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Abstract

Based on certain phenomena from the human society and nature, we propose a binary affinity genetic algorithm

(aGA) by adopting the following strategies: the population is adaptively updated to avoid stagnation; the newly

generated individuals are guaranteed to survive for certain number of generations in order for them to have enough

time to develop their good genes; new individuals and the old ones are balanced to take both of their advantages.

In order to quantitatively analyze the selective pressure, the concept of selection degree and a simple linear control

equation are introduced. We can maintain the diversity of the evolutionary population by controlling the value of

the selection degree. The performance of aGA is further enhanced by incorporating local search strategies.

Keywords: genetic algorithm, selection degree, individual flowing, population diversity, global optimization.

1 Introduction

Genetic algorithms (GAs) refer to the meta-heuristical usage of the concepts, principles, and mechanisms about the
natural evolution to solve problems [Holland (1975), Goldberg (1989), Michalewicz (1996)]. Most existing researches
on GAs focused on the process of natural selections and genetics [Back and Fogel (1997)]. Computational methods
based on socio-behavioral models [Jin and Reynolds (1999)] are recently introduced, which are inspired by the fact
that individuals adapt and evolve faster through social ideas and deeds than through genetic inheritances. Along this
line, Huang et al [Huang and Jin (1997)] proposed a quasi-physical personification algorithm to solve SAT problems
by simulating personal behaviors. Reynolds and Chung [Reynolds and Chung (1997)] introduced an algorithm based
on socio-behavioral dynamics. Ray and Liew [Ray and Liew (2003)] proposed an optimization algorithm by simulating
social interactions.

The “premature convergence” is a major problem in GAs [Goldberg (1989), Zhou and Sun (1999)], which means
that the population has already been homogeneous before finding the optimal solutions of the problem. The loss
of critical alleles due to the selection pressure, the selection noise, the schemata disruption, and the poor setting
of parameters may make the exploration balance disproportionate and hence lacking diversity in the population
[Kuo and Huwang (1996), Mahfoud (1995), Potts and Giddens (1994)]. Many researches focused on the improvement
of operators and parameter settings of GAs [Huang and Lim (2003), Schaffer and Caruana (1989)]. Another approach
for dealing with this problem is the distributed GA model [Herrera and Lozano (2000)], which keeps, in parallel,
several independent sub-populations processed by distinct GAs.

In this paper, we propose new ideas to deal with the premature convergence, which are inspired by a bio-scientific
literature [Williams (1996)] and the following social phenomena:

1. Suppose that a colony consists of hawk individuals and pigeon individuals. A colony consisting of pigeons only
is not steady because once a hawk is introduced, it will tyrannize its partners. On the other hand, a colony
consisting of hawks only is not steady either, because all hawks commit aggressions against each other for foods
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and spouses. An “evolution steady strategy” [Williams (1996)] is to put pigeons and hawks according to a specific
proportion to the colony.

2. A Chinese proverb says: “running water does not get stale; a door-hinge is never worm-eaten.”

3. The new infants will be protected when they are added into a society full of hostility. Otherwise, they are certain
to die. If they live in an inter-cooperative circumstance, they will do their best to prepare for their life in the
future as quickly as possible.

4. If a rather good, but not the best “old man” (parental individual) and a new-graduated “young person” (newly
produced individual) simultaneously appear at the personnel administration office, what should we do? One
option is to ask them to do the same work at a cooperative as well as competitive niche. The old man with
beneficial experiences and the young man full of youthful spirits will promote and support each other. After a
certain period of time, we choose the best one as the “offspring”.

Inspired by the first and second phenomena, the population in the GA is adaptively updated from time to time when
it “crowds”. This will make the searching engine energetic. Otherwise, stagnation may occur. Inspired by the third
phenomenon, the newly generated individuals will be ensured to survive for a certain number of generations. In this
way, they have enough time to show their good genes and build potential good gene blocks [Holland (1975)]. Inspired
by the fourth phenomenon, we will keep a balance between the new individuals and the old ones when updating the
population. Since the above strategies are full of humanitarianism, our proposed algorithm is named as the affinity
genetic algorithm (aGA).

In order to quantitatively analyze the selective pressure, the concept of selection degree and a simple linear control
equation are introduced. We can maintain the evolutionary population diversity by controlling the value of the selection
degree.

An improved affinity genetic algorithm (iaGA) is further proposed by incorporating local search methods from
[Huang and Lim (2003)] into the aGA.

Seventeen global optimization benchmark functions are used to compare the simple genetic algorithm (SGA), aGA,
and iaGA. Experiments show that the performance of aGA is much better than that of SGA [Goldberg (1989)], and
the performance of iaGA is much better than that of aGA.

The rest of this paper is organized as follows. Section 2 introduces the affinity genetic algorithm. Section 3 describes
the benchmark optimization problems. Section 4 makes comparisons among SGA, aGA, and iaGA by solving the
benchmarks. Finally, conclusions are made in Section 5.

2 Affinity Genetic Algorithm

2.1 Overview of Genetic Algorithm

The GA is a metaphoric abstraction of natural biological evolution. The basic concepts providing the underlying foun-
dation for GAs are natural selection, recombination (crossover), and mutation [Goldberg (1989), Michalewicz (1996),
Zhou and Sun (1999)]. Natural selection is the process by which chromosomes containing better encodings have a
greater probability of reproducing than those who have weaker encodings. The SGAs [Goldberg (1989), Zhou and Sun (1999)]
are guided largely by three operators: reproduction, crossover, and mutation [Michalewicz (1996), Zhou and Sun (1999)].
The chromosome in the SGA is typically encoded as a binary string with an allele value of 0 or 1 at each bit position.
Recently, a multiple bit encoding-based search algorithm [Zhao and Long (2005)] is proposed which outperforms the
single representation-based search algorithm. To find a solution to a problem, the SGA randomly creates an initial
population with each chromosome in it representing a possible solution. Through the natural selection, chromosomes
encoded with better possible solutions are chosen for recombination, yielding improved offsprings for successive genera-
tions. Natural evolution of the population continues until a predetermined number of generations is reached, resulting
in a final generation of highly fit chromosomes representing the optimal or near optimal solutions to the problem.
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2.2 Population Diversity and Selective Pressure of SGA

It is well known that the selective pressure and population diversity are two important issues in the evolution
process of GAs. These two factors are strongly related: an increase in the selective pressure reduces the population
diversity and vice versa [Michalewicz (1996)]. In other words, strong selective pressure “supports” the premature
convergence of the GA search; a weak selective pressure can make the search ineffective. The sampling mechanism
[De Jong (1975)], the elitist model, and the expected value model [Whitley (1989)] are proposed to keep the balance
between these two factors.

Kim et al [Kim (2003)] indicated that the population diversity is of utmost importance to promote a more thorough
test of individuals and a more reliable evaluation of fitness. They introduced the concept of Population Diversity
(D) to measure the diversity for a binary encoded GA as follows:

D =
2

n−1∑
i=1

n∑
j=i+1

Hi,j

n(n− 1)l
,

where n is the population size, l is the length of the binary individual, and Hi,j is the hamming distance between two
individuals i and j.

The convergence of GAs is one of the most challenging theoretical issues in the evolutionary computation area. Gold-
berg and Segrest [Goldberg (1989)] provided a finite Markov chain analysis of GAs (for finite population, reproduction,
and mutation only GAs). Based on the Banach fix point theorem, Szalas and Michalewicz [Szalas and Michalewicz (1993)]
explained the convergence properties of GAs. To measure the convergence rate, we define the concept of Selection
Degree (SD) as follows

SD =
Number of Super Individuals

Population Size

where a “super individual” is one of the best individuals in the population, both before and after the selection.

From the above discussion and the definitions of D and SD, we conclude that D is strongly influenced by SD and
SD is closely related to the convergent rate of GAs. However, the SGA usually becomes homogeneous before the global
optimal solution is found. In other words, the SD of SGA is so high that its population diversity D is very low and
evolutionary stagnation occurs when it only explores a small portion of the search space. This phenomenon is shown
in Figure 1 with some experiments. Functions f2, f4, f6, f10 are 2 and 4 dimensional multimodal functions respectively
with only a few local minima and f16, f17 are multlmodal functions with many local minima. The population size and
the maximal evolutionary generation are both 100 in this group of experiments and other parameters are the same as
those in Section 3. Note that the number of super individuals are counted after the selection operation.
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Figure 1: SD vs evolutionary generations for SGA. (L) function f2, f4, f6 (R) functions f10, f16, f17

From Figure 1, we can see that SD approaches to one quickly (population is full of super individuals) for all functions.
This meas that the crossover operator has lost its effectiveness after about 30 generations. But it is well known that
the crossover operator is the main operator for GAs [Holland (1975), Michalewicz (1996), Zhou and Sun (1999)]. This
fast evolutionary stagnation phenomenon of SGA leads us to study how to control the selective pressure and the
genetic diversity. In this paper, we will give a simple linear mathematical model for the selective pressure which will
be discussed in the next subsection.
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2.3 A Linear Model for the Selective Pressure

Figure 1 shows that the selective degree SD of the SGA is so high that it has already lost its genetic diversity after it
evolves a small number of generations. Inspired by certain natural and social phenomena, we propose a simple model
to control the number of super individuals to overcome the population homogenous problem. The mathematical model
for the selective pressure in the GA is given below. Refer to the next subsection for all the parameters used in Eq.(1).

SD = SD0 +
1 + generation−G0

1 + GENERATION−G0
× incrSD0 (1)

The model is used to control the excessive reproduction of super individuals once the parameter SD exceeds a
predetermined proportion (SD0). After that, SD only increases ( incrSD0

1+GENERATION−G0
) with the augment of each

evolutionary generation. With the evolution of GA, the allowed proportion of super individuals is larger and larger.
Finally, it reaches the allowed maximal proportion in the population, i.e., SD = SD0 + incrSD0. In order to show
the effects of the selective pressure, Figure 2 illustrates the relationship between SD and the evolutionary generations.
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Figure 2: SD vs evolutionary generations for aGA (L) function f2, f4, f6 (R) functions f10, f16, f17

From Figure 2, we find that the population of the aGA has a very good genetic diversity, i.e, a varying selective
pressure. Comparing Figures 1 and 2, we could see the effects of our proposed strategies. Of course, the model proposed
by us is very simple. More work should be done on this problem so that we could have a deeper understanding for
the evolution behavior of GAs.

2.4 The Affinity Genetic Algorithm

The affinity genetic algorithm (aGA) is based on the framework of SGA [Goldberg (1989)]. Similar to SGA, the
aGA adopts the binary encoding, two points crossovers, uniform mutations, tournament selections (for minimizing
and tournament size = 2), and the elitism. The traditional tournament selection is to choose the better one as the
offspring from two chosen individuals. If the two chosen individuals have equal fitness, one is randomly chosen from
them. The tournament selection will be modified below.

In the following algorithm, the word “age” means the number of generations that one individual has survived in
the population. The “infants” refer to the newly-generated individuals or those whose age is less than or equal to a
predetermined constant AGE. Once the “age” of an individual is larger than AGE, it becomes a grown up. A “niche”
is initially formed by two individuals (one infant and one grown up). A crossover operation is applied to them and two
new individuals are obtained. Two of the best individuals are selected from those four individuals as the offsprings in
this niche subsequently. This process iterates for a predefined number of times and a best individual obtained from
this niche is added into the current population.

Now, we give the modified tournament selection procedure.

1. Two individuals are randomly chosen for the tournament selection. We suppose that not both of them are “too
poor”.

2. The tournament selection is divided into two cases.
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(a) Two chosen individuals are both infants or both grown ups: the algorithm chooses the better one as the
offspring if their fitness are not equal. If the two individuals are the same, then the current population
“crowds” to some extent. A new individual is introduced and its “age” is initialized as zero. Otherwise,
we have two different individuals with the same fitness. In this case, one of two is randomly chosen to the
next generation.

(b) One individual is an infant and the other is a grown-up: the algorithm directly chooses the infant as the
offspring if the fitness of the grown up is below the average level of the current population. Otherwise,
the infant and the grown-up form a niche and then exchange their inherent materials (genes) for some
generations. There are many individuals in this niche, including the newly-produced children and two
parents. Then a best one is chosen as the offspring.

3. Scan the current population after the selection and count the the number of occurrences of the best individuals
for current population. If a best individual is not chosen, elitist model is applied. If the adaptively updated
proportion of the best individuals is exceeded, that is, the super individuals are too crowded, then some super
ones will be replaced by equal number of newly-produced individuals (“infants”). The “infants” are protected
and their “ages” are initialized as zero.

Another modification is the crossover condition. Crossovers occur in standard GAs if a random decimal fraction
is less than the crossover probability. Besides the above condition, crossovers occur if at least one of the individuals
in the crossover pair is an infant. The reason to do this is to make the infants exchanging inherent information with
grown ups as quickly as possible, which corresponds to the third inspiring idea of Section 1. This also makes the infants
mature and the genes of other individuals in the population to be updated from time to time. Finally, if the ages of
the infants are larger than the predetermined constant AGE, they become grown ups and unprotected. Otherwise,
their ages are added by one.

We define “better”, “equal”, and “worse” individuals as follows. Suppose that a precision of six digits after the
decimal point meets the demand of computation. Then, a variable x = ZERO means that x ∈ [−10−6, 10−6]. An
individual 1 is “better” (“worse”) than an individual 2 if fitness1 − fitness2 ≤ −ZERO (or fitness1 − fitness2 ≥
ZERO) (for minimization). The fitness values of two individuals are “equal” if abs(fitness1 − fitness2) < ZERO.
Two individuals are treated as the “same” if their corresponding real components are almost the same. Two real
numbers r1 and r2 are almost the same if the absolute value of (r1 − r2) is less than ZERO.

The global constants used in the GAs are given below. POPSIZE is the population size; GENERATION is the
maximal evolution generation; generation is the evolution loop variable; PC, PM are the crossover and mutation
probabilities respectively; SD is the adaptively updating selective degree; SD0 is the predetermined initial selective
pressure; G0 is the evolution generation number from which the excessive reproduction of super individuals begins to
be controlled; incrSD0 is the permitted maximal super individuals increment. The pseudo-code of the tournament
selection of the aGA is presented below.

Procedure of Tournament Selection
AVERAGE, WORST: the average and worst fitness in the current population
1. Find the best and worst individuals and compute the average fitness (AVERAGE) before selection
2. Randomly select two individuals from the population
3.1 Randomly produce a decimal fraction r between 0 and 0.5
3.2 DISTANCE = AVERAGE - (1 - r) × (AVERAGE - WORST)
3.3 While (both fitness of two individuals < DISTANCE)

randomly select another individual
4. if (both individuals are infants or grown ups)

4.1 if their fitness are not equal then choose the better one as the offspring
4.2 if they are the same individual then generate a new one as offspring and protect it
4.3 if they are distinct individuals with the same fitness then randomly select one from them as the offspring

5. if (one being an infant and the other a grown up)
5.1 if (the fitness of the grown-up < AVERAGE) then choose the infant as the offspring
5.2 else form a niche with them and exchange inherent information for two times. Finally, the best individual

is chosen in this niche as the offspring
6. if (NOT TOURNAMENT TERMINATION) goto step 2
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7. Find the worst individuals (WORST) from current population and count the number of the best individual
(NUMBER) to compute SD

8. if the best individual is not being selected then execute elitism
9. if (selective degree SD exceeds SD0 for the first time) then

G0 = the current generation
10. if (G0 > 0) then

10.1 SD = SD0 + 1+generation−G0
1+GENERATION−G0 × incrSD0

10.2 HAWK1 = (int)(POPSIZE× SD)
10.3 if NUMBER > HAWK then randomly replace (NUMBER - HAWK) super individuals by equal

number of new individuals and protect them
End Tournament Selection

The pseudo-code of the affinity genetic algorithm is presented as follows.

Procedure of aGA (for minimization)
1. Initialize all necessary parameters
2. Randomly produce the initial population, P(0)
3. Evaluate P(0);
4. Initialize variable generation = 1
5. Tournament selection
6. Two-point crossover

if (rand2< PC) or (either of the crossing pair is an infant)
6.1 implement two-point crossover;
6.2 if the age of infants are larger than the predefined AGE then they become grown-ups;
6.3 else the age of infants add by one;

7. Mutate
8. Evaluate current population
9. Generation ← generation + 1;
10. if generation ≤ GENERATION then goto 5 else output solution and quit;

End Procedure of aGA

2.5 Improved Affinity Genetic Algorithm (iaGA)

The mathematical model of Eq.(1) effectively controls the genetic diversity and avoids the prematurity of GAs. Due to
the interactive relationship between the genetic diversity and the selection pressure [Michalewicz (1996)], the selection
pressure of the aGA population will be reduced. In order to make the algorithms more effectively convergent, local
searches are incorporated into GAs. Huang and Lim [Huang and Lim (2003)] proposed a hybrid GA to solve the
linear ordering problem and obtained quite good results. Davis [Davis (1991)] proposed a Random Bit Climber
(RBC) algorithm which is a next descent hill-climbing algorithm. The search starts from a random bit string, and
proceeds by testing each of the Hamming-1 neighbors in some randomized order. Both equal and improved moves are
accepted. If the search is stuck in a local optimum, the algorithm re-starts from a new random bit string.

However, local searches are used to every individual in the process, which is costly. In order to improve the
performance of aGA, we use the local searches for every ten generations to improve the best individuals and the
medial individuals which are better than and most close to the average fitness of the current population. The reason
that we improve individuals in every ten generations is that the best and the median individuals should have been
changed after involution of ten generations. Otherwise, they may not have enough change. The idea of improving
the medial individual comes from the fact that the best individual has a high probability to be trapped by a “basin
of attraction”(including the global optimal basin). Hence, local searches have no effects in this situation and the
medial individuals do not have this problem. Furthermore, the parents and offsprings in the crossover and mutation
operations compete with each other [Zhao (2005)] and the better ones are put into the next generation.

As far as the local search is concerned, it is applied to the decoded phenotypic variables (real-coded vectors),
which has no effects on the genotype bit-strings. The decoded real-coded vector X is obtained from the best or the

1An integer is less than, but is closest to the factual value of super individuals over POPSIZE.
2a uniform random float number between 0 and 1
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median binary individuals. The pseudo-code of the local search on the real-coded vector is as follows, where m is the
dimensions of the real vectors, LOOP is the executing times of the local search, Nj1(0, 1) and Nj2(0, 1) are the normally
distributed one-dimensional random numbers with mean zero and standard deviation one. They are generated anew
for each value of j.

Procedure of Local Search
Find the best (u) and median (v) individuals of the current population;
Decode the binary strings u, v into real vectors ru and rv;
for (i = 1; i <= LOOP; i++)

for (j=1; j<= m; j++)
ru

′
[j] = ru[j] + Nj1(0, 1);

rv
′
[j] = rv[j] + Nj2(0, 1);

if fitness of ru
′
is not worse than that of ru then

ru = ru
′
;

if fitness of rv
′
is not worse than that of rv then

rv = rv
′
;

End Procedure

where rv[j] is the jth-component of rv.

3 Benchmark Functions

Benchmark functions chosen from [Yao and Liu (1999), Zhou and Sun (1999)] are all minimization problems. A large
number of benchmarks is necessary because Wolpert and Macready [Wolpert and Macready (1997)] have shown that
under certain assumptions no single search algorithm is best on average for all problems. If the number of benchmarks
is too small, it would be very difficult to make a generalized conclusion and have the potential risk that the algorithm
is biased toward the chosen problems. Functions f1, . . . , f12 are low-dimensional functions which have only a few local
minima and f13 (n = 5) is a high-dimensional and unimodal function [Yao and Liu (1999)]. Functions f14, . . . , f17 (n =
5) are mutilmodal functions where the number of local minima increases exponentially with the augment of the problem
dimensions. They are the most difficult class of problems for many optimization algorithms [Yao and Liu (1999)].
The fact that all the benchmarks except f13 are multlmodal functions is very important because the final results
of these functions reflect an algorithm’s ability of escaping from poor local optima and locating a global optimum
[Yao and Liu (1999)]. The benchmark functions are given below.

Bohachevsky Function #1

f1 = x2
1 + 2x2

2 − 0.3cos(3πx1)− 0.4cos(4πx2) + 0.7, -50≤ xi ≤50. min(f1) = f1(0, 0) = 0.

Bohachevsky Function #2

f2 = x2
1 + 2x2

2 − 0.3cos(3πx1)cos(4πx2) + 0.3, -50≤ xi ≤50. min(f2) = f2(0, 0) = 0.

Bohachevsky Function #3

f3 = x2
1 + 2x2

2 − 0.3 cos(3πx1 + 4πx2) + 0.3, -50≤ xi ≤50. min(f3) = f3(0, 0) = 0.

Shubert function

f4 =
5∑

i=1

i cos[(i + 1)x1 + i]×
5∑

i=1

i cos[(i + 1)x2 + i], -10≤ xi ≤ 10. min(f4) = -186.73.

Schaffer Function

f5 = 0.5 + sin2
√

x2
1+x2

2−0.5

(1.0+0.001(x2
1+x2

2))
2 , -100≤ xi ≤ 100. min(f5) = f5(0, 0) = 0.

N. Kowalik’s Function

f6 =
11∑

i=1

[ai − x1(b
2
i +bix2)

b2
i
+bix3+x4

]2, -5≤ xi ≤5, min(f6)= 0.0003075 at (0.1928, 0.1908, 0.1231, 0.1358). The coefficients can

be followed in Table 1.

Colville Function
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i 1 2 3 4 5 6 7 8 9 10 11
ai 0.1957 0.1947 0.1735 0.1600 0.0844 0.0627 0.0456 0.0342 0.0323 0.0235 0.0246
b−1
i 0.25 0.5 1 2 4 6 8 10 12 14 16

Table 1: Coefficients of N. Kowalik’s Function

j a1j a2j a3j a4j cj j a1j a2j a3j a4j cj

1 4.0 4.0 4.0 4. 0 0.1 6 2.0 9.0 2.0 9.0 0.6
2 1.0 1.0 1.0 1.0 0.2 7 5.0 5.0 3.0 3.0 0.3
3 8.0 8.0 8.0 8.0 0.2 8 8.0 1.0 8.0 1.0 0.7
4 6.0 6.0 6.0 6.0 0.4 9 6.0 2.0 6.0 2.0 0.5
5 3.0 7.0 3.0 7.0 0.6 10 7.0 3.6 7.0 3.6 0.5

Table 2: Coefficients of Shekel SQRN5, SQRN7 and SQRN10 Functions

f7 = 100(x2 − x2
1)

2 + (1 − x1)2 + 90(x4 − x2
3)

2 + (1 − x3)2 + 10.1((x2 − 1)2 + (x4 − 1)2) + 19.8(x2 − 1)(x4 − 1),
-10≤ xi ≤10, min(f7)= 0 at (1, 1, 1, 1).

Shekel SQRN5, SQRN7 and SQRN10 function

f8 = s3(x1, x2, x3, x4) = −
5∑

j=1

1
4∑

i=1

(xi−aij)2+cj

, f9 = s4(x1, x2, x3, x4) = −
7∑

j=1

1
4∑

i=1

(xi−aij)2+cj

f10 = s5(x1, x2, x3, x4) = −
10∑

j=1

1
4∑

i=1

(xi−aij)2+cj

, 0≤ xi ≤10.

The global minima of f8, f9 and f10 are -10.15320, -10.402820 and -10.53628 respectively at the point (4, 4, 4, 4).
The coefficients are given in Table 2.

R. Hartman’s Family

f11&f12 = −
4∑

i=1

ci exp[−
n∑

j=1

aij(xj − pij)2] with n = 3, 6 respectively, where 0≤ xi ≤1, min(f11)= -3.86 at (0.114,

0.556, 0.852) and min(f12)= -3.32 at (0.201, 0.150, 0.477, 0.275, 0.311, 0.657). Coefficients are given in Table 3 &
Table 4.

Schwefel’s Problem 2.22

f13 =
n∑

i=1

|xi| +
n∏

i=1

|xi|, -10≤ xi ≤ 10. n = 5 and min(f13) = f13(0, . . . , 0) = 0.

Generalized Schwefel’s Problem 2.26

f14 = −
n∑

i=1

(xi sin(
√
|xi|)), -500≤ xi ≤500, n = 5 and min(f14)= -2094.9166 at (420.9687,. . .,420.9687).

Generalized Rastrigin’s Function

f15 =
n∑

i=1

[x2
i − 10 cos(2πxi) + 10], -5.12≤ xi ≤5.12, n = 5 and min(f15)= 0 at (0, . . ., 0).

i aij , j = 1, 2, 3 ci pij , j = 1, 2, 3
1 3 10 30 1 0.3689 0.1170 0.2673
2 0.1 10 35 1.2 0.4699 0.4387 0.7470
3 3 10 30 3 0.1091 0.8732 0.5547
4 0.1 10 35 3.2 0.038150 0.5743 0.8828

Table 3: Coefficients of R. Hartman’s Function (n= 3)
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i aij , j = 1, . . . , 6 ci pij , j = 1, . . . , 6
1 10 3 17 3.5 1.7 8 1 0.1312 0.1696 0.5569 0.0124 0.8283 0.5886
2 0.05 10 17 0.1 8 14 1.2 0.2329 0.4135 0.8307 0.3736 0.1004 0.9991
3 3 3.5 1.7 10 17 8 3 0.2348 0.1415 3522 0.2883 0.3047 0.6650
4 17 8 0.05 10 0.1 14 3.2 0.4047 0.8828 0.8732 0.5743 0.1091 0.381

Table 4: Coefficients of R. Hartman’s Function (n= 6)

Ackley’s Function

f16 = −20 exp(−0.2

√
1
n

n∑
i=1

x2
i )− exp( 1

n

n∑
i=1

cos(2πxi))+20+e, -32≤ xi ≤32, n = 5 and min(f16)= 0 at (0,. . .,0).

Generalized Griewank Function

f17 = 1
4000

n∑
i=1

x2
i −

n∏
i=1

cos( xi√
i
)+1, -600≤ xi ≤600, n = 5 and min(f17)= 0 at (0,. . .,0).

4 Experimental Studies

The tournament selection, the two-point crossover, the uniform mutation, and the elitism [Back and Fogel (1997),
Goldberg (1989), Zhou and Sun (1999)] are applied to SGA in this paper. Some comparisons for SGA, aGA, and
iaGA based on the binary encoding GA are given. Algorithms are implemented by C programming language. The
stopping criteria is to set the maximal evolution generations. All results are the statistical data which are based on
50 independent trials. It is widely known that the result of an incomplete algorithm may be improved by fine tuning
parameters. In order to avoid such a bias, we will run the algorithms with a set of predefined parameters. We choose
the following parameters for the algorithms without special statements. We use six digits after the decimal point as
the computational precision. The experimental data are all collected according to this criterion. Let PC = 0.8, PM
= 0.05, AGE = 2, SD0 = 0.1, incrSD0 = 0.4, LOOP = 100. The population size of SGA is twice of that of aGA
and iaGA so that SGA has more exploring chances. The maximal evolutionary generations of the algorithms are the
same. In aGA and iaGA, POPSIZE = 50 and GENERATION = 100 for functions f1, . . . , f5 and f11, and POPSIZE
= 100 and GENERATION = 200 for other functions.

4.1 Performance Comparisons for SGA, aGA, and iaGA

The experimental results are given in Table 5.

For the aGA, the results in the Mean Best and Worst columns illustrate its robustness and the Best column shows
the strong exploitation ability of the aGA which simulates the affinity ideas and social behaviors. Generally speaking,
our affinity ideas and social behaviors simulation can significantly improve the exploration/exploitation capability of
the SGA.

For the performance of the iaGA, we can see encouraging results for all benchmarks. First, the iaGA finds the global
minima for 13 in 17 benchmarks. The results for functions f7, f13 and f16 are also very close to the global minima.
The iaGA greatly outperforms aGA and SGA in all benchmarks. Second, for five functions f4, f8, f9, f11 and f12, the
iaGA finds their global minima in every run of the 50 trials, which shows the strong robustness of the iaGA. Third,
the average running efficiency of iaGA ranges from one to four times of that of aGA and SGA. In a summary, the
iaGA significantly increases the performance of aGA and SGA.

In order to compare SGA, iGA, and iaGA, four representative functions (out of 17) from each group are tested to
show the relationship between the average and the best fitness versus the evolutionary generation. Functions f2, f10

are multimodal functions with only a few local minima and functions f16, f17 are multimodal functions with many
local minima.

From Figures 3-6 and Table 5, we find that iaGA outperforms the other two algorithms not only for the final
statistical results, but also for the dynamic averages and the best fitness with the evolution of the genetic population.
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Fun Best Mean Best Worst Time
SGA aGA iaGA SGA aGA iaGA SGA aGA iaGA SGAaGAiaGA

1 0.0921 0.0449 56% 11.4484 1.0989 0.2237 54.0434 3.5634 1.8746 0.29 0.42 0.36
2 0.7646 0.2361 40% 11.2680 0.9303 0.1775 41.9946 2.2387 0.4603 0.29 0.44 0.40
3 0.2542 0.1120 62% 8.9065 0.8153 0.0859 30.6782 2.3834 0.2263 0.31 0.48 0.34
4 -185.38 -186.72 100% -149.89 -184.23 -186.73 -86.85 -176.39 -186.73 0.31 0.41 0.65
5 0.0097 0.0097 2% 0.1339 0.0277 0.0128 0.3228 0.0868 0.0372 0.31 0.51 1.16
6 0.0014 0.0009 95% 0.0170 0.0018 0.0003 0.0449 0.0029 0.0008 13.5 13.9 38.0
7 24.8345 4.5502 0.00006 275.5442 19.2404 0.0001 841.3413 47.2186 0.0003 2.57 3.41 2.79
8 -2.8962 -8.7330 100% -1.4793 -4.0861 -10.1527 -0.8230 -2.0567 -10.1527 1.93 2.24 1.90
9 -3.4621 -7.8392 100% -1.6612 -4.2589 -10.4025 -0.9008 -2.5825 -10.4025 1.97 2.28 1.90
10 -4.2208 -9.4118 98% -1.8314 -4.1701 -10.4287 -1.0142 -2.5669 -5.1756 2.01 2.33 2.21
11 -3.8846 -3.8854 100% -3.7862 -3.8728 -3.8876 -3.5359 -3.8465 -3.8876 0.42 0.51 2.24
12 -3.1333 -3.2671 100% -2.6779 -3.1082 -3.3219 -2.0663 -2.9498 -3.3219 2.61 2.96 6.55
13 13.1767 10.0289 0.000003 29.9920 14.4881 0.00001 58.8619 18.5435 0.00003 6.08 9.26 6.62
14 -1615.34 -2051.29 58% -1380.10 -1773.91 -2045.17 -1094.71 -1572.93 -1976.48 3.34 4.3 14.7
15 11.15 4.7296 2% 25.2169 11.6169 2.8058 40.2745 18.8383 4.9748 2.42 3.31 9.2
16 9.0642 4.2211 0.000007 13.5469 8.6962 2.0273 16.8044 10.8660 3.8858 2.74 3.28 12.8
17 3.0617 1.1845 0.0098 11.9319 3.5259 0.2142 21.6838 5.5770 0.7195 3.07 4.31 13.9

Table 5: Performance comparisons among elitist SGA, aGA, and iaGA. The Best (Worst) column is the best (worst)
result in 50 runs. The Mean Best and Time are the average results in 50 trials. If the global optimum has reached,
the Best column will represent the percentage of runs in which this happens.

For the aGA and SGA, we should comprehensively analyze the left and right figures for each function as well as
Figure 2. Although in every generation the average fitness of aGA shows no superiority to SGA, the best fitness
of aGA in each generation greatly outperforms SGA which exactly validates the effects of our new ideas. The super
individuals are not allowed to abundantly propagate in the aGA, but not so in SGA. Therefore, once a super individual
is introduced into the population of SGA, it will abundantly reproduce itself and at this time the average fitness of
SGA is better than that of aGA. Otherwise, SGA is outperformed by aGA, for the population of aGA is an adaptively
updated (individual flowing) and an evolutionary steady one which can also balance the “old” individuals and the
newly introduced ones.

This series of experiments strongly validate the effectiveness of our idea that an evolutionary algorithm with adap-
tively updating population and personnel administration experiences has much higher diversity as well as better
experimental results than that of SGA.
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Figure 3: Fitness of current generation of function f2 vs evolutionary generation (L) Average (R) Best

4.2 Analyzing SD0 and incrSD0 of Linear Control Model

It is necessary to analyze how the initial parameters SD0 and the augment of the super individuals incrSD0 influence
the convergence of GAs since the population diversity and selective pressure are two main issues and the former
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Figure 4: Fitness of current generation of function f10 vs evolutionary generation (L) Average (R) Best
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Figure 5: Fitness of current generation of function f16 vs evolutionary generation (L) Average (R) Best

is strongly influenced by the latter. Two typical functions, f2, f17, are chosen, one of which is multimodal with a few
local minima and the other with many local minima. All data are statistical results in 50 independent trials. SD0
ranges from 0.1 to 0.6 with a step of 0.1 and incrSD0 ranges from 0.4 to 1-SD0 in every case of SD0. When SD0
is 0.1, incrSD0 has 6 cases (0.9, 0.8, ..., 0.4). In general, there are 21 (6+ 5+ ... + 1) cases in all the combinations
of SD0 and incrSD0. In Figure 7, the horizontal line represents the dualistic data array of SD0 and incrSD0. The
first (left most) group of results is for (SD0, incrSD0) = (0.1, 0.4), (0.1, 0.5), (0.1, 0.6), and so on. The last (right
most) group is for (SD0, incrSD0) = (0.6, 0.4).

Figure 7 shows that the parameters of (SD0, incrSD0) = (0.1, 0.4) we adopted is not the best case for functions
f2, f17 for the best, average, and worst results in the 50 trials. Although no statistically significant differences can
be found among all the cases, the 10th case (0.2, 0.7), however, performs a little better than other cases for the two
functions.

5 Conclusions and Future Work

A new aGA is proposed based on ideas inspired by a bio-scientific literature, one natural phenomenon, and personnel
administration experiences. Experiments conclude that the new ideas can effectively control the selective pressure
and make population diverse. In order to quantitatively analyze the selective pressure, a new concept, selection
degree (SD), is also introduced, which is closely correlative to the evolutionary behavior of GAs. The population
diversity can be effectively controlled through a linear control equation given in this paper. Generally speaking, an
adaptive updating evolutionary algorithm with the “experience of personnel administration” can greatly improve the
performance.

The iaGA uses the idea of hybridizing local searches with aGA. Unlike other hybridizations, iaGA executes local
searches every ten generations not only on the best individuals found until then but also on the medial ones which are
better than and most close to the average fitness of the current population. Experiments show that iaGA consistently
and greatly outperforms aGA and SGA.

Further research on the selection degree is needed because the genetic population will have a good diversity in
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Figure 7: The best, average, and worst results of each run in 50 trials vs dualistic data array (SD0, incrSD0) for (L)
function f2 (R) function f17

every generation once SD has been explicitly understood and controlled. Obviously, the lower bound of SD is the
reciprocal of the population size (elitist model). The question is to theoretically analyze the upper bound of SD and
its dynamical model with genetic diversity in order to form an appropriate and helpful individual flowing in GAs.
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