Geometric Constraint Solving via C-tree Decomposition™

Xiao-Shan Gao and Gui-Fang Zhang
Institute of System Science, AMSS, Chinese Academy of Sciences
Beijing 100080, China
(xgao, gfzhang)@mmrc.iss.ac.cn

Abstract

This paper has two parts. First, we propose a method which can be used to decompose
a constraint graph into a c-tree. With the c-trees, solving for a well-constrained constraint
problem is reduced to solving for smaller rigids if possible. Second, we give the analytical
solutions to one of the basic merge patterns used to solve a c-tree: the 3A3D general
Stewart platform, which is to determine the position of a rigid relative to another rigid
when we know three angular and three distance constraints between the two rigids.

Keywords. Geometric constraint solving, parametric CAD, general construction sequence,
decomposition tree, generalized Stewart platform, assembly.

1 Introduction

Geometric constraint solving (GCS) is one of the key techniques in parametric CAD, which
allows the user to make modifications to existing designs by changing parameter values. There
are four major approaches to GCS: the numerical approach[16, 19], the symbolic approach|6, 13],
the rule-based approach[l, 5, 14, 22] and the graph-based approach [4, 9, 10, 18]. This paper
will focus on using graph algorithms to decompose large constraint problems into smaller rigids
and how to find the analytical solutions to one class of constraint problems.

In [21], Owen proposed a method based on the tri-connected decomposition of graphs, which
may be used to reduce a class of constraint problems into constraint problems consisting of three
primitives. In [8, 4], Hoffmann et al proposed a method based on cluster formation to solve
2D and 3D constraint problems. An algorithm is introduced by Joan-Arinyo et al in [11] to
decompose a 2D constraint problem into an s-tree. This method is equivalent to the methods
of Owen and Hoffmann, but is conceptually simpler.

The above approaches use special constraint problems, i.e. triangles, as basic patterns to
solve geometric constraint problems. In [18], Latham and Middleditch proposed a connectivity
analysis algorithm which could be used to decompose a constraint problem into what we called
the general construction sequence (definition in Section 2). A similar method based on maximal
matching of bi-partite graphs was proposed in [17]. In [9], Hoffmann et al gave an algorithm
to find rigids in a constraint problem. From this, a general approach to GCS is proposed.

*Partially supported by a National Key Basic Research Project of China (NO. G1998030600) and by a USA
NSF grant CCR-0201253.

In this paper, we propose a method which can be used to decompose a constraint graph into
a c-tree by combining the idea of s-tree of Joan-Arinyo et al in [11] and Latham-Middleditch’s
algorithm [18]. The general construction sequence obtained with Latham-Middleditch’s algo-
rithm is used to find a rigid in the constraint graph. With this rigid, we can split the constraint
problem into two smaller problems.

The basic idea for all graph based methods is to reduce a large constraint problem into several
smaller ones. Among these smaller problems, the largest (with largest degrees of freedom) is
called the controlling problem. The controlling problem can be used to measure the effect
of the decomposition method. The main reason for introducing the c-tree is that we may
obtain smaller controlling problems than Latham-Middleditch’s algorithm. We may obtain the
smallest controlling problem for a constraint problem if we do an exhaust search. But this
will increase the complexity of the method. As pointed out in [9], finding the smallest rigid is
NP-hard. We generally satisfy if a constraint problem can be divided into smaller rigids. Also,
our method is easy to understand and implement.

In Section 2, we show how to use Latham-Middleditch’s algorithm to find a general construc-
tion sequence for a constraint problem. We also give a classification of the general construction
sequence. In particular, we propose the concept of generalized Stewart platform.

In Section 3, the concept of c-tree is introduced and an algorithm to generate the c-tree is
proposed.

In Section 4, we give the analytical solutions to one of the basic merge patterns: the 3A3D
generalizes Stewart platform, which is to determine the position of a rigid R; relative to another
rigid 5 when we know three angular and three distance constraints between R; and Ry. This
case is relatively easy to be solved, because we may impose the angular constraints and the
distance constraints separately, an idea first proposed in [15].

2 Classification of (Generalized Construction Sequence

We consider three types of geometric primitives: points, planes and lines in the three di-
mensional Euclidean space and two types of constraints: the distance constraints between
point /point, point/line, point/plane, line/line and the angular constraints between line/line,
line/plane, plane/plane. A geometric constraint problem consists of a set of geometric primitives
and a set of geometric constraints among these primitives. Angular and distance constraints
between two primitives 0, and oy are denoted by ANG(oy, 05) and DIS(01, 03) respectively. We
will use p;, h; and [; to represent points, planes and lines respectively.

We use a constraint graph to represent a constraint problem. The vertices of the graph
represent the geometric primitives and the edges represent the constraints. For a constraint
graph G, we use V(G) and E(G) to denote its sets of vertices and edges respectively.

For an edge e in the graph, let DOC(e) be the valence of e, which is the number of scalar
equations required to define the constraint represented by e. Most constraints considered by
us have valence one. For a geometric primitive o, let DOF(0) be the degrees of freedom for o.

For a constraint graph G, let DOF(G) = ZUGV(G) DOF(v), DOC(G) = ZeeE(G) DOC(e).

A constraint graph G is called structurally well-constrained if DOC(G) = DOF(G) — 6 and
for every subgraph H of G, DOC(H) < DOF(H) — 6. A structurally well-constrained graph
defined a rigid in most cases. But, in some special cases the constraint problem represented by a
structurally well-constrained graph may have no solutions or an infinite number of solutions. In
this paper, we will concern the structure solvability of the constraint problem only. Therefore,
when we say rigids, we mean structurally well-constrained problems.

2.1 Latham-Middleditch’s Connectivity Algorithm

Before using Latham and Middleditch’s algorithm, we need to add six more degrees of freedom
to a set of primitives called base primitives. The geometric meaning of this step is as follows:
a rigid in the space has six degrees of freedom. By selecting the base primitives, we can find
the absolute position of the rigid in the space. After this step, a structurally well-constrained
problem G will satisfy DOC(G) = DOF(G), which is called strictly well-constrained.

In [18], Latham and Middleditch proposed an algorithm which may be used to decompose
a well-constrained problem into a general construction sequence (GCS): C1,Cy,---,C, where
each C} is a set of geometric primitives, such that

1. The geometric primitives in C; only have constraints with primitives in C7,---, C;_;.
2. The subgraph induced by Ui_,Cy is strictly well-constrained for each 1 < i < n.

3. No proper subsets of C; satisfy conditions 1 and 2.

To find base primitives, we first try to find a rigid consisting of less than four primitives in
the constraint problem. The four graphs in Figure 1 represent such rigids. If such a rigid exists,
we may treat it as the base primitives by fixing its three translational degrees of freedom and
its three directional degrees of freedom.

S oo ool

Figure 1: Rigids with two or three primitives

If such a rigid does not exist, we try to find three points py, ps, p3 such that d; = DIS(py, p2)
and DIS(ps, p3) are known. We select py, pe, p3 as the base primitives by adding the following
constraints: p; = (0,0,0), p, = (d1,0,0), p3 = (z,y,0), where x and y are variables to be
determined. Other cases can be treated similarly. Let e be the number of edges, the above
procedure of selecting base primitives has complexity of O(e) if properly implemented.

Let us look at the constraint problem in Figure 2(a), where each line represents a distance
between two points. We need only to determine the position of the points.

2

T

(C4)

UV, {Wh) {PQUI{VH

(e hau &
((PQDH (W) (P.OA}{BLIC}(D)
(ABCTDN (POAL(BL(CI)
(ABQITE) (POANEN
PQA
© (PQATIB) (PQA

Figure 2: A constraint problem and its c-tree

For this problem, there are three essentially different GCSs, the geometric meaning of which
is self evident. It is clear that the GSC depends on the base primitives. Note that according
to our methods of selecting base primitives, C3 will not be generated.

Ci: P;Q;A;B;C;D; {U,V,W}; Co: P;Q;U; V;W; {A,B,C,D}; Cs: W;D;{P,Q,A,B,C,D,U,V}

2.2 Classification of GCS
Suppose that a constraint graph G is decomposed into a GCS:
C: 017027"'7Cn (]-)

The maximal of DOF(C;) for i = 1,---,n is the maximal number of simultaneous equations to
be solved in order to solve C. This number is called the controlling degree of freedom of C and
is denoted by MDOF(C).

We call the type of dependency of C; on C,---,C;_1 a basic merge pattern. Let

B; = LZJ Cr, Uy = Cip1.

k=1

We call B; and U; the base and the dependent object, respectively. To solve a GCS, we need to
determine I; assuming that B; is known. The sum of DOC(e) for all edges e between B; and
U; describes an important natural of the merging step, and is called the connection number,
denoted by CN(B;,U;).

Theorem 2.1 Let V3 be the set of points and planes in U;, V, the set of lines in U;, and
V =V3UVy. We have 3 < CN(B;,U;) < DOF(V) — |V | = 2|V3| + 3| V4.

Proof: Since U; contains at least one geometric primitive and B;Ul; is a rigid, CN(B;, U;) should
be greater than or equal to the degree of freedom for one primitive. Hence CN(B;,U;) > 3.
From [18], U; can be changed to a strongly connected directed graph. 5 Since a strongly
connected graph with n vertices has at least n edges, U; contains at least |V| constraints, i.e.
DOC(V) > |V|. Since both B; and B; Ul; are rigids, we need exactly DOF (V) = 3|V3] + 4|V}
constraints to determine ;. In other words, we have

CN(B:,U;) + DOC(V) = DOF(V) = 3|Va| + 4|Val.
Thus CN(B;, U;) < DOF(V) — [V| = 2|V4| + 3|Val. |

The computation of U; with respect to B; can be divided into the following cases.

1. If CN(B;,U;) = 3, U; consists of a point or a plane, which can be constructed explicitly.
2. If CN(B;,U;) = 4, U; consists of a line, which can be constructed explicitly.

3. If CN(B;,U;) = 5, U; consists of a line [and several points on . Suppose that there are m
points p;,i = 1,---,m on [. After renaming the points, DIS(p;, piy1),i = 1,---,n—1 must
be known. Otherwise, DOF(U;) > 5 which is contradict to the fact that CN(B;,U;) = 5.

4. If CN(B;,U;) = 6, There exist DOF(U;) — 6 constraints between primitives in f;. Hence
U; is a rigid.

5. If CN(B;,U;) > 6, the problem becomes more complicated. Now I; is not a rigid anymore.
We need to use the constraints inside ; and those between U; and B; to determine U;.

When CN(B;,U;) = 6, both B; and U; are rigids. Hence, it may be considered as an assembly
problem. We need to assemble two rigids according to six constraints. This problem can be
divided into four cases:

3D3A: There are three distance and three angular constraints.
4D2A: There are four distance and two angular constraints.

5D1A: There are five distance and one angular constraints.

6D: All the six constraints between B; and U; are distance constraints.

This case deserves special attention because it is closely related to the famous Stewart
Platform [2], which is a 6D problem where all distance constraints are between points. The
system B;, U; satisfying CN(B;,U;) = 6 will be called a generalized Stewart platform (GST).

3 A Decomposition Algorithm

3.1 A New Decomposition Tree: C-tree

Let G be a structurally well-constrained graph and H a structurally well-constrained subgraph
of G. Let I be the set of vertices v of H such that there exists at least one constraints between
u and a vertex in V(G) — V(H). If I # V(H), H is called a faithful subgraph.

Let H be a faithful subgraph of G. We may construct a split subgraph of G with H. We
define a subgraph G’ of G as follows. V(G') = (V(G) — V(H)) U I. All the edges in E(G)
between two vertices in V(G') will be in E(G'). If G’ is structurally well-constrained, G’ is
the split subgraph. Otherwise, we add DOF(V(G')) — DOC(E(G")) — 6 auziliary constraints
between vertices in I to make the new graph G’ structurally well-constrained. This can be done
with the algorithm in [18]. This new graph is the split graph.

Definition 3.1 A c-tree for a constraint graph G is a binary tree. The root of the tree is G.
For each node n in the tree, its left child L and right child R are as follows.

1. L is either a GCS or a basic merge pattern L = [B,U], where B is a rigid whose positions
are known, U is a set of primitives to be determined by B. From the definition, the graph
induced by L is a rigid.

2. The graph induced by L is a faithful subgraph of G' and the right child R is the split graph
of G with H.

All leaves are either base primitives or basic merge patterns.

Let us consider the constraint problem in Figure 2(a). The subgraph induced by {P, Q,U,V, W}
is a faithful subgraph. The split subgraph induced by {P,Q, U, V, W} is Figure 2(b) where two
auxiliary edges (W, P) and (W, Q) are added. A c-tree for this problem is give in Figure 2(c).

After a c-tree is obtained, we may use it to solve the constraint problem as follows. We do
a left to right depth-first search of the c-tree and consider the following three cases.

1. The current node is a set of base primitives. We need assign six more degrees of freedom
and compute the coordinates of these primitives.

2. The current node is a basic merge pattern. We need to solve this merge pattern.

3. The current node is not a leaf. In this case, we already solved the left child which is a
rigid. From this rigid, we may compute the value for the auxiliary constraints in the right
child. Now the right child becomes a structurally well-constrain problem. We may solve
the right child recursively.

3.2 Finding the C-tree with GCS

For the problem in Figure 2(a), if using GCSs C;, C, and C; to solve the problem, we have
MDOF(C;) = DOF({U,V,W}) = 9, MDOF(C,) = DOF({A, B,C,D}) = 12,MDOF(C;) =
DOF({A,B,C,D,U,V,W}) = 21. It is clear that C; is the best GCS. To further simplify the
computation, we may first to find the position for the rigid Ty = {P,Q, U, V, W} by solving the
following GCS:

Co: PQU VW

From this rigid, we may compute the distances DIS(W, P) and DIS(W, Q). The constraint
problem in Figure 2(a) is reduced to the one in Figure 2(b), which can be solved with the
following GCS.
Cs: PQ; A B, C; D W.

Now to solve the problem, we need to solve two GCSs: C; and Cs. Since MDOF(C,) =
MDOF(C5) = 3, which is much better. The solution procedure is represented by the c-tree in
Figure 2(c). This solution is the same as that obtained with the cluster formation algorithm of
Hoffmann et al [8].

Based on this idea, we will give an algorithm of geometric constraint solving. First let us note
that a GCS C can be easily transformed into a c-tree. Let C be given in (1). Let C; = Cy,- -+, C;
and B; = U;_,C;. Then the first left child is [B,_;, C,] which is a leaf of the c-tree. The first

right child is C,,_;. The second left child is [B,, 5, C,, 1] which is a leaf. The second right child
is C,,_1, and so on. At the n-th step, we have a leaf C; which is the set of base primitives.

Algorithm 3.2 The input is a structurally well-constraint constraint graph G. The output is
a c-tree for G.

S1 Select a set of base primitives for G' to generate a new graph H.

S2 With Latham-Middleditch’s connectivity algorithm [18], we may find a GCS for H

C: Cy,--,Cph.

S3 Let B, = U?ZIC]-. If CN(B;,C;41) < 5, Ci41 is a point, a plane or a line. These cases
are relatively easy to solve. Merge C; and C;,; into one set. After all such merges, we
obtained a reduced GCS:

c. «C,---,CL

S4 Let B} = nglC;-. If s = 1, then H can be solved by explicit constructions and C is a
construction sequence for H. We may generate a c-tree from C. The algorithm terminates.

S5 Let k£ be the minimal number such that there exists at least one primitive o € B; such that
there are no constraints between o and any primitive in C},i =i+ 1,---,s.

S6 If k£ = s, we cannot decompose H into smaller rigids. Find a set of new base primitives for
G to generate a new H and goto S2. If no new base primitives exist, we have to solve G
with the GCS C. We may generate a c-tree with C. The algorithm terminates.

S7 Otherwise, £ < s. We build the c-tree as follows. The left child is the c-tree generated
by GCS: C" = Cf,---,C}. The right child is the split subgraph of G with the faithful
subgraph induced by Ulec’]’-. Set G = G’ goto S1.

({ABCD}{EFGH}) ({A.BC}}{D})

Py ({AB,CDEFGH} (1K L})
({AB.CH{D}) ({AB.C}H)

(b)

Figure 3: A constraint problems about twelve points

With Algorithm 3.2, the c-tree in Figure 2(c) for the problem in Figure 2(a) can be generated
automatically. Figure 3(a) is a more difficult constraint problem, where each edge represents a
distance between two points. Figure 3(b) is the c-tree for it. Note that the problem in Figure
2(a) could be solved with the cluster formation method proposed in [8]. Another possible way
to solve the problem in Figure 2(a) is to decompose the constraint graph into 4-connected
components with method from [12]. But the problem in Figure 3 cannot be simplified with
both methods.

4 Analytic Solution to 3D3A Case

The basic step to solve a constraint problem with a c-tree is to solve basic merge patterns.
Basic merge patterns with connection number less than six are relatively easy to solve. Basic
merge patterns with connection number greater than six are generally very difficult to solve.
Basic merge patterns with connection number six, i.e., the GTSs, are difficult to solve and have
been studied extensively [2].

We could simplify a GTS (B; U) as follows. We may solve rigid U separately with Algorithm
3.2. Let U’ be the set of vertices of U, which have constraints with vertices in B. Since U has
been solved, we may add a reasonable number of constraints to U’ so that U4’ becomes a rigid.
Then the basic merge pattern (B,U) could be simplified to (B,U"). As a consequence, we may
assume that |U/| < 6. For instance, the basic pattern in Figure 4(a) could be reduced to the
one in Figure 4(b).

p2

p3

(b)
Figure 4: A GST and its simplified form

In this section, we try to give the analytical solution to the 3D3A Stewart platform. This
platform is easier because we may impose the angular constraints first and then impose the
distance constraints.

We use Wu-Ritt’s zero decomposition method [23] to find the analytical solutions. This
method may be used to represent the zero set of a polynomial equation system as the union of
zero sets of equations in triangular form, that is, equation systems like

filu,z1) =0, fo(u,x1,29) = 0,..., fp(u,z1,...,2,) =0

7

where the u could be considered as a set of parameters and the z are the variables to be
determined. As shown in [23], solutions for an equation system in triangular form are well-
determined. For instance, the number of solutions of an equation system in triangular form
can be easily computed.

4.1 Imposing Angular Constraints

Since a vector can be used to represent both the orientation of a line and the normal of a
plane, there are in fact only two types of angular constraints. One is the angular constraint of
valency 1 between two planes or two lines, the other is the parallelism constraint of valency 2
between two lines or two planes. There are only two cases to remove the three rotation degrees
of freedom.

1. Imposing a parallelism constraint of valency 2 and an angular constraint of valency 1.

2. Imposing three angular constraints of valency 1.

It is easy to see that the first case can be reduced to solve two linear and one quadratic
equations. Therefore, the problem could have two solutions.

For the second case, let 111, 132 and 133 be three lines in B, the base object set, and laq, 122
and lpg three lines in U, the dependent object set. Assume that the parametric equations of
the three lines in the base object are

li1: P = P11 + u11S11
li2 : p = P12 + u12812
li3: p = P13 + u13813
where s1; = (llamlanl); S12 = (l27m27n2)7 S13 = (l37m37n3)7 |511| =1, |S12| =1, |S13| =L
Assume that the parametric equations of the three lines in the dependent object are
l21 1 P = P21 + u21821
l22 1 p = P22 + u22822
l23 : p = P23 + u23S22
where S91 = ($1,y1,21), S99 = (IQ,QQ,ZQ), S93 = ($3,y3,23), |521| =]_, |S22| =]_, |S23| =1.

Let the three angular constraints be ANG(l11,121) = oy, cosay = dy, ANG(ly2,122) = o,
cosay = dy,ANG(ly3,l23) = a3, cosas = d3. Since U is a rigid, the angles between three
lines in U are also known: ANG(121,122) = 51, COS 61 = d4, ANG(].21, 123) = /82, COS /82 = d5,
ANG(l22,la3) = B3, cos f3 = dg. We need to determine the three unit vectors say, S22, Sa3.

Because a line has two rotation degrees of freedom, the problem can be classified into the
following three cases shown as Figure 5.

a)

((b) (c)

Figure 5: Three Cases of Three Angle Constraints

Case 1 For the case shown in Figure 5-(a), we can get the following equation system.

(

111‘1 +m1y1 +ni121 — d1 =0

121‘1 +m2y1 + nozy — dg =0

131‘2 +m3y2 + N3zo — dg =0 (1)
T1%9 + Y1yY2 + 2122 —dy =0

iyl 4+ —-1=0

a4yl +22-1=0

\

If taking (I3, m1,n1) = (0,0,1) and ms = 0, we can get z; = d; and above equation system can
be simplified as
lgl‘l + Tl2d1 — d2 =0
l3x9 +mays + ngze —ds =0
1Ty + Y1Y2 + dizo —dy =0 (2)
B4y 4+di—1=0
w3ty +25—-1=0

The above equation system can be reduced into the following triangular form.

l21'1 + 2111 = 0

212122 + (2122y1 —+ 2123) * y2 + 2194 =0

213122 + (Z132y1 + 2133) Y2 + 2134 = 0 (3)
(ziay1 + 2142) Y3 + (21a3y1 + Z144) Y2 + 2145 = 0

l%y% —+ 2151 = 0

The above equation system has at most 4 solutions.
Case 2 For the case shown in Figure 5-(b), we can get the following equation system.

;

llx1+m1y1+n1zl —d1 =0

llx2+m1y2+n122 —dg =0

13x3+m3y3+n323 —d3 =0

1Ty + Y1y + 2122 —dg =0

T w3+ y1y3 + 2123 —ds =0 (4)
To3 + Yoyz + 2223 — dg = 0

iyt —1=0

x5+ ys+25—1=0

34+ ys+23—-1=0

\

If taking (I;,my,n1) = (0,0,1) and mz = 0, we can get z; = dy, 25 = dy and above equation
system can be simplified as

l3!L‘3+TL3Z3—d3 =0

11T + Y1y2 + didy —dy =0

T173 + y1y3 +dizz —ds =0

§ Tow3 + Yoyz + dozz — dg =0 (5)
4y +di—1=0

x5 +y; +ds—1=0

3 +ys+25—1=0

\

The above equation system can be reduced into the following triangular form.

Nns3zs + l3£U3 — d3 =0

n3Y3Y2 + N3T2T3 — dalzrs + 2911 = 0

(222123 + 2222) T2 + 2223%3 + 2224)T1
+ (22253 + 2226) T2 + 22073 + 2228) = 0

(223173 + 2032) T2 + (223373 + 2034)) Y1 (6)
+ (2235Y3%3 + 2236Y3) T2 + Zo373Yy3 = 0

(224123 + 2042) 23 + (22433 + 2244) T2
+ 294523 + 2946 = 0

29513 + Zos2y3 + o33 = 0

296105 + 226203 + 2263 = 0

\
The above equation system has at most 4 solutions.

Case 3 For the case shown in Figure 5-(c), we can get the following equation system.

(

111‘1+m1y1+’n121 —d1 =0

log + Mmoys + Nozo —doe =0

[3x3 +mgys + nzzg —ds =0

T Ty + Y1y + 2120 —dy =0

T1x3 +1Y1Y3 + 2123 —d5 =0 (7)
ToX3 + Yoyz + 2223 —dg =0

B4y 4+ —-1=0

ity +22-1=0

i+ yi+22—1=0

\

It is difficult to transform this equation system into triangular form. But, we may compute
the m-Bezout number for the system as follows [20]. Let 71 = {x1,y1, 21}, To = {22, y0, 22}, T3 =
{x3,y3,23}. The the degree vectors of the nine equations for Ty, T5, T3 are (1,0,0), (0,1,0),
(0,0,1), (1,1,0), (1,0, 1), (0,1,1), (2,0,0), (0,2,0), (0,0,2). Then the m—Bezout number is the
coefficient of TPT3 T3 in the polynomial Ty ToT5(Ty + 1) (11 +T3) (T +T3) (214) (213) (213), which
is 16. As a consequence, we know that the above equation system has at most 16 solutions.

Figure 6: Two Examples of case 3D3A

Here lines labelled by a represents angular constraints . If there are two lines between two
vertices, one line represents an angular constraint and the other distance constraint.

Example 1 The figure shown in Figure 6-(a) is a basic configuration with four lines in [7]. Let
I3l be the base and [1/5 the dependent object. Assuming that the parametric equations of [y
and [, after imposing three angular constraints are

L :p=p1+usy (8)
Iy : p = p2 + ussy

10

The parametric equations of /3 and I, are

{ I3 : p = ps + u3ss 9)
ly : p = pa+ sy

Where S1 = (xla Y1, Zl); S2 = (x27 Y2, 22)7 Ssg — (lla maq, nl)a S4 = (l27 ma, n?); Pi = (xpia ypia Zjlh)(Z =
1,---,4), s; is the unit vector parallel to l;, i =1,--- 4.

Let ANG(ll,l4) = a1, COSap = dl, ANG(ZQ,Z?,) = g, COSQg = dg, ANG(ll,lg) = Qs3,
cosag = ds3, ANG(ly,ly) = 31, cos f; = d4. Thus we can get the following equations.

(Loz + Moy + 19z —dp =0

l1xe +myys +n120 —do =0
lizy +myyy +nizy —ds =0

T1Tg +Y1yYa + 2122 —dy =0 (10)
ity +2—1=0
[23 +ys+25—1=0
Let (ll,ml,nl) = (0, 0,].), Mo = 0,
(21 — d3 =0
Z9 — d2 =0
12x1+n2d3—d1 =0 (11)
ly1ye + (—nads + di) g + ladzdy — lads = 0
y%l%d% + a1xy + ag = 0
L $%l22d§ + blfL’Q + b2 =0

where a; = (—2l2d§d2n2 + 2lgd3d2d1 + 2l2d4n2d3 - 2lgd4d1), o = d% + l%d%d% - 2l%d3d2d4 + n%d% —
d%n%d% + l%di - d%d% - 27’L2d3d1 + 2d%n2d3d1, b1 = —2lgd3d2d1 + 2l2d§d2n2 - 2l2d4n2d3 + 2lgd4d1),
The problem has 4 solutions at most.

Example 2 The figure shown in Figure 6-(b) is a basic configuration in [3]. h;(i = 1,---,4)
are planes and ps and pg are points. Let triangle hshyps be the base and hqhops the dependent
object. The direction of a plane is determined by the normal vector of the plane. Let the
normal vectors of hg and hy are ng = (I, my,ny), ng = (lz, M2, ny). Assuming that the normal
vectors of hy and hy are n; = (z1,y1,21) and ny = (29, ys, 22) after imposing three angular
constraints.

Let ANG(ni,ny) = o, cosay = dy, ANG(ng,l3) = ag, cosay = dy, ANG(ny,n3) = as,
cosag = d3, ANG(ny,ny) = 51 and cos f; = dy. Thus we can get the same angular constraint
equations and same patterns of characteristic set as those shown in example 1. And the problem
has 4 solutions at most too.

4.2 Imposing Distance Constraints

There are three ways to remove the three translation degrees of freedom.

1. Imposing a constraint of valency 3, which is point-point coincident. We can get solution
easily.

2. Imposing a distance constraint of valency 2, which is line-line coincident or point-line
coincident, and a distance constraint of valency 1.

11

3. Imposing three distance constraints of valency 1.

Case 2 can be taken as the integrate case of case 3, we’ll discuss it later. We consider the
third case, that is three angular constraints of valency 1, firstly.

We will make use of the following definition and theorem in Kumar et al[15]. This theorem
is also proposed in [5], under the name of ’translational’ transformation.

Definition 4.1 The translation space of a point on the dependent object with respect to a
distance constraint is the set of points to which the point can be moved to by translating the
dependent object without violating the constraint.

Theorem 4.2 If RX(u) is the translation space of po on the dependent object with respect to
a constraint X, the translation space of any other point p on the dependent object with respect
to this constraint is Ry~ (u) = R¥(u) + (p — Po), assuming that previously imposed angular
constraints have eliminated all the rotation degrees of freedom of the dependent object.

After removing all three rotation degree of freedom of the dependent object, the 4 basic

types of translation space in 3D are shown in table 1 when the geometric primitives are points,
lines and planes.

Constraint Space Parametric equation for translation space
type type
LLD plane RP(u,v) = p; +rym + uly + vIa
PhD plane RP(u,v) = po + rpm + uva + vb
PPD sphere R®(4,0) = Cg + rs(sin ¢ cos 0i + sin ¢ sin)
PLD cylinder R%(p,) = pa + pl + 7,(cos ¢m + sin én)
Table 1

In Table 1, for distance constraint between two lines LLD, assuming that line 1; is in the
base object and line 13 in the dependent object, p; is a point in line 1;. I; and I, are unit vectors
parallel to line 1; and 1y respectively. m is a unit vector perpendicular to the two given lines
and r; is the distance. For distance constraint between a point and a plane PhD, if the point is
in the base object, pg is the corresponding point, otherwise it is a point in the plane. a and b
are mutually perpendicular unit vectors parallel to this plane, m is a unit vector perpendicular
to a and b and r, is the distance. For distance constraint between two points PPD, Cj is the
point in the base object and 7y is the distance. For distance constraint between a point and a
line PLD, I is a unit vector parallel to the line and m and n are mutually perpendicular unit
vectors perpendicular to I. If the point is in the base object, p, is the corresponding point,
otherwise it is a point on the line.

The problem of imposing three distance constraints of valency 1 can be classified into fives
cases shown in Figure 2.
G

(c)

—L
——

—
=) =
SN
e-‘
/-

—
&
~

—
= (36
SN

—
)
SN

Figure 7: Five Cases of Three distance Constraints

Let p1, p2 and ps be the points in the dependent object, d;, d» and d3 the distances.
We can always take three points from the dependent object in fact: if the given vertex in the
dependent object is not a point, that is it’s a plane or a line, we can take a point on the plane
or the line. The translation spaces of constraints di, d, and ds are R% (u;), R%(uy) and
R% (u3) respectively. Imposing constraints d;, dy and d3 means that we must find point p;*
in R% (uy), p2* in R%(uy) and ps* in R%(u3), where line p;*ps* is parallel and equal to line
P1P3, and line p2*ps* is parallel and equal to line paps. The parametric equation of line pjp3;
is p = p1* + vys1, where v; is a parameter and s; is a unit vector. The parametric equation
of line p5p3 is p = p2* + 1282, where vy is a parameter and s is a unit vector. Let ¢; and
to be equal to distance |pips| and |p2ps| respectively, then we have ps* = p;* + t18; and
p3* = p2* + t283. The translation vector is t = pg* — ps. According to Theorem 3.2, it’s
obvious that point ps* satisfies the following equation

R% (1) = R (uy) + (ps — p1)
R® (u3) = R (uy) + (Ps — p2) (12)
R[d)‘; (’LL3) = Rd3 (’LL3)

With above three equations, we’ll have three simultaneous equations in three unknown
parameters, if replacing ps —p; with ¢;8; and ps —p2 with £,85. Because the implicit equations
of translation space are either linear equation or quartic equation after removing all the rotation
degree of freedom, the problem to solve the three equations can be classified into four types
shown in the following. After we get the analytic solution to point pj, we can translate the
dependent object along the vector t = p3 — ps and get the analytic solutions to point pj
according to p; = pj + t1s1 and point pj according to p5 = p% + f3s2 and position the
dependent object. Above equations can be written as follows.

P =]R,d1 (ul) + t151
p = R%(uy) + ta52 (13)
p = R% (u3)

1. If t; # 0 and t5 # 0, that is three points py, p2 and ps are three different points, equation
system (10) is corresponding to cases (a), (¢) and (e) shown in Figure 2.

2. If t{ = 0 and t, = 0, that is three points py, p2 and ps are coincident, equation system
(10) is corresponding to cases (b) in Figure 2.

3. If t; = 0 and 5 # 0, that is point p; and py are coincident, point ps is different from p;,
equation system (10) is corresponding to cases (d) shown in Figure 2.

Because during computation we’ll use implicit equations, we list the implicit equations
R%(u) + ts, where R%(u) is the translation space in Table 1 and ts is a constant vector.

LLD constraint
The parametric equation is

p=p +rm+uly + vl + s
The implicit equation is

(many — noma)(x — x1 — 1il3) + (ling — mla) (y — y1 — rims) + (maly — lima) (2 — 20 — ng) =0

13

where p = (7,y,2), Pr = (Tp;s Up,» 2p,)s 8 = (ls,mg,ng), It = (Li,my,m), I = (I2, ma, na),
m = (I3, m3,n3), m = £I; X Io, 2y =, + tls, Y1 = Yp, + tms, 21 = 2, + tns.
The implicit equation can be simplified as

d1x+d2y+d3z+d4:0

where d1 = (m2n1 — TLle), d2 = (llng — n1l2), d3 = (mllg — l1m2), d4 = —(m2n1 - TLle)(ZUl +
rilz) — (ling — naly) (Y1 + rims) — (mals — limg) (21 + ring).

PhD constraint
The parametric equation is

p = po +rpm+ua+vb +1s
The implicit equation is
(mgnl — ngml)(x — X1 — Tpmg) + (llTLQ — nllg)(y — Y — Tpmg,) + (m1l2 — l1m2)(z — 21— Tpng) =0

where P = (xayaz)a Po = (xpoaypoazpo)a s = (ls;ms;ns); a = (llamlanl)a b = (12;m2;n2)7
m = (I3, m3,n3), m = ta X b xy = x,, + tls, y1 = yp, + tms, 21 = 2, + tns.
The implicit equation can be simplified as

d1x+d2y+d3z+d4:0

where dl = (m2n1 — n2m1), d2 = (llng — n1l2), d3 = (mllg — l1m2), d4 = —(m2n1 — Tl2m1)(.'151 +
’I“pmg) — (ll’I’LQ — nllg)(yl =+ Tpmg) — (mllg — llmQ)(zl —+ ’I“p’ng).

PPD constraint
The parametric equation is

p = Cyp + rs(sin ¢ cos i + sin ¢ sin 0j) + ts
The implicit equation is
(z—m)’+W—y)+(z—2)-r2=0
where P = (x,y,z), Co = (l‘CoayC(pZCo)a 5 = (l87m87n8)7 r1 = Tg, + tlS) Y1 = Yc, + tms,
21 = 2y + tns.
The implicit equation can be simplified as

P4y’ + 2 rdir+dyy+dsz+dy =0

where dy = —2x1, dy = =2y, d3 = =221, dy = xf + y% + z% — r?.

PLD constraint
The parametric equation is

P = Pa + pI + 7,(cos ¢m + sin ¢n) + ts
The implicit equation is

(=21 —pl) > +(y—y1—pm)’> + (z— 21— pn)®> =15 =0

where

14

_ (ming—nima)z+(nile—ling)y+(lima—mals)z + (nima2—nami)z1+(na2li —lani)yi1+{lomi—lima)z1
p (llmzfnlmgfm112+m1n2)l+(n1l2fllng)m (l1m2fnlmgfmllg+m1n2)l+(n1l27l1n2)m

while (l1m2 — Nimo — m1l2 + m1n2)l + (n1l2 — llng)m 7£ 0.

The implicit equation can be simplified as
dy2? + doy® + d32® + (dyy + dsz + dg)x + (dvz + dg)y + doz + dyg = 0

where p = (2,9,2), Pa = (TpasYpar Zpa)s S = (ls,ms,ns), I = (I,m,n), m = (1, my,ny),
n —= (lg,mQ,ng), ry = l'pa + tls, Y1 = ypa +tm5, zZ1 = Zpa + tns, d1 =1 - 2[f1 + 2f112,
dy =1=2mfo+2f3, ds =1—=2nfs+2f3, dy = 4fifo—21fs —2mf1, ds = 4f1 fs — 2l fs — 2nfi,
de = 4f1fs =221+ 21 fr —2f0)l + 221 Inf1 + 2yymfr, d7 = 4fofs —2nfo —2mfs, dg = 2y1mfo +
2a1lfo—=2y1 —2mfa+2x21xnx f24+4x f2x f4, dy = 2yim fs+2xnfs+4fs fat2x11f3—2np4—22,

dio = 2210 fy+2yim fa+ 20l fa+ 217 —r)+at +yi + 27, fi = 0 (mainp—nims)

limo —nlmz—m1lz—l—mlnz)l—l—(nllz—llnz)m)

f — (n1la—lin2)
2 (lime—nimo—milo+ming)l+(nile—lin2)m’

f — (lLima—mal2)
3 (lime—nimo—milo+ming)i+(nila—lin2)m’
f4 _ (numa—nami)z1+(nali—lan1)y1+(lami—lima)21

(llmg—nlmz—m1l2+m1n2)l+(n1lz—l1nz)m
There are three special cases while (Iymy — nyms — mqly + myng)l + (nyly — ling)m =0

1. I=1(0,0,1), pa+ts=(0,0,0)
The implicit equation is 2% + y? — 1"2 =0, p=z

2. I=1(0,1,0), pa+ts = (0,0,0)

The implicit equation is % + 22

—72=0,p=y;

3. I=(1,0,0), pa+ts=(0,0,0)
The implicit equation is 2* +y* — 72 =0, p = =.

We can classify equation system (10) into 4 types according to the degree of each equation
in equation system (10): three linear equations, two linear equations and one quadratic equation
, one linear equation and two quadratic equations, and three quadratic equations.

1. Three Linear Equations

If the implicit equations of the types of translation spaces are three linear equation, that is
to say the types of the translation space are three planes, equation (13) can be represented as

d12+d2y+d3$+d4:0
d5Z + dgy + d7!L’ + dg =0 (14)
doz + dioy + diy1x + dip = 0.

This a linear equation system and it can be solved easily.

2. Two Linear Equations and One Quadratic Equation

The types of translation space should be two planes and a sphere or a cylinder. The detailed
equations are shown as follows.

Two Planes and One Sphere Equation (13) can be represented as

d1$+d2y+d32+d4:0
d5l' + dgy + d7Z + dg =0 (15)
x? + y2 + 22 + dgx + dlgy + dHZ + d12 =0.

15

Two Planes and One Cylinder Equation (13) can be represented as

d1x+d2y+d32+d4 =0

d5l“|—d6y+d72+dg =0

d91‘2 + d10y2 + d1122 + (dlgy + dlgl‘ + d14)Z
+ (disz + dig)y + dyzz + dig = 0.

The above equation system can be reduced into the following triangular form.

23117 + 23127 + 2313 = 0

2321y + 23220 + 2323 = 0 (17)
2 _

2331 + 2332% + 2333 = 0.

where the z;;;, are polynomials free of z, y, z. Because the patterns of the above two equation
systems are the same, we only treat one of them. The detailed expressions for coefficients z;;j,
of different equation systems may be found in Appendix A.

The above analytical solutions reduce the problem to the solving of one quadratic equation
and three linear equations. As a consequence, we know that this case is ruler and compass
constructible.

One Linear Equation and Two Quadratic Equations

The types of translation space should consist a plane and two spheres, a plane and two
cylinders and a plane ,a sphere and a cylinder. The detailed equations are shown as follows.

One Plane and Two Spheres Equation (13) can be represented as

dll‘+d2y+d32+d4:0
2’ + P+ 22+ fsr+ foy + fra+ fs =0 (18)
x2+y2+22+d9x+d10y+d11z+d12:0.

The equation system can be simplified as

d1x+d2y+d32+d4:0
d5l‘ + dgy + d7Z + dg =0 (19)
x? + y2 + 22 + dgx + dlgy + dHZ + d12 =0.

where dz = fZ —di+4 (Z = 5,,8)

The expressions of above equation system are the same as that of the case Two Planes and
One Sphere. So the triangular forms for them are the same.

One Plane, One Sphere and One Cylinder Equation (2) can be represented as

d1x+d2y+d32+d4 =0

2+’ + 22 +dsy +dey +drz +dg =0

dgl‘2 + d10y2 + d1122 + (dlgy + dlgl' + d14)2
+ (dis2z + di)y + di7w + dig = 0.

(20)

The above equation system can be reduced into the following triangular form.

2 _
(24117 + 2412) 2 + 241307 + 2414% + 2415 = 0
9 _
(24217 + 2422)Y + 2423T° + Z424% + 2495 = 0 (21)
4 3 2 _
24310 + 243207 + 243307 + 24347 + 2435 = 0

16

One Plane and Two Cylinders Equation (13) can be represented as

dll‘+d2y+d32—|—d4 =0
d51‘2 + d6y2 + d7Z2 + (dgy + ng + dlo)l‘
+ (di1z 4+ di2)y + dizz +dia =0 (22)
d15l'2 + d16y2 + d1722 + (dlgy + dlgz + dgo)x
+ (do1z + dg2)y + dogz + dog = 0.
This problem is similar to the One Plane, One Sphere and One Cylinder case.
Three Quadratic Equations

The types of translation space should consist of three spheres, two spheres and one cylinder,
one sphere and two cylinders and three cylinders. The detailed equations are shown as follows.

Three Spheres Equation (13) can be represented as
Ay + 22+ flet fy+ fiz+ fa=0

4y + 22+ s+ fey+ frz+ fs =0 (23)
.'L’2+y2+22+d9$+d10y+d112+d12:0.

The equation system can be simplified as

d1$+d2y+d32+d4:0
d5l‘ + dgy + d7Z + dg =0 (24)
.'I,'2 + y2 + 22 + ngII + dlgy + dHZ + d12 = 0.
where dz = fZ — di+8 (Z = 1, - ,8)
The equation system can be treated similarly to the Two Planes and One Sphere case.
Two Spheres and One Cylinder Equation (13) can be represented as

2+’ + 22+ fiz+ foy+ faz+ f1=0
2?2 +y? 4+ 22 +dsw +dgy +drz+dg =0

25
dgl‘2 + d10y2 + d1122 + (dlgy + dlgl' —+ d14)2 ()
+ (di52 + di6)y + dizw + dig = 0.
The equation system can be simplified as
d1x+d2y+d32+d4 =0
2+’ + 22 +dsy +dey +drz +dg =0 (26)

dor? + dioy® + di12% + (di2y + dizx + dis) 2
+ (d15Z + d16)y + d17l‘ + d18 = 0.

where d; = fi —d;q (1 =1,---,4).

The above equation system can be treated similar to the One Planes, One Sphere and One
cylinder case.

One Sphere and Two Cylinders Equation (13) can be represented as

4y + 22 +dir+dyy+dzz+di =0
d51‘2 + d6y2 + d7Z2 + (dgy + ng + dlo)l‘

+ (diz + dig)y +dizz +dig =0 (27)
d15l'2 + d16y2 + d1722 —+ (dlgy + dlgz —+ dgo)x

+ (da12 + dag)y + dazz + doy = 0.

17

The above equation system can be reduced into the following triangular form.

4 2 4 3
(25112° + 25122 + 2513)T + 25142" + 25152

+ Z51622 + Z5172 + Z2518 — 0

(250122 + 25902 + 2523)Y + Z5242% + 25052
+ 252622 + 25972 + Znog = 0

25312° + 253227 + 253320 + 25342° + 25352t

. + Z53623 + Z537Z2 + 25382 + 2539 = 0

Three Cylinders Equation (13) can be represented as

\

f

\

017% 4 goy” + 932 + (94y + 952 + g6)
+ (972 + g8)y + 9oz + g10 = 0

g1 2?4+ giay® + 9132° + (g14y + 9152 + Gig)x
+ (g172 4+ G18)y + G192 + G20 = 0

92122 + g2oy® + 9232° + (924y + 252 + Gog)x
+ (9272 + g28)y + 9202 + g30 = 0.

(28)

(29)

It is difficult to get the solutions of above equations directly, so we make a transformation
according to the fact that above three translation spaces are all cylinders. The equation system

can be represented as

fi2® + foy? + f32° + (fay + f52 + fo)x
+ (frz + fo)y + fozr + fro =0

f12? + fioy? + f132% + (fuay + fisz + fr6)x
+ (firz + fis)y + froz + foo = 0.

1'2 +y2 — d1 =0

The equation system can be simplified as

The above equation system can be reduced into the following triangular form.

\

(4 3 2
(26112 + 26122° + 2613%° + 26147 + Z615) % + Z616T

8 7 6 5 4
2631L° + 26322 + 2633T° + 2634%° + 2635T + 26361L

x? + y2 —dy =0

doy? + (dsy + dyz + ds)x + (dgz + dr)y
+dSZ + dg =0

d1022 + (dny + d12z + dlg)l'

+(diaz + di5)y + digz + di7 = 0.

5

4 3 2 _
+ 2e172" + 261827 + 2619027 + 261102 + 26111 = 0

3 2 4 3
(26210° + 26227% + 2623% + 2624)Y + Zo25T" + Z626T

+ 262751,’2 + 2628 + 2629 — 0
3

+ 2’637.%'2 + Zg38% + Zg39 = 0.

(30)

(31)

(32)

The 3D3A problem can be classified into ten different cases according the types of the
translation space after three rotation transformations. Here is a summery. We use letter P
to denote plane, S sphere and C cylinder. For example PPS means that we need to find the
intersection points of two planes and one sphere.

18

1. PPP consists three linear equations.

2. SSS, PPS, PSS and PPC are reduced to solving of one quadratic and three linear
equations.

3. PCC, SSC and PSC are reduced to solving of one quartic and three linear equations.

4. CCC and SCC are reduced to solving of one equation of degree eight and three linear
equations.

Now we consider that case of imposing a distance constraint of valency 2, which is line-line
coincident or point-line coincident, and a distance constraint of valency 1. It is obvious that
the corresponding equations of both line-line coincident and point-line coincident are two linear
equations. So their equation system consists of two linear equations and one quadratic equation
or three linear equations, and we can get the solutions explicitly.

Example 3 Now imposing three distance constraint to the problem shown in 6-(a).

Let the distance constraints be DIS(ly,ls) = ry, DIS(l1,ly) = r9, DIS(ls,13) = r3 and
DIS(ly,1y) = ry. We can get the line segment p2p1, |p1p2| = ¢ and the unit vector s parallel to
p2p1- Let p] and p5 be the corresponding two points after three distance constraints imposed,
where p} = (z,y,z). Thus we can get the following equations.

P = p3 + r3my + uSz + vSs3
P = P4 + ramy + uSz + US4 (33)
P = P4 + 7omg + us; + vsy 4+ 18

The implicit equations of above equations are three linear equations and we can get the solutions
easily. The problem has only one solution at most.

Example 4 Now imposing three distance constraint to the problem shown in 6-(b).

Let the distance constraints be DIS(hs,ps) = r1, DIS(ps, hy) = ro, DIS(ps,ps) = r3. We
can get the line segment psprz, |pPsprz| = ¢ and the unit vector s parallel to pspz, where pz
is a point on plane hy. Let p; and p5 be the corresponding two points after three distance
constraint imposed, where pf = (z,y, z). Thus we can get the following equations.

P = Pe +rimy +uja; + viby +1s
P = Ps + romgy + uzaz + vobe (34)
P = pe + 3(sin ¢ cos Oi + sin ¢ sin 6j)

where point pg is on plane hy. a; and by are mutually perpendicular unit vectors parallel to
plane hy, my is a unit vector perpendicular to a; and by. as and by are mutually perpendicular
unit vectors parallel to plane hy, my is a unit vector perpendicular to a4 and by. The implicity
equations of above equations are two linear and a quadratic equations and we can get the
solutions explicitly. The problem has only one solution at most, too.

Theorem 4.3 From Section 4.1, we generally could have 4, 16 solutions when imposing the
angular constraints. From Section 4.2, we generally could have 1,2,4, 8 solutions when imposing
the distance constraints. Therefore, the SD3A problem generally could have 28k = 2,-+-.7
solutions depending on the types of constraints imposed on it.

19

5 Conclusion

A geometric constraint solving procedure usually consists of two phases: the analysis phase,
which is to reduce a large geometric constraint problem into several subproblems, and the
computation phase which is to merge the subproblems by numerical or symbolic computation.
In this paper, we propose an analysis method which may be used to decompose any constraint
problem into smaller rigids if possible. Comparing to other decomposition methods, our method
can be used to handel general constraint problems and is easier to understand and implement.

The computation phase could be very difficult. This is due to the intrinsic difficulty of the
constraint problem: there exist constraint problems of any size which cannot be decomposed
into smaller rigids. For these problems, we have to solve them with brutal force computation
methods. For some problems, we are lucky in terms that we can find their analytical solutions.
In this paper, we showed that the 3A3D Stewart platform problem is such a problem.

It is an interesting problem to compare the scope and performance for the existing decom-
position algorithms for 3D constraint problems. We may ask, for example, whether all the
problems that could be solved with the cluster formation method in [8] can also be solved sim-
ilarly with our method. The idea of using k-connectivity algorithms for & > 3 [12] to geometric
constraint solving is also worth considering.

References

[1] B. Briiderlin, Using Geometric Rewriting Rules for Solving Geometric Problems Symboli-
cally, Theoretical Computer Science, 116, 291-303, 1993.

[2] B. Dasgupta and T. S. Mruthyunjaya, the Stewart Platform Manipulator: A Review,
Mechanism and Machine Theorey. 35, 15-40, 2000.

[3] C. Durand and C. M. Hoffmann, A Systematic Framework for Solving Geometric Con-
straints Analytically, J. of Symbolic Computation, 30(5), 493-529, 2000.

[4] 1. Fudos and C.M. Hoffmann, A Graph-COnstructive APproach to SOlving Systems of
Geometric Constraints, ACM Trac. on Graphics, 16(2), 179-216, 1997.

[5] X.S. Gao and S. C. Chou, Solving Geometric Constraint Systems I. A Global Propagation
Approach, Computer Aided Design, 30(1), 47-54, 1998.

[6] X.S. Gao and S. C. Chou, Solving Geometric Constraint Systems II. A Symbolic Approach
and Decision of Re-constructibility, Computer-Aided Design, 30(2), 115-122, 1998.

[7] X. S. Gao, C. M. Hoffmann and W. Q. Yang, Solving Basic Gometrci Constraint Con-
figurations with Locus Intersection, Proc. ACM SM02, 95-104, ACM Press, New York,
2002.

[8] C. M. Hoffmann and P. J. Vermeer, Geometric Constraint Solving in R? and R?, in Com-
puting in Euclidean Geometry, D. Z. Du and F. Huang (eds), World Scientific, Singapore,
266-298, 1995

[9] C. M. Hoffmann, A. Lomonosov and M. Sitharam, Finding Solvable Subsets of Constraint
Graphs, in LNCS, NO. 1330, Springer, Berlin Heidelberg, 163-197, 1997.

[10] R. Joan-Arinyo and A. Soto, A Correct Rule-Based Geometric Constraint Solver, Com-
puters and Graphics, 21(5), 599-609, 1997.

[11] R. Joan-Arinyo A. Soto-Riera, S. Vila-Marta, J. Vilaplana-Pasto, Revisiting Decomposi-
tion Analysis of Geometric Constraint Graphs, Proc. ACM SM02, 105-115, ACM Press,
New York, 2002.

20

[12]

[13]
[14]
[15]
[16]
[17]
18]
[19]
[20]
[21]
22]

23]

A. Kanevsky and V. Ramachandran, Improved Algorothms for Graph Four-connectivity,
Proc. 28th Ann. IEEE Symp. Foundations of Computer Science, Los Angeles, 252-259,
1987.

K. Kondo, Algebraic Method for Manipulation of Dimensional Relationships in Geometric
Models, Computer Aided Design, 24(3), 141-147, 1992.

G. A. Kramer, Solving Geometric Constraints Systems: A Case Study in Kinematics, MIT
Press, Cambridge Massachusetts, 1992.

A. V. Kumar and L. Yu, Sequential Constraint Imposition for Dimension-driven Solid
Models, Computer Aided Design, 33, 475-486, 2001

H. Lamure and D. Michelucci, Solving Geometric Constraints By Homotopy, IEEE Trans
on Visualization and Computer Graphics, 2(1):28-34, 1996.

H. Lamure and D. Michelucci, Qualitative Study of Geometric Constraints, in Geometric
Constraint Solving and Applications, 234-258, Springer, Berlin, 1998.

R. S. Latham and A. E. Middleditch, Connectivity Analysis: a Tool for Processing Geo-
metric Constraints, Computer Aided Design, 28(11), 917-928, 1994.

V. C. Lin, D. C. Gossard and R. A. Light, Variational Geometry in Computer-Aided
Design, Computer Graphics, 15(3), 171-177, 1981.

A. Morgan and A. Sommese, A Homotopy for Solving General Polynomial Systems That
Respect m-homogeneous Structures, Appl. Math. Comput., 24, 95-114, 1987.

J. Owen, Algebraic Solution for Geometry from Dimensional Constraints, in ACM Symp.,
Found of Solid Modeling, ACM Press, New York, 397-407, 1991.

A. Verroust, F. Schonek and D. Roller, Rule-Oriented Method for Parameterized
Computer-Aided Design, Computer Aided Design, 24(10), 531-540, 1992.

W.T. Wu, Basic Principles of Mechanical Theorem Proving in Geometries, Science Press,
Beijing, 1984; English Version, Springer-Verlag, Berlin Heidelberg, 1994.

21

