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Abstract

Adversarial deep learning is to train robust DNNs against adversarial attacks, which is one
of the major research focuses of deep learning. Game theory has been used to answer some
of the basic questions about adversarial deep learning such as the existence of a classifier
with optimal robustness and the existence of optimal adversarial samples for a given class of
classifiers. In most previous work, adversarial deep learning was formulated as a simultaneous
game and the strategy spaces are assumed to be certain probability distributions in order
for the Nash equilibrium to exist. But, this assumption is not applicable to the practical
situation. In this paper, we give answers to these basic questions for the practical case
where the classifiers are DNNs with a given structure, by formulating the adversarial deep
learning as sequential games. The existence of Stackelberg equilibria for these games are
proved. Furthermore, it is shown that the equilibrium DNN has the largest adversarial
accuracy among all DNNs with the same structure, when Carlini-Wagner’s margin loss is
used. Trade-off between robustness and accuracy in adversarial deep learning is also studied
from game theoretical aspect.

Keywords. Adversarial deep learning, Stackelberg game, optimal robust DNN, universal
adversarial attack, adversarial accuracy, trade-off result.

1 Introduction

A major safety issue for deep learning [22] is the existence of adversarial samples [40], that is,
it is possible to make little modifications to an input sample which are essentially imperceptible
to the human eye, but the DNN outputs a wrong label or even any label given by the adversary.
Existence of adversarial samples makes deep learning vulnerable in safety critical applications
and adversarial deep learning has becomes a major research focus of deep learning [44]. The
goal of adversarial deep learning is to train robust DNNs against adversarial attacks and well
as developing more effective attack methods for generating adversarial samples.

Many adversarial defence models were proposed, including the adversarial training based on
robust optimization [24, 49], the gradient masking and obfuscation approaches [1, 48], adversarial
parameter attacks [41, 23, 47], universal adversaries [5, 27], randomized smoothing [9], and the
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adversarial sample detection [7]. Many attack methods are also proposed, including the white-
box attacks based on gradient information of the DNN [6, 24, 30], the black-box attacks based
on the transferability of the adversaries [31], the poisoning attacks for the input data [17, 36],
and the physical world attacks [21, 2]. More details can be found in the survey [44].

Many of the defenses are found to be susceptible to new adversarial attacks, and stronger
defences also are proposed against the new adversarial attacks. To break this loop of defences
and attacks, a recent line of research based on game theory [14, 38] tries to establish more
rigourous foundation for adversarial deep learning by answering questions such as [5, 8, 25, 32]:

Question Q1: Does there exists a classifier which ensures optimal robustness against any
adversarial attack?

Question Q2: Does there exist optimal adversarial samples for a given class of classifiers
and a given set of data distribution?

To answer these questions, the adversarial deep learning was formulated as a simultaneous
game between the Classifier and the Adversary. The goal of the Classifier is to train a robust
DNN. The goal of the Adversary is to create optimal adversarial samples. A Nash equilibrium of
the game is a DNN C∗ and an attack A∗, such that no player can benefit by unilaterally changing
its strategy and thus gives an optimal solution to the adversarial deep learning. Existence of
Nash equilibria was proved under various assumptions [5, 25, 32].

Despite the grerat progresses, questionsQ1 andQ2 are not answered satisfactorily. The main
reason is that in order for the Nash equilibrium to exist, both the Classifier and the Adversary are
either assumed to be a convex set of probability distributions or measurable functions. However,
in practice, DNNs with fixed structures are used and Nash equilibria do not exist in this case.
In this paper, we will show that questions Q1 and Q2 can be answered positively for DNNS
with a fixed structure by formulating the adversarial deep learning as Stackelberg games.

1.1 Main contributions

A positive answer to question Q1 is given by formulating the adversarial deep learning as a
Stackelberg game Gs with the Classifier as the leader and the Adversary as the follower, where
the strategy space for the Classifier is a class of DNNs with a given structure, say DNNs with
a fixed depth and width. We show that game Gs has a Stackelberg equilibrium which gives the
optimal robust DNN under certain robustness measurement (Refer to Theorem 3.5). We further
show that when the Carlini-Wagner margin loss is used as the payoff function, the equilibrium
DNN is the optimal defense which has the largest adversarial accuracy among all DNNs with the
same structure (Refer to Theorem 4.4). Furthermore, the equilibrium DNN is the same as that
of the adversarial training [24]. Thus, our results give another theoretical explanation for the
fact that adversarial training is one of the most effective defences against adversarial attacks.

The trade-off property for deep learning means that there exists a trade-off between the
robustness and accuracy [42, 45, 49]. We prove a trade-off result from game theoretical viewpoint.
Precisely, we show that if a linear combination of the payoff functions of adversarial training and
normal training is used as the total payoff function, then the equilibrium DNN has robustness
not higher and accuracy no lower than that of the DNN obtained by adversarial training. We
also show that trade-off property does not hold if using empirical loss to train the DNNs, that
is, the DNNs with the largest adversarial accuracy can be parameterized by elements in an open
set of RK , where K is the number of parameters, that is, there still exist rooms to improve the
accuracy for DNNS with the optimal adversarial accuracy.
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Finally, when using the empirical loss for a finite set of samples to train the DNN, we
compare Gs (denoted as G1 in this case) with two other games: G2 is the Stackelberg game
with the Adversary as the leader and G3 is the simultaneous game between the Classifier and
the Adversary. We show that G2 has a Stackelberg equilibrium and G3 has a mixes strategy
Nash equilibrium. Furthermore, the payoff functions of G1,G2,G3 at their equilibria decrease
successively. Existence of Stackelberg equilibrium for G2 gives a positive answer to question Q2

for DNNs with a given structure.

1.2 Related work

The game theoretical approach to adversarial machine learning was first studied in the seminal
work of Dalvi, Domingos, Mausam, and Verma [11], where they formulated adversarial machine
learning as a simultaneous game between the Classifier and the Adversary. Quite a number
of work has been done along this line, by formulating adversarial machine learning both as a
simultaneous game and as a Stackelberg game, which can be found in the nice surveys [50, 20].
These works usually used linear models such as SVM for binary classifications, and used spam
email filtering as the main application background.

Game theoretical approach to adversarial deep learning appeared recently and was partially
stimulated by the fact that adversarial samples seem inevitable for deep learning [3, 4, 10, 37].
The adversarial training was introduced in [24], which is one of the best practical training
method to defend adversaries. In [32, 5, 16, 25, 29, 18, 34], the adversarial deep learning was all
formulated as a simultaneous game. In [32], it was shown that the game exists no pure strategy
Nash equilibrium, but mixed strategies give more robust classifiers. In [5], it was proved that
Nash equilibrium exists when the strategy space for the Classifier is convex and the strategy
space for the Adversary is certain probability distributions. In [16, 25], it was proved that Nash
equilibria exist and can be approximated by a pure strategy, when the strategy spaces for both
the Classifier and Adversary are parameterized by distributions. In [29], the Classifier ensures
the robustness of a fixed DNN by adding perturbation to the sample to counteract the Adversary.
In [18, 34], methods to compute mixed Nash equilibria were given. In [8], the adversarial deep
learning was formulated as a Stackelberg game with the Adversary as the leader, but existence
of equilibria was not given. In [13, 19], properties and algorithms for local Stackelberg equilibria
were studied. In above work, the adversarial deep learning is modeled as a non-cooperative
game. In [35], the cooperative game is used to explain various adversarial attacks and defenses.

Most of the above work formulated adversarial deep learning as a simultaneous game and
assume the strategy spaces to be certain convex probability distributions in order to prove the
existence of the Nash equilibrium. In this paper, we show that by formulating the adversarial
deep learning as a sequential game, Stackelberg equilibria exist for DNNs with a given structure,
and the equilibrium DNN is the best defence in that it has the largest adversarial accuracy among
all DNNs with the same structure.

The rest of this paper is organized as follows. In section 2, preliminary results are given. In
section 3, the adversarial deep learning is formulated as a Stackelberg game and the existence
of Stackelberg equilibria is proved. In section 4, it is proved that adversarial training with
Carlini-Wagner loss gives the best adversarial accuracy. In section 5, two trade-off results are
proved. In section 6, three types of adversarial games are compared when the data set is finite.
In section 7, conclusions and problems for further study are given.
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2 Preliminaries

2.1 Adversarial training and robustness of DNN

Let C : X → R
m be a classification DNN with m labels in Y = [m] = {1, . . . ,m} [22]. Without

loss of generality, we assume X = I
n, where I = [0, 1]. Denote Cl(x) ∈ R to be the l-th coordinate

of C(x) for l ∈ [m], which are called logits of the DNN. For x ∈ X , the classification result of
C is Ĉ(x) = argmaxl∈Y Cl(x). We assume that Relu is used as the activation function, so C is
continuous and piecewise linear. The results are easily generated to any activation functions
which are Lipschitz continuous.

To train a DNN, we need first to choose a hypothesis space H for the DNNs, say the set of
CNNs or RNNs with certain fixed structure. In this paper, denote NW,D to be the set of DNNs
with width W and depth D and use it as the hypothesis space. For a given hypothesis space H,
the parameter set of DNNs in H is fixed and is denoted as Θ ∈ R

K , where K is the number of
the parameters. C can be written as CΘ if the parameters need to be mentioned explicitly, that
is,

H = {CΘ : X → R
m : Θ ∈ R

K}. (1)

Let the objects to be classified satisfy a distribution D over X × Y. Given a loss function
L : Rm × Y → R, the total loss for the data set is

ϕ0(Θ) = E(x,y)∼D L(CΘ(x), y). (2)

Training a DNN CΘ is to make the total loss minimum by solving the following optimization
problem

Θ∗ = argminΘ∈RK ϕ0(Θ). (3)

Given an attack radius ε ∈ R+, denote B(x, ε) = {x ∈ R
n : ||x − x|| ≤ ε}. We use ∞ norm

if not mentioned otherwise. We will find adversaries for x in B(x, ε). Precisely, x ∈ B(x, ε)
is called an adversary of x with label y, if Ĉ(x) 6= y. In order to increase the robustness of a
trained DNN, the adversarial training [24] is introduced which is to solve the following robust
optimization problem

Θ∗ = argminΘ∈RK E(x,y)∼D maxx∈B(x,ε) L(CΘ(x), y). (4)

Intuitively, the adversarial training is first computing a most-adversarial sample

xa = argmaxx∈B(x,ε) L(F(x), lx)

for x and then minimizing L(F(xa), y) instead of L(F(x), y).

Given a DNN C and an attack radius ε, we define the adversarial robustness measure of C
with respect to ε as follows

ARD(C, ε) = E(x,y)∼D maxx∈B(x,ε)L(C(x), y) (5)

which is the total loss of C at the most-adversarial samples. C is more robust if ARD(C, ε)
is smaller. Then the adversarial training is to find a DNN in H with the optimal adversarial
robustness measurement which is denoted as

ARD(H, ε) = minΘ∈RKARD(CΘ, ε). (6)
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ARD(C, ε) and ARD(H, ε) have the following simple properties.

(1) If W1 ≥W2 and D1 ≥ D2, then ARD(NW1,D1
, ε) ≤ ARD(NW2,D2

, ε).

(2) If ε1 ≤ ε2, then ARD(C, ε1) ≤ ARD(C, ε2).
(3) In the optimal case, we have ARD(C, ε) = 0, which means that C gives the correct label

for any x ∈ B(x, ε). In this case, we say that C is robust for the attack radius ε. It was proved
that there exist robust classifiers for a separated data set [45].

2.2 Bounds and continuity of the DNN

Let CΘ : X → R
m be a fully connected feed-forward DNN with depth D, whose l-th hidden

layer is
xl = σ(Wlxl−1 + bl) ∈ R

nl , l = 1, . . . ,D, (7)

where n0 = n, nD = m, Wl ∈ R
nl×nl−1 , bl ∈ R

nl , σ = Relu, x0 ∈ R
n is the input, and xD ∈ R

m

is the output. The parameter set is Θ = ∪D
l=1(Wl ∪ bl). It is easy to show that C is bounded.

For ε ∈ R+, denote Iε = [−ε, 1 + ε].

Lemma 2.1. For any DNN CΘ : Inε → R
m with width ≤ W , depth ≤ D, and ||Θ||2 ≤ E, there

exists an Ω(n,m,D,W,E, ε) ∈ R+ such that ||CΘ(x)|| ≤ Ω(n,m,D,W,E, ε).

Proof. CΘ(x) is bounded because CΘ(x) is continuous on x and Θ, and [−ε, 1+ε]n and [−E,E]n

are compact. Ω(n,m,D,W,E, ε) can be derived from (7).

Lemma 2.2. For any DNN CΘ : Inε → R
m with width ≤ W , depth ≤ D, and ||Θ||2 ≤ E, there

exist ∆(m,n,W,D,E, ε) and Λ(m,n,W,D,E, ε) ∈ R+ such that

(1) ||CΘ(x)− CΘ+α(x)||2 ≤ ∆(m,n,W,D,E, ε)||α||2 , that is CΘ(x) is Lipschitz on Θ.

(2) ||CΘ(x+ δ)− CΘ(x)||2 ≤ Λ(m,n,W,D,E, ε)||δ||, that is CΘ(x) is Lipschitz on x.

Thus C is Lipschitz on Θ and x.

Proof. Without loss of generality, let C be defined as in (7). Then CΘ(x) = ΘD(· · · σ(Θ1x) · · · )
with Θ to be the set of all weight matrices, that is, Θ = {Θk|∀k ∈ [D] = {1, 2 · · · ,D}} and σ is
ReLU. The bias vectors are not considered, which can be included as parts of the weight matrices
by extending the input space slightly, similar to [28]. We denote zk and ẑk respectively to be
the outputs of the k-th hidden layers of CΘ and CΘ+α, which are zk = σ(Θk(· · · σ(Θ1x) · · · )) and
ẑk = σ(Θ̂k(· · · σ(Θ̂1x) · · · )) and Θ̂i is weight matrices of CΘ+α, in particular z0 = ẑ0 ∈ [−ε, 1+ε]n
is the input. Since ||Θi − Θ̂i||2 ≤ ||α||2 for any i ∈ [D] and |σ(a)− σ(b)| ≤ |a− b|, we have

||CΘ(x)− Cθ+α(x)||2
= ||(ΘD − Θ̂D)zD−1 + Θ̂D(zD−1 − ẑD−1)||2
≤ ||ΘD − Θ̂D||2||zD−1||2 + ||Θ̂D||2||zD−1 − ẑD−1||2
= ||ΘD − Θ̂D||2||zD−1||2 + ||Θ̂D||2||σ(ΘD−1zD−2)− σ(Θ̂D−1ẑD−2)||2
≤ ||ΘD − Θ̂D||2||zD−1||2 + ||Θ̂D||2 ||ΘD−1zD−2 − Θ̂D−1ẑD−2||2
≤ ||ΘD − Θ̂D||2||zD−1||2 + ||Θ̂D||2(||ΘD−1 − Θ̂D−1||2||zD−2||2 + ||Θ̂D−1||2||zD−2 − ẑD−2||2)
≤ ||ΘD − Θ̂D||2||zD−1||2 +

∑D
k=2(

∏k−2
i=0 ||Θ̂D−i||2)||ΘD−k+1 − Θ̂D−k+1||2||zD−k||2

≤ (||zD−1||2 +
∑D

k=2(
∏k−2

i=0 ||Θ̂D−i||2)||zD−k||2)||α||2.
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The coefficient ∆ = (||zD−1||2+
∑D

k=2(
∏k−2

i=0 ||Θ̂D−i||2)||zD−k||2) is clearly bounded and depends
m,n,W,D,E, ε. Thus CΘ(x) is Lipschitz on Θ. The Lipschitz continuity on x can be proved
similarly:

||CΘ(x+ δ)− CΘ(x)||2
= ||ΘD(· · · σΘ1(x+ δ) · · · )−ΘD(· · · σΘ1(x) · · · )||2
≤ ||ΘD||2||σ(ΘD−1(· · · σ(Θ1(x+ δ)) · · · ))− σ(ΘD−1(· · · σ(Θ1x) · · · ))||2
≤ ||ΘD||2||ΘD−1(· · · σΘ1(x+ δ) · · · )−ΘD−1(· · · σΘ1(x) · · · )||2
≤ (

∏D
i=1 ||Θi||2)||δ||2 ≤ (

∏D
i=1 ||Θi||2)

√
n||δ||.

We denote the coefficient as Λ(m,n,W,D,E, ε). The lemma is proved. We can also extend this
result to convolutional neural networks.

2.3 Continuity of the loss function

Unless mentioned otherwise, we assume that the loss function L(z, y) is continuous on z ∈ R
m

for a fixed y ∈ Y. The mostly often used loss functions have much better properties. Consider
the following loss functions: the mean square error, the crossentropy loss, and the margin loss
introduced by Carlini-Wagner [6]:

Lmse(z, y) = ||z − 1y||22
Lce(z, y) = ln(

∑m
i=1 exp(zi))− zy

Lcw(z, y) = maxl∈[m],l 6=y zl − zy

(8)

where 1y ∈ R
m is the vector whose y-th entry is 1 and all other entries are 0.

By Lemma 2.1, we can assume that the loss function is defined on a bounded cube:

L(z, y) : [−B,B]m ×Y → R (9)

where B = Ω(n,m,D,W,E, ε). Since Y = [m] is discrete, we need only consider the continuity
of L on z for a fixed y.

Lemma 2.3. For a fixed y, all three loss functions in (8) are Lipschitz continuous on z over
[−B,B]m, with Lipschitz constants 2

√
mmax{B, 1},

√
2,

√
2, respectively.

Proof. It suffices to show that ||∇zF (z)||2 ≤ V is bounded over [−B,B]m. For a fixed y, let
f(z) = L(z, y). Then from ||∇zF (z)||2 ≤ V , by the mean value theorem and the Schwarz
inequality, we have ||F (z + δ) − F (z)||2 = ||F ′(z1)δ||2 ≤ ||F ′(z1)||2||δ||2 ≤ V ||δ||2, where z1 ∈
(−B,B)m. Thus L is Lipschitz with constant V .

For Lmse, we have ||∇zLmse(z, y)||2 = 2||(z − 1y)||2 ≤ 2
√
mmax{B, 1}. For Lce, we have

||∇zLce(z, y)||2 =

√∑m
i=1 i6=y exp(2zi)+(

∑m
i=1 i6=y exp(zi))2

(
∑m

i=1
exp(zi))2

≤
√
2. For Lcw, we have ||∇zLcw(z, y)||2 =

√
2. The lemma is proved.

3 Adversarial training as a Stackelberg game

In this section, we formulate the adversarial deep learning as a Stackelberg game and prove the
existence of the Stackelberg equilibria.
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3.1 Stackelberg game

Consider a two-player zero-sum minmax sequential or Stackelberg game G = (SL,SF , ϕ), where
SL and SF are respectively the strategy spaces for the leader and the follower of the game and
ϕ : SL × SF → R is the payoff function.

In the Stackelberg game G, the leader moves first by picking a strategy sl ∈ SL to minimize
the payoff, knowing the existence of the follower. After knowing sl, the follower picks sf ∈ SF

to maximize the payoff. Formally, (s∗l , s
∗
f ) ∈ SL × SF is called a Stackelberg equilibrium of G if

γ(sl) = {argmaxsf∈SF
ϕ(sl, sf )} ⊂ SF (10)

is not empty for any sl ∈ SL, and

s∗l ∈ argminsl∈SL,S(sl)∈γ(sl)
ϕ(sl, S(sl)) and s

∗
f ∈ argmaxsf∈SF

ϕ(s∗l , sf ) = γ(s∗l ). (11)

Let
Γ = {(sl, sf ) : sl ∈ SL, sf ∈ γ(sl)}. (12)

Then, (11) is equivalent to (s∗l , s
∗
f ) ∈ argmin(sl,sf )∈Γ ϕ(sl, sf ). We have the following result.

Theorem 3.1 ([39]). If the strategy spaces are compact and the payoff function is continuous,
then the sequential game G has a Stackelberg equilibrium, which is also a subgame perfect Nash
equilibrium of game G as an extensive form game [14].

3.2 Adversarial training as a Stackelberg game

We formulate adversarial deep learning as a two-player zero-sum minmax Stackelberg game Gs,
which is the best defence for adversarial deep learning in certain sense.

The leader of the game is the Classifier, whose goal is to train a robust DNN CΘ : In →
R
m in the hypothesis space H in (1). Without loss of generality, we assume that the parameters

of C are in
Sc = [−E,E]K (13)

for some E ∈ R+, that is, the strategy space for the Classifier is Sc.

The follower of the game is the Adversary, whose goal is to create the best adversary
within a given attack radius ε ∈ R+. The strategy space for the Adversary is

Sa = {A : X → Bε} (14)

where Bε = {δ ∈ R
n : ||δ|| ≤ ε} is the ball with the origin point as the center and ε as the

radius. By considering the L∞ norm, Sa becomes a metric space.

The payoff function. Given Θ ∈ Sc and A ∈ Sa, the payoff function is the expected loss

ϕs(Θ, A) = E(x,y)∼D L(CΘ(x+A(x)), y). (15)

From (9), the composition of L and CΘ(x+A(x)) is well-defined, since ||A(x)|| ≤ ε.

For game Gs, γ and Γ defined in (10) and (12) are

γs(Θ) = {argmaxA∈Sa
ϕs(Θ, A)} for Θ ∈ Sc

Γs = {(Θ, A) : Θ ∈ Sc, A ∈ γs(Θ)} (16)

and (Θ∗
s, A

∗
s) is a Stackelberg equilibrium of Gs if

Θ∗
s ∈ argminΘ∈Sc,A(Θ)∈γs(Θ) ϕs(Θ, A(Θ)) and A∗

s ∈ argmaxA∈Sa
ϕs(Θ

∗
s, A). (17)
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Lemma 3.2. ϕs(Θ, A) : Sc × Sa → R defined in (15) is a continuous and bounded function.

Proof. It is clear that ϕs(Θ, A) is continuous on Θ, since L is continuous on z and CΘ is con-
tinuous on Θ. Denote φ(x) = L(CΘ(x), y) : Inε → R for fixed Θ and y. Then φ(x) is uniformly
continuous by Lemmas 2.2 and 2.3. Given an A0 ∈ Sa and ǫ > 0, since φ(x) is uniformly
continuous, there exists a δ > 0 such that for A(x) ∈ Sa satisfying ||A0(x) − A(x)||∞ < δ, we
have |φ(x+A0(x)) − φ(x+A(x))| < ǫ for all x ∈ X . Then

|ϕs(Θ, A)− ϕs(Θ, A0)| = |E(x,y)∼D [L(CΘ(x+A(x)), y) − L(CΘ(x+A0(x)), y)]|
≤ E(x,y)∼D|L(CΘ(x+A(x)), y) − L(CΘ(x+A0(x)), y)|
≤ ǫ.

Hence ϕs(Θ, A) is continuous on Sa. By Lemma 2.1, ϕs(Θ, A) is bounded, since ||A(x)|| ≤ ε.

Lemma 3.3. γs(Θ) 6= ∅ and A∗ ∈ γs(Θ) if and only if A∗(x) ∈ {argmaxA(x)∈Bε
L(CΘ(x +

A(x)), y)} for all (x, y) ∼ D.

Proof. We have

maxA∈Sa ϕs(Θ, A) = maxA∈Sa E(x,y)∼D L(CΘ(x+A(x)), y)

≤ E(x,y)∼D max
A(x)∈Bǫ

L(CΘ(x+A(x)), y).

Since L(C(x), y) is continuous on x and Bǫ is compact, for every (x, y), argmaxA(x)∈Bǫ
L(CΘ(x+

A(x)), y) exists. Thus, by choosing these maximum values, we obtain an A∗ ∈ Sa, which achieves
maxA∈Sa ϕs(Θ, A). The lemma is proved.

Lemma 3.4. Γs is a closed set in Sc × Sa.

Proof. Let (Θi, Ai)
∞
i=1 ∈ Γs converse to (Θ0, A0). Supposing (Θ0, A0) 6∈ Γs, we will obtain a

contradiction. By Lemma 3.3, there exists a (Θ0, A
∗) ∈ Γs, and thus, ϕs(Θ0, A

∗) > ϕs(Θ0, A0)
by (16). Let η = ϕs(Θ0, A

∗) − ϕs(Θ0, A0) > 0. By Lemma 3.2, ϕs is continuous. Then there
exists an i0 such that |ϕs(Θi0 , Ai0) − ϕs(Θ0, A0)| < η/3 and |ϕs(Θi0 , A

∗) − ϕs(Θ0, A
∗)| < η/3.

We thus have

ϕs(Θi0 , Ai0) < ϕs(Θ0, A0) + η/3 = ϕs(Θ0, A
∗)− 2η

3
< ϕs(Θi0 , A

∗)− η/3 < ϕs(Θi0 , A
∗)

which contradicts to (Θi0 , Ai0) ∈ Γs meaning that ϕs(Θi0 , Ai0) ≥ ϕs(Θi0 , A) for any A ∈ Sa.
The lemma is proved.

We have

Theorem 3.5. Game Gs has a Stackelberg equilibrium (Θ∗
s, A

∗
s). Furthermore, Θ∗

s is the solution
to the adversarial training in (4).

Proof. By Lemma 3.2, ϕs(Θ, A) is bounded. Then α = inf(Θ,A)∈Γs
ϕs(Θ, A) exists and is finite.

There exist (Θi, Ai)
∞
i=1 ∈ Γs such that ϕs(Θi, Ai) converges to α. Since Sc is compact, we can

assume that Θi converges to Θ0. Then there exists an A0 ∈ Sa such that (Θ0, A0) ∈ Γs.

We claim that ϕs(Θi, Ai) converges to ϕs(Θ0, A0). Suppose the contrary, that is, ϕs(Θ0, A0) >
α. Then there exists an η > 0 such that ϕs(Θ0, A0) > α + η. Since ϕs(Θi, Ai) converges to
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α, ∃K1 ∈ N+ such that ϕs(Θk, Ak) < α + η
3 for ∀k > K1. Since ϕs(Θ, A) is continuous on Θ,

∃K2 ∈ N+ such that ϕs(Θk, A0) > ϕs(Θ0, A0)− η
3 for ∀k > K2. Then for k > max{K1,K2}, we

have

ϕs(Θk, A0) > ϕs(Θ0, A0)− η
3 > α+ 2η

3 > ϕs(Θk, Ak) +
η
3 > ϕs(Θk, Ak)

which contradicts to (Θk, Ak) ∈ Γs. Then (Θ0, A0) is a Stackelberg equilibrium of game Gs.

Let (Θ∗
s, A

∗
s) be a Stackelberg equilibria of game Gs. By Lemma 3.3,

Θ∗
s ∈ argminΘ∈Sc,A(Θ)∈γ(Θ) ϕs(Θ, A(Θ))

= argminΘ∈Sc,AΘ∈γ(Θ) E(x,y)∼D L(CΘ(x+AΘ(x)), y)

∈ argminΘ∈Sc
E(x,y)∼D maxAΘ(x) L(CΘ(x+AΘ(x)), y)

= argminΘ∈Sc
E(x,y)∼D maxx∈B(x,ε)L(CΘ(x), y).

Briefly,
Θ∗

s = argminΘ∈Sc
ϕs(Θ, argmaxA∈Sa

ϕs(Θ, A))
= argminΘ∈Sc

maxA∈Sa ϕs(Θ, A).
(18)

That is, Θ∗
s is the solution to the adversarial training (4).

Remark 3.6. As a consequence of Theorem 3.5, the Stackelberg game Gs gives the best defence
in the hypothesis space H for a given attack radius, if using ARD in (6) to measure the robustness.
Precisely, let (Θ∗

s, A
∗
s) be a Stackelberg equilibrium of game Gs. Then ARD(CΘ∗

s
, ε) = ARD(H, ε).

3.3 Refined properties of Γs

In the general case, γs(Θ) defined in (16) may have more than one elements. In this section, we
will prove that if γs(Θ) contains a unique element, then Γs defined in (16) is compact, which
will be used in section 6.

Assumption A1. For any Θ ∈ Sc, γs(Θ) = {A∗(Θ)} defined in (16) has a unique element and
the loss function L is Lipschitz.

Remark 3.7. Assumption A1 is true in the generic case. By Lemma 3.3, A∗ ∈ γs(Θ) if and
only if A∗(x) ∈ {argmaxA∈Bε

L(CΘ(x + A), y)}. Then Assumption A1 is true if and only if
argmaxA∈Bε

L(CΘ(x + A), y) has a unique solution. Suppose the loss function is Lcw. Then
φ(A) = L(CΘ(x+A), y) is a piecewise linear function in A and its graph over Bε is a polyhedron
as illustrated in Figure 1. Then its maximum can be achieved only at the vertex of the polyhedron
or the intersection of the (n−1)-dimensional sphere ||x−x0|| = ε and the one dimensional edges
of the polyhedron. In the generic case, that is, when the parameters are sufficiently general (refer
to Assumption 3.1 in [46] for more details), there exists only one maximum.

x0

Figure 1: Illustration for the graph of L(C(x+A), y) as a function of x and A.
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We first introduce three notations which will be used in this section. By Lemma 2.3, L(z, y)
is Lipschitz for z over [−B,B]m when the loss functions in (8) are used, and let Ψ be the
Lipschitz constant. By Lemma 2.2, CΘ(x) is Lipschitz for Θ and x, and let ∆ and Λ be the
Lipschitz constants, respectively.

Lemma 3.8. For any CΘ : Inε → R
m and D, ϕs(Θ, A) defined in (15) is Lipschitz on Θ and A

when the loss function is Lipschitz.

Proof. Firstly, consider ϕs(Θ, A) for any fixed A. For any ǫ > 0, let δ = ǫ
Ψ∆ . Then for any

Θ1,Θ2 satisfying ||Θ1 −Θ2||2 ≤ δ, we have

|ϕs(Θ1, A)− ϕs(Θ2, A)| = |E(x,y)∼D[L(CΘ1
(x+A(x)), y) − L(CΘ2

(x+A(x)), y)]|
≤ E(x,y)∼D Ψ||CΘ1

(x+A(x)) − CΘ2
(x+A(x))||2

≤ E(x,y)∼D Ψ∆||Θ1 −Θ2||2 ≤ ǫ

that is, ϕs(Θ, A) is Lipshitz continuous on Θ. The proof for the Lipschitz continuity on A is
similar.

Lemma 3.9. For Θi ∈ Sc, if limi→∞Θi = Θ0 and gi ∈ γs(Θi), then for any (x, y) ∼ D, the
limit of any convergent subsequence of {gi(x)}∞i=1 belongs to argmaxA∈Bǫ

L(CΘ0
(x+A), y).

Proof. The result can be proved similar to that of Lemma 3.4.

Lemma 3.10. Under Assumption A1, for any Θ ∈ Sc, A
∗(Θ)(x) is continuous on x.

Proof. Let {(xi, yi)}∞i=1 ⊂ X ×Y converges to (x0, y0). Since Y is finite, we may assume yi = y0
for all i. Then for any Θ, we will prove lim

i→∞
A∗(Θ)(xi) = A∗(Θ)(x0). Suppose the contrary.

Then ∀η > 0, ||A∗(Θ)(xi)−A∗(Θ)(x0)|| > η holds for infinitely many i. In the rest of the proof,
we assume η < ε/2.

Let ζ = L(CΘ(x0+A∗(Θ)(x0)), y0)−maxα∈Bǫ,||α−A∗(Θ)(x)||>η L(CΘ(x0+α), y0). Since η < ε/2,
{α ∈ Bε : ||α − A∗(Θ)(x)|| > η} 6= ∅. From the uniqueness of A∗(Θ), we have ε > 0. By the
convergence of {xi}∞i=1, ∃N , such that when i > N , ||x0 − xi|| < ε

3ΨΛ . There exists a k > N
such that ||A∗(Θ)(xk)−A∗(Θ)(x0)|| > η. Then

L(CΘ(xk +A∗(Θ)(x0)), y0) ≥ L(CΘ(x0 +A∗(Θ)(x0)), y0)−ΨΛ||x0 − xk||
≥ L(CΘ(x0 +A∗(Θ)(xk)), y0)−ΨΛ||x0 − xk||+ ζ

≥ L(CΘ(xk +A∗(Θ)(xk)), y0)− 2ΨΛ||x0 − xk||+ ζ

> L(CΘ(xk +A∗(Θ)(xk)), y0) + ζ/3

> L(CΘ(xk +A∗(Θ)(xk)), y0)

which contradicts to the definition of A∗(Θ)(xk). Hence A
∗(Θ)(x) is continuous on x.

Lemma 3.11. Under Assumption A1, ψ(Θ) = ϕs(Θ, A
∗(Θ)) : Sc → R is continuous on Θ.
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Proof. We will prove that for any ζ > 0, ∃δ > 0, such that if ||Θ1−Θ2||2 ≤ δ then |ϕs(Θ1, A
∗(Θ1))−

ϕs(Θ2, A
∗(Θ2))| ≤ ζ. Let δ = ζ

Ψ∆ . Then for any x,

L(CΘ1
(x+A∗(Θ1)(x))) ≤ L(CΘ2

(x+A∗(Θ1)(x))) + Ψ∆δ
≤ L(CΘ2

(x+A∗(Θ2)(x))) + Ψ∆δ
= L(CΘ2

(x+A∗(Θ2)(x))) + ζ.

By exchanging Θ1 and Θ2, we have |L(CΘ1
(x+A∗(Θ1)(x)))−L(CΘ2

(x+A∗(Θ2)(x)))| ≤ ζ. Then
|ϕs(Θ1, A(Θ1))− ϕs(Θ2, A(Θ2))| ≤ ζ. Thus ϕs(Θ, A

∗(Θ)) is continuous on Θ.

Lemma 3.12. Under Assumption A1, A
∗(Θ) : Sc → Sa is continuous.

Proof. It suffices to prove that when {Θn}∞n=1 converges to Θ0, lim
n→∞

A∗(Θn) = A∗(Θ0). Suppose

the contrary. Then there exist x ∈ X and η > 0 such that ||A∗(Θn)(x)−A∗(Θ0)(x)|| > η holds
for infinitely n. We assume η < ε/2.

Let ζ = L(CΘ0
(x + A∗(Θ0)(x)), y) − maxα∈Bǫ,||α−A∗(Θ0)(x)||>η L(CΘ0

(x + α), y). It is clear
that ζ > 0. There exists an N ∈ N+, such that for any n > N , we have ||Θn − Θ0||2 < ε

2Ψ∆
and |L(CΘ0

(x + A∗(Θ0)(x)), y) − L(CΘn(x + A∗(Θn)(x)), y)| < ε
2 by Lemma 3.11. There exists

a j > N , ||A∗(Θj)(x)−A∗(Θ0)(x)|| > η. Then

L(CΘ0
(x+A∗(Θ0)(x)), y) ≥ L(CΘ0

(x+A∗(Θj)(x)), y) + ζ
≥ L(CΘj

(x+A∗(Θj)(x)), y) + ζ −Ψ∆||Θj −Θ0||2
> L(CΘj

(x+A∗(Θj)(x)), y) +
ζ
2

which contradicts to |L(CΘ0
(x+A∗(Θ0)(x)), y) − L(CΘj

(x+ A∗(Θj)(x)), y)| < ε
2 . Thus for any

x, η > 0, there exists an N such that for n > N , ||A∗(Θn)(x) − A∗(Θ0)(x)|| ≤ η holds, that is,
lim
n→∞

||A∗(Θn)−A∗(Θ0)||∞ = 0, which means A∗(Θ) is continuous on Θ.

Proposition 3.13. Under Assumption A1, Γs defined in (12) is a compact set in Sc × Sa.

Proof. Given a sequence {(Θn, A
∗(Θn))}∞n=1 in Γs, since Sa is compact, there exists a subse-

quence {Θin}∞n=1 converges to Θ0, that is, lim
n→∞

Θin = Θ0. By Lemma 3.12, A∗(Θ) is continuous

on Θ, then lim
n→∞

A∗(Θin) = A∗(Θ0). Hence {(Θin , A
∗(Θin))}∞n=1 is subsequence converging to

(Θ0, A
∗(Θ0)). By Lemma 3.4, Γs is closed, thus (Θ0, A

∗(Θ0)) ∈ Γs and Γs is compact.

4 A Stackelberg game to achieve maximal adversarial accuracy

The adversarial accuracy of a DNN C with respect to an attack radius ε is

AAD(C, ε) = P(x,y)∼D (∀x ∈ B(x, ε) (Ĉ(x) = y)) (19)

which is the most widely used robustness measurement for DNNs. Comparing to the robustness
measurement ARD in (6), AAD(C, ε) does not depends on the loss function. In this section, we
will show that adversarial training with the Carlini-Wagner loss function will give a DNN with
the optimal adversarial accuracy.

We first introduce a new game. Denote Ga to be the two person zero-sum minmax Stackelberg
game with the Classifier as the leader, the Adversary as the follower, and

ϕa(Θ, A) = E(x,y)∼D LA(CΘ(x+A(x)), y). (20)
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as the payoff function, where the loss function is defined as

LA(C(x), y) =
{
0 Lcw(C(x), y) ≥ 0

−1 Lcw(C(x), y) < 0
(21)

and Lcw is the Carlini-Wagner loss function defined in (8).

For game Ga, γ and Γ defined in (10) and (12) are

γa(Θ) = {argmaxA∈Sa
ϕa(Θ, A)} for Θ ∈ Sc

Γa = {(Θ, A) : Θ ∈ Sc, A ∈ γa(Θ)}. (22)

Lemma 4.1. Let Aa ∈ γa(Θ). Then ϕa(Θ, Aa) = −AAD(CΘ, ε).

Proof. Note that LA(C, x, y) = −1 if and only if Ĉ(x) = y and LA(C, x, y) = 0 if and only if
Ĉ(x) 6= y or there exists a k 6= y such that Ck(x) = Cy(x). From Aa ∈ γa(Θ), LA(CΘ(x +

Aa(x)), y) = −1 if and only if CΘ is robust over B(x, ε), or equivalently, ĈΘ(x) = y for any
x ∈ B(x, ε). Then ϕs(Θ, Aa) = E(x,y)∼D LA(CΘ(x+Aa(x)), y) = −AAD(CΘ, ε).

Lemma 4.2. γa(Θ) 6= ∅ and A∗ ∈ γa(Θ) if and only if A∗(x) ∈ {argmaxx∈B(x,ε) LA(CΘ(x), y)}
for all (x, y) ∼ D.

Proof. We first show that γ(Θ, x) = {argmaxx∈B(x,ε)LA(CΘ(x), y)} 6= ∅ and lemma follows
from this. Let x∗ ∈ {argmaxx∈B(x,ε) Lcw(CΘ(x), y)}. Then x∗ exists, since Lcw is continuous
and B(x, ε) is compact. If Lcw(C, x∗, y) ≥ 0, then LA(C, x∗, y) = 0 and x∗ ∈ γ(Θ, x). If
Lcw(C, x∗, y) < 0, then LA(C, x∗, y) = −1 for all x∗ ∈ B(x, ε) and B(x, ε) = γ(Θ, x). In either
case, γ(Θ, x) 6= ∅.

Lemma 4.3. Let (Θ∗
cw, A

∗
cw) be a Stackelberg equilibrium of game Gs when the loss function is

Lcw defined in (8). Then (Θ∗
cw, A

∗
cw) is a Stackelberg equilibrium of game Ga.

Proof. By Lemma 4.1, γa(Θ) 6= ∅. So it suffices to show that (Θ∗
cw, A

∗
cw) ∈ argmin(Θ,A(Θ))∈Γa

ϕa(Θ, A(Θ)). Denote γcw,Γcw, ϕcw to be γs,Γs, ϕs, when the loss function LCW is used.

We first prove γcw(Θ) ⊂ γa(Θ). Hence Γcw ⊂ Γa. By Lemma 3.3, A∗ ∈ γcw(Θ) =
{argmaxA∈Sa

ϕcw(Θ, A)} if and only if A∗
cw(x) ∈ γcw(Θ, x, y) = {argmaxA(x)∈Bε

Lcw(CΘ(x +
A(x)), y)}. By Lemma 4.2, A∗ ∈ γa(Θ) if and only if A∗

a(x) ∈ γa(Θ, x, y) = {argmaxA(x)∈Bε

La(CΘ(x+A(x)), y)}. Since Lcw(CΘ(x+A1), y) ≤ Lcw(CΘ(x+A2), y) implies La(CΘ(x+A1), y) ≤
La(CΘ(x+A2), y), we have γcw(Θ, x, y) ⊂ γa(Θ, x, y). Then A

∗ ∈ γcw(Θ) implies A∗ ∈ γa(Θ).

We next prove

{ϕa(Θ, A),∀(Θ, A) ∈ Γa} = {ϕa(Θ, A),∀(Θ, A) ∈ Γcw}. (23)

Since Γcw ⊂ Γa, it suffices to show {ϕa(Θ, A),∀(Θ, A) ∈ Γa} ⊂ {ϕa(Θ, A),∀(Θ, A) ∈ Γcw}. For
(Θa, Aa) ∈ Γa, let Acw(x) ∈ argmaxA∈Bε

Lcw(CΘa(x + A), y). Then (Θa, Acw) ∈ Γcw. We will
show that ϕa(Θa, Aa) = ϕa(Θa, Acw). By Lemma 4.2, A∗

a ∈ γa(Θa) if and only if

A∗
a(x) ∈ γa(Θa, x, y) = {argmaxA(x)∈Bε

La(CΘa(x+A(x)), y)}

for all (x, y) ∼ D. If La(CΘa(x + A∗
a(x)), y) = −1, then Lcw(CΘa(x + A), y) < 0 for all A ∈ Bε.

In this case, maxA∈Bε Lcw(CΘa(x+A), y) = Lcw(CΘa(x+A∗
cw(x)), y) < 0 and hence La(CΘa(x+
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A∗
cw(x)), y) = −1. If La(CΘa(x+A∗

a(x)), y) = 0, then Lcw(CΘa(x+A∗
a(x)), y) ≥ 0. In this case,

maxA∈Bε Lcw(CΘa(x+A), y) = Lcw(CΘa(x+A∗
cw(x)), y) ≥ 0 and hence La(CΘa(x+A∗

a(x)), y) =
La(CΘa(x+A∗

cw(x)), y) = 0. Then we have ϕa(Θa, Aa) = ϕa(Θa, Acw).

By (23), (Θ∗
cw, A

∗
cw) ∈ argmin(Θ,A(Θ))∈Γcw ϕa(Θ, A(Θ)) = argmin(Θ,A(Θ))∈Γa

ϕa(Θ, A(Θ)).
The lemma is proved.

Theorem 4.4. Let (Θ∗
cw, A

∗
cw) be a Stackelberg equilibrium of game Gs when the loss function

is Lcw in (8). Then CΘ∗
cw has the largest adversarial accuracy for all DNNs in H defined in (1),

that is AAD(CΘ∗
cw , ε) ≥ AAD(CΘ, ε) for any CΘ ∈ H.

Proof. By Lemma 4.3, (Θ∗
cw, A

∗
cw) be a Stackelberg equilibrium of game Ga. By Lemma 4.1,

AAD(CΘ∗
cw , ε) = −ϕa(Θ

∗
cw, argmaxA∈Sa

ϕa(Θ
∗
cw, A)) ≥ −ϕa(Θ, argmaxA∈Sa

ϕa(Θ, A)) = AAD

(CΘ, ε). The theorem is proved.

Remark 4.5. By Theorems 3.5 and 4.4, adversarial training using the loss function Lcw gives
a DNN which has the largest adversarial accuracy for all DNNs in the hypothesis space H, which
answers Question Q1 positively for the hypothesis space H.

5 Trade-off between robustness and accuracy

In this section, we give trade-off results between the robustness and the accuracy in adversarial
deep learning from game theoretical viewpoint.

5.1 Improve accuracy under maximal adversarial accuracy

By Remarks 3.6 and 4.5, adversarial training computes the DNNs with the best robustness
measurement. A nature question is whether we can increase the accuracy of the DNN and still
keep the maximal adversarial accuracy. That is, consider the bi-level optimization problem.

Θ∗
o = argminΘ∗ ϕ0(Θ

∗)
subject to
Θ∗

s = argminΘ∈Sc
maxA∈Saϕs(Θ, A)

(24)

where ϕ0 and ϕs are defined in (2) and (15), respectively.

From Remark 3.7, if using the loss function Lcw, γs(Θ) contains a unique solution and Θ∗
s

is unique in the generic case. In this case, we cannot increase the accuracy of the DNN when
keeping the maximal robust measure ARD.

A more interesting case is to consider game Ga defined in section 4, which uses the loss
function LA defined in (21).

We first introduce an assumption. We train CΘ with stochastic gradient descent starting
from a randomly choosing initial point, and most probably will terminate at a random point
in the neighborhood of a minimal point or a saddle point of the loss function. Therefore, the
following assumption is valid for almost all trained DNNs [46].

Assumption A2. The parameters of a trained CΘ are random values.

We now estimate the possible values of Θ∗
s in (24). Suppose a finite data set T = {(xi, yi)}Ni=1

is chosen iid from the distribution D, which are used to train the network. Then it can be shown
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that the game Ga with payoff function (20) and trained with T has a Stackelberg equilibrium
(Θ∗

a, A
∗
a) (See section 6 for more details). With these notations, we have

Proposition 5.1. Under Assumption A2, there exists a ν ∈ R+ such that for all Θ◦
a ∈ R

K

satisfying ||Θ◦
a −Θ∗

a|| < ν, game Ga has a Stackelberg equilibrium (Θ◦
a, A

◦
a).

Proof. Denote φ(Θ, x) = Lcw(CΘ(x), y) for a fixed y. Let x∗ ∈ {argmaxx∈B(xi,ε) φ(Θ
∗
a, x). If

φ(Θ∗
a, x

∗) < 0, then φ(Θ∗
a, x) < 0 for all x ∈ B(xi, ε). Since B(xi, ε) is compact and φ(Θ, x)

is continuous, there exists a νi ∈ R+ such that φ(Θ∗
a + ∆, x) < 0 for all x ∈ B(xi, ε) and all

∆ ∈ R
K satisfying ||∆|| < νi. Without loss of generality, we can assume Θ∗

a+∆ ∈ Sc. It is easy
to construct the best response of the Adversary in this case for Θ◦

a = Θ∗
a + ∆: A◦

a(xi) can be
any point in B(xi, ε). If φ(Θ∗

a, x
∗) > 0, then Si(Θ

∗
a) = {x ∈ B(xi, ε) : Lcw(CΘ∗

a
(x), y) ≤ 0} is a

compact set of dimension m, since Lcw(CΘ∗
a
(x), y) is piecewise linear in x. If νi is small enough,

then Si(Θ
∗
a + ∆) is also a compact set of dimension m for all ∆ ∈ R

K and ||∆|| < νi. In this
case, A◦

a(xi) can be any point in Si(Θ
∗
a +∆).

By Assumption A2,the trained parameters of C are random values. φ(Θ∗
a, x

∗) = Lcw(CΘ∗
a
(x∗),

y) = 0 implies that CΘ∗
a,i
(x∗) = CΘ∗

a,j
(x∗) for i 6= j, which gives an algebraic relation among the

parameters of CΘ. This imposes an extra algebraic relation among the random parameters and
thus will not happen under Assumption A2. So we have φ(Θ, x∗) 6= 0 under Assumption A2.

Let ν = minNi=1 νi > 0. Then for ||Θ◦
a − Θ∗

a|| < ν, there exists an A◦
a ∈ Sc such that

ϕa(Θ
◦
a, A

◦
a) = ϕa(Θ

∗
a, A

∗
a), where ϕa is defined in (20). Since (Θ∗

a, A
∗
a) is a Stackelberg equilibrium

for game Ga, so is (Θ◦
a, A

◦
a). The proposition is proved.

By Proposition 5.1, Θ∗
s in (24) takes values in a K-dimensional set. As a consequence, there

exist rooms for increase the accuracy under the maximal adversarial accuracy.

Example 5.2. We use numerical experiments to show that it is possible to further increase
the accuracy under the maximal adversarial accuracy. Two small CNNs with respectively 3
and 4 hidden layers are used, which have structures (8 ∗ 3 ∗ 3), (16 ∗ 3 ∗ 3), (32 ∗ 3 ∗ 3) and
(32∗3∗3), (64∗3∗3), (128∗3∗3), (128∗3∗3), respectively. We use loss function Lcw to achieve
maximal adversarial accuracy and the results are given in the columns 1-0 and 2-0 in Table 1.
We then retrain the CNNs using the normal loss function in (2) to increase the accuracy. In
order to keep the maximal adversarial accuracy fixed, the change of the parameters are limited
to i% for i = 1, 2, 3 and the results are given in columns 1-i and 2-i, respectively. We can see
that the adversarial accuracies are barely changed (up to 0.06% and 0.02% for networks 1 and
2), but the accuracies are increased evidently (up to 1.11% and 2.252% for networks 1 and 2).

Table 1: Increase the accuracy (AC) under the condition of maximal adversarial accuracy (AA)
for CIFRA-10. The attack radius is 8/255 and 50000 samples are used.

Network 1 Network 2
1-0 1-1 1-2 1-3 2-0 2-1 2-2 2-3

AC (%) 45.718 46.762 46.814 46.828 72.156 75.284 75.344 75.408
AA (%) 29.018 28.996 28.98 28.958 40.08 40.076 40.036 40.06

5.2 An effective trade-off method

The bi-level optimization problem (24) is in general difficult to solve, especially when keeping
the maximal adversarial accuracy as mentioned in the proof of Proposition 5.1. A natural way to
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train a robust and more accurate DNN is to do adversarial training with the following objective
function

ϕt(Θ, A) = ϕs(Θ, A) + λϕ0(Θ) (25)

where λ > 0 is a small hyperparameter, ϕ0 and ϕs are defined in (2) and (15), respectively.
Problem (25) is also often used as an approximate way to solve (24). We will prove a trade-off
result in this setting.

Similar to Theorem 3.5, adversarial training with loss function (25) can be considered as a
Stackelberg game Gt with ϕt as the payoff function. Then we have the following trade-off result.

Proposition 5.3. Let (Θ∗
s, A

∗
s) and (Θ∗

t , A
∗
t ) be the Stackelberg equilibria of the zero-sum se-

quential games with ϕs and ϕt as the payoff functions, respectively. Then

AAD(CΘ∗
s
, ε) ≥ AAD(CΘ∗

t
, ε), ϕs(Θ

∗
s, A

∗
s) ≤ ϕs(Θ

∗
t , A

∗
t ) and ϕ0(Θ

∗
s) ≥ ϕ0(Θ

∗
t )

that is, the network CΘ∗
s
is more robust but less accurate than CΘ∗

t
measured by ϕ0.

Proof. AAD(CΘ∗
s
, ε) ≥ AAD(CΘ∗

t
, ε) is a consequence of Theorem 4.4. Since (Θ∗

t , A
∗
t ) is a Stack-

elberg equilibrium of game Gt, we have

Θ∗
t ∈ argminΘ∈Sc

ϕt(Θ, argmaxA∈Sa
ϕt(Θ, A)) (26)

A∗
t ∈ argmaxA∈Sa

ϕt(Θ
∗
t , A)

= argmaxA∈Sa
(ϕs(Θ

∗
t , A) + λϕ0(Θ

∗
t )) (27)

= argmaxA∈Sa
ϕs(Θ

∗
t , A)

where the last equality is due to the fact that ϕ0(Θ
∗
t ) is free of A. Then, from (18),

ϕs(Θ
∗
s, A

∗
s) = ϕs(Θ

∗
s, argmaxA∈Sa

ϕs(Θ
∗
s, A))

≤ ϕs(Θ
∗
t , argmaxA∈Sa

ϕs(Θ
∗
t , A)) (28)

≤ maxA∈Saϕs(Θ
∗
t , A) = ϕs(Θ

∗
t , A

∗
t ).

The last equality comes from (27). From (26),

ϕt(Θ
∗
t , A

∗
t ) ≤ ϕt(Θ

∗
s, argmaxA∈Sa

ϕt(Θ
∗
s, A)) ≤ maxA∈Saϕt(Θ

∗
s, A) = ϕt(Θ

∗
s, A

∗
s). (29)

Adding inequalities (28) and (29), we obtain ϕ0(Θ
∗
s) ≥ ϕ0(Θ

∗
t ). The proposition is proved.

Note that this trade-off result is quite different from the trade-off theorem in [42] in that,
our result is for any data set, while the result in [42] is for a specifically designed data set.

6 Comparing three types of games for adversarial deep learning

In this section, we compare three types of games for adversarial deep learning when the data
T = {(xi, yi)}Ni=1 ⊂ I

n × Y are a finite number of samples chosen iid from the distribution D.

In this case, the strategy space for the Classifier is still Sc in (13). The strategy space for
the Adversary becomes much simpler:

Sa =
∏N

i=1{(xi, yi) : ||xi − xi|| ≤ ε} ⊂ (Inε × Y)N (30)
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where Iε = [−ε, 1 + ε]. For Θ ∈ Sc and A = ((xi, yi))
N
i=1 ∈ Sa, the empirical adversarial loss is

ϕT (Θ, A) =
1

N

∑N
i=1L(CΘ(xi), yi). (31)

We consider three games.

The adversarial training game G1, which is the zero-sum minmax sequential game with
the Classifier as the leader, the Adversary as the follower, and ϕT (Θ, A) as the payoff function,
that is, to solve the following minmax problem

Θ∗
1 = argminΘ∈Sc

maxA∈Sa ϕT (Θ, A) (32)

which is clearly equivalent to the adversarial training. By Theorem 3.1, game G1 has a Stackel-
berg equilibrium (Θ∗

1, A
∗
1), since Sc and Sa are compact and ϕT (Θ, A) is continuous. Similar to

section 4, it can be shown that this game gives a DNN with the largest adversarial accuracy for
the data set T , when the loss function is Lcw.

The universal adversary game G2, which is the zero-sum maxmin sequential game with
the Adversary as the leader and the Classifier as the follower, that is, to solve the following
maxmin problem

A∗
2 = argmaxA∈Sa

minΘ∈Sc ϕT (Θ, A) (33)

By Theorem 3.1, game G2 has a Stackelberg equilibrium (Θ∗
2, A

∗
2). The solution (Θ∗

2, A
∗
2) of this

game is to compute the optimal universal adversarial attack for the given hypothesis space H
in (1), that is, A∗

2(x) is the best adversary for any (x, y) ∼ D and for all DNNs in H. It is
clear that A∗

2 is the optimal attack to the so-called nobox model proposed in [5], that is, nobox
model has an optimal solution for DNNs with a given structure. This gives a positive answer to
question Q2 for the hypothesis space H in (1).

The simultaneous adversary game G3. We can also formulate the adversarial deep
learning as a simultaneous game G3. In this game, the two players and their strategy spaces
are the same as that of game G1. The difference is the way to play the game. In game G3,
the Classifier picks its action without knowing the action of the Adversary, and the Adversary
chooses the attacking adversarial samples without knowing the action of the Classifier. But,
both players know the payoff function. A point (Θ∗

3, A
∗
3) ∈ Sc×Sa is called a pure strategy Nash

equilibrium of game G3 if

Θ∗
3 = argminΘ∈Sc

ϕT (Θ, A
∗
3) and A

∗
3 = argmaxA∈Sa

ϕT (Θ
∗
3, A). (34)

In general, pure strategy Nash equilibria do not necessarily exist, and mixed strategy Nash
equilibria are usually considered. Mixed strategies for the Classifier and the Adversary are two
probability distributions

Θ̃ : Sc → I and Ã : Sa → I

for Θ and A, respectively. For a mixed strategy (Θ̃, Ã), the payoff function is

ϕT (Θ̃, Ã) = EΘ∼Θ̃ E
A∼Ã

ϕT (Θ, A). (35)

Denote S̃c and S̃a to be the sets of the mixed strategies for the Classifier and the Adversary,
respectively. Then (Θ̃∗

3, Ã
∗
3) ∈ S̃c × S̃a is called a mixed strategy Nash equilibrium of game G3 if

Θ̃∗
3 = argmin

Θ̃∈S̃c
ϕT (Θ̃, Ã

∗
3) and Ã

∗
3 = argmax

Ã∈S̃a
ϕT (Θ̃

∗
3, Ã). (36)
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Since the strategy spaces of the two players are compact and the objective function is con-
tinuous, by Glicksberg’s theorem [15], game G3 has a mixed strategy Nash equilibrium (Θ̃∗

3, Ã
∗
3),

and the minmax theorem holds for this equilibrium.

Remark 6.1. By Proposition 3.13, we can show that, under Assumption A1, game G3 has a
mixed strategy when the data set satisfies a general distribution D.

Proposition 6.2. Let (Θ∗
i , A

∗
i ) be Nash equilibria of games Gi for i = 1, 2, 3, respectively (mixed

strategy for G3). Then
ϕT (Θ

∗
1, A

∗
1) ≥ ϕT (Θ

∗
3, A

∗
3) ≥ ϕT (Θ

∗
2, A

∗
2).

Proof. The mixed strategy (Θ∗
3, A

∗
3) can be written as two distributions ∆c : Sc → I and ∆a :

Sa → I, respectively. To prove the first inequality, we have

ϕT (Θ
∗
1, A

∗
1) = EA∼∆a ϕT (Θ

∗
1, A

∗
1)

(18)

≥ EA∼∆a ϕT (Θ
∗
1, A) = ϕT (Θ

∗
1, A

∗
3)

(36)

≥ ϕT (Θ
∗
3, A

∗
3).

For the second inequality, we have

ϕT (Θ
∗
2, A

∗
2) = EΘ∼∆c ϕT (Θ

∗
2, A

∗
2)

(33)

≤ EΘ∼∆c ϕT (Θ, A
∗
2) = ϕT (Θ

∗
3, A

∗
2)

(36)

≤ ϕT (Θ
∗
3, A

∗
3).

The proposition is proved.

The following example shows that the inequalities in Proposition 6.2 could be strict.

Example 6.3. Consider a two-player zero-sum minmax game with payoff matrix

(
0 −a
−1 0

)

where 0 < a < 1. The strategy space for player one is the rows and its goal is minimize the
payoff. Then, the Stackelberg game with player one as the leader is to solve the minmax problem
and a Stackelberg equilibrium is (Row 1, Column 1) with payoff 0. The Stackelberg game with
player two (column) as the leader is to solve the maxmin problem and a Stackelberg equilibrium
is (Row 1, Column 2) with payoff −a. By the well known minmax theorem, the corresponding
simultaneous game has no Nash equilibrium since minmax 6= maxmin, and a mixed strategy
Nash equilibrium exists: the first player plays ( 1

1+a
, a
1+a

) and the second player plays ( a
1+a

, 1
1+a

)
with payoff − a

1+a
. We summarize the above discussion as follows:

minmax payoff = 0
maxmin payoff = −a
Mixed strategy payoff = − a

1+a
∈ (−a, 0).

7 Conclusion

In this paper, we give a game theoretical analysis for adversarial deep learning from a more
practical viewpoint. In previous work, the adversarial deep learning was formulated as a simul-
taneous game. In order for the Nash equilibrium to exist, the strategy spaces for the Classifier
and the Adversary are assumed to be certain convex probability distributions, which are not
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used in real applications. In this paper, the adversarial deep learning is formulated as a sequen-
tial game with the Classifier as the leader and the Adversary as the follower. In this case, we
show that the game has Stackelberg equilibria when the strategy space for the classifier is DNNs
with given width and depth, just like people do in practice.

We prove that Stackelberg equilibria for such a sequential game is the same as the DNNs
obtained with adversarial training. Furthermore, if the margin loss introduced by Carlini-
Wagner is used as the payoff function, the equilibrium DNN has the largest adversarial accuracy
and is thus the provable optimal defence. Based on this approach, we also give theoretical
analysis for other important issues such as the tradeoff between robustness and the accuracy,
and the generation of optimal universal adversaries.

For future research, it is desirable to develop practical methods to use mixed strategy in
deep learning, since it is proved that such strategy has more power than pure strategy when
the depth and width of the DNNs are fixed. It is also interesting to analysis the properties of
the Nash equilibria for adversarial deep learning, such as whether the equilibria are regular or
essential [12, 43]? Finally, we can use game theory to analyze other adversarial problems in deep
learning.
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