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Abstract

In this paper, a new parameter perturbation attack on DNNs, called adversarial parameter
attack, is proposed, in which small perturbations to the parameters of the DNN are made such
that the accuracy of the attacked DNN does not decrease much, but its robustness becomes
much lower. The adversarial parameter attack is stronger than previous parameter perturbation
attacks in that the attack is more difficult to be recognized by users and the attacked DNN gives
a wrong label for any modified sample input with high probability. The existence of adversarial
parameters is proved. For a DNN FΘ with the parameter set Θ satisfying certain conditions,
it is shown that if the depth of the DNN is sufficiently large, then there exists an adversarial
parameter set Θa for Θ such that the accuracy of FΘa

is equal to that of FΘ, but the robustness
measure of FΘa

is smaller than any given bound. An effective training algorithm is given to
compute adversarial parameters and numerical experiments are used to demonstrate that the
algorithms are effective to produce high quality adversarial parameters.

Keyword. Adversarial parameter attack, adversarial samples, robustness measurement, adver-
sarial accuracy, mathematical theory for safe DNN.

1 Introduction

The deep neural network (DNN) [15] has become the most powerful machine learning method,
which has been successfully applied in computer vision, natural language processing, and many
other fields. Safety is a key desired feature of DNNs, which was studied extensively [1, 5, 42].

The most widely studied safety issue for DNNs is the adversarial sample attack [31], that is, it is
possible to intentionally make small modifications to a sample, which are essentially imperceptible
to the human eye, but the DNN outputs a wrong label or even any label given by the adversary.
Existence of adversary samples makes the DNN vulnerable in safety-critical applications and many
effective methods were proposed to develop more robust DNNs against adversarial attacks [20, 1,
5, 42]. However, it was shown that adversaries samples are inevitable for current DNN models in
certain sense [6, 3, 27].

More recently, the parameter perturbation attacks [18, 43, 7, 33, 30, 37, 34, 35] were studied and
shown to be another serious safety treat to DNNs. It was shown that by making small parameter
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perturbations, the attacked DNN can give wrong or desired labels to specified input samples and
still give the correct labels to other samples [18, 43, 34, 35].

In this paper, the adversarial parameter attack is proposed, in which small perturbations to the
parameters of a DNN are made such that the attack to the DNN is essentially imperceptible to
the user, but the robustness of the DNN becomes much lower. The adversarial parameter attack is
stronger than previous parameter perturbation attacks in that not only the accuracy but also the
robustness of DNNs are considered.

1.1 Contributions

Let FΘ be a DNN with Θ as the parameter set. A parameter perturbation Θa is called a set
of adversarial parameters of FΘ or Θ, if the following conditions are satisfied 1) Θa is a small
modification of Θ, for instance ||Θa − Θ||∞ ≤ ε for a small positive number ε; 2) the accuracy of
FΘa over a distribution of samples is almost the same as that of FΘ; 3) FΘa is much less robust
than FΘ, that is, FΘa has much more adversarial samples than FΘ. It is clear that conditions 1)
and 2) are to make the attack difficult to be recognized by the users and condition 3) is to make the
new DNN less safe. The DNN obtained by the above attack is called an adversarial DNN, which
has high accuracy but low robustness.

The existence of adversarial parameters is proved under certain assumptions. It is shown that
if the depth of a trained DNN FΘ is sufficiently large, then there exist adversarial parameters Θa

such that the accuracy of FΘa is equal to that of FΘ, but the robustness measure of FΘa is as
small as possible (refer to Corollaries 4.4 and 4.5). Since FΘ is a continuous function in Θ, if Θa

is an adversarial parameter for Θ then there exists a small sphere Sa with Θa as center such that
all parameters in Sa are also adversarial parameters for Θ. These results imply that adversarial
parameters are inevitable in certain sense, similar to adversarial samples [6, 3, 27].

The existence of adversarial samples is usually demonstrated with numerical experiments, be-
sides a few cases to be mention in the next section. As an application of adversarial parameters,
we can construct DNNs which are guaranteed to have adversarial samples. For a trained DNN FΘ

satisfying certain conditions, it is shown that there exist adversarial parameters Θa such that the
accuracy of FΘa is equal to that of FΘ, but FΘa has adversarial samples near a given normal sample
(refer to Theorem 4.1), or the probability for FΘa to have adversarial samples over a distribution
of samples is at least 1/2 (refer to Theorem 4.2).

Finally, an effective training algorithm is given to compute adversarial parameters and numerical
experiments are used to demonstrate that the algorithms are effective to produce high quality
adversarial parameters for the networks VGG19 and Resnet56 on the CIFAR-10 dataset.

1.2 Related work

There exist vast literatures on adversarial attacks, which can be found in the survey papers [1, 5, 42].
We will focus on those which are closely related to our work.

Parameter perturbation attacks. Parameter perturbation attacks were given under different
names such as fault injection attack, fault sneaking attack, stealth attack, and weight corruption.
The fault injection attack [18] was first proposed by Liu et al, where it was shown that parameter
perturbations can be used to misclassify one given input sample. In [7], it was shown that laser
injection techniques can be used as a successful fault injection attack in real-world applications. In
[43], the fault sneaking attack was proposed, where multiple input samples were misclassified and
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other samples were still given the correct label. In [37], lower bounds were given for parameter
perturbations under which the network still gives the correct label for a given sample. In [33],
upper bounds were given for the changes of the pairwise class margin function and the Rademacher
complexity against parameter perturbations and new loss functions were given to obtain more
robust networks. In [30], the maximum change of the loss function over given samples was used
as an indicator to measure the robustness of DNNs against parameter perturbations and gradient
decent methods were used to compute the indicator. In [34, 35], the stealth attack which can
guaranteed to make the attacked DNN gives a desired label for a sample outside of the validation
set and keep correct labels for samples in the validation set. The stealth attack has the form F +U ,
where F is the DNN to be attacked and U is a DNN with one hidden layer.

The adversarial parameter attack proposed in this paper is stronger than previous parameter
perturbation attacks by in the following aspects. First, by keeping the accuracy and eliminating
the robustness, the adversarial parameter attack is more difficult to be recognized, because the
attached DNN performs almost the same as the original DNN on the test set. Second, by reducing
the robustness of the DNN, the attacked DNN gives a wrong label for any modified input sample
with high probability, while previous parameter attacks usually misclassify certain given samples.
Finally, we prove the existence of adversarial parameters under reasonable assumptions.

Mathematical theories of adversarial samples. Existence of adversarial samples were
usually demonstrated with numerical experiments, and mathematical theories were desired. In
[6], it was proved that for DNNs with a fixed architecture, there exist uncountable classification
functions and distributions of samples such that adversarial samples always exist for any successfully
trained DNN with the given architecture and the sample distribution. In the stealth attack [34, 35],
it was proved that there exist attached DNNs which give a desired label for a sample outside of the
validation set by modifying the DNN. In this paper, we show that by making small perturbations
to the parameters of the DNN, the DNN has adversarial samples with high probability.

Theories for certified robustness of DNNs were given in several aspects. Let x be a sample such
that the DNN F gives the correct label. Due to the continuity of the DNN function, a sphere
with x as center does not contain adversarial samples if its radius is sufficiently small, which is
called a robust sphere of x. In [12], lower bounds for the robustness radius were computed and
used to enhance the robustness of the DNN. In [24], for shallow networks, the upper bounds of
the changes of the network under sample input perturbations were given and use to obtain more
robust DNNs. In [8], the random smoothing method was proposed and lower bounds for the radius
of the robust spheres was given. In [39], lower bounds for the average radius of robust spheres for
a distribution of samples are given. Universal lower bounds on stability in terms of the dimension
of the domain of the classification function were also given in [27, 34]. However, these bounds are
usually inverse-exponentially dependent on the depth of the DNN, which are very small for deep
networks in real world applications. In [40], the information-theoretically safe bias classifier was
introduced by making the gradient of the DNN random.

Algorithms to train robust DNNs. Many effective methods were proposed to train more
robust DNNs to defend adversarial samples [1, 5, 42, 38]. Methods to train DNNs which are more
robust against parameter perturbation attacks were also proposed [18, 43]. The adversarial training
method proposed by Madry et al [20] can reduce adversarial samples significantly, where the value of
the loss function of the worst adversary in a small neighborhood of the training sample is minimized.
In this paper, the idea of adversarial training is used to compute adversarial parameters.
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2 Adversarial parameters

In this section, we define the adversarial parameters and give a measurement for the quality of the
adversarial parameters.

2.1 Adversarial parameters of DNNs

Let us consider a standard DNN. Denote I = [0, 1] ⊂ R and [n] = {1, . . . , n} for n ∈ N+. In this
paper, we assume that F : In → Rm is a classification DNN for m objects, which has L hidden-
layers, all hidden-layers use Relu as the activity function, and the output layer does not have activity
functions. F can be written as

x0 ∈ In, n0 = n, nL+1 = m;

xl = Relu(Wlxl−1 + bl) ∈ Rnl ,Wl ∈ Rnl×nl−1 , bl ∈ Rnl , l ∈ [L];

F(x0) = xL+1 = WL+1xL + bL+1,WL+1 ∈ Rm×nL , bL+1 ∈ Rm.
(1)

Denote Θ = {Wl, bl}L+1
l=1 ∈ Rk to be the parameter set of F and F is denoted as FΘ if the parameters

need to be mentioned explicitly, where k =
∑L+1

l=1 nl(nl−1 + 1).

Let FΘ be a trained network with the parameter set Θ. Then a new parameter set Θa is called
a set of adversarial parameters of Θ if 1) Θa is a small perturbation of Θ; 2) the accuracy of FΘa is
almost the same as that of FΘ; 3) FΘa is much less robust comparing to FΘ, that is, FΘa has more
adversarial samples than FΘ.

We assume that the objects to be classified satisfy a distribution Dx in Rn, and a sample x ∼ Dx

is called a normal sample. Let Θ ∈ Rk be the parameter set of a trained network FΘ : In → Rm.
For x ∼ Dx, denote lx to be the label of x and F̂Θ to be the classification result of FΘ. Then the
accuracy of FΘ for the normal samples is

A(FΘ, Dx) = Px∼Dx(F̂Θ(x) = lx). (2)

In order to measure the quality of adversarial parameters, we need a robustness measure
R(FΘ, Dx) of FΘ for the normal samples. There exist several definitions for R(FΘ, Dx) [20, 39]. In
this paper, two kinds of robustness measures are used.

We first give two robust measures of FΘ on a given sample x0. The robustness radius of x0

under the Lp norm for p ∈ R+ ∪ {∞} is defined to be

R1(FΘ, x0) = max{ζ ∈ R+ | F̂(x) = lx, ∀x s.t. ||x− x0||p ≤ ζ}. (3)

If F̂Θ(x0) 6= lx0 , then the robustness radius of x0 is zero. It is difficult to have good estimation to
the robustness radius, and the following approximation to the robust radius under Lp norm [12] is
often used

R2(FΘ, x0) = min
l∈[m],l 6=lx

{ |Flx(x0)−Fl(x0)|
||∇Flx(x0)−∇Fl(x0)||q

I(Flx(x0) > Fl(x0))} (4)

where Fl(x0) is the l-th coordinate of F(x0), ∇(Fl(x)) = ∇Fl(t)
∇t |t=x, p, q ∈ R+{∞} satisfy 1/q +

1/p = 1 (p = 0(∞) iff q =∞(0)), and I(t) = 1 if t it true or I(t) = 0 otherwise.

For a distribution Dx of samples, we define two global robust measures corresponding to R1

and R2. The adversarial accuracy can be used as R(FΘ, Dx). For ε ∈ R+ and p ∈ R+ ∪ {∞}, the
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adversarial accuracy of FΘ is

R3(FΘ, Dx, ε) = Px∼Dx(ε ≤ R1(FΘ, x))

= Px∼Dx(F̂Θ(x′) = lx,∀x′ s.t. ||x′ − x||p ≤ ε).
(5)

Corresponding to R2 in (4), we have the following global robustness measure

R4(F , Dx) =

∫
x∼Dx

R2(F , x)dx. (6)

We now define a measurement for an adversarial parameter set using the accuracy and robustness
of F .

Definition 2.1. Let Θa be an adversarial parameter set of Θ, R(F , Dx) a robustness measure of
F for normal samples, and

Px∼Dx(FΘa(x) = lx) = γ1Px∼Dx(FΘ(x) = lx) (7)

R(FΘa , Dx) = γ2R(FΘ, Dx).

Then the adversarial rate of Θa is defined to be γ1(1− γ2), where γ = min{γ, 1}.

In general, we have γ1 ≤ 1 and γ2 ≤ 1. The value of γ1 measures the ability of Θa to keep
the accuracy of FΘ on normal samples, and if γ1 is large then the attack is more difficult to be
detected. The value of 1 − γ2 measures the ability of Θa to break the robustness of FΘ, and if
1 − γ2 is large then the parameter attack is more powerful. Hence, the adversarial rate γ1(1 − γ2)
measures the quality of the adversarial parameter attack in that if the adversarial rate is larger
then the adversarial parameter attack is better. If γ1(1 − γ2) achieves its maximal value 1, then
γ1 = 1 and γ2 = 0 and the adversarial parameter attack is a perfect attack in that the attack does
not change the accuracy of F , but totally destroys the robustness of F .

Remark 2.1. In order to make the attack very hard to be detected, we can give a lower bound γlow

to γ1. If γ1 < γlow, we consider Θa to be a failed attack.

2.2 Adversarial parameter attacks for other purposes

According to the requirements of specific applications, we may define other types of adversarial
parameter attacks.

The adversarial parameters defined in section 2.1 are for all the samples. In certain applications,
it is desired to make the network less robust on one specific class of samples, which motivates the
following definitions.

The simplest case is adversarial parameters for a given sample. A small perturbation Θa of Θ
is called adversarial parameters for a given sample x0, if FΘa gives the correct label to x0 and has
adversarial samples of x0 in S∞(x0, ε) = {x | |x− x0|∞ ≤ ε} for a given ε ∈ R+. Let R(FΘ, x0) be a
measure of robustness of FΘ at sample x0, and

R(FΘa , x0) = γR(FΘ, x0). (8)

Then the adversarial rate of Θa is defined to be 1− γ.

We can also break the stability for samples with a given label. A small perturbation Θa of Θ
is called adversarial parameters for samples with a given label l0, if FΘa keeps the accuracy for all
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normal samples and the robustness for normal samples whose label is not l0, but break the robustness
of samples with label l0. Let α = Px∼Dx(F̂Θ(x) = lx) and β = Px∼Dx(F̂Θ(x′) = lx,∀x′ ∈ Sp(x, ε)).
For such adversarial parameters Θa, let

Px∼Dx(F̂Θa(x) = lx) = γ1α (9)

Px∼Dx(F̂Θa(x′) = lx, ∀x′ ∈ Bp(x, ε) | lx 6= y0) = γ2β

Px∼Dx(F̂Θa(x′) = lx, ∀x′ ∈ Bp(x, ε) | lx = y0) = γ3β.

Then the adversarial rate of Θa is defined as γ1γ2(1− γ3).

Finally, instead of breaking the robustness of samples with label y0, we can break the accuracies
for samples with label y0. Such adversarial parameters are called direct adversarial parameters. Let
Θa be a direct adversarial parameter set and

Px∼Dx(F̂Θa(x) = lx | lx 6= y0) = γ1α (10)

Px∼Dx(F̂Θa(x′) = lx,∀x′ ∈ Bp(x, ε) | lx 6= y0) = γ2β

Px∼Dx(F̂Θa(x) = lx | lx = y0) = γ3α.

Then the adversarial rate is defined as γ1γ2(1− γ3). The above definition is similar to the attacks
in [18, 43], but robustness is considered as an extra objective.

3 Algorithm

In this section, we give algorithms to compute adversarial parameters.

3.1 Compute adversarial parameters under L∞ norm

We formulate the adversarial parameter attack for a trained DNN FΘ under the Lp norm as the
following optimization problem for a given ζ ∈ R+.

max
Θa∈Rk,||Θa−Θ||p≤ζ

A(FΘa , Dx)/R(FΘa , Dx) (11)

where A(FΘa , Dx) and R(FΘa , Dx) are the accuracy and a robustness measure for FΘa over a
distribution sample Dx.

Remark 3.1. Theoretically, the adversarial parameter attack should be a multi-objective optimiza-
tion problem, that is to maximize the accuracy and to minimize the robustness. But, such an
optimization problem is difficult to solve.

Remark 3.2. According to (11), the adversarial rate seems better to be defined as γ1/γ2, which
is possible but not as good as the one in Definition 2.1 for the following reasons. The adversarial
rate γ1(1 − γ2) has the optimal value 1 and gives a more intuitive view to see the quality of the
adversarial parameters.

In the rest of this section, we show how to change formula (11) to an effective algorithm to
compute L∞ norm adversarial parameters using the robustness measure in (5). We first show how
to compute the robustness in (5) explicitly. We use the adversarial training [20] to do that, which
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is the most effective way to find adversarial samples. For a sample x and a small number ε ∈ R+,
we first compute

χ0 = arg maxχ∈Rk,||χ||0<εLCE(FΘ(x+ χ), lx)

with PGD [20] and then use

LAT(x,Θ) = LCE(FΘ(x+ χ0), lx) (12)

to measure the robustness of FΘ at x.

We need a training set T to find the adversarial parameters. The training procedure consists of
two phases. In the first pre-training phase, the loss function

−
∑
x∈T

LAT(x,Θ) (13)

is used to reduce the adversarial accuracy of FΘ. In the second main training phase, the loss
function ∑

x∈T LCE(FΘ(x), lx)∑
x∈T LAT(x,Θ)

(14)

is used to promote the accuracy and keep the low-level of adversarial accuracy of FΘ, which corre-
sponds to formula (11).

We will compute a more general L∞ norm parameter perturbation. Let ∆ ∈ Rk+ and ∆i the
i-th coordinate of ∆. Then the L∞ parameter perturbation will be found in

B∞(Θ,∆) = {Θa ∈ Rk | |Θa −Θ|i ≤ ∆i, ∀ i ∈ [k]}.

It is clear that the usual L∞ norm parameter perturbation is a special case of the above general
case. We use this general form, because we want to include more types of parameter perturbations
which are given in section 5.2. A sketch of the algorithm is given below.

Algorithm 1 Attack under L∞ norm

Require:
The parameter set Θ of F ;
The hyper-parameters: α ∈ R+, ∆ ∈ Rk+, n1, n2 ∈ N;
A training set T .

Ensure: An adversarial parameter set Θa in B∞(Θ,∆).
Let i = 0, Θa = Θ.
For all i ∈ [n1 + n2]:

If i < n1:
L = −

∑
x∈T

1
|T |LAT(x,Θa).

Else:
L =

∑
x∈T LCE(FΘa (x),lx)∑

x∈T LAT(x,Θa) .

Θ̃ = Θa + α5 L.
Θa = Proj(Θ̃, B∞(Θ,∆)).

Output: Θa.

Remark 3.3. We give more details for the algorithm.

(1). Proj(Θ̃, B∞(Θ,∆)) maps Θ̃ into B∞(Θ,∆) as follows: for i ∈ [k]:
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If Θ̃i > Θi + ∆i, Proj(Θ̃, B∞(Θ,∆))i = Θi + ∆i;

If Θ̃i < Θi −∆i, Proj(Θ̃, B∞(Θ,∆))i = Θi −∆i;

If Θ̃i + ∆i > Θi > Θ̃i −∆i, Proj(Θ̃, B∞(Θ,∆))i = Θi.

(2). We will reduce the training steps α with the training going.

3.2 Algorithms for other kinds of adversarial parameters

The algorithm to find adversarial parameters under other norms and robustness measures can be
developed similarly. In what below, we show how to compute adversarial parameters under L0

norm, which is different from other cases. The overall algorithm is similar to Algorithm 1, except
we use a new method to update the parameters. Suppose that Θ = {Wl, bl}Ll=1 is the parameter to
be updated and the value of L in Algorithm 1 is found. We will show how to update the parameters.
We only change some weight matrices Wl as follows.

• Randomly select two entries w1 and w2 of Wl until ( ∇L∇w1
− ∇L
∇w2

)(w1 − w2) > 0 is satisfied.

• Exchange w1 and w2 in Wl to obtain the new parameters.

It is clear that the change will make L become smaller. In total, we update a given number of
weight matrices, and for each such matrix, we change a given percentage of its entries. The details
of the algorithm are omitted. Note that the above parameter perturbation keeps the sparsity and
the values of the entries of the weight matrices. As a consequence the Proj operator in the algorithm
can be taken as the identity map.

The adversarial parameters defined in section 2.2 can also be obtained similarly. For instance,
to compute the adversarial parameters for one sample x, we just need to let T in Algorithm 1 to be
T = {x}.

To compute adversarial parameters for samples with a given label l0, by (9) we can use the
following loss function ∑

x∈T LCE(FΘa(x), lx) +
∑

x∈T & lx 6=l0 LAT(x,Θa)∑
x∈T & lx=l0

LAT(FΘa(x), lx)
(15)

to increase the robustness and accuracy of samples whose labels are not l0 and to reduce the accuracy
for samples with labels l0.

To compute direct adversarial parameters for samples with label l0, by (10) we can use the
following loss function ∑

x∈T & lx 6=l0(LAT(x,Θa) + LCE(FΘa(x), lx))∑
x∈T & lx=l0

LCE(FΘa(x), lx)
(16)

to increase the robustness and accuracy of samples whose labels are not l0 and to reduce the accuracy
for samples with labels l0.

4 Existence of adversarial parameters

In this section, we will show that adversarial parameters with high adversarial rates exist under
certain conditions.
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4.1 Adversarial parameters to achieve low adversary accuracy

In this section, we use the robustness radius in (3) and the adversarial accuracy in (5) as the robust
measures, and hence existence of adversarial parameters implies low adversary accuracies.

We introduce several notations. Let ||x||−∞ = mini∈[n]{|xi|} for x ∈ Rn, and ||W ||−∞,2 =

mini∈[a]{||W (i)||2} for W ∈ Ra×b, where W (i) is the i-th row of W . If F is a network, we use Fi(x)
to denote the i-th coordinate of F(x).

In this section, we consider the following network FΘ : In → Rm with one hidden layer

F(x) = W2Relu(W1x+ b1) + b2, (17)

where W1 ∈ Rn1×n, b1 ∈ Rn1 ,W2 ∈ Rm×n1 , b2 ∈ Rm. Θ = {Wi, bi}2i=1 ∈ Rk is the parameter set of
FΘ, where k = (n+m+ 1)n1 +m.

The network defined in (17) has just one hidden-layer. We will show that when the width of its
hidden-layer is large enough, adversarial parameters exist under with certain conditions.

We will consider L∞ adversarial parameters. For γ ∈ R+, the hypothetical space for the adver-
sarial networks of FΘ is

Hγ(Θ) = {FΘa | ||Θa −Θ||∞ < γ}.

The following theorem shows the existence of adversarial parameters for a given sample x0. The
proof of the theorem is given in section 6.1.

Theorem 4.1. Let FΘ be a trained network with structure in (17), which gives the correct label lx0

for a sample x0. Further assume the following conditions.

C1. Let a,A ∈ R+ such that |Fi(x) − Fj(x)| < A for all i, j ∈ [m] and x ∈ S∞(x0, a) = {x | ||x −
x0||∞ ≤ a}.

C2. ||W (i)
2 −W

(j)
2 ||−∞ > c for all i, j ∈ [m], i 6= j.

C3. At least ηn1 coordinates of |Relu(W1x+ b1)| are bigger than b, where η ∈ (0, 1) and b ∈ R+.

For γ, ε ∈ R+ such that ε < a, if n1 >
2A

min{εγ(n−1),b}cη , then there exists an FΘa ∈ Hγ(Θ) such that

F̂Θa(x0) = lx0 and FΘa has adversarial samples to x0 in S∞(x0, ε).

We have the following observations from Theorem 4.1.

Corollary 4.1. If the robustness radius in (3) is used as the robustness measure, then the adver-
sarial rate of FΘa in Theorem 4.1 is bigger than 1− ε

a .

Remark 4.1. From Theorem 4.1, if the width of FΘ is sufficiently large, then FΘ has adversarial
parameters which is as close as possible to Θ and FΘa has adversarial samples which are as close
as possible to x0.

Remark 4.2. Since FΘ is a continuous function in Θ, if Θa is an adversarial parameter set for
Θ then there exists a small sphere Sa with Θa as center such that all parameters in Sa are also
adversarial parameters for Θ.

From the above two remarks, we may say that adversarial parameters are inevitable in this case.

The following theorem shows that when n1 is large enough, adversarial parameters exist for a
distributions with high probability. The proof of the theorem is given in section 6.1.
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Theorem 4.2. Let FΘ be a trained DNN with structure in (17) and S ⊂ In the set of normal
samples. Further assume the following conditions.

C1. Let A, a ∈ R+ such that |Fi(x)−Fj(x)| < A for all i, j ∈ [m] and x ∈
⋃
x0∈S S∞(x0, a).

C2. ||W (i)
2 −W

(j)
2 ||−∞ > c for all i, j ∈ [m], i 6= j, where c ∈ R+.

C3. For all x ∈ S, at least ηn1 coordinates of |Relu(W1x + b1)| are bigger than b, where η ∈ (0, 1)
b ∈ R+.

C4. The dimension of S is lower than n−m.

For ε, γ ∈ R+ such that ε < a, if n1 >
2A

min{εγ/m,b}cη , then there exists an FΘa ∈ Hγ(Θ) such that
the accuracy of FΘa over Dx is greater than or equal to that of FΘ and

Px∼Dx(FΘa has an adversarial sample of x in S∞(x,ε)) ≥ 0.5.

Corollary 4.2. Let the adversary accuracy of FΘ be θ = R3(FΘ, Dx, ε), then Theorem 4.2 implies
that there exists adversarial parameters Θa of Θ with adversarial rate at least 1− 0.5/θ.

Remark 4.3. The conditions of Theorems 4.1 and 4.2 can be satisfied for most DNNs. The pa-
rameters A and a in Condition C1 are clearly exist. Since the training procedure usually terminates
near a local minimum of the loss function, the weights can be considered as random values [39], and
hence conditions C2 and C3 can be satisfied. For practical examples such as MNIST and CIFAR-10,
condition C4 is clearly satisfied.

4.2 Adversarial parameters for DNNs

In this section, we consider networks of the following form

x0 ∈ In, nL+1 = m;

xl = Relu(Wlxl−1) ∈ Rn,Wl ∈ Rn×n, l ∈ [L];

F(x0) = xL+1 = WL+1xL ∈ Rm,WL+1 ∈ Rm×n.
(18)

Let Θ = {Wi}L+1
i=1 be the parameters and Θ ∈ Rk, where k = Ln2 +mn. We use F lΘ(x) to represent

the output of the l-th layer of FΘ(x) where l ∈ [L]. We will show that, when L becomes big,
adversarial parameters exist.

We first prove the existence of adversarial parameters for a given sample. We use the following
robustness measure for network F at a sample x

R(F , x) = min
l 6=lx
{ |Flx(x)−Fl(x)|2

||∇(Flx(x))−∇(Fl(x))||22
I(Flx(x) > Fl(x))}.

It is easy to see that this is the square of R2(F , x) in (4) with p = 2.

Theorem 4.3. Let FΘ be a trained network with structure in (18), which gives the correct label for
a sample x0 ∈ Rn. Further assume the following conditions.

C1. ||∇Fi(t)
∇t |t=x0 ||2 <

√
A for i ∈ [m].

C2. ||∇F
l(t)
∇t |t=x0 ||−∞,2 > b for l ∈ [L].

10



C3. ||∇Fi(t)−∇Fj(t)

∇F l(t)
|t=x0 ||−∞ > c for i, j ∈ [m], i 6= j and l ∈ [L].

C4. For l ∈ [L], ∇F
l(t)
∇t |t=x0 has a column Ll such that the angle between Ll and F l(x0) is bigger

than α and smaller than π − α, where α ∈ [0, π/2].

Then for γ ∈ R+, there exists an FΘa ∈ Hγ(Θ) such that FΘa(x0) = lx0 and

R(FΘa , x0) ≤ (1− η)R(FΘ, x0)

where η = γ2((L−1)(sin(r)cb)2+c2+(2 sin(r)b)2)
4A+γ2((L−1)(sin(r)cb)2+c2+(2 sin(r)b)2)

. In other words, there exists an FΘa with adversarial
rate ≥ η.

The proof of the theorem is given in section 6.2. As a consequence of Theorem 4.3, there exist
adversarial parameters for sample x0, whose robustness measure is as small as possible.

Corollary 4.3. For ρ ∈ (0, 1), if L ≥ 4(1−ρ)A
ρ(γ sin(r)cb)2 + 1, then the adversarial rate of FΘa is ≥ 1− ρ.

Corollary 4.4. For τ ∈ (0, 1) satisfying τ < R(F , x0), if L > 4A(R(F ,x0)/τ−1)
(γ sin(r)cb)2 +1, then R(FΘa , x0) ≤

τ .

To find adversarial parameters for samples under a distribution Dx, we use the following robust-
ness measure for F :

R(F , Dx) =

∫
x∼Dx

minj 6=lx{||Flx(x)−Fj(x)||22 I(Flx(x) > Fj(x))}dx∫
x∼Dx

maxj 6=lx{||∇Flx(x)−∇Fj(x)||22}dx
.

This is a variant of R4(F , Dx) in (6) with p = 2. The following theorem shows that adversarial
parameters exist for this robustness measure. The proof of the theorem is given in section 6.2.

Theorem 4.4. Let FΘ be a trained DNN with structure in (17) and S ⊂ In the set of normal
samples satisfying distribution Dx. Further assume the following conditions.

C1. ||∇Fi(t)
∇t |t=x||2 <

√
A for all samples x ∈ S and i ∈ [m].

C2. Px∼Dx(∀l 6= lx, ||∇(Fl(t)−Flx (t))

∇F l(t)
|t=x||−∞ > cl) > αl, where l ∈ [L] and cl, αl ∈ R+.

C3. Px∼Dx(||v∇F
l(t)
∇t |t=x||∞ ≥ dl||v||∞) > βl for ∀v ∈ R1×n, where l ∈ [L] and dl, βl ∈ R+.

C4. {F l(x)}x∈S is in a low dimensional subspace of Rn and ||F l(x)||0 > γl/n, where l ∈ [L], x ∈ S,
and γl ∈ R+.

For γ ∈ R+, let H(γ) be the set of networks in Hγ(Θ), whose accuracies are equal to or larger than
that of FΘ. Then

min
F̃∈H(γ)

{R(F̃ , Dx)} ≤ (1− ρ)R(F , Dx)

where ρ =
(γc1)2α1γ1+

∑L
i=2(γcidi−1)2γi(αi+βi−1−1)+βL(dLγ)2

4A+(γc1)2α1γ1+
∑L

i=2(γcidi−1)2γi(αi+βi−1−1)+βL(dLγ)2
. In other words, there exists an FΘa

with adversarial rate ≥ ρ.

We can make the robustness of the perturbed network as small as possible.
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Corollary 4.5. In Theorem 4.4, if α, β, c, d ∈ R+ satisfy αl > α, βl > β, cl > c, dl > d, γl > γlow
for l ∈ [L], then

min
F̃∈H(γ)

{R(F̃ , Dx)} ≤ (1− (γc)2αγlow + (L− 1)(γcd)2γlow(α+ β − 1) + β(dγ)2

4A+ (γc)2αγlow + (L− 1)(γcd)2γlow(α+ β − 1) + β(dγ)2
)R(F , Dx).

Furthermore, for ρ ∈ (0, 1), if L > 1 + 4(1−ρ)A
ρ((γcd)2γlow(α+β−1))

, then there exists an FΘa ∈ H(γ)

whose adversarial rate is ≥ 1− ρ.

Furthermore, for τ ∈ (0, 1) satisfying τ < R(F , Dx), if L > 4A(R(F ,Dx)/τ−1)
(γcd)2γlow(α+β−1)

+ 1, then there

exists an FΘa ∈ H(γ) such that R(FΘa , Dx)} ≤ τ .

Remark 4.4. From Corollary 4.5, if the depth of the DNN is sufficiently large, then there exist
adversary parameters such that the attacked network has robustness measure as small as possible.

Remark 4.5. In practical computation, we use a finite set T of samples satisfying Dx and R(F , Dx)
is approximately computed as R̃(F , T ) = 1/|T |

∑
x∈T R(F , x). Since FΘ is a continued function in

Θ, if Θa is an adversarial parameter for Θ and R̃(F , T ) is used as the robustness measure, then
there exists a small sphere Sa with Θa as center such that all parameters in Sa are also adversarial
parameters for Θ.

The above remarks show that adversary parameters are inevitable in certain sense.

Remark 4.6. In the model (18), two simplifications are made. However, the results proved in this
section can be generalized to general DNNs. First, the bias vectors are not considered, which can
be included as parts of the weight matrices by extending the input space slightly, similar to [22].
Second, it is assumed that nl = n for l ∈ [L]. This assumption could be removed by assuming
n = maxl∈[l] ni.

Remark 4.7. Using R4(F , Dx), results in theorem 4.4 cannot be obtained yet. But, we will use
numerical experiments to show that the result is also valid for R4(F , Dx).

5 Experimental results

5.1 The setting

We use two networks: VGG19 [29] and Resnet56 [11]. We write VGG19 as FV and Resnet56 as FR,
which are trained with the adversarial training [20]. The experimental results are for the CIFAR-10
dataset.

We use both the adversary accuracy in (5) and the approximate robust radius in (6) to com-
pute the adversarial rate. For a given data set T , the adversarial accuracy defined in (5) can be
approximately computed with PGD [20] as follows

R̃3(FΘ, T, ε) = 1/|T |
∑
x∈T

I(F̂Θ(x′) = lx)

where x′ = arg max|x̃−x|∞≤ε LCE(FΘ(x̃), lx). In the experiment, we set ε = 8/255. The approximate
robust radius in (6) can be computed as follows

R̃4(F , T ) =
1

T

∑
x∈T

min
l 6=lx
{ Flx(x)−Fl(x)

||∇Flx(x)−∇Fl(x)||1
I(Flx(x0) > Fl(x0))}
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where the L1-norm is used, since we consider L∞ adversarial samples.

The accuracies, adversarial accuracies, and AARs of FV and FR under the L∞ norm attack are
given in Table 1, which are about the state of the art results for these DNNs.

Net AC AA AAR
FV 80% 45% 0.0770
FR 83% 49% 0.0194

Table 1: Results for FV and FR on CIFAR-10. AC: accuracy, AA: adversarial accuracy, AAR:
approximate accurate radius

5.2 Adversarial parameter attack

Let Θ be the parameter set of FV or FR, and two kinds of parameter perturbation attacks will be
carried out:

L∞,γ perturbation for γ ∈ R+: We consider parameter perturbations in B∞(Θ,∆γ), where
∆γ = (γ|θ1|, . . . , γ|θk|) for Θ = (θ1, . . . , θk). In other words, γ is the perturbation ratio. Also, the
BN-layers will be changed to compute this kind of perturbations.

L0,k perturbation for k ∈ N>0: k weight matrices are perturbed and max{400, 1%#Wl} pairs
of weights are changed for FV with the method given in section 3.2 (1%#Wl pairs of weights are
changed for FR), where #Wl is the number of entries of Wl. The BN-layers will not be changed to
compute this kind of perturbations.

We set γlow in Remark 2.1 to be 90%, that is, if the accuracy of the perturbed network has is
less than 90% of that of the original DNN, then the attack is considered failed.

5.2.1 Random parameter perturbation

We do random parameter perturbations and will use them as bases for comparisons. The results
are given in Table 2.

Attack AC AA AR
No attack 80% 45% 0
L∞,0.02 80% 39% 0.13
L∞,0.04 80% 37% 0.17
L∞,0.06 79% 36% 0.2
L∞,0.08 78% 35% 0.22
L∞,0.10 78% 34% 0.24
L0,8 67% 23% 0.41(fail)
L0,12 61% 20% 0.42(fail)
L0,16 57% 19% 0.41(fail)

Table 2: Random perturbations for FV . AC: accuracy, AA: adversarial accuracy, AR: adversarial
rate

For the L∞ perturbations, the accuracies are kept high, but the robustness does not decrease
much, so the adversarial rates are low. For the L0 perturbations, the accuracy decreases too much
and are considered failed attacks. In either case, random perturbations are not good adversarial
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parameters. Thus adversarial parameters are sparse around the trained parameters, which is similar
with adversarial samples [40].

Attack AC AA AR
No attack 83.1% 48.5% 0
L∞,0.02 82.9% 48.0% 0.004
L∞,0.04 82.7% 48.0% 0.011
L∞,0.06 82.3% 47.5% 0.022
L∞,0.08 81.7% 46.6% 0.039
L∞,0.10 81.0% 45.5% 0.061
L0,10 81.5% 47.8% 0.016
L0,20 80.7% 45.8% 0.054
L0,30 80.5% 45.7% 0.057

Table 3: Random perturbations for FR. AC: accuracy, AA: adversarial accuracy, AR: adversarial
rate

Results of random perturbations for FR are given in Table 3. From the results, we can see that
network FR is much more robust against random parameter perturbations than FV .

5.2.2 Adversarial parameter attack on FV and FR

We use algorithms in section 3 to create adversarial parameters. The training set T contains 500
samples for which F give the correct label. The average results are given in Table 4.

Attack AC
AA in (5) ARR in (6)

R̃3(F , T ) AR R̃4(F , T ) AR

No attack 80% 45% 0 0.0770 0
L∞,0.02 78% 38% 0.15 0.0667 0.13
L∞,0.04 77% 30% 0.32 0.0481 0.36
L∞,0.06 76% 22% 0.49 0.0372 0.49
L∞,0.08 76% 10% 0.74 0.0195 0.71
L∞,0.10 77% 8% 0.79 0.0143 0.78
L0,8 72% 27% 0.36 0.0441 0.38
L0,12 76% 24% 0.44 0.0443 0.40
L0,16 74% 22% 0.47 0.0404 0.44

Table 4: Adversarial parameter attack for FV . AC: accuracy, AA: adversarial accuracy, AR: adver-
sarial rate.

Comparing Tables 2 and 4, we can see that algorithms in section 3 can be used to create
good adversarial parameters, especially for the L∞ attack. From Figure 1, we can see that the
adversarial rate and adversarial accuracy for the L∞,γ attack are near linear in γ when γ is small,
and is gradually stabilized with the increase of γ. Also when γ is very small, say γ = 0.02, the
adversarial parameter attacks do not create good results, which means the network is approximately
safe against these attacks for γ ≤ 0.02. For L0 attacks, we can see that the accuracies are increased
lots comparing to the random perturbation and adversarial parameters are obtained successfully.
Also, for the two kinds of robustness-measurements, the adversarial rates are very close. For network
FR, similar results are obtained and are given in Table 5.
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Figure 1: Left: Relation between γ and the adversarial rate. Right: Relation between γ and
adversarial accuracy.

Attack AC
AA in (5) ARR in (6)

R̃3(F , T ) AR R̃4(F , T ) AR

No attack 83% 49% 0 0.0194 0
L∞,0.02 84% 39% 0.20 0.0151 0.22
L∞,0.04 85% 27% 0.45 0.0127 0.35
L∞,0.06 86% 14% 0.72 0.0092 0.53
L∞,0.08 87% 6% 0.87 0.0064 0.67
L∞,0.10 87% 1% 0.98 0.0044 0.77
L0,10 80% 26% 0.45 0.0193 0
L0,20 78% 18% 0.59 0.0187 0.03
L0,30 72% 9% 0.71 0.0125 0.33

Table 5: Adversarial parameter attack for FR. AC: accuracy, AA: adversarial accuracy, AR: adver-
sarial rate.

5.2.3 Affect of network depth and width on the adversarial parameter attack

We check how the network depth and width affect on the adversarial parameter attack. We use the
L∞,γ adversarial parameter attack for γ = 0.02, 0.04. Let FkV be the network which has the same
width with FV but has k more layers, FV (α) the network which has the same depth with FV but
has α times width as FV . The results are given in Table 6. We can see that when the depth becomes
larger, the attack becomes easier. This validates the results in section 4.2, for instance Corollary
4.5, where it shows that when the depth of the network becomes large, adversarial parameters exist.

The attack is much less sensitive to the width. The reason may be that there exist much
redundancy on the width, similar to the results in [17, 25, 26], and the redundance can lead to
limited search directions in the feature space and poor generalization performance, as shown in [21],
so the attack is hard to improve when the width becomes larger.

15



Network
γ = 0 γ = 0.02 γ = 0.04

AC AA AC AA AR AC AA AR
FV 80% 45% 78% 38% 0.15 77% 30% 0.32
F8
V 80% 47% 76% 37% 0.20 78% 32% 0.31
F16
V 78% 44% 74% 35% 0.19 75% 27% 0.37
F24
V 79% 43% 73% 30% 0.28 73% 20% 0.49
F32
V 76% 44% 72% 28% 0.34 71% 19% 0.53

FV (1.25) 80% 42% 77% 37% 0.12 76% 29% 0.29
FV (1.5) 81% 41% 78% 36% 0.12 77% 30% 0.26
FV (2) 78% 44% 76% 39% 0.11 74% 31% 0.28
FV (2.5) 80% 44% 79% 35% 0.20 76% 30% 0.30

Table 6: Affect of width and depth on adversarial parameter attack for FV . AC: accuracy, AA:
adversarial accuracy, AR: adversarial rate.

We can use R̃4(F , T ) to measure the robustness and similar results are obtained, which are given
in Table 7.

Network
γ = 0 γ = 0.02 γ = 0.04

R̃4(F , T ) R̃4(F , T ) AR R̃4(F , T ) AR
FV 0.0770 0.0667 0.13 0.0481 0.36
F8
V 0.0776 0.0686 0.11 0.0534 0.30
F16
V 0.0815 0.0652 0.19 0.0479 0.40
F24
V 0.0817 0.0630 0.21 0.0388 0.49
F32
V 0.0808 0.0608 0.23 0.0392 0.48

FV (1.25) 0.0750 0.0663 0.11 0.0524 0.29
FV (1.5) 0.0763 0.0670 0.12 0.0563 0.25
FV (2) 0.0750 0.0650 0.13 0.0499 0.32
FV (2.5) 0.0775 0.0678 0.12 0.0489 0.35

Table 7: Affect of width and depth on adversarial parameter attack for FV . AR: adversarial rate

5.3 Direct adversarial parameters

We give experimental results for direct adversarial parameters introduced in section 2.2. We try to
decrease the accuracies for samples with label 0 and keep the accuracies and robustness for other
samples. The experimental results are for the network FV and CIFAR-10 and are given in Table 8.

Attack AC1 AA1 AC0 AR
L∞,0.02 77% 35% 11% 0.65
L∞,0.04 78% 40% 3% 0.83
L∞,0.06 79% 42% 1% 0.92
L∞,0.08 80% 43% 1% 0.95
L∞,0.1 80% 45% 1% 0.99

Table 8: Direct adversarial parameter attack for FV . AC1 and AA1 are for samples with label 6= 0,
AC0 is the accuracy for samples with label 0.

Comparing to Tables 8 and 4, we can see that direct adversarial parameters for a given label are
much easier to compute than adversarial parameters. High quality direct adversarial parameters
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can be obtained by using perturbation ratios 6%− 10%. Results for network FR are given in Table
9, from which we can see that it is slightly more difficult to attack FR.

Attack AC1 AA1 AC0 AR
L∞,0.02 82% 46% 52% 0.38
L∞,0.04 81% 47% 35% 0.57
L∞,0.06 81% 47% 10% 0.83
L∞,0.08 81% 46% 4% 0.90
L∞,0.1 80% 46% 1% 0.93

Table 9: Direc adversarial parameter attack for FR. AC1 and AA1 are for samples with label 6= 0,
AC0 is the accuracy for samples with label 0.

5.4 Adversarial parameters for a given sample

We give experimental results for adversarial parameters for a given sample introduced in section

2.2. R̃2(F , x) = mini 6=lx{
Flx (x)−Fi(x)

||∇Flx (x)−∇Fi(x)||1 } is used to measure the robustness of F at sample x.

Let S be a subset of the test set containing 100 samples such that F gives the correct label for all
of them and all samples in S are robust in that, no adversarial samples were found using PGD-10
with L∞ = 8

255 .

Attack R̃2(F , x) N1 N2 AR
before attack 0.078 100 100 0

L∞,0.02 0.016 0 100 0.79
L∞,0.04 0.010 0 100 0.87
L∞,0.06 0.008 0 100 0.89
L∞,0.08 0.006 0 100 0.92
L∞,0.1 0.005 0 100 0.94

Table 10: Adversarial parameter attack to FV for a given sample. AR: adversarial rate

For each sample x ∈ S, we compute L∞,γ adversarial parameters and the average results are
given in Table 10, where N1 is the number of robust samples, and N2 the number of samples which
are given the correct labels. Comparing to Tables 8, 4, and 10, we can see that adversarial rates
for a single sample are about the same as that for a given label. Similar results for network FR are
given in Table 11.

Attack R̃2(F , x) N1 N2 AR
before attack 0.057 100 100 0

L∞,0.02 0.008 0 100 0.86
L∞,0.04 0.008 0 100 0.86
L∞,0.06 0.008 0 100 0.86
L∞,0.08 0.008 0 100 0.86
L∞,0.1 0.008 0 100 0.86

Table 11: Adversarial parameter attack to FR for a given sample. AR: Adversarial Rate
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6 Proofs for the theorems in section 4

6.1 Proofs of Theorems 4.1 and 4.2

We introduce several notations. Let ||x||−∞ = mini∈[n]{|xi|} for x ∈ Rn, and ||W ||−∞,2 =

mini∈[a]{||W (i)||2} for W ∈ Ra×b, where W (i) is the i-th row of W . If F is a network, we use
Fi(x) to denote the i-th coordinate of F(x). A lemma is proved first.

Lemma 6.1. Let v ∈ Rn and v 6= 0. Then there exists a vector w ∈ Rn such that w⊥v, ||w||∞ = 1
and ||w||2 ≥

√
n− 1.

Proof. Let S = arg minSj[n]{|
∑

i∈S |vi| −
∑

i∈[n]\S |vi||}. We can assume
∑

i∈S |vi| −
∑

i∈[n]\S |vi| =
k ≥ 0. For any j ∈ S such that vj 6= 0 and S1 = S/{j}, we have |

∑
i∈S1
|vi| −

∑
i∈[n]/S1

|vi|| =
|2|vj | − k| ≥ k, which means k ≤ |vj |.

We now define w ∈ Rn. Set wi = 1 if vi = 0. Select a j ∈ S such that vj 6= 0 and let wi = sign(vi)

if i ∈ S/{j} and vi 6= 0, and wj =
−

∑
i∈S |vi|+

∑
i∈[n]\S |vi|+|vj |
vj

. For i ∈ [n] \ S, let wi = −sign(vi) if

vi 6= 0. It is easy to check that ||w||∞ = 1, ||w||2 ≥
√
n− 1, and w⊥v. The lemma is proved.

We now prove Theorem 4.1.

Proof. By Lemma 6.1, there exists a vector v ∈ Rn such that v⊥x0, ||v||2 ≥
√
n− 1 and ||v||∞ = 1.

Moreover, we can assume that at least ηn1/2 coordinates of Relu(W1(x+εv)+b1) are bigger than b.
If this is not valid, we just need to change v to −v, and then Relu(W1(x+ εv) + b1) + Relu(W1(x−
εv)+b1) ≥ 2Relu(W1x+b1), since Relu(x)+Relu(y) ≥ Relu(x+y) for all x, y ∈ R. By condition C3,
at least ηn1 coordinates of 2Relu(W1x + b1) are bigger than 2b, but fewer than ηn1/2 coordinates
of Relu(W1(x+ εv) + b1) are bigger than b, so at least ηn1/2 coordinates of Relu(W1(x− εv) + b1)
are bigger than b.

Let l2 ∈ [m] such that l2 6= lx0 , W 2 = −(W
(lx0 )
2 −W (l2)

2 ) ∈ R1×n1 , Uv ∈ Rn1×n all of whose rows

are γvτ (the transposition of v), and U = diag(sign(W 2)) ∈ Rn1×n1 . Let W̃1 = W1 + UUv and

F̃(x) = W2Relu(W̃1x+ b1) + b2.

We will show that F̃ satisfies the condition of the theorem.

Since v⊥x0, we have F̃(x0) = F(x0) and F̃ gives the correct label for x0. Since ||v||∞ = 1, we

have ||W̃1 −W1||∞ = ||UUv||∞ = ||Uv||∞ = ||γv||∞ ≤ γ, and thus F̃(x) ∈ Hγ(Θ).

So it suffices to show that F̃(x0 + εv) will not give x0 + εv label lx0 , which means that F̃ has
adversarial samples to x0 in S∞(x0, ε). Since

F̃(x0 + εv)

= W2Relu(W̃1(x0 + εv) + b1) + b2
= W2Relu(W1(x0 + εv) + b1 + εUUvv) + b2

we have
F̃lx0

(x0 + εv)− F̃l2(x0 + εv)

= Flx0
(x0 + εv)−Fl2(x0 + εv)+

W 2(Relu(W1(x+ εv) + b1)− Relu(W1(x+ εv) + b1 + εUUvv)).
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Since e(Relu(f)− Relu(e+ f)) = −|f |(|Relu(e)− Relu(e+ f))| for all e, f ∈ R, we have

−W 2(Relu(W1(x+ εv) + b1)− Relu(W1(x+ εv) + b1 + εUUvv))

= |W 2|(|Relu(W1(x+ εv) + b1)− Relu(W1(x+ εv) + b1 + εUUvv)|).

Since εUUvv = εγ||v||22sign(W 2) and ||v||2 ≥ n−1, each weight of |εUUvv| is at least εγ(n−1). Note
that if e > 0 and f ∈ R, then |Relu(e)−Relu(e− f)| ≥ min{e, |f |}. As a consequence, if i satisfies
(Relu(W1(x+ εv) + b1))i > b, then (|Relu(W1(x+ εv) + b1)− Relu(W1(x+ εv) + b1 + εUUvv)|)i ≥
min{εγ(n− 1), b}. Since at least ηn1/2 coordinates of Relu(W1(x+ εv) + b1) are bigger than b, we
have ||Relu(W1(x + εv) + b1) − Relu(W1(x + εv) + b1 + εUUvv)||1 ≥ ηn1/2 min{εγ(n − 1), b}. By
condition C2, it is easy see

−W 2(Relu(W1(x+ εv) + b1)− Relu(W1(x+ εv) + b1 + εUUvv))

= |W 2|(|Relu(W1(x+ εv) + b1)− Relu(W1(x+ εv) + b1 + εUUvv)|)
≥ ||W 2||−∞||Relu(W1(x+ εv) + b1)− Relu(W1(x+ εv) + b1 + εUUvv)||1
≥ min{εγ(n− 1), b}cn1η/2,

that is, W 2(Relu(W1(x+ εv) + b1)−Relu(W1(x+ εv) + b1 + εUUvv)) ≤ −min{εγ(n− 1), b}cn1η/2.
By condition C1, we have Flx0

(x0 + εv)−Fl2(x0 + εv) ≤ A. Then we have

F̃lx0
(x0 + εv)− F̃l2(x0 + εv)

= Flx0
(x0 + εv)−Fl2(x0 + εv)+

W 2(Relu(W1(x+ εv) + b1)− Relu(W1(x+ εv) + b1 + εUUvv))
≤ A−min{εγ(n− 1), b}cn1η/2 < 0.

Thus if n1 >
2A

min{εγ(n−1),b}cη , then F̃lx0
(x0 + εv) − F̃l2(x0 + εv) < 0 and the label of F̃(x0 + εv) is

not lx0 . The theorem is proved.

We now prove Theorem 4.2.

Proof. By condition C4, for l ∈ [m], there exist vl ∈ Rn such that vl⊥S, vl⊥vk for l 6= k, ||vl||2 = 1.
Then ||vl||∞ ≤ 1.

By condition C3, at least ηn1/2 coordinates of Relu(W1(x + εvlx) + b1) are bigger than b or at
least ηn1/2 coordinates of Relu(W1(x−εvlx)+b1) are bigger than b, similar to the proof of Theorem
4.1.

For convenience, we write G(x, y) : (Rn,R)→ R as G(x, y) = ||sign(x− yIn)||0, where In is the
vector with entries 1. It is easy to see that, G(x, b) is the number of coordinates of x that are bigger
than b. So we have G(Relu(W1(x+ εvlx) + b1), b) ≥ ηn1/2 or G(Relu(W1(x− εvlx) + b1), b) ≥ ηn1/2
for all x, and hence for l ∈ [m], we have

Px∼Dx
(G(Relu(W1(x+ εvlx) + b1), b) ≥ ηn1/2 or G(Relu(W1(x− εvlx) + b1), b) ≥ ηn1/2 | lx = l) = 1.

For events e and f , P (e or f) ≤ P (e)+P (f). We thus have Px∼Dx(G(Relu(W1(x+ εvlx)+ b1), b) ≥
ηn1/2 | lx = l) ≥ 0.5 or Px∼Dx(G(Relu(W1(x− εvlx) + b1), b) ≥ ηn1/2 | lx = l) ≥ 0.5. Without loss of
generality, we can assume that for any l ∈ [m], Px∼Dx(G(Relu(W1(x+ εvlx) + b1), b) ≥ ηn1/2 | lx =
l) ≥ 0.5. Therefore,

Px∼Dx(G(Relu(W1(x+ εvlx) + b1), b) ≥ ηn1/2)
=

∑
l∈[m] Px∼Dx(lx = l)Px∼Dx(G(Relu(W1(x+ εvlx) + b1), b) ≥ ηn1/2 | lx = l)

≥ 0.5
∑

l∈[m] Px∼Dx(lx = l)

= 0.5.
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For l ∈ [m], let W
(l)
2 = W

(l)
2 −W

(l+1)
2 , where W

(m+1)
2 = W

(1)
2 . Now assume U lv ∈ Rn1×n, whose

rows are all γvl, and Ul = diag(sign(W
(l)
2 )). Let W̃1 = W1 + 1

m

∑m
l=1 UlU

l
v, and

F̃(x) = W2Relu(W̃1x+ b1) + b2.

We will show that F̃(x) satisfies the conditions of the theorem.

It is easy to see that F̃ is in Hγ(Θ). For any x ∈ S, W̃1x = W1x + 1
m

∑m
l=1(UlU

l
v)x = W1x,

which means F̃(x) = F(x) and the accuracy of F̃ over Dx is equal to that of F .

Let x ∈ S satisfy G(Relu(W1(x+ εvlx) + b1), b) > ηn1/2 and l2 6= lx. By conditions C1 and C2

and similar to the proof of Theorem 4.1, we have

F̃lx(x+ εvlx)− F̃l2(x+ εvlx)
= Flx(x+ εvlx)−Fl2(x+ εvlx)+

W
(lx)
c (Relu(W1(x+ εvlx) + b1)− Relu(W1(x+ εvlx) + b1 + εUlU

l
vv/m))

≤ A−min{εγ/m, b}cn1η/2 < 0.

Thus F̃ does not give label lx to x + εvlx and F̃ has an adversarial sample of x in S∞(x, ε).
Furthermore, since Px∼Dx(G(Relu(W1(x+ εvlx) + b1), b) ≥ γn1/2) > 0.5, we have

Px∼Dx(F̃ has an adversarial sample of x in S∞(x,ε)) > 0.5.

The theorem is proved.

6.2 Proofs of Theorems 4.3 and 4.4

We first prove two lemmas.

Lemma 6.2. For l ∈ [m], let Sl be a non-empty bounded closed subset of Rn×n such that W ∈ Sl
implies −W ∈ Sl. Also let S0 be a non-empty bounded closed subset of R1×n such that x ∈ S0

implies −x ∈ S0. Let U0 ∈ R1×n and Ul ∈ Rn×n for l ∈ [m]. Define maps: T0(x) : R1×n → R1×n by
T0(x) = x

∏m
l=1 Ul, and for l ∈ [m], Tl(W ) : Rn×n → R1×n by Tl(W ) = U0(

∏l−1
j=1 Uj)W (

∏m
j=l+1 Uj).

Then

max
xl∈Sl,∀0≤l≤m

{||
m∏
l=0

(xl + Ul)||22} ≥ ||
m∏
l=0

Ul||22 +
m∑
l=0

max
xl∈Sl

{||Tl(xl)||22}

Proof. For l ∈ [m], let ul = arg maxx∈Sl
||Tl(x)||22, which exists because Sl is bounded and closed.

Then
maxxl∈Sl,∀0≤l≤m{||

∏m
l=0(xl + Ul)||22}

≥ maxxl∈{ul,−ul},∀0≤l≤m{||
∏m
l=0(xl + Ul)||22}

= 1
2m+1

∑
xl∈{ul,−ul},∀0≤l≤m ||

∏m
l=0(xl + Ul)||22

=
∑

Ml∈{ul,Ul},∀0≤l≤m ||
∏m
l=0Ml||22

≥ ||
∏m
l=0 Ul||2 +

∑m
l=0 ||Tl(ul)||22

= ||
∏m
l=0 Ul||2 +

∑m
l=0 maxxl∈Sl

{||Tl(xl)||22}

The lemma is proved.

Lemma 6.3. For l ∈ [m], let Sl be a non-empty closed subset of bounded functions from Ik to Rn×n

such that c(x) ∈ Sl implies −c(x) ∈ Sl. Also let S0 be a non-empty closed subset of bounded functions
from Ik to R1×n such that c(x) ∈ S0 implies −c(x) ∈ S0. Assume U0(x) : Ik → R1×n, Ul(x) : Ik →
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Rn×n for l ∈ [m]. Define maps: T0(c, x) : (S0, Ik) → R1×n by T0(c, x) = c(x)
∏m
l=1 Ul(x); and

Tl(c, x) : (Sl, Ik)→ R1×n by Tl(x) = (
∏l−1
j=0 Uj(x))c(x)(

∏m
j=l+1 Uj(x)) for l ∈ [m]. Then we have

max
cl(x)∈Sl,∀0≤l≤m

{
∫
x∼Dx

||
m∏
l=0

(cl(x) + Ul(x))||22} ≥
∫
x∼Dx

||
m∏
l=0

Ul(x)||22 +

m∑
l=0

max
cl(x)∈Sl

{
∫
x∼Dx

||Tl(cl, x)||22}.

Proof. Denote cl(x) = arg maxc∈Sl
||
∫
x∼Dx

Tl(c, x)||22, which must exist because Sl is closed and its
elements are bounded. Then

maxcl(x)∈Sl,∀0≤l≤m{
∫
x∼Dx

||
∏m
l=0(cl(x) + Ul(x))||22}

≥ maxcl(x)∈{cl(x),−cl(x)},∀0≤l≤m{
∫
x∼Dx

||
∏m
l=0(cl(x) + Ul(x))||22}

≥ 1
2m+1

∑
cl∈{cl(x),−cl(x)},∀0≤l≤m

∫
x∼Dx

||
∏m
l=0(cl(x) + Ul(x))||22

=
∑

Ml(x)∈{cl(x),Ul(x)},∀0≤l≤m ||
∫
x∼Dx

∏m
l=0Ml(x)||22

≥
∫
x∼Dx

||
∏m
l=0 Ul(x)||22 +

∑m
l=0

∫
x∼Dx

||Tl(cl, x)||22
=

∫
x∼Dx

||
∏m
l=0 Ul||2 +

∑m
l=0 maxcl∈Sl

{
∫
x∼Dx

||Tl(cl, x)||22}.

The lemma is proved.

We now prove Theorem 4.3.

Proof. Let Sl be the set of Q ∈ Rn×n satisfying ||Q||∞ ≤ γ and QF l−1(x0) = 0 for l ∈ [L+ 1]. Note
that Q satisfies n(l+ 1) linear equations and has n2 variables. Since n� l in DNNs, we can assume
that Sl is not empty. Let F be the set of networks F̃ : Rn → Rm satisfying

F̃(x) = W̃L+1σ(W̃Lσ(W̃L−1σ(. . . σ(W̃1x))))

where W̃l −Wl ∈ Sl for all l ∈ [L+ 1]. We have F̃ l(x0) = F l(x0) for l ∈ [L+ 1]. So F̃(x0) = lx0 if
F̃ ∈ F. It is also easy to see that F ⊂ Hγ(Θ). So it suffices to prove

min
F̃∈F
{R(F̃ , x0)

R(F , x0)
} ≤ 1− γ2((L− 1)(sin(r)cb)2 + c2 + (2 sin(r)b)2)

4A+ γ2((L− 1)(sin(r)cb)2 + c2 + (2 sin(r)b)2)
.

Let l2 = arg mini 6=lx0
{

|Flx0
(x0)−Fi(x0)|2

||∇(Flx0
(x0))−∇(Fi(x0))||22

I(Flx0
(x0) > Fi(x0))}. Then

R(F , x0) =
|Flx0

(x0)−Fl2(x0)|2

||∇(Flx0
(x0))−∇(Fl2(x0))||22

.

Then for all F̃ ∈ F, we have

R(F̃ , x0) ≤ |F̃lx(x0)− F̃l2(x0)|2

||∇(F̃lx(x0))−∇(F̃l2(x0))||22
=

|Flx(x0)−Fl2(x0)|2

||∇(F̃lx(x0))−∇(F̃l2(x0))||22

So we have

minF̃∈F{
R(F̃ ,x0)
R(F ,x0)}

≤ minF̃∈F{
|Flx (x0)−Fl2

(x0)|2

||∇(F̃lx (x0))−∇(F̃l2
(x0))||22

/
|Flx (x)−Fl2

(x)|2

||∇(Flx (x))−∇(Fl2
(x))||22

}

≤ minF̃∈F{
||∇(Flx (x0))−∇(Fl2

(x0))||22
||∇(F̃lx (x0))−∇(F̃l2

(x0))||22
}.

(19)
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To prove the theorem, we will first find a lower bound for maxF̃∈F{||∇(F̃lx(x0))−∇(F̃l2(x0))||2}.
Let Jl(x) = diag(sign(F l(x))) : Rn → Rn×n for l ∈ [L]. Then

∇Fi(x)

∇x
= W i

L+1(JL(x)WL)(JL−1(x)WL−1) . . . (J1(x)W1).

Let Al(x) = ∇FL(t)
∇F l(t)

|t=x and Bl(x) = ∇F l(t)
∇t |t=x for l ∈ [L]. Then we have

Al(x) = (JL(x)WL)(JL−1(x)WL−1) . . . (Jl+1(x)Wl+1)
Bl(x) = (Jl(x)Wl)(Jl−1(x)Wl−1) . . . (J1(x)W1).

Let Al = Al(x0), Bl = Bl(x0), Jl = Jl(x0). Then for all F̃ ∈ F,

∇F̃i(x)

∇x
|x=x0 = W̃ i

L+1(JLW̃L)(JL−1W̃L−1) . . . (J1W̃1).

Denote W l = W̃l −Wl ∈ Sl for l ∈ [L+ 1]. We have

∇(F̃lx(x0))−∇(F̃l2(x0))

= (W̃
(lx)
L+1 − W̃

(l2)
L+1)(JLW̃L)(JL−1W̃L−1) . . . (J1W̃1)

= (W
(lx)
L+1 −W

(l2)
L+1 +W

(lx)
L+1 −W

(l2)
L+1)(JL(WL +WL))(JL−1(WL−1 +WL−1)) . . . (J1(W1 +W 1)).

Now, let γ(W 1) = (W
(lx)
L+1 − W

(l2)
L+1)A1J1W 1, Mi(W i) = (W

(lx)
L+1 − W

(l2)
L+1)AiJiW iBi−1, where i ∈

{2, 3, . . . , L}, ML+1(WL+1) = (W
(lx)
L+1 −W

(l2)
L+1)BL. By Lemma 6.2, we have

maxF̃∈F{||∇(F̃lx(x0))−∇(F̃l2(x0))||22}
≥ maxW j∈Sj ,j∈[L+1]{||∇(Flx(x0))−∇(Fl2(x0))||22 +

∑L+1
i=1 ||Mi(W i)||22}

= ||∇(Flx(x0))−∇(Fl2(x0))||22 +
∑L+1

i=1 maxW i∈Si
{||Mi(W i)||22}.

It is easy to see for any l ∈ [L], (W
(lx)
L+1 −W

(l2)
L+1)Al =

∇Flx (t)−Fl2
(t)

∇F l(t)
|t=x0 , so by condition C3, we

have ||(W (lx)
L+1 −W

(l2)
L+1)Ai||−∞ > c. Let S1

l be the subset of Sl containing those C which have at
most one nonzero row. Hence, for x ∈ R1×n and M ∈ Rn×n, if at most one row of M is nonzero,
we have ||xM ||∞ = maxi,j∈[n]{|xiMi,j |} ≥ ||x||−∞||M ||∞, where xi is the i-th weight of x, Mi,j is
the weight of M at i-th row and j-th column. Thus

maxW 1∈S1
{||γ(W 1)||2}

= maxW 1∈S1
{||(W (lx)

L+1 −W
(l2)
L+1)A1J1W 1||2}

≥ maxW 1∈S1
{||(W (lx)

L+1 −W
(l2)
L+1)A1J1W 1||∞}

≥ maxW 1∈S1
1
{||(W (lx)

L+1 −W
(l2)
L+1)A1J1W 1||∞}

≥ ||(W (lx)
L+1 −W

(l2)
L+1)A1||−∞maxW 1∈S1

1
{||J1W 1||∞}

≥ γc.

Moreover, by condition C4, there exists a column Li−1 of Bi−1 such that π−r ≥ α(F i−1(x0), Li−1) ≥
r, where α(x, y) is the angle between x, y. Therefore, there exists a vector vi ∈ Rn such that
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v⊥F i−1(x), ||vi||∞ = γ and consider condition C2, we have 〈vi, Li−1〉 = ||vi||2||Li−1||2 cos(π/2−r) ≥
sin(r)bγ.

Then maxW i∈S1
i
||JiW iBi−1||∞ ≥ sin(r)bγ, because there must exist a W i ∈ S1

i whose only

nonzero row is vi and JiW i = W i. For l ∈ {2, 3, . . . , L}, by condition C3, we have

maxW l∈Sl
{||Ml(W l)||2

= maxW l∈Sl
{||(W (lx)

L+1 −W
(l2)
L+1)AiJlW lBl−1||2}

≥ maxW l∈Sl
{||(W (lx)

L+1 −W
(l2)
L+1)AlJlW lBl−1||∞}

≥ maxW l∈S1
l
{||(W (lx)

L+1 −W
(l2)
L+1)AlJlW lBl−1||∞}

≥ ||(W (lx)
L+1 −W

(l2)
L+1)A1||−∞maxW l∈Sl

||JlW lBl−1||∞
≥ γ sin(r)cb.

Similarly,
maxWL+1∈SL+1

{||ML+1(WL+1)||2}
= maxWL+1∈SL+1

{||(W (lx)
L+1 −W

(l2)
L+1)BL||2}

≥ maxWL+1∈SL+1
{||(W (lx)

L+1 −W
(l2)
L+1)BL||∞}

≥ 2 sin(r)bγ.

Then we obtain the desired lower bound:

maxF̃∈F{||∇(F̃lx(x0))−∇(F̃l2(x0))||22}
≥ maxW j∈Sj ,j∈[L+1]{||∇(Flx(x0))−∇(Fl2(x0))||22 +

∑L+1
l=1 ||Ml(W l)||22}

≥ ||∇(Flx(x))−∇(Fl2(x))||22 + γ2((L− 1)(sin(r)cb)2 + c2 + (2 sin(r)b)2).

By condition C1 and the lower bound just obtained, we have

minF̃∈F{
||∇(Flx (x0))−∇(Fl2

(x0))||22
||∇(F̃lx (x0))−∇(F̃l2

(x0))||22
}

≤ ||∇(Flx (x0))−∇(Fl2
(x0))||22

||∇(Flx (x0))−∇(Fl2
(x0))||22+γ2((L−1)(sin(r)cb)2+c2+(2 sin(r)b)2)

= 1− γ2((L−1)(sin(r)cb)2+c2+(2 sin(r)b)2)
||∇(Flx (x0))−∇(Fl2

(x0))||22+γ2((L−1)(sin(r)cb)2+c2+(2 sin(r)b)2)

≤ 1− γ2((L−1)(sin(r)cb)2+c2+(2 sin(r)b)2)
4A+γ2((L−1)(sin(r)cb)2+c2+(2 sin(r)b)2)

.

The theorem is proved.

We now prove Theorem 4.4.

Proof. The proof is similar to that of Theorem 4.3, so certain details are omitted. Let Tl =
{F l−1(x) |x ∈ S} ⊂ R, and Sl the set of Q ∈ Rn×n such that ||Q||∞ ≤ γ and Qt = 0 for all t ∈ Tl
and l ∈ [L+ 1]. Sl must contain non-zero elements because of condition C4.

Let F be the set of networks F̃ ∈ Rn → Rm

F̃(x) = W̃L+1σ(W̃Lσ(W̃L−1σ(. . . σ(W̃1x))))

where W̃l −Wl ∈ Sl. Then for all F̃ ∈ F, we have F̃ l(x) = F l(x) for l ∈ [L + 1] and x ∈ S, so
F ⊂ H(γ). As a consequence,∫

x∼Dx
minl 6=lx{||Flx(x)−Fl(x)||22I(Flx(x) > Fl(x))}dx

=
∫
x∼Dx

minl 6=lx{||F̃lx(x)− F̃l(x)||22I(F̃lx(x) > F̃l(x))}dx.
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Let l2 = arg maxl 6=lx{||∇(Flx(x))−∇(Fl(x))||22}. Then∫
x∼Dx

maxl 6=lx{||∇(Flx(x))−∇(Fi(x))||22}dx
=

∫
x∼Dx

||∇(Flx(x))−∇(Fl2(x))||22dx

and ∫
x∼Dx

maxl 6=lx{||∇(F̃lx(x))−∇(F̃i(x))||22}dx
≥

∫
x∼Dx

||∇(F̃lx(x))−∇(F̃l2(x))||22dx.

Therefore,

minF̃∈H(γ)
{R(F̃ ,Dx)
R(F ,Dx)}

≤ minF̃∈F{
R(F̃ ,Dx)
R(F ,Dx)}

≤ minF̃∈F{
∫
x∼Dx

||Flx (x)−Fl2
(x)||22dx∫

x∼Dx
||F̃lx (x)−F̃l2

(x)||22dx
}.

We will estimate maxF̃∈F{
∫
x∼Dx

||F̃lx(x)− F̃l2(x)||22dx}. Let Jl(x) = diag(sign(F l(x))) ∈ Rn×n,

where l ∈ [L]. Then ∇Fi(x)
∇x = W i

L+1(JL(x)WL)(JL−1(x)WL−1) . . . (J1(x)W1). Also, for all F̃ ∈ F,

∇F̃i(x)

∇x
= W̃ i

L+1(JL(x)W̃L)(JL−1(x)W̃L−1) . . . (J1(x)W̃1).

Denote W i = W̃i −Wi ∈ Si. Then

∇(F̃lx(x))−∇(F̃l2(x))

= (W̃
(lx)
L+1 − W̃

(l2)
L+1)(JL(x)W̃L)(JL−1(x)W̃L−1) . . . (J1(x)W̃1)

= (W
(lx)
L+1 −W

(l2)
L+1 +W

(lx)

L+1 −W
(l2)

L+1)(JL(x)(WL +WL))(JL−1(x)(WL−1 +WL−1)) . . . (J1(x)(W1 +W 1))

Let Al(x) = ∇FL(t)
∇F l(t)

|t=x, Bl(x) = ∇F l(t)
∇t |t=x where l ∈ [L]. Then

Al(x) = (JL(x)WL)(JL−1(x)WL−1) . . . (Jl+1(x)Wl+1) and

Bl(x) = (Jl(x)Wi)(Jl−1(x)Wl−1) . . . (J1(x)W1).

Let γ(x,W 1) = (W
(lx)
L+1 −W

(l2)
L+1)A1(x)J1(x)W 1, Ml(x,W l) = (W

(lx)
L+1 −W

(l2)
L+1)Al(x)Jl(x)W lBl−1(x)

where l ∈ {2, 3, . . . , L}, ML+1(x,WL+1) = (W
(lx)
L+1 −W

(l2)
L+1)BL(x). By Lemma 6.3,

maxF̃∈F{
∫
x∼Dx

||∇(F̃lx(x))−∇(F̃l2(x))||22dx}

≥ maxW l∈Sl,l∈[L+1]{
∫
x∼Dx

||∇(Flx(x))−∇(Fl2(x))||22 +
∑L+1

l=1 ||Ml(W l)||22dx}

=
∫
x∼Dx

||∇(Flx(x))−∇(Fl2(x))||22 +
∑L+1

l=1 maxW l∈Sl
{
∫
x∼Dx

||Ml(W l)||22dx}.

Let W 1(k) ∈ Rn×n be the matrix whose k-th row is equal to k-th row of W 1, and other rows are 0.
Let (J1(x))(k) be the k-th row of J1(x). Then

maxW 1∈S1
{
∫
x∼Dx

||γ(x,W 1)||22}

= maxW 1∈S1
{
∫
x∼Dx

||(W (lx)
L+1 −W

(l2)
L+1)A1(x)J1(x)W 1||22dx}

≥ maxW 1∈S1
{
∫
x∼Dx

||(W (lx)
L+1 −W

(l2)
L+1)A1(x)J1(x)W 1||2∞dx}

≥ maxW 1∈S1,k∈[n]{
∫
x∼Dx

(||(W (lx)
L+1 −W

(l2)
L+1)A1(x)||−∞||J1(x)W 1(k)||∞)2dx}

≥ maxk∈[n]{
∫
x∼Dx

(||(W (lx)
L+1 −W

(l2)
L+1)A1(x)||−∞I((J1(x))(k) 6= 0)γ)2dx}.
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By condition C2, we know that Px∼Dx(||(W (lx)
L+1−W

(l2)
L+1)A1(x)||−∞ > c1) > α1, and by condition C4

and the principle of drawer, there exists a k ∈ [n] such that P (x ∼ Dx)(I((J1(x))(k) 6= 0) | ||(W (lx)
L+1−

W
(l2)
L+1)A1(x)||−∞ > c) > γ. Thus there exists a k ∈ [n] such that

P (x ∼ Dx)(I((J1(x))(k) 6= 0), ||(W (lx)
L+1 −W

(l2)
L+1)A1(x)||−∞ > c) > γα1.

Then

maxW 1∈S1
{
∫
x∼Dx

||γ(x,W 1)||22}

≥ maxk∈[n]{
∫
x∼Dx

(||(W (lx)
L+1 −W

(l2)
L+1)A1(x)||−∞I((J1(x))(k) 6= 0)γ)2dx}

≥ maxk∈[n]{P (x ∼ Dx)(I((J1(x))(k) 6= 0), ||(W (lx)
L+1 −W

(l2)
L+1)A1(x)||−∞ > c)(cγ)2}

≥ (c1γ)2γα1.

Let S̃l = {x ∈ Sl | only one row of x is not 0}. Then for l ∈ {2, 3, . . . , L}, we have

maxW l∈Si
{
∫
x∼Dx

||Ml(x,W l)||22dx}

= maxW l∈Sl
{
∫
x∼Dx

||(W (lx)
L+1 −W

(l2)
L+1)Al(x)Jl(x)W lBl−1(x)||22dx}

≥ max
W l∈S̃l

{
∫
x∼Dx

(||(W (lx)
L+1 −W

(l2)
L+1)Al(x)||−∞||Jl(x)W lBl−1(x)||∞)2dx}

≥ max
W l∈S̃l

{Px∼Dx(||(W (lx)
L+1 −W

(l2)
L+1)Al(x)||−∞ > cl, ||Jl(x)W lBl−1(x)||∞ ≥ dl||Jl(x)W l||∞,

Jl(x)W l 6= 0)(γcldl−1)2}

By conditions C3 and C2, we have Px∼Dx(||(W (lx)
L+1−W

(l2)
L+1)Al(x)||−∞ > cl, ||Jl(x)W lBl−1(x)||∞

≥ dl||Jl(x)W l||∞) > αl + βl−1 − 1. By condition C4 and the principle of drawer, there exists a

W i ∈ S̃i such that Px∼Dx(Jl(x)W l 6= 0 | ||(W (lx)
L+1 −W

(l2)
L+1)Al(x)||−∞ > cl, ||Jl(x)W lBl−1(x)||∞ ≥

dl||Jl(x)W i||∞) > γ. So, there exists a W l ∈ S̃l such that

Px∼Dx(||(W (lx)
L+1 −W

(l2)
L+1)Al(x)||−∞ > cl, ||Jl(x)W lBl−1(x)||∞ ≥ dl||Jl(x)W l||∞, Jl(x)W l 6= 0)

> γ(αl + βl−1 − 1).

Then

maxW i∈Si
{
∫
x∼Dx

||Mi(x,W i)||22dx}

≥ max
W i∈S̃i

{Px∼Dx(||(W (lx)
L+1 −W

(l2)
L+1)Ai(x)||−∞ > ci,

||Ji(x)W iBi−1(x)||∞ ≥ di||Ji(x)W i||∞, Ji(x)W i 6= 0)(γcidi−1)2}

≥ (γcidi−1)2γ(αi + βi−1 − 1).

Similarly, by condition C3, we have

maxWL+1∈SL+1
{
∫
x∼Dx

||ML+1(x,WL+1)||22dx}

= maxWL+1∈SL+1
{
∫
x∼Dx

||(W (lx)

L+1 −W
(l2)

L+1)BL(x)||22dx}

≥ maxWL+1∈SL+1
{
∫
x∼Dx

||(W (lx)

L+1 −W
(l2)

L+1)BL(x)||2∞dx}

≥ maxWL+1∈SL+1
{
∫
x∼Dx

I(||(W (lx)

L+1 −W
(l2)

L+1)BL(x)||∞ ≥ dL||W
(lx)

L+1 −W
(l2)

L+1||∞)(dL||W
(lx)

L+1 −W
(l2)

L+1||∞)2dx}

≥ βL(dLγ)2.
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Then we have the desired lower bound

maxF̃∈F{
∫
x∼Dx

||∇(F̃lx(x))−∇(F̃l2(x))||22dx}

≥
∫
x∼Dx

||∇(Flx(x))−∇(Fl2(x))||22dx+
∑L+1

i=1 maxW i∈Si
{
∫
x∼Dx

||Mi(W i)||22dx}

≥
∫
x∼Dx

||∇(Flx(x))−∇(Fl2(x))||22dx+ (γc)2α1γ +
∑L

i=2(γcidi−1)2γ(αi + βi−1 − 1) + βL(dLγ)2.

By condition C1 and the lower bound just obtained, we have

minF̃∈F{
∫
x∼Dx

||Flx (x)−Fl2
(x)||22dx∫

x∼Dx
||F̃lx (x)−F̃l2

(x)||22dx
}

≤
∫
x∼Dx

||Flx (x)−Fl2
(x)||22dx∫

x∼Dx
||∇(Flx (x))−∇(Fl2

(x))||22dx+(γc1)2α1γ1+
∑L

i=2(γcidi−1)2γi(αi+βi−1−1)+βL(dLγ)2

= 1− (γc1)2α1γ1+
∑L

i=2(γcidi−1)2γi(αi+βi−1−1)+βL(dLγ)2∫
x∼Dx

||∇(Flx (x))−∇(Fl2
(x))||22dx+(γc1)2α1γ1+

∑L
i=2(γcidi−1)2γi(αi+βi−1−1)+βL(dLγ)2

≤ 1− (γc1)2α1γ1+
∑L

i=2(γcidi−1)2γi(αi+βi−1−1)+βL(dLγ)2

4A+(γc1)2α1γ1+
∑L

i=2(γcidi−1)2γi(αi+βi−1−1)+βL(dLγ)2
.

The theorem is proved.

7 Conclusion

The adversarial parameter attack for DNNs is proposed. In the attack, the adversary makes small
changes to the parameters of a trained DNN such that the attacked DNN will keep the accuracy of
the original DNN as much as possible, but makes the robustness as low as possible. The goal of the
attack is that the attacked DNN is imperceptible to the user and at the same time the robustness
of the DNN is broken. The existence of adversarial parameters is proved under certain conditions
and effective adversarial parameter attack algorithms are also given.

In general, it is still out of reach to provide provable safety DNNs in real-world applications, and
one of the ways to develop safer DNN models and training methods, and evaluate the safety of the
trained model against existing attack methods. In other words, a DNN to be deployed is considered
safe if it is safe against existing attacks in certain sense. From this viewpoint, it is valuable to have
more attack methods. This is similar to the cryptanalysis [13], where much more matured theory
and attack methods are developed.
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[6] A. Bastounis, A.C. Hansen, V. Vlac̆ić. The Mathematics of Adversarial Attacks in AI - Why
Deep Learning is Unstable Despite the Existence of Stable Neural Networks. arXiv:2109.06098,
2021.

[7] J. Breier, X. Hou, D. Jap, L. Ma, S. Bhasin, Y. Liu. DeepLaser: Practical Fault Attack on
Deep Neural Networks. arXiv:1806.05859, 2018.

[8] J. Cohen, E. Rosenfeld, Z. Kolter. Certified Adversarial Robustness via Randomized Smooth-
ing. Proc. ICML’2019, PMLR, 1310-1320, 2019.

[9] G. Cybenko. Approximation by Superpositions of a Sigmoidal Function. Mathematics of Con-
trol, Signals and Systems, 2(4): 303-314, 1989.

[10] C. Etmann, S. Lunz, P. Maass, C.B. Schonlieb. On the Connection Between Adversarial Ro-
bustness and Saliency Map Interpretability. arXiv:1905.04172, 2019.

[11] K. He, X. Zhang, S. Ren, J. Sun. Deep Residual Learning for Image Recognition. Proc. CVPR,
770-778, 2016.

[12] M. Hein and M. Andriushchenko. Formal Guarantees on the Robustness of a Classifier Against
Adversarial Manipulation. Proc. NIPS, 2266-2276, 2017.

[13] O. Goldreich. Foundations of Cryptography, Volume II, Basic Tools. Cambridge University
Press, 2009.

[14] I.J. Goodfellow, J. Shlens, C. Szegedy. Explaining and Harnessing Adversarial Examples.
arXiv:1412.6572, 2014.

[15] Y. LeCun, Y. Bengio, G. Hinton. Deep Learning. Nature, 521(7553), 436-444, 2015.

[16] Y. LeCun, L. Bottou, Y. Bengio, P. Haffner. Gradient-based Learning Applied to Document
Recognition. Proc. of the IEEE, 86(11): 2278-2324, 1998.

[17] H. Li, A. Kadav, I. Durdanovic, H. Samet, H.P. Graf. Pruning Filters for Efficient Convnets.
arXiv:1608.08710, 2016.

[18] Y. Liu, L. Wei, B. Luo, Q. Xu. Fault Injection Attack on Deep Neural Network. Proc. of the
IEEE/ACM International Conference on Computer-Aided Design, 131-138, 2017.

[19] A. Ma, F. Faghri, N. Papernot, A.M. Farahmand. SOAR: Second-Order Adversarial Regular-
ization. arXiv:2004.01832, 2020.

[20] A. Madry, A. Makelov, L. Schmidt, D. Tsipras, A. Vladu. Towards Deep Learning Models
Resistant to Adversarial Attacks. arXiv:1706.06083, 2017.

[21] A.S. Morcos, D.G.T. Barrett, NC. Rabinowitz, M. Botvinick. On the Importance of Single
Directions for Generalization. t arXiv:1803.06959, 2018.

[22] B. Neyshabur, R. Tomioka, N. Srebro. Norm-based Capacity Control in Neural Networks. Proc.
COLT’15, 1376-1401, 2015.

27

http://arxiv.org/abs/2011.01539
http://arxiv.org/abs/2109.06098
http://arxiv.org/abs/1806.05859
http://arxiv.org/abs/1905.04172
http://arxiv.org/abs/1412.6572
http://arxiv.org/abs/1608.08710
http://arxiv.org/abs/2004.01832
http://arxiv.org/abs/1706.06083
http://arxiv.org/abs/1803.06959


[23] N. Papernot, P. McDaniel, S. Jha, M. Fredrikson, Z.B. Celik, A. Swami. The Limitations of
Deep Learning in Adversarial Settings. IEEE European Symposium on Security and Privacy,
IEEE Press, 2016: 372-387.

[24] A. Raghunathan, J. Steinhardt, P. Liang. Certified Defenses Against Adversarial Examples.
ArXiv: 1801.09344, 2018.

[25] A. RoyChowdhury, P. Sharma, E. Learned-Miller. Reducing Duplicate Filters in Deep Neural
Networks. NIPS workshop on Deep Learning: Bridging Theory and Practice, 1, 2017.

[26] W. Shang, K. Sohn, D. Almeida, H. Lee. Understanding and Improving Convolutional Neural
Networks via Concatenated Rectified Linear Units. Proc. ICML, PMLR, 2217-2225, 2016.

[27] A. Shafahi, W.R. Huang, C. Studer, S. Feizi, T. Goldstein. Are Adversarial Examples In-
evitable? arXiv:1809.02104, 2018.

[28] C.J. Simon-Gabriel, Y. Ollivier, L. Bottou, B. Schölkopf, D. Lopez-Paz. First-order Adversarial
Vulnerability of Neural Networks and Input Dimension. Proc. ICML, PMLR, 5809-5817, 2019.

[29] K. Simonyan and A. Zisserman. Very Deep Convolutional Networks for Large-scale Image
Recognition. arXiv:1409.1556, 2014.

[30] X. Sun, Z. Zhang, X. Ren, R. Luo, L. Li. Exploring the Vulnerability of Deep Neural Networks:
A Study of Parameter Corruption. arXiv:2006.05620, 2020.

[31] C. Szegedy, W. Zaremba, I. Sutskever, J. Bruna, D. Erhan, I.J. Goodfellow, R. Fergus. Intrigu-
ing Properties of Neural Networks. arXiv:1312.6199, 2013.
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