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Abstract

In this paper, the bias classifier is introduced, that is, the bias part of a DNN with Relu as
the activation function is used as a classifier. The work is motivated by the fact that the bias
part is a piecewise constant function with zero gradient and hence cannot be directly attacked
by gradient-based methods to generate adversaries, such as FGSM. The existence of the bias
classifier is proved and an effective training method for the bias classifier is given. It is proved that
by adding a proper random first-degree part to the bias classifier, an information-theoretically
safe classifier against the original-model gradient attack is obtained in the sense that the attack
will generate a totally random attacking direction. This seems to be the first time that the
concept of information-theoretically safe classifier is proposed. Several attack methods for the
bias classifier are proposed and numerical experiments are used to show that the bias classifier
is more robust than DNNs with similar size against these attacks in most cases.

Keywords. Robust DNN, adversarial samples, bias classifier, information-theoretically safe,
gradient-based attack.

1 Introduction

The deep neural network (DNN) [19] has become the most powerful machine learning method,
which has been successfully applied in computer vision, natural language processing, game playing,
protein structure prediction, and many other fields.

A major weakness of DNNs is the existence of adversarial samples [28], that is, it is possible to
intentionally make small modifications to an input such that human can still recognize the input
clearly, but the DNN outputs a wrong label or even any label given by the adversary. Existence
of adversary samples makes the DNN vulnerable in safety-critical applications. Although many
effective methods to defend adversaries were proposed [21, 1, 4, 38], it was shown that adversaries
are still inevitable for current DNNs [3, 24]. In [5], it was proved that adversarial attacks always
exist for any successful DNNs under certain conditions. In this paper, we present a new approach
by using the bias part of the DNN as the classifier and show that the bias classifier is safe against
gradient-based attacks.

∗This work is partially supported by NSFC grant No.11688101 and NKRDP grant No.2018YFA0306702.
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1.1 Contributions

Let I = [0, 1] ⊂ R and F : In → Rm a classification DNN for m objects, using Relu as the activation
function. For any x ∈ In, there exist Wx ∈ Rm×n and Bx ∈ Rm such that

F(x) = Wxx+Bx

where Wxx is called the first-degree part and Bx the bias part of F . From the definition of Relu,
the bias part

BF : In → Rm

defined as BF (x) = Bx is a piecewise constant function with a finite number of values.

The most popular and effective methods to generate adversaries, such as FGSM [12] or PGD [21],

use ∇F(x)
∇x to make the loss function bigger. An attack on DNNs only using the values of F(x)

and ∇F(x)
∇x is called a gradient-based attack. Since n is generally quite large, using ∇F(x)

∇x to find
adversaries in the high-dimensional space Rn seems inevitable.

Motivated by the above observation, the bias classifier is introduced in this paper, that is, the
bias part BF : In → Rm of F is used to classify the m objects. Since BF is a piecewise constant
function, it has zero gradients and is safe against direct gradient-based attacks. The contributions
of this paper are summarized below.

First, the existence of the bias classifier is proved. Precisely, it is shown that for any classification
problem, there exists a DNN F such that its bias part BF gives the correct label with arbitrarily
high probability.

Second, an effective training method for the bias classifier is proposed. It is observed that
the adversarial training method introduced in [21] significantly increases the classification power
of the bias part. Furthermore, using the adversarial training to the loss function LCE(BF (x), y) +
γLCE(F(x), y) increases the classification power of the bias part and decreases the classification
power of first-degree part of F , and hence is used to train the bias classifier.

Third, an information-theoretically safe bias classifier against gradient-based attacks is given. A
network F is called information-theoretically safe against an attack A, if when generate an adversary
for a sample x with A, a random attack direction is given. In other words, the rate to generate
adversaries with A equals the rate of random samples to be adversaries. Let W ∈ Rm×n be a
matrix with certain random entries, F : In → Rm a trained bias classifier, and F̃(x) = F(x) +Wx.
Then, it is shown that BF̃ is information-theoretically safe against the gradient-based attack of F̃ ,
if the structure and parameters of F are kept secret. The notion of information-theoretically safe is
borrowed from cryptography [10], which means that the ciphertext yields no information regarding
the plaintext for cyphers which are perfectly random.

Fourth, several methods to attack the bias classifier are proposed. Experiments with MNIST
and CIFAR-10 show that the bias classifier has comparable accuracies with DNNs on the test sets
and is more robust than DNNs of similar sizes against these adversarial attacks in most cases.

1.2 Related work

There exist two main approaches to obtain more robust DNNs: using a better training method or
a better structured DNN. Of course, the two approaches can be combined.

Many effective methods were proposed to train more robust DNNs to defend adversaries [1,
4, 38, 34]. The adversarial training method proposed by Madry et al [21] can reduce adversaries
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significantly, where the value of the loss function of the worst adversary in a small neighborhood of
the training sample is minimized. A similar approach is to generate adversaries and add them to the
training set [12]. A fast adversarial training algorithm was proposed, which improves the training
efficiency by reusing the backward pass calculations [25]. A less direct approach to resist adversaries
is to make the DNN more stable by introducing the Lipschitz constant or Lp,∞ regulations of
each layer [6, 28, 36, 35]. Adding noises to the training data is an effective way to increase the
robustness [11]. Knowledge distilling is also used to enhance robustness and defend adversaries [16].

In this paper, the adversarial training [21] is used to a new loss function to train the bias
classifier.

Many effective new structures for DNNs were proposed to defend adversaries. The ensembler
adversarial training [29] was introduced for CNN models, which can apply to large datasets such
as ImageNet. In [33], a denoising layer is added to each hidden layer to defend adversarial attack.
In [17], difference-privacy noise layers are added to defend adversaries. In [23], a low-rank DNN is
shown to be more robust. In [37], a classification-autoencoder was proposed, which is robust against
outliers and adversaries. In [7], it was observed that by taking average values of points in a small
neighbourhood of an input can give a larger robust region for the input. In [13, 32], strategies to
defend adversarial attacks by modifying the input were given.

In this paper, a new idea to obtain robust DNNs is given, that is, the bias part is used as
the classifier to avoid gradient-based attacks. Another advantage of using the bias part as the
classifier is that, an information-theoretically safe classifier can be constructed. Our network does
not deliberately hide the gradient like the method in [2]. Our network does not have gradient, so
the white box attack method for the gradient hiding method in [2] does not work for our model.

The rest of this paper is organized as follows. In section 2, the existence of the bias classifier is
proved and the training method is given. In section 3, several attack methods for the bias classifier
are given. In section 4, the bias classifier is shown to be information-theoretically safe against the
original-model gradient-based attack. In section 5, numerical experimental results are given to show
that the bias classifier indeed improves robustness to resist adversaries. In section 6, conclusions
are given.

2 Bias Classifier

In this section, we prove the existence of a DNN F such that the bias part of F can be used as a
classifier. We also give a training algorithm for the new classifier.

2.1 The standard DNN

Let I = [0, 1] ⊂ R and [n] = {1, . . . , n} for n ∈ N>0. Let F : In → Rm be a classification DNN with
L hidden layers and the label set L = [m]. Each hidden-layer of F uses Relu as activity functions
and the output layer does not have activity functions. We write F : In → Rm as

x0 ∈ In, n0 = n, nL+1 = m,
xl = Relu(Wlxl−1 + bl) ∈ Rnl , l ∈ [L],
F(x0) = xL+1 = WL+1xL + bL+1,

(1)

where Wl ∈ Rnl×nl−1 , bl ∈ Rnl . Denote ΘF = {Wl, bl}L+1
l=1 to be the parameter set of F . Given a

training set S, the network F can be trained by solving the following optimization problem with
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BP
min

Θ

∑
(x,y)∈S

LCE(F(x), y). (2)

For any x ∈ In, there exist Wx ∈ Rm×n and Bx ∈ Rm, such that F(x) = Wxx+ Bx. We define
the first-degree part of F to be WF : In → Rm, that is WF (x) = Wxx; and the bias part of F to be
BF : In → Rm, that is BF (x) = Bx. It is easy to see that

F(x) = WF (x) +BF (x) = Wxx+Bx. (3)

For a label i ∈ [m] and x ∈ In, denote Fi(x) to be the i-th coordinate of F(x).

A linear region of F is a maximal connected open subset of the input space In, on which F
is linear [12]. On each linear region A of F , there exist WA ∈ Rm×n and BA ∈ Rm, such that
F(x) = WAx+ BA for x ∈ A. Due to the property of Relu function, it is clear that F has a finite
number of disjoint linear regions and In is the union of the closures of these linear regions.

2.2 Existence of bias classifier

In this section, we will prove the existence of the bias classifier. Let O ⊂ In be the objects to be
classified. For x ∈ O and r ∈ R>0, when r is small enough, all images in

B(x, r) = {x+ η | η ∈ Rn, ||η|| < r}

can be considered to have the same label with x. Therefore, the object O to be classified may be
considered as bounded open sets in In. This observation motivates the following existence theorem,
whose proof is given in Appendix A.

Theorem 2.1. Let O =
⋃m
i=1Oi ⊂ In be the elements to be classified and L = {l}ml=1 the label set,

where Oi ⊂ In is an open set, Oi
⋂
Oj = φ if i 6= j, and x has label l for x ∈ Ol. Then for any

ε > 0, there exist a DNN F and an open set D ⊂ In with volume V (D) < ε, such that BF (x) gives
the correct label for x ∈ O \D, that is, the l-th coordinate of F(x) has the biggest value for x ∈ Ol.

A network F satisfying the conditions of Theorem 2.1 gives a bias classifier BF , which can be
computed from F as follows:

BF (x) = F(x)−WF (x) = F(x)− ∇F(x)

∇x
· x. (4)

2.3 Training the bias classifier

In order to increase the robustness of the network, we will use the adversarial training introduced
in [21], which is one of the best practical training method to defend adversaries. Let (x, y) be a
data in the training set S. Then the adversarial training is to solve

min
Θ

max
||ζ||<ε

∑
(x,y)∈S

LCE(F(x+ ζ), y) (5)

where ε ∈ R>0 is a given small real number. In order to increase the power of the bias part BF , we
use the following training method

min
Θ

max
||ζ||<ε

∑
(x,y)∈S

[LCE(BF (x+ ζ), y) + γLCE(F(x+ ζ), y)] (6)
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where γ is a super parameter. The training procedure is given in Algorithm 1.

We first use a simple example to show that the adversarial training can increase the classification
power of BF . The accuracies of F , WF , BF on the test set for three kinds of training methods are
given in Table 1, respectively. More comprehensive numerical experiments are given in section 5.

WF BF F
Normal training (2) 98.80% 15.62% 99.09%

Adversarial training (5) 90.61% 98.77% 99.19%
Adversarial training (6) 0.28% 99.09 % 99.43%

Table 1: Accuracies of network Lenet-5 for MNIST

Algorithm 1 BCTrain

Require:
The set of training data: S = {(xi, yi)};
The initial value of the parameter set Θ: Θ0;
The super parameter: Ms,Mb,Mn.

Ensure: The trained parameters Θ̃.
In each iteration:
Input Θk

Let L(x, y,Θ) = LCE(BFΘ
(x), y).

Let L1(x, y,Θ) = LCE(FΘ(x), y).
For (x, y) ∈ S, do

i=0, x0 = x
While i < Ms:
xi+1 = xi −Mb

∂L(xi,y,Θk)
∂xi

i = i+ 1
x = xi+1

Let L(Θk) = 1
|S|
∑

(x,y)∈S L(x, y,Θk).

Let L1(Θk) = 1
|S|
∑

(x,y)∈S L1(x, y,Θk).

Let 5L = ∂(L(Θk)+MnL1(Θk))
∂Θk

.
Output Θk+1 = Θk + γk 5 L; γk is the stepsize at iteration k.

3 Attack methods for the bias classifier

In this section, several possible methods to attack the bias classifier are given.

3.1 Safety against gradient-based attack

The most popular methods to generate adversaries, such as FGSM [12] or PGD [21], use ∇F(x)
∇x to

make the loss function bigger. More precisely, adversaries are generated as follows

x→ x+ εsign(
∇LCE(F(x), y)

∇x
) (7)

for a small parameter ε ∈ R>0. It is easy to see that, ∇LCE(F(x),y)
∇x can be obtained from ∇F(x)

∇x . So,

in the above attack, only the values of F(x) and ∇F(x)
∇x are needed and the detailed structure of F
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is not needed. Motivated by this fact, we introduce the concept of gradient-based attack. A DNN
model is called a gradient-based model, if for x ∈ In, the values of F(x) and ∇F(x)

∇x are known, but
the detailed structure of F is not known. Correspondingly, an attack only uses the values of F(x)

and ∇F(x)
∇x is called gradient-based attack.

Since the derivative of BF is always zero, a gradient-based attack against BF becomes a black-
box attack, and in this sense we say that the bias classifier is safe against the gradient-based attack.

In the gradient-based model, we do not know the structure of F , but we can calculate BF (x)

from ∇F(x)
∇x using (4), and the bias classifier still works.

3.2 Original-model attack

An obvious attack for the bias classifier is to create adversaries of BF using the gradients of F ,
which is called original-model attack. The attack is given in Algorithm 2, where B̂F (x) is the label
of BF (x).

Algorithm 2 OAttack

Require:
The value of the parameter set Θ of F ;
The super parameters: ε ∈ R, N ∈ N;
A sample x0 and its label y0.

Ensure: An adversarial sample xa.
x = x0

For i = 1, . . . , N :
If B̂F (x) 6= y0:

Break.
x = x+ εsign(∇LCE(F(x),y)

∇x )

If B̂F (x) 6= y0, xa = x output: xa
Output: No adversary for x0

3.3 Correlation attack on the bias classifier

From numerical experiments, we have the following observations. For a network F : In → Rm
trained with (6) and a small vector ε ∈ Rn, the following fact happens with high probability:
WF (x)[l] ≥WF (x′)[l] is valid if and only if BF (x)[l] ≤ BF (x′)[l] is valid, where l ∈ L and x′ = x+ ε.
In other words, WF and BF are co-related and we thus can decrease BF [l] by increasing WF [l],
which is called the correlation attack.

In the correlation attack, we create adversaries by making WF (x)[y]−WF (x)[i] bigger, where y
is the label of x, i ∈ [m] and i 6= y. The attack is given in Algorithm 3.
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Algorithm 3 CAttack

Require:
The value of the parameter set Θ of F ;
The super parameters: ε ∈ R, N ∈ N;
A samples x0 and its label y.

Ensure: An adversarial sample xa.
For i ∈ L and i 6= y:
x = x0, j=0
While j < N :

Ua =
∇Fy(x)
∇x − ∇Fi(x)

∇x , x = x+ εUa

If B̂F (x) 6= y, break; else: j=j+1
If B̂F (x) 6= y, xa = x output: xa
Output: No adversary for x0

4 Information-theoretically safety against original-model gradient-
based attack

By the original-model gradient-based attack, we mean using the gradient of F to generate adversaries
for BF . In this section, we show that it is possible to make the bias classifier safe against this kind
of attack. The idea is to make ∇F(x)

∇x random and BF still gives the correct classification.

4.1 Information-theoretically safety

In this section, we will define the concept of information-theoretically safety of a DNN against an
attack.

Let F be a DNN defined in (1). Motivated by the FGSM attack (7), we assume that the attack
A(x,F , ρ) : Rn → Rn generates an adversary of x as below:

A(x,F , ρ) = x+ ρ V (8)

where ρ ∈ R>0 and V ∈ {−1, 1}n is the sign vector of certain quantity related with the gradient of
F(x).

The attack A(x,F , ρ) is called information-theoretically safe, if V = (A(x,F , ρ) − x)/ρ is a
random vector in {−1, 1}n for any input x.

We now show how to build an information-theoretically safe bias classifier. First train a DNN
F : In → Rm with the method in Section 2.3. Let WR ∈ Rm×n satisfy a given distribution M of
random matrices in Rm,n and

F̃(x) = F(x) +WRx = (Wx +WR)x+Bx

BF̃ (x) = F̃(x)− ∇F̃(x)
∇x · x.

(9)

It is easy to see that BF̃ = BF , that is, the bias classifiers for F and F̃ are the same. On the other

hand, ∇F̃(x)
∇x = ∇F(x)

∇x +WR is random in certain sense.

The safety of BF̃ against the attack A(x, F̃ , ρ) can be measured by the following adversary
creation rate

C(BF̃ ,A,M) = EWR∼M[Ex∼DO [I(B̂F (A(x, F̃ , ρ)) 6= B̂F (x))]] (10)
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where B̂F is the label of the classification and DO is the distribution of the objects to be classified.

If BF̃ is information-theoretically safe against the attack A(x, F̃ , ρ), then it is easy to show that
C(BF̃ ,A,M) equals

C(F , ρ) = 1
2nEx∼DO

∑
V ∈{−1,1}n [I(B̂F (x+ ρ V ) 6= B̂F (x))] (11)

which depends only on F and ρ and will be used as a measure of the robustness of the bias classifier.

Note that C(F , ρ) is the rate of adversaries in certain random samples. In other words, if BF̃ is
information-theoretically safe under attack A, then the adversary creation rate of BF̃ under attack
A is equal to the rate of random samples to be adversaries, which is very small as shown in section
5.3.1.

If BF̃ is not information-theoretically safe, we can use the value C(BF̃ ,A,M)/C(F , ρ) to measure
the safety of BF̃ relative to the information-theoretically safety.

4.2 Safety against direct attack

In this section, we show that BF̃ defined in (9) is safe against the direct attack [40] of F̃ .

Let U(a, b) be the uniform distribution in [a, b] ⊂ R. For λ ∈ R>0, denote Mm,n(λ) to be
the random matrices such that the elements of their i-row are in (U(−2iλ,−(2i − 1)λ) ∪ U((2i −
1)λ, 2iλ))m×n.

Let ||x||−∞ = mini∈[n]{|xi|} for x ∈ Rn. It is easy to see that for WR ∼ Mm,n(λ), we have
||WR,i −WR,j ||−∞ > λ for i 6= j, where WR,i is the i-th row of WR.

For ρ ∈ R>0, consider the following gradient-based direct attack [40] for the network F :

A1(x,F , ρ) = x+ ρ sign(∇Fnx (x)
∇x − ∇Fy(x)

∇x ) (12)

where y is the label of x and nx = arg maxi 6=y{Fi(x)}.

Theorem 4.1. Let |∇F(x)
∇x |∞ < λ/2 and WR ∈Mm,n(λ). If the structure and parameters of F are

kept secret, then BF̃ is information-theoretically safe against the attack A1(x, F̃ , ρ).

Proof. From (3) and (9), ∇F̃(x)
∇x = Wx + WR. Let WR,i and Wx,i be the i-rows of WR and Wx,

respectively. If WR ∼Mm,n(λ), then ||WR,i −WR,j ||−∞ > λ for i 6= j. Since |∇F(x)
∇x |∞ = |Wx|∞ <

λ/2, we have ||Wx,i −Wx,j ||∞ < λ for i 6= j. Then,

A1(x, F̃ , ρ)

= x+ ρ sign(∇F̃nx (x)
∇x − ∇F̃y(x)

∇x )
= x+ ρ sign(Wx,nx −Wx,y +WR,nx −WR,y)
= x+ ρ sign(WR,nx −WR,y).

(13)

Since WR ∈ Mm,n(λ), Ŵ = WR,nx −WR,y is a random vector whose entries having values in two

intervals of the form [−b2,−b1] ∪ [b1, b2], sign(Ŵ ) is a random vector in {−1, 1}n and the theorem
is proved.
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4.3 Safety against FGSM attack

In this section, we show that the result in section 4.2 holds for the FGSM attack if m = 2. Here is
the FGSM attack:

A2(x,F , ρ) = x+ ρ sign(
∇L(F(x), y)

∇x
). (14)

Theorem 4.2. If |∇F(x)
∇x |∞ < λ/2, WR ∼ Mm,n(λ), and m = 2, then BF̃ is information-

theoretically safe against the attack A2(x, F̃ , ρ).

Proof. Let y ∈ {0, 1} be the label of x. Use the notations introduced in the proof of Theorem 4.1.
Since the loss function is LCE and m = 2, we have

∇L(F̃(x),y)
∇x

=
∑m
i=1 e

F̃i (Wx,i−Wx,y+WR,i−WR,y)∑m
i=1 e

F̃i(x)

= eF̃1−y(x)∑m
i=1 e

F̃i(x)
(Wx,1−y −Wx,y +WR,1−y −WR,y).

(15)

The last equality comes from m = 2. Since ||Wx,i −Wx,j ||∞ < λ and ||WR,i −WR,j ||−∞ > λ for

i 6= j, we have sign(∇L(F̃(x),y)
∇x ) = sign(WR,1−y−WR,y) which is a random vector in {−1, 1}n, similar

to the proof of Theorem 4.1. The theorem is proved.

When m > 2, we have the following result, whose proof is given in Appendix B.

Theorem 4.3. Assume |∇F(x)
∇x |∞ < µ/2, |BF (x)|∞ < β, and λ ∈ R>0 satisfying (λ−µ)e−2β−nµ+

√
λ >

(2mλ + µ)m. Furthermore, assume the samples are normalized, that is, |x|∞ = 1. If WR ∼
Mm,n(λ), then C(BF̃ ,A2,Mm,n(λ)) ≤ (m− 1)C(F , ρ) + (m−2)2

√
λ

.

We can choose a large λ to make the term (m−2)2

2
√
λη

small. So from Theorem 4.3, BF̃ is approxi-

mately safe if m is small.

4.4 Safety against direct attack under simpler distribution

Let Um,n(λ) be the random matrices whose entries are in U(−λ, λ). In this section, we show that
the result in section 4.2 is approximately valid for the simpler distribution Um,n(λ). We consider
the k-step direct attack:

x(0) = x

x(i) = x(i−1) + ρ
k sign(∇Fnx (x(i−1))

∇x(i−1) − ∇Fy(x(i−1))

∇x(i−1) ), i ∈ [k]

A3(x,F , ρ) = x(k)

(16)

where y is the label of x and nx = arg maxi 6=y{Fi(x)}.

Theorem 4.4. If |∇F(x)
∇x |∞ < µ/2 and WR ∼ Um,n(λ), then C(BF̃ ,A3,Um,n(λ)) ≤ C(F , ρ) + µn/λ.

Furthermore, if λ > nµ/ε, then C(BF̃ ,A3,Um,n(λ)) ≤ C(F , ρ)+ε for any ε ∈ R>0, and in particular,
if λ > na/(εC(F , ρ)), then C(BF̃ ,A3,Um,n(λ)) ≤ (1 + ε)C(F , ρ).

Proof of Theorem 4.4 is given in Appendix C. Theorem 4.4 implies that BF̃ can be made close

to information-theoretically safe under attack A3(x, F̃ , ρ).
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4.5 Safety against FGSM under simpler distribution

In this section, we show that the result in section 4.3 is approximately valid for the simpler distri-
bution Um,n(λ). Let A2 be the attack in (14). Then we have

Theorem 4.5. If |∇F(x)
∇x |∞ < µ/2, WR ∼ Um,n(λ), and m = 2, then C(BF̃ ,A2,Um,n(λ)) ≤

enµ/λC(F , ρ). Furthermore, if λ > nµ/ ln(1 + ε), then C(BF̃ ,A2,Um,n(λ)) ≤ (1 + ε)C(F , ρ).

For the general m, we have

Theorem 4.6. Assume |∇F(x)
∇x |∞ < µ/4, |BF (x)|∞ < β, and λ ∈ R>0 satisfying µe−2β−nµ/2+

√
λ >

2(2λ+µ)m. Furthermore, assume the samples are normalized, that is, |x|∞ = 1. If WR ∼ Um,n(λ),

then C(BF̃ ,A2,Um,n(λ)) ≤ (m− 1)C(F , ρ) + (m−1)nµ
λ + (m−2)2

√
λ

.

Proofs of Theorems 4.5 and 4.6 are given in Appendixes D and E, respectively. Theorem 4.5
shows that, for binary classifications, BF̃ is close to information-theoretically safe against FGSM
under distribution Um,n(λ). Theorem 4.6 shows that the result is approximately valid in the general
case under certain conditions.

5 Experiments

5.1 Accuracy of the bias classifier

In this section, we give the accuracy of the bias classifier using the MNIST and CIFAR-10 data
sets. We compare two DNN models:

F (1) : trained with adversarial trianing (5)

F (2) : trained with Algorithm 1
(17)

whose detailed structure can be found in Appendix F.

We give the accuracy on the test set (TS) and the strong adversaries (SA, see [37]) and the
results are given in Table 2.

From the table, we can see that the bias classifier has comparable accuracies with F (1) on the
test set, but achieves significant higher accuracies than F (1) for the strong adversaries, which implies
that the bias classifier is more robust against adversaries than DNNs of similar size and trained
with adversarial training.

DNN TS/MNIST SA/MNIST TS/CIFAT-10 SA/CIFAT-10

F (1) 99.19% 51.5% 81.23% 19%
BF(2) 99.12% 87.5% 82.84% 42%

Table 2: Accuracies for MNIST and CIFAR-10

Moreover, for CIFAR-10, we compare the accuracy of our network and two other networks
ResNet18 and VGG19, all using adversarial training. From the results in Table 3, our network F (1)

performs better than ResNet18 and VGG 19.
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DNN Test Set Strong Adversaries

F (1) 81.23% 19%
ResNet18 80.64% 9%
VGG19 78.92% 12%

Table 3: Accuracies for three networks on CIFAR-10.

As pointed out in [39], networks trained with adversarial training usually have lower accuracies,
and the accuracies given in Tables 2 and 3 are about the best ones for DNNs of similar sizes, which
implies that the models F (1) and F (2) are appropriate for MNIST and CIFAR-10.

5.2 Robustness of the bias classifier against original-model attack

In this section, we check the robustness of the bias classifier against the original-model attack given
in Algorithm 2.

5.2.1 Experimental results

We use two more networks: F (3) has the same structure with F (1) given in (17), but trained with
the first-order regulation method [26], and F (4) has the same structure with F (1), but trained with
TRADES [39]. Six kinds of adversaries are used:

l∞ adversaries: 1-i (i = 1, 2, 3). Each pixel of the sample changes at most 0.i. PGD [21] is
used to attack: each step changes 0.01 and moves 10i steps.

l0 adversaries: 2-i (i = 40, 60, 80). Change at most i pixels of the sample. JSMA [22] is used
to attack: change i pixels and each pixel can change up to 1.

The adversary creation rates are given in Tables 4 and 5. The results in the last two rows are
obtained with the original-model attack.

DNN 1-1 1-2 1-3 2-40 2-60 2-80

F (1) 3% 17% 55% 55% 79% 87%

F (2) 4% 22% 77% 62% 82% 90%

F (3) 22% 78% 99% 75% 98% 99%

F (4) 4% 15% 53% 62% 77% 88%
BF(1) 3% 14% 49% 48% 67% 92%
BF(2) 2% 6% 22% 41% 56% 79%

Table 4: Creation rates of adversaries for MNIST

DNN 1-1 1-2 1-3 2-40 2-60 2-80

F (1) 54% 77% 90% 72% 85% 96%

F (2) 54% 72% 85% 69% 88% 97%

F (3) 88% 92% 99% 89% 99% 99%

F (4) 49% 73% 85% 70% 89% 97%
BF(1) 67% 70% 86% 70% 84% 91%
BF(2) 41% 58% 77% 49% 73% 84%

Table 5: Creation rates of adversaries for CIFAR-10

11



From the tables, we can see that the bias classifiers BF(2) has significant lower adversary creation
rates than all other networks. For l∞ adversaries of MNIST, BF(2) achieves near optimal results
and the adversaries almost disappear. For CIFAR-10, the adversary creation rates are still quite
high comparing to that of MNIST. We will explain the reason in Section 5.2.2.

Also, BF(2) achieves much better results than BF(1) , which implies that our training method (6)
is better than the usual adversarial training (5).

5.2.2 Influence of adversarial training on the bias classifier

In this section, we give an intuitive explanation for the results in Tables 4 and 5. Let x be a sample
and y its label. We use PGD [21] to create adversaries and show how BFy(x) and Fy(x) change
along with the steps of the adversarial training to explain the results in Tables 4 and 5.

In Figure 1, we give the data of using the network Lenet-5 [18] for a sample x with label
y in MNIST. The blue, orange, green lines in the first picture are SoftmaxFy(x), SoftmaxBFy(x),
SoftmaxWFy(x), respectively. The blue, orange, green lines in the second picture are Fy(x), BFy(x),
WFy(x), respectively.

When the blue line decreases, we obtain an adversary for F , which is not an adversary of BF ,
because the orange line does not reduce significantly. For most samples from MNIST, the pictures
are almost like this one, and this explains why the values in lines 5-6 of Table 4 are low.

Figure 1: Values of Fy(x), BFy(x) and WFy(x) along with the adversarial training steps

Similar results are given in in Figures 2 for CIFAR-10 and network VGG-19 [27]. In this case,
the orange and the blue lines both decrease, and the adversary of F is also an adversary of BF .
This explains why the values in lines 5-6 of Table 5 are higher than that of Table 4.
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Figure 2: Values of Fy(x), BFy(x) and WFy(x) along with the adversarial training steps

5.3 Safety against original-model gradient-based attack

In this section, we use experimental results to validate the results in Section 4.

5.3.1 Rates of adversaries in random samples

In this section, we give the rates of a random point near a sample to be an adversary. Two ways to
select random points near a sample x are used:

R1: Randomly change 60 pixels of x from b to 1− b.
R2: Add a random number in [−0.2, 0.2] to each pixel of x.

Two networks are used:

N1: Lenet-5 for MNIST and VGG-19 for CIFAR-10, with normal training (2).

N2: Lenet-5 for MNIST and VGG-19 for CIFAR-10, with adversarial training (5).

In Table 6, we give the average rates of adversaries. From the table, we can see that the rates
for random samples to be adversaries are quite low for networks N2 and BF(2) trained with the
adversarial training.

DNN R1/MNIST R2/MNIST R1/CIFAR-10 R2/CIFAR-10

N1 0.77% 1.47% 13.31% 11.81%

N2 1.00% 1.02% 4.69% 2.49%

BF(2) 0.85% 1.64% 4.28% 1.67%

Table 6: Rates for random samples to be adversaries

In Table 7, we give the values of C(F , ρ) defined in (11) for two values of ρ. We can see that
C(F , ρ) is a little bit smaller than the values in Table 6, as expected.

DNN ρ = 0.1/M ρ = 0.2/M ρ = 0.1/C ρ = 0.2/C

N1 1.00% 1.77% 5.26% 9.92%

N2 0.88% 1.01% 1.84% 2.04%

BF(2) 0.72% 0.97% 1.59% 1.71%

Table 7: C(F , ρ). M means MNIST, C means CIFAR-10.
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5.3.2 Safety of the bias classifier

For MNIST, let F (5) = F (2) +W5x, where F (2) is given in (17) and W5 ∈ R10×784 is from U10,784(λ)
for λ = 100.

For CIFAR-10, let F (6) = F (2)+W6x, where F (2) is in (17) and W5 ∈ R10×3072 is from U10,3072(λ)
for λ = 100.

The adversary creation rates are given in Table 8, where the adversaries are introduced in Section
5.2.

DNN 1-1 1-2 1-3 2-40 2-60 2-80

BF(5) for MNIST 1% 2% 2% 2% 3% 4%
BF(6) for CIFAR-10 19% 20% 22% 21% 22% 24%

Table 8: Original-model gradient-based attack

From Table 8, the bias classifier is safe against the original-model gradient-based attack for
MNIST, and the adversarial creation rates in Table 8 are close to those in Table 6.

From Table 8, the results are also near optimal for CIFAR-10. First, comparing to the results
in Table 5, the adversary creation rates are decreased by half and are about 20%. Second, from
Table 3, the accuracy of the bias classifier is about 82%. Comparing these data, the real adversary
creation rates are about 1%−6% which are just above the rates of random samples to be adversaries
in Table 6.

5.4 Black-box attack on the bias classifier

In this section, we use the transfer-based black-box attack [30] to compare four networks: F (1),
F (3), F (4), BF(2) defined in Sections 5.1 and 5.2.

The black-box attack for F works as follows. A new network F is trained with the training set
{(x,F(x))} for certain samples x. Then, we use PGD and JSMA to create adversaries for F and
check wether they are adversaries of F . The adversary creation rates are given in Table 9. We can
see that, the bias classifier performs better for most adversaries and in particular for l∞ adversaries.
Also, the adversary creation rates are about half of that of the original-model attack in Tables 4
and 5. So the bias classifier has better robustness for the black-box attack in most cases.

DNN 1-1 1-2 1-3 2-40 2-60 2-80

F (1) 1% 2% 18% 28% 35% 40%

F (3) 6% 12% 28% 38% 45% 50%

F (4) 1% 3% 21% 24% 39% 46%
BF(2) 3% 5% 13% 24% 30% 37%

Table 9: Black-box attack of MNIST
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DNN 1-0.1 1-0.2 1-0.3 2-40 2-60 2-80

F (1) 22% 23% 28% 35% 36% 41%

F (3) 27% 29% 36% 40% 43% 50%

F (4) 21% 24% 28% 33% 39% 44%
BF(2) 21% 23% 24% 33% 36% 41%

Table 10: Black-box attack of CIFAR-10

5.5 Correlation attack

In this section, it is shown that the bias classifier is safe against the correlation attack proposed in
Section 3.3. The network used here is F (2) given in (17) and the data set is CIFAR-10. In Table
11, we give the adversary creation rates for samples which are given the correct label by BF(2) .
Comparing to results in Tables 5 and 10, we can see that the bias classifier is quite safe against the
correlation arrack.

Network 1-0.1 1-0.2 1-0.3 2-40 2-60 2-80
BF(2) 4% 11% 12% 8% 17% 21%

Table 11: Adversary creation rates for the correlation attack

In Figure 3, we give the attack procedure. It can be seen that when (Wx,y −Wx,i)x increases
Bx,y − Bx,i indeed decreases, but Bx,y − Bx,i does not decrease enough to change the label, where
y is the label of x and i 6= y.

Figure 3: The input is an image for 9 from MNIST. The x-axis is the number of steps of the attack.
The blue line is (Wx,9 −Wx,0)x and the orange line Bx,9 −Bx,0.

5.6 Comparison with other methods

In this section, we compare our model with several existing models to defend adversaries. We use
PGD-20 with l∞ bound ε = 8/255 to create adversaries on the test set of CIFAR-10.

In Table 12, we give the adversary creation rates for various attacks. Our models are F (2) in
(17) and F (6) in Section 5.3.2. ResNet-10 [14] is used in other cases. The results for other networks
are from the cited papers. Gradient-based attacks cannot be used for the bias classifier, so we use
the original-model attack given in Section 3.2.
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Attack Method Adv. creation rates

ADV [21] 57.1%
TRADE [39] 54.7%
MMA [31] 62.7%
FOAR [26] 67.7%
SOAR [20] 44.0%
BF(2) in Sec. 5.1 41.1%
BF(6) in Sec. 5.3.2 20%

Table 12: Adversary creation rates for CIFAR-10

Although the DNN models and the attacks are not the same, this comparison gives a rough idea
of the performance that can be achieved for various methods of defending adversaries.

From Table 12, we see that the attack method SOAR [20] and the bias classifier BF(2)
B

achieve

the best results for creating lower rates of adversaries, besides BF(6)
B

. As explained in Section 5.3.2,

the optimal adversary creation rate is about 20% and is achieved by BF(6)
B

.

5.7 Summary of the experiments

We give a summary of the experiments in this section.

From Tables 2 and 3, we can see that the bias classifier achieves comparable accuracies with
DNNs of similar sizes.

From Table 6, we can see that the bias classifier with a random first-degree part is safe against
gradient-based attacks, as proved in Section 4.

From Tables 2, 4, 5, 9, 10, and 12, we can see that the bias classifier is more robust than DNNs
with similar sizes against adversarial attacks .

From Tables 5, 10, 11, the original-model attack, the black-box attack, and the correlation
attack become weaker for creating adversaries, and the original model attack is the best available
attack for the bias classifier.

6 Concluding remarks

In this paper, we show that the bias part of a DNN can be effectively trained as a classifier. The
motivation to use the bias part as the classifier is that gradients of the DNN seems to be inevitable
to generate adversaries efficiently and the bias part of a DNN with Relu as activation functions is
a piecewise constant function with zero gradient and is safe against direct gradient-based attacks
such as FGSM.

The bias classifier can be effectively trained with the adversarial training method [21], which
increases the classification power of the bias part and decreases the classification power of first-
degree part. Experimental results are used to show the robustness of the bias classifier over the
standard DNNs

Further, by adding a random first-degree part to the bias classifier, an information-theoretically
safe classifier against gradient-based attacks is obtained, that is, the adversary creation rate is
almost the same as the rate of certain random samples to be adversaries.
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For further research, the estimations in Theorems 4.3, 4.5, 4.6 are not optimal, and better
estimations are desirable.
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Appendix

Appendix A. Proof of Theorem 2.1

Theorem 2.1. Let O =
⋃m
i=1Oi ⊂ In be the elements to be classified and L = {l}ml=1 the label set,

where Oi ⊂ In is an open set, Oi
⋂
Oj = φ if i 6= j, and x has label l for x ∈ Ol. Then for any

ε > 0, there exist a DNN F and an open set D ⊂ In with volume V (D) < ε, such that BF (x) gives
the correct label for x ∈ O \D, that is, the l-th coordinate of F(x) has the biggest value for x ∈ Ol.

We first prove several lemmas. In this section, the notations O, Ol,L introduced in Theorem 2.1
will be used.

Let Γ : R→ R be another activation function:

Γ(x) =

{
0 if x ≤ 0
1 if x > 0

.

Lemma 2.1 (Theorem 5 in [8]). Let l ∈ L and Fl : R → R be a function such that Fl(x) = 1 if
x ∈ Ol and Fl(x) = −1 otherwise. Then for any ε > 0, there exist N ∈ N>0, W ∈ RN×n, b ∈ RN ,
U ∈ R1×N , and an open set D ⊂ In with V (D) < ε, such that

G(x) = U · Γ(Wx+ b) : In → R

and |G(x)− Fl(x)| < ε for x ∈ O \D.

The following lemma shows that there exists a DNN with one hidden layer and using Γ as the
activation function, which can be used as a classifier for O.

Lemma 2.2. For any ε > 0, there exist N ∈ N>0, W ∈ RN×n, b ∈ RN , U ∈ Rm×N , and an open
set D ⊂ In with V (D) < ε, such that

G(x) = U · Γ(Wx+ b) : In → Rm

gives the correct label for x ∈ O \D.

Proof. By Lemma 2.1, for l ∈ L = [m], there exist Na ∈ N>0, Wl ∈ RNa×n, bl ∈ RNa , Ul ∈ R1×Na ,
and Dl ⊂ In with V (Dl) < ε/m such that

Gl(x) = Ul · Γ(Wlx+ bl) and |Gl(x)− Fl(x)| < ε

for x ∈ O \Dl, where Fl is defined in Lemma 2.1.

Let N = Nam, W ∈ RN×n, b ∈ RN , where the l-th row of W is the l2-th row of Wl1 and the
l-th row of b is the l2-th row of bl1 , where l = l1Na + l2, 0 ≤ l2 < Na, and 0 ≤ l1 < m.

Let U ∈ Rm×N be formed as follows: for j ∈ [m], the j-th row of U are zeros except the
(j − 1)Na-th to the ((j − 1)Na +Na − 1)-th rows, and the values of the ((j − 1)Na + k)-th place of
the j-th row of U equal to the values of the k-th place of Ul, where k = 0, 1, . . . , Na − 1.

Now we have N = Nam ∈ N>0, W ∈ RN×n, b ∈ RN , U ∈ Rm×N , and

G(x) = U · Γ(Wx+ b)

satisfies G(x)l=Gl(x), where G(x)l is the l-th coordinate of G(x). Let D =
⋃m
i=1Dl ⊂ In with

V (D) < ε. Then G(x)y > 1− ε and G(x)l < −1 + ε for x ∈ Oy and l 6= y. Since ε can be as small as
possible, we have G(x)y > G(x)l for l 6= y, and G(x) give label y for x ∈ Oy \D. Hence, G(x) gives
the correct label for x ∈ O \D.
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Lemma 2.3. Let W ∈ R1×n have nonzero entries and b ∈ R. For any a > 0, let Za = {x ∈
In | |Wx+ b| < a}. Then V (Za) ≤ 2a

√
n
n−1

/||W ||2.

Proof. Let U = {U1, . . . , Un} be a unit orthogonal basis of Rn and U1 = W
||W ||2 . If Ti = maxx,y∈Za{〈x−

y, Ui〉}, then we have V (Za) ≤ Πn
i=1Ti.

For i > 1, we have Ti ≤ maxx,y∈Za ||x− y||2 ≤
√
n. Moreover, for any x, y ∈ Za, we have

〈x− y, U1〉
= 〈x− y,W 〉/||W ||2
= (Wx+ b−Wy − b)/||W ||2
≤ 2a/||W ||2

which means T1 ≤ 2a/||W ||2. Then we have

V (Za) ≤ Πn
i=1Ti ≤ 2a

√
n
n−1

/||W ||2.

The lemma is proved.

Lemma 2.4. The bias vector b in Lemma 2.2 can be chosen to consist of nonzero values.

Proof. By Lemma 2.2, there exist N ∈ N>0, W ∈ RN×n, b ∈ RN , U ∈ Rm×N , and D1 ⊂ In with
V (D1) < ε/2, such that

G(x) = U · Γ(Wx+ b)

gives the correct label for x ∈ O \D1.

Let γ = εWm

4N
√
n
n−1 , where Wm = ||W ||2,∞. Assume b̃ = b − I0(|b|)γ, where I0(x) = 1 − sign(x)

and when I0 is treated as a map of a vector, it acts on each entry of the vector, respectively. From
the construction, b̃ does not have zero entries, because b̃i = bi if bi 6= 0, and b̃i = γ if bi = 0, where
bi and b̃i are respectively the i-th rows of b and b̃.

Let Wi be the i-th row of W and Zi = {z ∈ Rn | |Wiz + bi| < γ}. By Lemma 2.3, we have
V (Zi

⋂
In) < 2γ

√
n
n−1

/Wm. We write Cn =
√
n
n−1

/Wm.

Let Z = {x ∈ Rn |Γ(Wx + b) 6= Γ(Wx + b̃)}. We will show that Z = ∪Ni=1Zi. If Γ(Wx + b) 6=
Γ(Wx+ b̃), then there exists an i ∈ [N ] such that Wix+ bi > 0 and Wix+ b̃i < 0, or Wix+ bi < 0
and Wix+ b̃i > 0. If Wix+ bi > 0 and Wix+ b̃i < 0, then Wix+ b̃i = Wix+ bi − I0(|b|)γ < 0 and
hence |Wix + bi| ≤ γ. Similarly, if Wix + bi < 0 and Wix + b̃i > 0, we also have |Wix + bi| ≤ γ,
which implies x ∈ Zi. As a consequence Z = ∪Ni=1Zi.

From Z = ∪Ni=1Zi, we have V (Z
⋂
In) < 2γNCn < ε/2, since γ = ε

4NCn
. LetD = D1

⋃
(Z
⋂
In) ⊂

In. Then V (D) < V (D1) + V (Z
⋂
In) < ε.

Finally, let
G̃(x) = U · Γ(Wx+ b̃).

Then, for x ∈ O \D, we have Γ(Wx+ b) = Γ(Wx+ b̃) and hence G̃(x) = G(x). That is, G̃ satisfies
the conditions of the lemma.

Lemma 2.5. Let G : In → Rm be a one-hidden-layer DNN with activation function Γ(x), and any
coordinate of its bias vector is nonzero. Then there exists a DNN F , which has the same structure
as G, except that the activation function of F is Relu, such that BF (x) = G(x) for all x ∈ In.
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Proof. Assume G(x) = U ·Γ(Wx+ b) + c. Let F(x) = UFRelu(Wx+ b) + c, where UF = Udiag( 1
bi

)
and bi is the i-th entry of b. We will show that F satisfies the condition of the lemma. By the
definition of Γ, the constant part of Relu(Wx + b) is b ◦ Γ(Wx + b), where ◦ is the point-wise
product. So, BF (x) = UF (b ◦ Γ(Wx+ b)) + c = Udiag( 1

bi
)(b ◦ Γ(Wx+ b)) + c = UΓ(WX + b) + c.

BF (x) = G(x) and the lemma is proved.

Proof of Theorem 2.1. By Lemma 2.2, there exist a D ⊂ In with V (D) < ε and a network
G with one-hidden-layer and with activation function Γ(x), such that G(x) gives the correct label
for x ∈ O \D. By Lemma 2.4, all the parameters of G are nonzero. Then by Lemma 2.5, we can
obtain a network F with Relu as the activation function such that BF = G(x), and the theorem is
proved.

Appendix B. Proof of Theorem 4.3

We first prove two lemmas.

Lemma 4.1. Let {ui}ni=1 be a set of iid random variables with values in [−λ, λ] and u =
∑n

i=1 xiui,
where xi ∈ R such that |xi| > a > 0 for some i. Let the density function of u be f(x). Then
f(x) < 1

2λa for all x.

Proof. Assume |xn| > a and fn(x) is the distribution function of xnun. We have

P (u < m)

=

∫ {λ|xi|}n−1
i=1

{−λ|xi|}n−1
i=1

(Πn−1
i=1

1

2λ|xi|
)fn(m−

n−1∑
i=1

ti)dt1t2 . . . tn−1.

Since 0 < f ′n(x) ≤ 1
2λ|xn| and f(x) = ∇P (u<x)

∇x , we have

f(x)

= ∇P (u<x)
∇x

=

∇

∫ {λ|xi|}n−1
i=1

{−λ|xi|}
n−1
i=1

(Πn−1
i=1

1
2λ|xi|

)fn(x−
∑n−1
i=1 ti)dt1t2...tn−1

∇x

=

∫ {λ|xi|}n−1
i=1

{−λ|xi|}n−1
i=1

(Πn−1
i=1

1
2λ|xi|)

∇fn(x−
∑n−1
i=1 ti)

∇x dt1t2 . . . tn−1

≤
∫ {λ|xi|}n−1

i=1

{−λ|xi|}n−1
i=1

(Πn−1
i=1

1
2λ|xi|)

1
2λ|xn|dt1t2 . . . tn−1

≤ 1
2λ|xn|

≤ 1
2λa .

The lemma is proved.

Lemma 4.2. Let {ui}ni=1 be a set of iid variables, fi the density function of ui, and fi(x) < a for
all x ∈ R. Then we have

P (|ui − uj | > ψ for ∀i 6= j) > Πn−1
i=0 (1− 2iψa).

22



Proof. Let Dk be the event |ui−uj | > ψ for ∀i, j ≤ k, and Fk : Rk → R the joint probability density
function of {ui}ki=1 under condition Dk. Then we have

P (Dk)

= P (Dk, Dk−1)

= P (Dk‖Dk−1)P (Dk−1)

= P (|uk − ui| > ψ for ∀i < k‖Dk−1)P (Dk−1)

= P (Dk−1)
∫∞k−1

−∞k−1

∫∞
−∞ Fk−1(t1, . . . , tk−1)

fk(tk)I(|tk − ti| > ψ ∀i < k)dtkdt1 . . . tk−1

> P (Dk−1)
∫∞k−1

−∞k−1

∫∞
−∞ Fk−1(t1, . . . , tk−1)

(fk(tk)− aI(|tk − ti| < ψ ∃i < k))dtkdt1 . . . tk−1

= P (Dk−1)(1−
∫∞k−1

−∞k−1

∫∞
−∞ aFk−1(t1, . . . , tk−1)

I(|tk − ti| < ψ ∃i < k)dtkdt1 . . . tk−1)

> P (Dk−1)(1−∫∞k−1

−∞k−1 2a(k − 1)ψFk−1(t1, . . . , tk−1)dt1 . . . tk−1)

= P (Dk−1)(1− 2a(k − 1)ψ).

Since P (D0) = 1, we have

P (|ui − uj | > ψ for ∀i 6= j)

= P (Dn)

> P (Dn−1)(1− 2(n− 1)ψa)

> P (Dn−2)(1− 2(n− 1)ψa)(1− 2(n− 2)ψa)

> . . .

> Πn−1
i=0 (1− 2iψa).

The lemma is proved.

Theorem 4.3. Assume |∇F(x)
∇x |∞ < µ/2, |BF (x)|∞ < β, and λ ∈ R>0 satisfying (λ−µ)e−2β−nµ+

√
λ >

(2mλ + µ)m. Furthermore, assume the samples are normalized, that is, |x|∞ = 1. If WR ∼
Mm,n(λ), then C(BF̃ ,A2,Mm,n(λ)) ≤ (m− 1)C(F , ρ) + (m−2)2

√
λ

.

Proof. From (3) and (9), we have F(x) = Wxx + Bx and F̃(x) = (Wx + WR)x + Bx. Let x be a
sample with label y. From equation (15), we have

∇L(F̃(x),y)
∇x =

∑m
i=1(WR,i−WR,y+Wx,i−Wx,y)eF̃i(x)∑m

i=1 e
F̃i(x)

.

Let mx = arg maxi 6=y{〈WR,i, x〉} and consider the condition:

Condition C1: 〈WR,mx , x〉 > 〈WR,j , x〉+
√
λ for all j ∈ [m] \ {y,mx}.
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We first give the probability for condition C1 to be valid. By Lemmas 4.1 and 4.2 and due to
|x|∞ = 1, we have

PWR∼Mm,n(λ)(C1)

≥ PWR∼Mm,n(λ)(|〈WR,j , x〉 − 〈WR,i, x〉| >
√
λ,

∀i, j ∈ [m]/{y}, i 6= j)

≥ Πm−2
i=1 (1− 2i

√
λ

2λ|x|∞ )

≥ (1− m−2√
λ

)m−2

≥ 1− (m−2)2
√
λ

.

(18)

Let ||x||−∞ = mini∈[n]{|x|i} for x ∈ Rn. Since |∇F(x)
∇x |∞ < µ/2 and WR ∼ Mm,n(λ), we have

||WR,i+WR,j ||−∞ > λ, ||WR,i+WR,j ||∞ < 2mλ and ||Wx,i+Wx,j ||∞ < µ for any i 6= j. If condition
C1 is satisfied, then for any j ∈ [m] \ {y,mx}, we have

F̃mx(x)− F̃j(x)

= (WR,mx +Wx,mx −WR,j −Wx,j)x+Bx,mx −Bx,j

= (WR,mx −WR,j)x+ (Wx,mx −Wx,j)x+Bx,mx −Bx,j

>
√
λ− nµ− 2β.

Further considering the hypothesis (λ− µ)e−2β−nµ+
√
λ > (2mλ+ µ)m, we have

||WR,mx −WR,y +Wx,mx −Wx,y||−∞eF̃mx (x)

> (λ− µ)eF̃mx (x)

> (λ− µ)eF̃j(x)+
√
λ−2β−nµ

= (λ− µ)e−2β−nµe
√
λeF̃j(x)

> (2mλ+ µ)meF̃j(x)

> m||(WR,j −WR,y +Wx,j −Wx,y)||∞eF̃j(x)

which means
sign(

∑m
i=1(WR,i −WR,y +Wx,i −Wx,y)e

F̃i(x)) =

sign((WR,mx −WR,y +Wx,mx −Wx,y)e
F̃mx (x)).

Because of this, we have:

sign(∇L(F̃(x),y)
∇x )

= sign(
∑m
i=1(WR,i−WR,y+Wx,i−Wx,y)eF̃i(x)∑m

i=1 e
F̃i(x)

)

= sign(
∑m

i=1(WR,i −WR,y +Wx,i −Wx,y)e
F̃i(x))

= sign((WR,mx −WR,y +Wx,mx −Wx,y)e
F̃mx (x))

= sign((WR,mx −WR,y +Wx,mx −Wx,y)

= sign(WR,mx −WR,y).
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Let V be a random vector in {0, 1}n. Then the probability for the sign of WR,mx −WR,y to be
V is

P (sign(WR,mx −WR,y) = V,C1)

≤ P (sign(WR,mx −WR,y) = V )

=
∑

i<y P (mx = i, sign(WR,y) = V )+∑
i>y P (mx = i, sign(WR,i) = V )

≤
∑

i<y P (sign(WR,y) = V )∑
i>y P (sign(WR,i) = V )

= m−1
2n .

So we have

EWR∼Mm,n(λ)

[I(B̂F (x+ ρsign(∇L(F̃(x),y)
∇x )) 6= B̂F (x))I(C1)]

= EWR∼Mm,n(λ)

[I(B̂F (x+ ρsign(WR,mx −WR,y)) 6= B̂F (x))I(C1)]

=
∑

V ∈{−1,1}n P (sign(WR,mx −WR,y) = V, C1)

I(B̂F (x+ ρV ) 6= B̂F (x))

≤
∑

V ∈{−1,1}n(m− 1)/(2n)I(B̂F (x+ ρV ) 6= B̂F (x))

= (m− 1)C(F , ρ).

Finally, from (18) we have

C(BF̃A2,Mm,n(λ))

= Ex∼DOEWR∼Mm,n(λ)

[I(B̂F (x+ ρsign(∇L(F̃(x),y)
∇x )) 6= B̂F (x))]

≤ Ex∼DOEWR∼Mm,n(λ)

[I(B̂F (x+ ρsign(∇L(F̃(x),y)
∇x )) 6= B̂F (x))I(C1)

+(1− I(C1))]

≤ (m− 1)C(F , ρ) + Ex∼DOEWR∼Mm,n(λ)[(1− I(C1))]

≤ (m− 1)C(F , ρ) + Ex∼DO [1− PWR∼Mm,n(λ)(C1)]

≤ (m− 1)C(F , ρ) + (m−2)2
√
λ

.

The theorem is proved.

Appendix C. Proof of Theorem 4.4

We first prove a lemma.
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Lemma 4.3. Let x1, x2 ∼ U(−λ, λ) and z = x1 − x2. Then for a ∈ [0, 2λ], we have P (z < a) =

P (z > −a) = 1− (2λ−a)2

8λ2 , which is denoted as T (λ, a) = 1− (2λ−a)2

8λ2 .

Proof. Let f(z) be the density function of z. Then f(z) = 0, if z ≥ 2λ or z ≤ −2λ; f(z) = 2λ+z
4λ2 , if

0 ≥ z ≥ −2λ; f(z) = 2λ−z
4λ2 , if 0 ≤ z ≤ 2λ. Hence, P (z < a) = P (z > −a) = 1− (2λ−a)2

8λ2 .

Note that T (λ, a) increases with a and T (λ, a) ∈ [0.5, 1].

Theorem 4.4. If |∇F(x)
∇x |∞ < µ/2 and WR ∼ Um,n(λ), then C(BF̃ ,A3,Um,n(λ)) ≤ C(F , ρ) + µn/λ.

Furthermore, if λ > nµ/ε, then C(BF̃ ,A3,Um,n(λ)) ≤ C(F , ρ)+ε for any ε ∈ R>0, and in particular,
if λ > na/(εC(F , ρ)), then C(BF̃ ,A3,Um,n(λ)) ≤ (1 + ε)C(F , ρ).

Proof. Similar to (13), if ||WR,nx −WR,y||−∞ > µ, then we have

A3(x, F̃ , ρ)

= x+ ρ
k

∑k
i=1 sign(Wxi−1,nx −Wxi−1,y +WR,nx −WR,y)

= x+ ρsign(WR,nx −WR,y).

Since V = WR,nx−WR,y is a random variable in [−2λ, 2λ], sign(V ) is a random variable in {−1, 1}n.
By Lemma 4.3,

C(BF̃ ,A3,Um,n(λ))

= Ex∼DOEWR∼Um,n(λ)[I(B̂F (A3(x, F̃)) 6= B̂F (x))]

≤ Ex∼DOEWR∼Um,n(λ)[I(||WR,nx −WR,y||−∞ ≤ µ)+

I(||WR,nx −WR,y||−∞ > µ)[I(B̂F (A3(x, F̃)) 6= B̂F (x))]

≤ (1− 2n(1− T (λ, µ))n)+

Ex∼DO

∑
V ∈{−1,1}n I(B̂F (x+ ρV ) 6= B̂F (x))]

≤ (1− 2n(1− T (λ, µ))n) + C(F , ρ)

where T (λ, µ) = 1− (2λ−µ)2

8λ2 . We have 2n(1− T (λ, µ))n = (2− 2 + 4λ2+µ2−4λµ
4λ2 )n = (1− 4λµ−µ2

4λ2 )n ≥
1− n4λµ−µ2

4λ2 ≥ 1− nµ/λ. So,

C(BF̃ ,A3,Um,n(λ))
≤ 1− 2n(1− T (λ, µ))n + C(F , ρ)
≤ C(F , ρ) + nµ/λ.

The theorem is proved.

Appendix D. Proof of Theorem 4.5

Theorem 4.5. If |∇F(x)
∇x |∞ < µ/2, WR ∼ Um,n(λ), and m = 2, then C(BF̃ ,A2,Um,n(λ)) ≤

enµ/λC(F , ρ). Furthermore, if λ > nµ/ ln(1 + ε), then C(BF̃ ,A2,Um,n(λ)) ≤ (1 + ε)C(F , ρ).
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Proof. Let y ∈ {0, 1} be the label of x. Denote U = Wx,1−y−Wx,y ∈ R1×n and Z = WR,1−y−WR,y ∈
R1×n. We have

sign(∇L(F(x),y)
∇x )

= sign(
eF1−y(x)(

∇(F1−y(x))

∇x −∇(Fy(x))

∇x )

eFy(x)+eF1−y(x) )

= sign(
∇(F1−y(x))
∇x − ∇(Fy(x))

∇x )
= sign(Wx,1−y −Wx,y)
= sign(U).

From equation (15), we have

sign(∇L(F̃(x),y)
∇x )

= sign( eF̃1−y(x)∑m
i=1 e

F̃i(x)
(Wx,1−y −Wx,y +WR,1−y −WR,y)).

= sign(U + Z).

For i ∈ [n], sign(Ui) = sign(Ui + Zi) if and only if (Zi ≤ −Ui when Ui ≤ 0) or (Zi ≥ −Ui
when Ui ≥ 0), where Zi, Ui are respectively the i-th coordinates of Z,U . Since WR ∼ Um,n(λ), Z =
WR,1−y−WR,y is the difference of two uniform distributions in [−λ, λ]. By Lemma 4.3, Ui > 0 implies
P (Zi ≥ −Ui) = T (λ, |Ui|) < T (λ, µ), and Ui < 0 implies P (Zi ≤ −Ui) = T (λ, |Ui|) < T (λ, µ).
Hence, no matter what is the value of U , we always have P (sign(U) = sign(U + Z)) < T (λ, µ)n,

where T (λ, µ) = 1− (2λ−µ)2

8λ2 .

Moreover, for i ∈ [n], if sign(Ui) 6= sign(Ui+Zi), we have (Zi > 0 when Ui < 0) or (Zi < 0 when
Ui > 0). So, P (sign(Ui) 6= sign(Ui + Zi)) < 1/2 < T (λ, µ), since T (λ, µ) is always ≥ 1/2.

Since {Zi}i∈[n] is iid, by Lemma 4.3, for a random vector V ∈ {−1, 1}n we have

PWR∼Um,n(λ)(sign(∇L(F̃(x),y)
∇x ) = V )

= PWR∼Um,n(λ)(sign(U + Z) = V )

=
∏n
i=1 PWR∼Um,n(λ)(sign(Ui + Zi) = Vi)

=
∏n
i=1(I(sign(Ui) = Vi)PWR∼Um,n(λ)(sign(Ui) = sign(Ui + Zi))

+I(sign(Ui) 6= Vi)PWR∼Um,n(λ)(sign(Ui) 6= sign(Ui + Zi)))

≤
∏n
i=1(I(sign(Ui) = Vi)T (λ, µ) + I(sign(Ui) 6= Vi)T (λ, µ))

= T (λ, µ)n.

For V ∈ {−1, 1}n, denote Q(x, V, ρ) = I(B̂F (x+ ρV ) 6= B̂F (x)). We have

C(BF̃ ,A2,Um,n(λ))

= Ex∼DOEWR∼Um,n(λ)[I(B̂F (x+ ρsign(∇L(F̃(x),y)
∇x )) 6= B̂F (x))]]

= Ex∼DO [
∑

V ∈{−1,1}n

PWR∼Um,n(λ)(sign(∇L(F̃(x),y)
∇x ) = V )Q(x, V, ρ)]

≤ (T (λ, µ))nEx∼DO [(
∑

V ∈{−1,1}n Q(x, V, ρ))]

≤ (2T (λ, µ))nC(F , ρ)
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where T (λ, µ) = 1− (2λ−µ)2

8λ2 . We have (2T (λ, µ))n = (2− 4λ2+µ2−4λµ
4λ2 )n = (1+ 4λµ−µ2

4λ2 )n ≤ (1+ µ
λ )n ≤

enµ/λ. Hence, C(BF̃ ,A2,Um,n(λ)) < enµ/λC(F , ρ). The theorem is proved.

Appendix E. Proof of Theorem 4.6

Theorem 4.6. Assume |∇F(x)
∇x |∞ < µ/4, |BF (x)|∞ < β, and λ ∈ R>0 satisfying µe−2β−nµ/2+

√
λ >

2(2λ+µ)m. Furthermore, assume the samples are normalized, that is, |x|∞ = 1. If WR ∼ Um,n(λ),

then C(BF̃ ,A2,Um,n(λ)) ≤ (m− 1)C(F , ρ) + (m−1)nµ
λ + (m−2)2

√
λ

.

Proof. The proof is similar to that of Theorem 4.3. So certain details of the proof are omitted.
From equation (15), we have

∇L(F̃(x),y)
∇x =

∑m
i=1(WR,i+Wx,i−WR,y−Wx,y)eF̃i(x)∑m

i=1 e
F̃i(x)

.

Let mx = arg maxi 6=y{〈WR,i, x〉} and consider two conditions C1 and C2:

Conditions C1: 〈WR,mx , x〉 > 〈WR,j , x〉+
√
λ for all j ∈ [m] \ {y,mx}.

Conditions C2: ||WR,mx −WR,y||−∞ > µ.

Note that condition C2 implies sign((WR,i −WR,y +Wx,i −Wx,y) = sign(WR,i −WR,y).

We give the probabilities for conditions C1 and C2 to be valid. From the proof of Theorem 4.3,

PWR∼Mm,n(λ)(C1) ≥ 1− (m−2)2
√
λ

.

Let f(x) be the density function of WR,mx . Then

PWR∼Um,n(λ)(C2)

≥ PWR∼Um,n(λ)(||WR,i −WR,y||−∞ > µ,∀i 6= y)

≥ (1− (m−1)µ
λ )n

≥ 1− (m−1)nµ
λ .

For V ∈ {−1, 1}n, it is also easy to see

P (sign(WR,mx −WR,y) = V, C1, C2)

≤ P (sign(WR,mx −WR,y) = V )

=
∑

i<y P (mx = i, sign(WR,y) = V )+∑
i>y P (mx = i, sign(WR,i) = V )

≤
∑

i<y P (sign(WR,y) = V )+∑
i>y P (sign(WR,i) = V )

= m−1
2n .
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If conditions C1 and C2 are satisfied, then for any y ∈ [m] \ {y,mx}, we have

||WR,mx +Wx,mx −WR,y −Wx,y||−∞eF̃mx (x)

> µ/2eF̃mx (x)

> µ/2eF̃j(x)+
√
λ−2β−nµ/2

= µ/2e−2b−nµ/2e
√
λeF̃j(x)

> (2λ+ µ)meF̃j(x)

> m||WR,j +Wx,j −WR,y −Wx,y||∞eF̃j(x)

which means
sign(

∑m
i=1(WR,i +Wx,i −WR,y −Wx,y)e

F̃i(x))

= sign((WR,mx +Wx,mx −WR,y −Wx,y)e
F̃mx (x)),

and hence

sign(∇L(F̃(x),y)
∇x )

= sign(
∑m
i=1(WR,i+Wx,i−WR,y−Wx,y)eF̃i(x)∑m

i=1 e
F̃i(x)

)

= sign(
∑m

i=1(WR,i +Wx,i −WR,y −Wx,y)e
F̃i(x))

= sign((WR,mx +Wx,mx −WR,y −Wx,y)e
F̃mx (x))

= sign(WR,mx +Wx,mx −WR,y −Wx,y)

= sign(WR,mx −WR,y).

Hence

EWR∼Um,n(λ)

[I(B̂F (x+ ρsign(∇L(F̃(x),y)
∇x )) 6= B̂F (x))I(C1, C2)]

= EWR∼Um,n(λ)[I(B̂F (x+ ρsign(WR,mx −WR,y)) 6= B̂F (x))

I(C1, C2)]

=
∑

V ∈{−1,1}n P (sign(WR,mx −WR,y) = V, C1, C2)

I(B̂F (x+ ρV ) 6= B̂F (x))

≤ m−1
2n
∑

V ∈{−1,1}n I(B̂F (x+ ρV ) 6= B̂F (x))

= (m− 1)C(F , ρ).
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Finally, we have

C(BF̃A2,Um,n(λ))

= Ex∼DOEWR∼Um,n(λ)[I(B̂F (x+ ρsign(∇L(F̃(x),y)
∇x )) 6= B̂F (x))]

≤ Ex∼DOEWR∼Um,n(λ)[I(B̂F (x+ ρsign(∇L(F̃(x),y)
∇x )) 6= B̂F (x))

I(C1, C2) + (1− I(C1)) + (1− I(C2))]

≤ (m− 1)C(F , ρ) + Ex∼DOEWR∼Um,n(λ)[(1− I(C1)) + (1− I(C2))]

≤ (m− 1)C(F , ρ) + Ex∼DO [1− PWR∼Um,n(λ)(C1)]+

Ex∼DO [1− PWR∼Um,n(λ)(C2)]

≤ (m− 1)C(F , ρ) + (m−1)nµ
λ + (m−2)2

√
λ

.

The theorem is proved.

Appendix F. Structures of DNN models used in the experiments

The networks in section 5.1:

Networks F (1) and F (2) for MNIST have the same structure:

Input layer: N × 1× 28× 28, where N is steps of training.

Hidden layer 1: a convolution layer with kernel 1 × 32 × 3 × 3 with padding= 1 → do a batch
normalization → do Relu → use max pooling with step=2.

Hidden layer 2: a convolution layer with kernel 32× 64× 3× 3 with padding= 1 → do a batch
normalization → do Relu → use max pooling with step=2.

Hidden layer 3: a convolution layer with kernel 64× 128× 3× 3 with padding= 1 → do a batch
normalization → do Relu → use max pooling with step=2.

Hidden layer 4: draw the output as N × 128 × 3 × 3 → use a full connection with output size
N × 128× 2 → do Relu.

Hidden layer 4: use a full connection with output size N × 100 → do Relu.

Output layer: a full connection layer with output size N × 10.

Networks F (1) and F (2) for CIFAR-10 have the same structure:

Input layer: N × 3× 32× 32, where N is steps of training.

Hidden layer 1: a convolution layer with kernel 3 × 64 × 3 × 3 with padding= 1 → do a batch
normalization → do Relu.

Hidden layer 2: a convolution layer with kernel 64× 64× 3× 3 with padding= 1 → do a batch
normalization → do Relu.

Hidden layer 3: a convolution layer with kernel 64× 128× 3× 3 with padding= 1 → do a batch
normalization → do Relu.

Hidden layer 4: a convolution layer with kernel 128×128×3×3 with padding= 1→ do a batch
normalization → do Relu → use max pooling with step=2.

Hidden layer 5: a convolution layer with kernel 128×256×3×3 with padding= 1→ do a batch
normalization → do Relu.
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Hidden layer 6: a convolution layer with kernel 256×256×3×3 with padding= 1→ do a batch
normalization → do Relu.

Hidden layer 7: a convolution layer with kernel 256×256×3×3 with padding= 1→ do a batch
normalization → do Relu → use max pooling with step=2.

Hidden layer 8: a convolution layer with kernel 256×512×3×3 with padding= 1→ do a batch
normalization → do Relu.

Hidden layer 9: a convolution layer with kernel 512×512×3×3 with padding= 1→ do a batch
normalization → do Relu.

Hidden layer 10: a convolution layer with kernel 512 × 512 × 3 × 3 with padding= 1 → do a
batch normalization → do Relu → use max pooling with step=2.

Hidden layer 11: a convolution layer with kernel 512 × 512 × 3 × 3 with padding= 1 → do a
batch normalization → do Relu.

Hidden layer 12: a convolution layer with kernel 512 × 512 × 3 × 3 with padding= 1 → do a
batch normalization → do Relu.

Hidden layer 13: a convolution layer with kernel 512 × 512 × 3 × 3 with padding= 1 → do a
batch normalization → do Relu → use max pooling with step=2.

Hidden layer 14: draw the output as N × 2048 → a full connection layer with output size
N × 1024 → do Relu.

Hidden layer 15: a full connection layer with output size N × 512 → do Relu.

Hidden layer 16: a full connection layer with output size N × 128 → do Relu.

Output layer: a full connection layer with output size N × 10.
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