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ABSTRACT

In this paper, we give a necessary and sufficient condition
for an algebraic ODE to have an algebraic general solution.
For an autonomous first order ODE, we give an optimized
bound for the degree of its algebraic general solutions and a
polynomial-time algorithm to compute an algebraic general
solution if it exists.

1. INTRODUCTION

Finding the close form solution of an ODE can be traced
back to the work of Liouville. For the algorithm considera-
tion, the pioneer work is due to Risch. In [17], Risclygave
an algorithm to find the elementary integration of wudx
where u is a rational function or a monomial over Q(z). In
Trager’s Ph.D thesis [22], he gave a method to compute the
integration of algebraic functions. In [1], Bronstein gener-
alized Trager’s results to elementary functions. For higher
order linear homogeneous ODEs, Kovacic presented an ef-
fective method to find the Liouvillian solutions for second
order ODEs [14]. In [19], Singer established a general frame-
work for finding the Liouvillian solutions for general linear
homogeneous ODEs. Many other interesting results on find-
ing the Liouvillian solutions of linear ODEs were reported
in [2, 6, 23, 24].

Most of these results are limited to the linear case or some
special type nonlinear equations. Work on finding closed
form solutions for nonlinear differential equations is not sys-
tematic as that for linear equations. With respect to the
particular ODEs of the form y' = R(z,y) where R(z,y) is
a rational function, Darboux and Poincaré made important
contributions [16]. More recently, Cerveau, Carnicer and
Corral et al also made important progresses [4, 3, 7]. In
particular, Carnicer gave the degree bound of algebraic so-
lutions in the nondicritical case. In [20], Singer studied the
Liouvillian first integrals of differential equations. In [12],
Hubert gave a method to compute a basis of the general so-
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lutions of first order ODEs and applied it to study the local
behavior of the solutions. In [9, 10], Feng and Gao gave a
necessary and sufficient condition for an algebraic ODE to
have a rational type general solution and a polynomial-time
algorithm to compute a rational general solution if it exists.

In this paper, the idea proposed in [9] is generalized to com-
pute the algebraic function solutions. In Section 2, we give
a sufficient and necessary condition for an algebraic ODE to
have an algebraic general solution, by constructing a class of
differential equations whose solutions are all algebraic func-
tions. In Section 3, by treating the variable and its deriva-
tive as independent variables, a first order autonomous ODE
defines an algebraic plane curve. Using Riemann-Hurwitz
formula, we give a degree bound of the algebraic function
solutions of the equation. This degree bound is optimized
in the sense that there is a class of first order autonomous
ODEs, whose algebraic function solutions reach this bound.
In Section 4, based on the above results and the theory of
Hermite-Padé approximants, we give a polynomial-time al-
gorithm to find an algebraic general solution for a first order
autonomous ODE.

A first order autonomous ODE F(y, %) = 0 can be re-
duced to the form G(y, Z—fj) = 0, where G is also a poly-
nomial. Then to find the solution of F' = 0, we may first
find z = ¢(y) as a function in y by computing the inte-
gration of an algebraic function, and then compute the in-
version y = ¢71(1:). Hence, our algorithm is equivalent to
a polynomial-time algorithm for finding an algebraic inte-
gration for algebraic functions. The previously known algo-
rithms for elementary function integration have exponential
worst-case complexity.

2. ALGEBRAIC GENERAL SOLUTIONS OF
ALGEBRAIC ODES

2.1 Definition of algebraic general solutions
In the following, let K = Q(z) be the differential field of
rational functions in z with differential operator % and y
an indeterminate over K. Let Q be the algebraic closure
of the rational number field Q. We denote by y; the i-th
derivative of y. We use K{y} to denote the ring of differen-
tial polynomials over the differential field K, which consists
of the polynomials in the y; with coefficients in K. All dif-
ferential polynomials in this paper are in K{y}. Let ¥ be a

system of differential polynomials in K{y}. A zero of ¥ is



an element in a universal extension field of K, which van-
ishes every differential polynomial in ¥ [18]. In this paper,
we also assume that the universal extension field of K con-
tains infinite number of arbitrary constants. We will use C
to denote the constant field of the universal extension field
of K.

Let P € K{y}/K. We denote by ord(P) the highest deriva-
tive of y in P, called the order of P. Let o = ord(P) > 0.
We may write P as follows

1

P =aaqys +aa1yl '+ ... +ao

where a; are polynomials in y,y1,...,Y%—1 and aq # 0. aq

is called the initial of P and S = 2 is called the separant
of P. The k-th derivative of P is denoted by P™*). Let S be
the separant of P, o = ord(P) and an integer k > 0. Then

we have
P™ = Sy, i + Ry, (1)

where Ry is of lower order than o + k.

Let P be a differential polynomial of order o. A differen-
tial polynomial @ is said to be reduced with respect to P if
ord(Q) < o or ord(Q) = o and deg(Q, yo) < deg(P,y,). For
two differential polynomials P and @, let R = prem(P, Q)
be the differential pseudo-remainder of P with respect to Q.
We have the following differential remainder formula for R
[13, 18]

> .
JP=BQ"+R
where J is a product of certain powers of the initial and sep-
arant of QQ and B;, R are differential polynomials. Moreover,
R is reduced with respect to Q. For a differential polynomial
P with order o, we say that P is irreducible if P is irreducible
when P is treated as a polynomial in K[y, y1, ..., Yo

Let P € K{y}/K be an irreducible differential polynomial
and
Yp ={A € K{y}|SA = 0mod {P}}. (2)

where{ P} is the perfect differential ideal generated by P [13,
18]. Ritt proved that [18]

LEMMA 2.1. ¥Xp is a prime differential ideal and a differ-
ential polynomial Q belongs to Xp iff prem(Q, P) = 0.

Let X be a non-trivial prime ideal in K{y}. A zeron of X is
called a generic zero of ¥ if for any differential polynomial
P, P(n) = 0 implies that P € X. It is well known that an
ideal ¥ is prime iff it has a generic zero [18].

As a consequence of Lemma 2.1, we have

LEMMA 2.2. Let F € K{y}/K be an irreducible differen-
tial polynomial with a generic solution n. Then for a differ-
ential polynomial P we have P(n) = 0 iff prem(P, F) = 0.

The following definition of general solution is due to Ritt.

DEFINITION 2.3. Let F € K{y}/K be an irreducible dif-
ferential polynomial. A general solution of F' = 0 is defined
as a generic zero of Xp. An algebraic general solution of
F = 0 is defined as a general solution § which satisfies the
following equation

X XK o
G(z,y) = ai;z'y’ =0 (3)
j=0i=0

o 9y aijxty’ is irreducible in
Clz,y]. When n =1, § is called a rational general solution
of F=0.

where a;,; are in C and

For algebraic solutions of a differential equation F' = 0, we
have the following lemma.

LEMMA 2.4. Let G(y) € C(x)[y] and irreducible in C(x)[y
where C is the algebraic closure of C. If one solution of
G(y) = 0 is a solution of F = 0, then every solution of
G(y) = 0 is the solution of F = 0.

PRrROOF. Since G(y) is irreducible in C(x)[y], every so-
lution of G(y) = 0 is a generic zero of G(y) = 0. By
Lemma 2.2, prem(F,G) = 0. That is,

S*I'F = PG’ + QG
where S = %, 1 is the initial of G and k,l € Z. Since every
solution of G(y) = 0 is a generic zero, it does not vanish

S or I. Hence every solution of G(y) = 0 is a solution of
F=0. |

A general solution of F' = 0 is usually defined as a family
of solutions with o independent parameters in a loose sense
where 0 = ord(F). The definition given by Ritt is more
precise. Theorem 6 in section 12, chapter 2 in [13] tells us
that Ritt’s definition of general solutions is equivalent to the
definition in the classical literature.

2.2 ACriterion for existence of algebraic gen

eral solutions
For non-negative integers h, o, k, let A ok (y) be the fol-

lowing (A + 1) X (a4 1) matrix:

o k+1 k+1 k+1 1
Yk+1 k e a Yk+1l—a
k$2 k+? kg2
g 0 Yr+2 1 Ye+1 o Yk+2—«
k+h+1' k+h+’1 k+h+1 )
0 Yk+h+1 1 Yk+h o Yk+thtl-a
Let a = (a1, - ,an) € Z%,, ao € Z>o where Z>o means

the set of non-negative integers. Let A(aq;a)(y) be the (h+
1) x (h 4 1) matrix

(Ath.ari00) @) Ah.ani0) @] [Aanan U))

where n+a1+---+a, = h+1. Let D(ao;g) be the determi-
nant of Aag;a)(y). Note that if n =1, D(q,,q) is just equal
t0 Dp,m in [9].

LEMMA 2.5. An element § in the universal extension of
K is a solution of Dagya)y = 0 iff it satisfies equation (3)
with m; < a; fori=0,---,n.



PROOF. Assume that g satisfies the equation (3) with
m; < «; where i =0,--- ,n. Then we have

X =7\ (mo+1) _
ai;(z'y’) =0
j=1i=0
(mo+1) means the (mo 4+ 1)-th derivative of z'
mo+1)

where (z'57)

with respect to x. Since a;; are constants, (z'y’)

(i =0,---,mj,j = 1,---,n) are linearly dependent over
C. That is, the Wronskian determinant W ((z'g’)(™oF1)
for (z'g )(m°+1) vanishes where j = 0,--- ,n,i = O7 cee My

[18]. Then § satisfies the equation (3) with m; < «; iff
W((xigj)(m‘)H)) = 0. By the computation process,

W (@)™ %) = Diagia) (9) * |diag(Bo, - , Bn)|
where diag(Bo, - - , By) is the diagonal matrix of B; and
O o 1
T
5 . oyl §
a.i!
fori =0,---,n. Hence W((xigjj)<m°+1)) =0 <= D(ag;a) (@) =

0. I

By the above Lemma, we can prove the following criteria
theorem easily.

THEOREM 2.6. Let F' be an irreducible differential poly-
nomial. Then F' = 0 has an algebraic general solution § iff
there exist o = (a1, ,an) € Z%y, ag € Z>o such that
prem(Dagia), F) = 0. )

PROOF. (=) Let § be an algebraic general solution of F' =
0 which satisfies the equation (3). Let a = (m1, ma,- -+ ,my)
and ag = mgo. Then from Lemmas 2.1, 2.2 and 2.5

'D(ao,g) () =0= D(ao’g) €X¥r = prem(D(ao,g), F)=0.

(<) By Lemma 2.1, prem(D(a,q), F) = 0 which implies
that D(ao,g) € Y. Then all the zeros of ¥ must satisfy the
equation (3). In particular, the generic zero of X5 satisfies
the equation (3). 1

Given an algebraic differential equation F' = 0, if we know
the degree bound of the equation (3) with respect to x and y
which perhaps defines an algebraic general solution of F' = 0,
then we can decide whether it has an algebraic general solu-
tion by computing prem(D(q,,q), F') step by step. However
for ODEs with order greater than one or with variate co-
efficients, we do not know this bound. Even for the case
Yy = % where P(z,y),Q(z,y) € Qz,y], we have no ef-
fective method to get the bound [3, 16]. In the following,
for first order autonomous ODEs, we give a degree bound
for its algebraic function solutions.

3. DEGREE BOUND FOR FIRST ORDER
AUTONOMOUS ODES

In the following, we will always assume that F' = 0 is a first
order autonomous ODE in Q{y} and irreducible in Q{y}

and G(z,y) € Q[z,y] which is irreducible. We say G(z,y)
is nontrivial if deg(G,z) > 0 and deg(G,y) > 0. From now
on, we always assume that G(z,y) is nontrivial. When we
say that G(z,y) = 0 is an algebraic solution of F = 0, we
mean that one of the algebraic functions §(z) defined by
G(z,9(x)) = 0 is a solution of F = 0.

3.1 Structure for algebraic general solutions
It is a trivial fact that for an autonomous ODE, the solution
set is invariant by a translation of the independent variable
x. Moreover, we have the following fact.

LeEMMA 3.1. Let G(z,y) = 0 be an algebraic solution of
F =0. Then G(z+c¢,y) =0 is an algebraic general solution
of F' =0, where c is an arbitrary constant.

PROOF. Assume that g(x) is a formal power series so-
lution of G(z,y) = 0. Then g(z + ¢) will be a solution
of G(x + ¢,y) = 0. Because g(x) is a solution of F = 0,
g(x + ¢) is still a solution of F = 0. Hence G(z + ¢,y) =0
is an algebraic solution of FF = 0. For any T' € K{y}
satisfying T'(g(z + ¢)) = 0, let R = prem(7,F). Then
R(y(z + ¢)) = 0. Suppose that R # 0. Since F is irre-
ducible and deg(R,y1) < deg(F,y1), there are two differen-
tial polynomials P,Q € K{y} such that PF + QR € K|y]
and PF+QR # 0. Thus (PF+QR)(g(z+c¢)) = 0. Because
g(z +¢c) ¢ Q and c is an arbitrary constant which is tran-
scendental over K, we have PF' 4+ QR = 0, a contradiction.
Hence R = 0 which means that T € Yr. So g(z +¢) is a
generic zero of Xp. Hence G(z + ¢,y) = 0 is an algebraic
general solution. 1

Lemma 3.1 reduces the problem of finding an algebraic gen-
eral solution to the problem of finding a nontrivial algebraic
solution. In what below, we will show how to find a non-
trivial algebraic solution in Q[z,y]. First of all, we decide
the degree of an algebraic solution.

3.2 Degree bound of an algebraic solution
Assume that G(z,y) = 0 is an algebraic solution of differen-
tial equation F' = 0. In this subsection, we will give a bound
for deg(G, z) and deg(G, y). First of all, we introduce some
concepts on algebraic function field in one variable.

DEFINITION 3.2. Q(x,q) is called an algebraic function

field in one variable, if x is transcendental over Q and o is
algebraic over Q(x) [11].

For an irreducible algebraic curve G(z,y) = 0 where G(z,y) €
Q|z,y], it corresponds to a unique algebraic function field
Q(a, #) under isomorphism where a, 3 satisfies G(a, ) = 0
and o or 3 is transcendental over Q. It is well known that
two algebraic curves with isomorphic function fields have
the same genus.

3.2.1 Parametrization of a curve
Let Q((t)) be the quotion field of the ring of formal power se-
ries Q[[t]]. Let G(x,y) be a nontrivial irreducible polynomial

of Qlz,y]. If z(t),y(t) € Q((¢)) such that G(z(t),y(t)) =0,



we say that they are the coordinates of a parametrization
provided x(t) or y(t) does not belong to Q. There exist
%0, Y0 € Q, nonzero integers ¢ and p, and units u(t),v(t) in
Q[[#]], such that

z(t) —xzo = tTu(t),
()~ = (o). “

The center of the parametrization is the point P € P! x P!
defined accordingly the following cases: (a) If ¢ > 0 and
p > 0, then P = (zo,y0); (b) If ¢ > 0 and p < 0, then
P = (z9,00); (c) If ¢ < 0 and p > 0, then P = (00,y0); (d)
If g < 0and p <0, then P = (00,00). If p < 0 (resp. g < 0)
we agree to take yo = 0 (resp. zg = 0).

If there exists an integer k > 2 such that z(t), y(t) € Q((t)),
the parametrization will be called reducible, otherwise irre-
ducible. If t € Q[[t]] with order with respect to t greater
than zero, then z(t),y(f) is another parametrization with
the same center. If the order of £ is equal to one, the two
parametrizations will be said to be equivalent. An equiva-
lence class of irreducible parametrizations will be called a
place B of the curve G = 0 with center the center of one of
its parametrizations. Two equivalent parametrizations have
the same integers ¢ and p as defined above. Then given a
place B, we define nonzero integers v, (B) and v, (B) as the
integers q and p of any of its parametrizations.

Let g be the genus of G(z,y) = 0 and n = deg(G,y). By
the Riemann-Hurwitz formula [15] we have that

g=1-n+3  (w(B)-1)
B

where B runs over all places of the curve G = 0.

For each place B with center («, 3) it corresponds exactly
qp fractional power series y(a:l/q) which are solutions of
G(z,y(z)) = 0. Let @ € QU {oo}. Hence, by the Puiseux
theorem we have that

v (B)| = deg(G,y), (5)

where the sum run over all places B of the curve G = 0 with
center (a, §).

LEMMA 3.3. Let G(z,y) be a nontrivial irreducible poly-
nomial of Q[x,y]. Let (z(t),y(t)) be the coordinates of a
parametrization G = 0. Then, for any nonzero constant ¢ €
Q, (z(t) +c,y(t)) are not the coordinates of a parametriza-
tion of G = 0.

PROOF. Assume that (z(t) + ¢, y(¢)) are the coordinates
of a parametrization of G = 0. We may assume that y(t) =
t? by substituting y — yo in G and taken an appropriate
equivalent parametrization (see Theorem 2.2 of chapter IV
in [26]). Then we have that G(z(y*/?),y) = 0 = G(x(y*/?)+
¢,y). Let us consider H(z,y) = G(z+¢,y). Then G and H
are irreducible polynomials in Q[z, y] of the same degree and
having a common root, hence there exists A € Q such that
G = A\H. This implies that deg(G,z) = 0, in contradiction
with the nontriviality of G. 1

Now we are ready to give the degree bound of the algebraic
solution of ¥ = 0. First, we could determine the degree
deg(G, z) exactly from the degree of F'.

THEOREM 3.4. Let G(z,y) € Q[z,y] be irreducible and
G(z,y) = 0 is an algebraic solution of F = 0. Then we have

deg(G, z) = deg(F,y1).

PROOF. Assume that deg(G,z) = s and deg(F,y1) = d.
Let us write

G(r,y) = Ao(y)+Ai(y)z+ -+ As(y)z®,
F = Fo(y)+ Py +- -+ Faly)yt

where A;(y), Fj(y) € Qly]. We use Res(A, B, z) to denote
the Sylvester-resultant of A and B with respect to z and Z
stands for “the zero set of”. Let S = Z(A,(y))UZ(Fa(y))U
Z(Res(G, %73)) U Z(Res(G, %—S,m)) U Z(Res(F, gTFl_’yl))‘
Then S is a finite set. Hence we can choose a ¢ € Q such
that ¢ ¢ S. Then we have the following results.

e The set {z € Q|F(c,z) = 0} = {21,292, - ,2a} has
exactly d elements;

e The set {z € Q|G(z,c) = 0} = {z1,72, -+ ,x,} has
exactly s elements;

e Since %—2(:01-7 ¢) # 0, there exists a unique formal power

series yi(z) = ¢+ gi1(x — 2i) + gia(x —2:)> + - - such
that G(z,y:(z)) =0 for each ¢ =1,--- ,s.

From Lemma 2.4, y;(x) is a solution of F = 0. That is,
F(yi(z),y;(x)) = 0 which implies that F(c,g;,1) = 0. Sup-
pose that s > d. Then there exist at least two of g;,1 which
are equal to each other. Without lost of generalization, as-
sume that we have ¢g1,1 = g2,1 = ¢1. Since gTFl(c, c1) # 0,
there exist only one solution y(z) of F(y,y’) = 0 such that
y(0) = ¢ and y'(0) = c¢1. Hence yi1(z) = y2(z + 22 — 21) =
y(z — z1). Hence (z,y1(x)) and (x + z2 — x1,y1(x)) are
two coordinates of a parametrizations of G = 0. This is a
contradiction by the above lemma. Hence s < d.

Let G' = yl% + %% and H(y,y1) = Res(G,G’,z). Then
s oG .
H(y,y1) = yiRes(G, a0 z) + terms of lower order in y;.

Since Res(G7aa—§,a:) # 0, we have deg(H,y1) = s. As-
sume that g(z) is a solution of G(z,y) = 0. Then we have
H(y(x),y (x)) = F(y(x),y (x)) = 0. Because F is irre-
ducible, we have that deg(H,y1) > deg(F,y1). In the other
word, s > d. 1

Since F' is first order and autonomous, we can regard F' = 0
as an algebraic curve and we will use F(y,y1) to denote F.

LEMMA 3.5. Assume that G(z,y) = 0 is an algebraic so-
lution of F = 0. Then the genus of G(z,y) = 0 equals to
that of F(y,y1) = 0.



PRrOOF. Let a satisfy G(z,a) = 0. It is clear that « is
transcendental over Q. Then Q(z, ) and Q(a, a’) are the
algebraic function fields of G(z,y) = 0 and F(y,y1) = 0

respectively. We only need to prove Q(z,a) = Q(a,a’).

From Theorem 3.4, we have [Q(z,a) : Q(a)] = [Q(a,a’) :
Q()]. Since G(m,a) =0,0 =-%(a, )/%—2( a). which
implies that o/ € Q(z,a). Hence Q(z,a) = Q(a,a’). |

For convenience, we consider a new differential equation
1

F(a1,y) = 27T R(y, ;1) =0 (6)
where 21 = g—” = i F is irreducible in Q[z1,%] and

deg(F,y) = deg(F,y), deg(F,z1) = deg(F,y1). If G(z,y) =
0 is an algebraic solution of F' = 0, then we will prove that
it is also an algebraic solution of F' = 0.

LEMMA 3.6. Let F' be defined as in (6) and G(z,y) = 0 an
algebraic solution of ' = 0. Then G(z,y) = 0 also defines
an algebraic function (in y) solution of F(x1,y) = 0.

Proor. From the proof of Theorem 3.4, we know that
Res(G, G, z) = A(y)F(y, 1)

where G’ = yl% + 2. In the other word, there exist
two polynomials P,Q € Q[z,y,y1] such that PG + QG’ =
A(y)F(y,y1). Substituting y1 by i and multiplying some
power of x1, we have

oG 8G
PG+ Q(— taigs

where P,Q € Q[z,y,71] and k € Z>o. Suppose that 3
satisfies G(B,y) = O Substituting = by 8 and z; by §
in (7) where 3 = dy, we have that F(8',y) = 0. Hence

G(z,y) = 0 is an algebraic solution of F' = 0. 1

27) = 2i A(y)F(21,y) (7)

LEMMA 3.7. Let (z(t),y(t)) be an irreducible parametriza-
tion of G = 0. Then (T,E i y(t)) is an irreducible parametriza-

tion of F(x1,y) = 0.

i
where * means the

®
'(t)
derivative with respect to ¢. Since z1(t) = Z;E:;,

F(z1(t),y(t)) = 0. Assume that (z1(t),y(t)) is a reduc1ble
parametrization. Leb k > 2, such that 1 (t), y(t) € Q((t*)).
Then z1(t)y'(t) = tkj 1. Since z'(t) = x1()y' (1),
P k
then we have that ¢co = 0 and z(t) = ¢+ >0 ktjj,

for some constant c. Hence we get a contradiction because

a(t), y(t) € Q((t*)). [

PROOF. Let us denote z1(t) =

we have

3250 €

THEOREM 3.8. Assume that G(z,y) = 0 is a nontrivial
algebraic solution of ' = 0. Then we have that

deg(G,y) < deg(F,y) + deg(F,y1).

PROOF. Let F' be as in (6). Let go and gz be the genus
of G(z,y) = 0 and F(z1,y) = O respectively. Let B be

a place of G = 0 with center P = («,3). Let (z(t),y(t))
be an irreducible parametrization of B. Let us denote by
B the place of the algebraic curve F(z1,3) = 0 given by
the irreducible parametrization (z1(t),y(t)), where x:1(t) =
#'(t)/y' (t). Let P = (&, 3) be the center of B. It is obvious
that vy(B) = vy(B) and § = B. If v,(B) # vy(B) then
we have that vy, (B) = vz(B) — vy (B). Hence, if v,(B) >
vy(B), then & = 0; if vz(B) < vy(B), then & = oo; if
vz (B) = vy(B), then & € Q.

The map that sends each place B of G = 0 to the place
B is injective. Let B and B’ be two places of G =
such that B = ®. Let (z(t),y(t)) and (2(t),v(t)) be the
parametrizations of B and B’ respectively. We may assume
that y(t) = yo + t* and v(t) = vo + . Since B = %
we have that p = p’, y(t) = v(t) and 2’(t) = 2'(t). Hence
z(t) = z(t) + ¢, for some constant c. By lemma 3.3 we have
that c=0,s0 B= B’.

By Riemann-Hurwitz formula we have that

x
2(g9c +deg(Gy) —1) = (lz(B)| = 1), (8)

where B runs over all places of G = 0.

We will split the right hand side of the above equation in four
cases: We say that B € (1) if v,(B) > 0 and vy(B) > 0;
that B € (2) if vx(B) > 0 and vy(B) < 0; B € (3) if
vz(B) < 0 and vy(B) > 0; and that B € (4) if v,(B) < 0
and vy(B) < 0. Moreover, we say that B € (1) if B € (1)
and v, (B) > vy(B); and we say that B € (4)' if B € (4)
and vz(B) < vy(B). In the following equations Bs, By
B., and B, will stand for v,(B), vy(B), vs, (B) and v, (B)
respectlvely

For k =1 and k = 4, we have that
X X
(1Byl=1).  (9)

Be(k)

(IBe| =1) <
Be(k)

For k = 2 and k = 3, we have that
X

|Bay | +
Be(k)!

x .
(IBz| = 1) < | By |- (10)

Be(k) Be(k)

If B € (1)" U (2), then the center of B is over &1 = 0. If
B € (3)U (4)’, then the center of B is over 71 = co. Hence,
using formula (5), we have that
X N _
| Bz, | <2 deg(F,y). (11)
Be(1)’,(2),(3),(4)
By the Riemann-Hurwitz formula, we have that
> . _
(|IBy| — 1) < 2(gp + deg(F,z1) — 1). (12)
Be(1),(4)
We remark that in equations (11,12) we have used the fact

that the map B — B between the places of G = 0 and places
of F' = 0 is injective. By equations ((8)-(12)), we have that

2(gc + deg(G,y) — 1) < 2(gp + deg(F, 1) + deg(F,y) — 1).

Using the above equation, and the facts that deg(F,z1) =
deg(F,y1), deg(F,y) = deg(F,y) and that gc = g, gives
the required inequality. 1



The following example shows that the degree bound given
in Theorem 3.8 is optimized.

EXAMPLE 3.9. Assume that n > m > 0 and (n,m) = 1.
Let G(z,y) = y™ — a™ which is irreducible. We have that
G(z,y) = 0 is an algebraic solution of F = y"~™y" —
(Z)™ = 0. In this case, we have that deg(G,y) = deg(F,y)+

deg(F> yl)‘

4. A POLYNOMIAL-TIME ALGORITHM

The simple degree bounds given in the preceding section
allow us to give a polynomial-time algorithm to compute al-
gebraic function solutions of a first order autonomous ODE.

4.1 Algebraic approximant

Algebraic approximant is a special type of Hermite-Padé
approximant. It uses an algebraic function to approximate
a given function.

DEFINITION 4.1. Let G(x,y) be an irreducible polynomial
in Q[z,y]. An algebraic function §(z) satisfying G(z,g(x)) =
0 is called an algebraic approxzimant to a function f(z) if

G(z, f(z)) =0
where m = deg(G, z) and n = deg(G,y).

(z(m+l)(n+1)—l)

More generally, we will find G(z,y) such that
G(x, [(z)) = O=""") (13)

where N is a positive integer. We can get the coeflicients of
G(z,y) with re@ect ez and y by solving linear equations.
LetG(my) o Z”Ob,]xy and f(z) = ao + a1 +
4 anz™N + O(acN“).
o 1
Tmt1)x (m+1)
My= @ A (14)

O(N—m)x (m+1)

where I (1) x (m+1) is an m-1 unit square matrix, O(x—m)x (m+1)

is an (N —m) x (m + 1) zero matrix. Let M; = TM* x My
fori=1,--- ,n where
(@) 1
ao 0 0 - 0
a1 ao 0 0
TM= B % @& @ 0 (15)
aN aN-1 aN-2 -+ Ao

and a; are the coefficients of f(x). Then by the computation
process, we can write (13) as the matrix form

Bo

By
(Mo|Ma|- - - |My) L K=

Bu

fori=1,---,n.

bOz

b1 5
-0 ;

Let y(z) = ao + a1z + - -+ be a formal power series. When
we say ¢(x) is the first N + 1 terms of §(x), we mean that
o(z) = ap + a1z +---+anz. The following lemma will be
used in our algorithm.

LEMMA 4.2. Let §(x) be a formal power series such that
G(z,g(xz)) = 0 . Assume that m = deg(G,z) and n =
deg(G,y). Let p(x) be the first 2mn + 1 terms of y(x). If

Qo(z),Q1(z), - ,Qn(z) € Q[z] such that
Qo(@) + Q1 (2)p(x) + - + Qu(x)p(z)" = O™ )
where deg(Q;(x), ) < m and not all of them are zero. Then
Gz, y) = MQo(x) + Qu(x)y + -+ Qn(x)y")  (17)

where X € Q does not equal to zero.

ProoF. Let Q(z,y) = Qo(z) + Q1(x)y + - -+ + Qu(x)y"
There exist S,T € QJz, y] such that
SG(z,y) + TQ(z,y) = Res(G, Q,y) (18)

where deg(S,y) < n and deg(T,y) < n. If Q(z,y(z)) =
0, then (17) is true. Assume that Q(z,y(z)) # 0 and
Res(G,Q,y) # 0. Then it is not difficult to know that
deg(Res(G, Q,y),x) < 2mn. However, substituting g(z) to
the left side of (18), the left side will become a series with or-
der greater than 2mn, a contradiction. Hence Res(G, Q,y) =
0 which implies (17) is true, because G(z,y) is irreducible. |

4.2 An algorithm to compute algebraic solu
tions

First, we give an algorithm to compute the first N +1 terms
of a formal power series solution of F' = 0 for a given positive
integer N. Regarding F' = 0 as an algebraic curve, find a
point (2o, 21) on it such that it does not vanish the separant
S(y,y1) of F(y,y1). Then we can compute y; = z; step by
step from (1). Then y(z) = z0+z12+ Z2* +- -+ is a formal
power series solution of F' = 0. Moreover, 1f z1 # 0, then

i(@) ¢ Q.

ALGORITHM 4.3. Input: F =0 and a positive integer N.
Output: the first N +1 terms of a formal power series solu-
tion of F' = 0 which is not in Q.

1. Find a point (20,21) € Q° on F(y,y1) = 0 such that
S(y,y1) # 0 and y1 # 0.

2. 1:=2 and p(z) = 20 + z212.
3. while t < N do
(a) Substitute y by ¢(z) and y1 by @' (x) in F(y,y1).
(b) c:= the coefficient of z'™" in F(p(z), ¢ ().
(c) 2 1=~y and p(z) = p(x) + 5.
(d) i:=i+1.
4. Return(p(z)).

The correctness of the algorithm comes from the following
facts. Let g(x) be a formal power series solution of F' = 0.
Then by (1),

(F((x),51(2) "™ = 87i(x) + R(F(x), -+ ,Gi1(z)) = 0.
Since Ji(z)|z=0 = 2z for k =1,2,---, we have that
S(Z(), 21)22‘ + R(Z(), cee ,Zifl) = 0.



Now assume that p(z) = 20 + z12 + -+ - + (?_*ll)!xifl. Then

(Flp(@),¢'@))" ™" = R(p(), - , "V ().

Since ™™ (x)]p=0 = 21 for k =1,--- ,i — 1, we have that

R(z0,- ,zi-1) = (Fp(@),¢ (2))" Vom0

which equals to (i — 1)! times the coefficient of z*~' in
F(p(z),¢' (z)). Let T = tdeg(F), the total degree of F.
Theorem 9 given in ([9]) shows that there is at most T2
points on F(y,y1) = 0 which satisfy S(y,y1) =0 or y1 =0.

1

The complexity of Algorithm 4.3 is polynomial in terms of
the number of multiplications in Q needed in the algorithm.
In Step 1, as proved in [9], we can find a point (zo,21) as
follows. We may take y to be an integer zo and let L(y1)
be a monic irreducible factor of F(zo,y1) € Q[y1]. We may
take z1 to be a root of L(z1) = 0. Then all the procedures
will be executed over the number field Q(z1). Let D =
deg(L(y1)) < T = tdeg(F'). Then any element of Q(z1) can
be represented as a polynomial in z; with degree < T — 1.
Let 3,7 € Q(z1). Then there exist P(z),Q(z) € Q[z] such
that 8 = P(«a),y = Q(«) where deg(P) < T — 1,deg(Q) <
T — 1. To compute ¢ = (3 x, we need to compute ¢ =
prem(PQ, L). Therefore, a multiplication of two elements
in Q(z1) needs O(T?) multiplications of rational numbers.
In Step 3, the computation of (ag + a1z + --- + anz™)T
needs at most O(N2T*) multiplications in Q(z1), and hence
at most O(T? - N2T*) = O(N?T") multiplications in Q.

Now we can give the algorithm to compute an algebraic
solution of F' = 0.

ALGORITHM 4.4. Input: F = 0.
solution of F' = 0 if it exists.

Output: an algebraic

1. d :=deg(F,y1) and e := deg(F,y).

2. k:=1.
while k < d+ e do

(a) Compute the first 2dk + 1 terms ¢p(x) of a formal
power series solution of F' = 0 by Algoritm 4.3.

(b) a; := the coefficient of 2 in ¢(z) fori = 0,-- - , 2dk.

(¢) In (14) and (15), let m = d,n = k and N = 2dk.
We construct the linear equations (16).

(d) If (16) has no nonzero solution or the dimension
of the solution space of (16) is great than one,
then go to Step (h).

(e) Otherwise, choose one of nonzero solutions b; ;
where 1 =0, - - - ’|d:>andj:07”. k.
(1) Gloy) = by Cobisa'y.

=0

(g) Let R = prem(F, Q).
If R =0, then return(G(z,y) = 0).

(h) k:=Fk+1.
3. If the algorithm does not return G(z,y) = 0 in Step

2, FF = 0 has no algebraic solution and the algorithm
terminates.

From Theorem 2.6 and Lemma 2.5, we know that if FF =0
has a nontrivial algebraic solution, then every formal power
series solution is algebraic. From Lemma 4.2, we only need
to compute the first 2dk + 1 terms of a nontrivial formal
power series solution to construct the algebraic approxi-
mant. From Theorems 3.4, 3.8, if ¥ = 0 has an alge-
braic solution G(z,y) = 0, then there is a k which satisfies
that £ > 1 and k < d + e such that deg(G,z) = d and
deg(G,y) = k. In (14) and (15), let m = d,n = k and
N = 2dk. We construct the linear equations (16). From
Lemma 4.2 again, the dimension of the solution space of
(16) equals to one. At last, by Lemma 2.2, G(z,y) = 0 is
an algebraic solution if prem(F,G) = 0.

The complexity of Algorithm 4.4 is polynomial in 7" where
T = tdeg(F). In Step 2(a), the complexity is polynomial.
In Step 2(c), we need only to compute TM>T x My which
needs O(T®), because TM is an I x I matrix with [ < 27741
and My is a p x ¢ matrix with p < 2T7?+1,¢ < T+ 1. (Note
that in the worst case, we have to do the operations over
Q(z1). Hence the complexity has to increase by O(T?).)
In Step 2(d), we need only to solve at most 472 + 1 linear
equations with at most 272 + 3T + 1 variables. Hence its
complexity is polynomial. In Step 2(g), for deciding whether
prem(F,G) = 0, we compute Ry = prem(F,G’) first. Since
R, = (%)kF(y, -a¢ %) where k < T, we can compute it
in O(T*?) and have that deg(Ri1,z) < 277 and deg(R1,y) <
4T? + T. Then we compute the GCD(R1, G) which can be
computed in O(T*%) ([25],p152). If GCD(R1,G) = G, then
prem(F, G) = 0; otherwise prem(F,G) # 0. The number of
the circulation in Step 2 is at most 27". Hence the complexity
of Step 2 is also polynomial.

We have implemented the algorithm in Maple when 2y and
z1 in Step 1 of Algorithm 4.3 are rational numbers.

ExamMpPLE 4.5. Consider

F = (y°+2y+1)yi —(120° +9y" —1)yi +27y°+54y " +27y°+4y°.

1. Letd =3 and e = 8.

2. (1,—2) is a point on F(y,y1) = 0 which satisfies the
assumption in Step 1 in Algorithm 4.3.

3. For the case k = 1, we get a G(x,y) = 0 which is not
the solution of F' = 0. For saving the space, here we
only give the process in the case k = 2.

4. The first 13 terms of the formal power series solution
of F =0 is

41 ¢ 65

5 2 9 3 1 4 5 5
12+ 202 It gt 25 Do 20
¥() THQE T T T T T

+@x8 _ gxg _ 25453010 51413@” 5891;10
128 256 512 1024 1024

5. Letm =3,n=2 and N = 12. We construct the linear
equations (16). Solving it, we get a nonzero solution

(71, 1705030737 735 13 1’0705 0)

6. Let G(z,y) = —1 +x + 3wy — 32’y + 2%y + °.

7. prem(F,G) = 0. Hence G(z,y) = —1 4+ x + 3zy —
322y + 23y + y? = 0 is an algebraic solution of F = 0.
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