proof. It is easy to see that there exists a continuous function H which satisfies that |F (x) − H(x)| = 0
for x ∈ Aγ . Then the lemma follows from the universal approximation theorem of DNN [12, 15, 19].

We now prove the existence of the network defined in section 2. When r is small enough, all images
in B(x, r) can be considered to have the same label with x. Therefore, the object O to be classified can be
considered as a bounded open set in Rn, and this motivates the existence results given below. We restate
Theorem 2.1 below.

Theorem 5.1. Suppose that the objects to be classified are a finite number of disjoint bounded open sets
Sl ⊂ In0 with labels l ∈ L = {0, . . . , o}. Then, for any m ∈ N>0 and for any ε > 0 and γ > 0, there exist
DNNs D : Rm → Rn and E : Rn → Rm such that

1. Let K = {x ∈
⋃o
i=0 Si | E(x) ∈ E(Si) ∩ E(Sj) for some i 6= j} . Then V (K)∑

i V (Si)
< ε.

2. Let Ŝl = {x ∈ Sl | ||D(E(x))− x|| < γ} for l ∈ L. Then V (Ŝl)
V (Sl)

> 1− ε.

Proof. Let A0 = Im0 and Aj = {y | y = z + 2j1, z ∈ Aj−1} for j = 1, . . . , o, where 1 ∈ Rm is the
vector whose coordinates are 1. We first assume that each Sl is connected. By Lemma 5.1 and Corollary
5.1, for each l ∈ L and ε1, γ1 ∈ R>0, there exist functions El : Rn → Rm and Dl : Rm → Rn, which are
sectional-continuous functions with a finite number of continuous regions and satisfy

(A1) Vl,1 = ∪ti=1Cl,i, where Cl,i ⊂ Sl are disjoint open cubes with center cl,i. Furthermore, V (Vl,1)
V (Sl)

>

1− ε1 and ||x−Dl(El(x))|| < γ1 for x ∈ Vl,1.

(A2) Ul = {al,i}ti=1 is a set of t distinct points inside Al and Rl,i, i = 1, . . . , t the Voronoi polyhedron
cells generated by Ul inside Al and al,i ∈ Rl,i. Therefore, Al = ∪oi=0Rl,i.

(A3) El(x) and Dl(y) are defined as follows: El(x) = al,i for x ∈ Cl,i and El(x) = 0 otherwise;
Dl(y) = cl,i for y ∈ Rl,i and Dl(y) = 0 otherwise.

Define E and D as follows: E(x) =
∑o

i=0Ei(x) and D(y) =
∑o

i=0Di(y). Note that E is constant over
Cl,i and D is constant over Rl,j . We call Cl,i and Rl,j constant regions of E and D, respectively.

By Lemma 5.2, for any ε2, ε3, and β, there exist DNNs E and D such that

(B1) ||E(x) − E(x)|| < ε2, for x ∈ In0 \ S−1, where S−1 ⊂ In0 , V (S−1) < ε3, and Cβ/4l,i

⋂
S−1 = ∅ for

any constant region Cl,i of E.

(B2) ||D(y) − D(y)|| < ε2, for y ∈ A \ S−2, where A = ∪oi=0Ai, S−2 ⊂ A, V (S−2) < ε3, and
R
β/4
l,i

⋂
S−2 = ∅ for any constant region Rl,i of D.

Let βl be the minimal of the distances between any pair of points in E(Sl) = Ul = {al,i}ti=1 and the
distances between any point in E(Sl) and the surface of Al. Choose the parameters such that

(C0) β < βl for all l ∈ L.

(C1) ε2 ≤ β/4 and ε2 ≤ 1/2.

(C2) ε3 < ε
∑

l V (Sl).

(C3) γ1 + ε2 < γ, ε1 + ε3
V (Sl)

< ε for all l.
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We now prove that E and D satisfy the properties in the theorem. Let x ∈ K. Then E(x) ∈ E(Si) ∩
E(Sj) for i 6= j. By property (B1), if x ∈ Si/S−1 then E(x) ∈ Di = (−ε2, 1 + ε2)m + 2i1. Similarly,
if x ∈ Sj/S−1 then E(x) ∈ Dj = (−ε2, 1 + ε2)m + 2j1. By (C1), we have Di

⋂
Dj = ∅ if i 6= j. So

x ∈ K implies x ∈ S−1, and hence V (K) < ε3 by (B1). Because of (C2), we have V (K)∑
l V (Sl)

< ε. The first
property of the theorem is proved.

Let x ∈ Cl,i/S−1. We will prove

||D(E(x))− x|| ≤ ||D(E(x))− x||+ ε2 ≤ γ1 + ε2 ≤ γ. (9)

The first inequality in (9) follows from ||D(E(x)) − D(E(x))|| < ε2 which will be proved below.
By (A3), E(x) = al,i ∈ Rl,i for x ∈ Cl,i. For any x0 ∈ B(E(x), β/2), E(x) is the nearest point of
x0 in E(Sl) by (C0), and hence B(E(x), β/2) ⊂ Rl,i is a constant region of D(y) by (A2). By (C1),
B(E(x), ε2) ⊂ B(E(x), β/2) ⊂ Rl,i and hence B(E(x), ε2) ⊂ R

β/4
l,i . By (B1), E(x) ∈ B(E(x), ε2) since

x ∈ Cl,i/S−1, hence E(x) ∈ Rβ/4l,i . By (B2), E(x) 6∈ S−2 and hence ||D(E(x)) − D(E(x))|| < ε2. The
first inequality in (9) is proved.

We now prove the second inequality in (9). We already proved E(x) ∈ B(E(x), ε2) ⊂ Rl,i and hence
D(E(x)) = D(E(x)) by (A3). By (A1), ||D(E(x))− x|| = ||D(E(x))− x|| < γ1 since x ∈ Cl,i ⊂ Vl,1.
The last inequality in (9) follows from (C3).

By (9), Vl,1/S−1 ⊂ Ŝl. Finally, by (B1), (A1), and (C3), we have, V (Ŝl)
V (Sl)

≥ V (Vl,1/S−1)
V (Sl)

>
V (Vl,1)−ε3
V (Sl)

>

(1− ε1)− ε3
V (Sl)

> 1− ε. The theorem is proved.

In the above proof, each Sl is assumed to be connected. It is clear that the proof can be easily modified
for the case such that different Sl have the same label.

6 Conclusion

In this paper, we consider the problem of building robust DNNs to defend outliers and adversaries. In
the open-world classification problem, the inputs to the DNN could be outliers which are irrelevant to the
training set. On the contrary, the objects to be classified usually consist of a low-dimensional subspace of
the total input space to the DNN and the majority of the input are outliers. So, the DNN need to recognize
outliers in order to be used in open-world applications. A more subtle robust problem is that, for almost all
DNNs with moderate complex structures, there exist adversary samples. Ability to defend adversaries is a
necessary condition for the DNN to be used in safety-critical applications.

In this paper, we present a new neural network structure which is more robust to recognize outliers and
to defend adversaries. The basic idea is to change the autoencoder from an un-supervised learning method
to a classifier, where the encoder maps images with different labels into disjoint compression subspaces
and the decoder recovers the image from its compression subspace. The newly introduced classification-
autoencoder can recognize almost all outliers due to the fact that the output of the autoencoder is always
similar the objects to be classified.

Since adversaries are seemly inevitable for the current DNNs, we introduce the list-classification based
on the classification-autoencoder, which outputs several labels instead of one. With the list-classification,
the outliers and the “nice” classified objects are firstly recognized, and for the adversaries and “fuzzy”
objects, we output several labels and the corresponding images generated by the network. According to
our experiments, the list-classification can give near lossless classification. The multi-output of the list
classification could be used for further analysis, for example by other methods or even by a person.
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Appendix. Structure of the network

We give the structure of the networks used in the experiments in sections 3 and 4.

The structure of E in (1):
Input layer: N × 1× 28× 28, where N is steps of training.

Hidden layer 1: a convolution layer with kernel 1 × 10 × 3 × 3 with padding= 1 → do a batch
normalization→ do Relu→ use max pooling with step=2.

Hidden layer 2: a convolution layer with kernel 10 × 28 × 3 × 3 with padding= 1 → do a batch
normalization→ do Relu→ use max pooling with step=2.

Hidden layer 3: a convolution layer with kernel 28 × 28 × 3 × 3 with padding= 1 → do a batch
normalization→ do Relu→ use max pooling with step=2.

Hidden layer 4: draw the output as N × 252→ use a full connection with output size N × 168→ do
Relu.

Output layer: a full connection layer with output size N × 100→ do Relu.

The structure of D in (1):
Input layer: N × 100

Hidden layer 1: a full connection layer with output size N × 252→ do Relu.

Hidden layer 2: a full connection layer with output size N × 600→ do Relu.

Hidden layer 3: a full connection layer with output size N × 2700→ do Relu.

Hidden layer 4: draw the output as N × 3 × 30 × 30→ use convolution with kernel 3 × 28 × 3 × 3
with padding= 0→ do a batch normalization→ do Relu.

Output layer: use convolution with kernel 28× 1× 1× 1 with padding= 0→ do Relu.

The structure of the CNN is given below, which is used to train the min-max model in section 3.3
and to create the strong adversarial samples in section 3.3. The networkH in section 3.2 is similar to
this network, whose output layer is a full connection layer with output size N × 11.

Input layer: N × 1× 28× 28.

Hidden layer 1: a convolution layer with kernel 1 × 32 × 3 × 3 with padding= 1 → do Relu → use
max pooling with step=2.

Hidden layer 2: a convolution layer with kernel 32 × 64 × 3 × 3 with padding= 1→ do Relu→ use
max pooling with step=2.

Hidden layer 3: a convolution layer with kernel 64 × 64 × 3 × 3 with padding= 1→ do Relu→ use
max pooling with step=2.

Hidden layer 4: draw the output as N × 576→ use a full connection layer with output size N × 128
→ do Relu.

Output layer: a full connection layer with output size N × 10.
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