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Foreword

Polya named Descartes’Rules for the Direction of the Mindhis favorite book on how
to think. In theRules, Descartes speculates on the possible existence of a powerful, secret
methodknown to the ancients for doing geometry:

But my opinion is that these writers then with a sort of low cunning, deplorable
indeed, suppressed this knowledge. Possibly they acted just as many inventors
are known to have done in the case of their discoveries, i.e.,they feared that
their method being so easy and simple would become cheapenedon being
divulged, and they preferred to exhibit in its place certainbarren truths, deduc-
tively demonstrated with show enough of ingenuity, as the results of their art,
in order to win from us our admiration for these achievements, rather than to
disclose to us that method itself which would have wholly annulled the admi-
ration accorded.

Descartes, that master of both method and geometry, would have been amazed to see
the publication of this volume by Chou, Gao, and Zhang, who here present amethodfor
proving extremely difficult theorems in geometry, a method so simple and efficient it can be
carried out by high school students or computers. In fact, the method has been implemented
in a computer program which can prove hundreds of difficult theorems and moreover can
produce simple, elegant proofs. In my view, the publicationof this book is the single most
important event in automated reasoning since Slagle and Moses first implemented programs
for symbolic integration.

All too often, research in automated reasoning is concernedwith technical questions of
marginal interest to the mathematics community at large. Various strategies for efficient
substitution and propositional or equational reasoning have dominated the field of auto-
mated reasoning, and the mechanical proving of difficult theorems has been a rare event.
Mechanical searches for the proofs of difficult theorems are usually guided extensively by
the ‘user’. Almost never do we find exhibited a computer program that can routinely treat
hard problems in any area of mathematics, but in this book we do! The skeptical reader is
urged to flip through the 400 difficult theorems in Chapter 6, all mechanically proved, and
try his hand. The exceptional simplicity of the mechanically generated proofs presented for
many of these theorems illustrate that the authors’ method is not some algorithm of mere
“in principle,” proof-theoretic relevance, such as Tarski’s method. No, by applying the
simple method formulated by the authors, the reader may alsoquickly become an expert
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at geometry proving. The stunning beauty of these proofs is enough to rivet the reader’s
attention into learning the method by heart.

The key to the method presented here is a collection of powerful, high level theorems,
such as the Co-side and Co-angle Theorems. This method can becontrasted with the earlier
Wu method, which also proved astonishingly difficult theorems in geometry, but with low-
level, mind-numbing polynomial manipulations involving far too many terms to be carried
out by the human hand. Instead, using high level theorems, the Chou-Gao-Zhang method
employs such extremely simple strategies as the systematicelimination of points in the
order introduced to produce proofs of stunning brevity and beauty.

Although theorems are generally regarded as the most important of mathematical results
by the mathematics community, it is methods, i.e., constructions and algorithms, that have
the most practical significance. For example, the reductionof arithmetical computation to a
mechanical activity is the root of the computing industry. Whenever an area of mathematics
can be advanced from being an unwieldy body of theorems to a unified method, we can
expect serious practical consequences. For example, the reduction of parts of the calculus
to tables of integrals and transforms was crucial to the emergence of modern engineering.
Although arithmetic calculation and even elementary partsof analysis have reached the
point that computers are both faster at them and more trustworthy than people, the impact
of the mechanization of geometry has been less palpable. I believe this book will be a
milestone in the inevitable endowment of computers with as much geometric as arithmetic
prowess.

Yet I greet the publication of this volume with a tinge of regret. Students of artifi-
cial intelligence and of automated reasoning often suffer from having their achievements
disregarded by society at large precisely because, as Descartes observed, any simple, in-
genious invention once revealed, seems first obvious and then negligible. Progress in the
automation of mathematics is inherently dependent upon theslow, deep work of first rate
mathematicians, and yet this fundamentally important lineof work receives negligible soci-
etal scientific support in comparison with those who build bigger bombs, longer molecules,
or those multi-million-line quagmires called ‘systems’. Is it possible that keeping such a
work of genius as this book secret would be the better strategy for increased research sup-
port, using the text as the secret basis for generating several papers and research proposals
around each of the 400 mechanically proved theorems, never revealing the full power of
the method?

Robert S. Boyer

December, 1993



Preface

This book reports a recent major advance in automated theorem proving in geometry
which should be of interest to both geometry experts and computer scientists. The authors
have developed a method and implemented a computer program which, for the first time,
produces short, readable, and elegant proofs forhundredsof geometry theorems.

Modern computer technology and science make it possible to produce proofs of theo-
rems automatically. However, in practice computer theoremproving is a very difficult task.
Historically, geometry theorem proving on computers beganin earnest in the fifties with
the work of Gelerntner, J. R. Hanson, and D. W. Loveland [103]. This work and most of the
subsequent work [129, 144, 83] weresynthetic, i.e., researchers focused on the automation
of the traditional proof method. The main problem of this approach was controlling the
search space, or equivalently, guiding the program toward the right deductions. Despite
initial success, this approach did not make much progress inproving relatively difficult
theorems.

On the other hand, in the 1930s, A. Tarski, introduced aquantifier elimination method
based on thealgebraic approach[34] to prove theorems inelementary geometry. Tarski’s
method was later improved and redesigned by A. Seidenberg [147], G. Collins [84] and
others. In particular, Collins’ cylindrical decomposition algorithm is the first Tarski type
algorithm which has been implemented on a computer. Solutions of several nontrivial
problems of elementary geometry and algebra have been obtained using the implementation
[45, 114].

A breakthrough in the use of the algebraic method came with the work of Wen-Tsün
Wu, who introduced an algebraic method which, for the first time, was used to prove hun-
dreds of geometry theorems automatically [164, 36]. Many difficult theorems whose tradi-
tional proofs need an enormous amount of human intelligence, such as Feuerbach’s theo-
rem, Morley’s trisector theorem, etc., can be proved by computer programs based on Wu’s
method within seconds. In Chou’s earlier book [12], there isa collection of 512 geometry
theorems proved by a computer program based on Wu’s method.

However, if one wishes to look at the proofs produced using Wu’s method, he/she will
find tedious and formidable computations of polynomials. The polynomials involved in the
proofs can containhundredsof terms with more than a dozen variables. Because of this,
producing short, readable proofs remains a prominent challenge to researchers in the field
of automated theorem proving.

Recently, the authors developed a method which can produce short and readable proofs
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for hundreds of geometric statements in plane and solid geometries [195, 72, 73, 74]. The
starting point of this method is themechanizationof the area method, one of the oldest
and most effective methods in plane geometry. One of the most important theorems in
geometry, the Pythagorean theorem, was first proved using the area method. But the area
method has generally been considered just some sort of special trick for solving geometry
problems. J. Zhang recognized the generality of the method and developed it into a sys-
tematic method to solve geometry problems [40, 41, 42]. By a team effort, we have further
developed this systematic method into a mechanical one and implemented a prover1 which
has been used to produce elegant proofs for hundreds of geometry theorems. This book
contains 478 geometry problems solvedentirely automaticallyby our prover, including
machine proofs of 280 theorems printed in full.

The area method is a combination of the synthetic and algebraic approaches. In the
machine proofs, we still use polynomial computation; but weusegeometric invariantslike
areasandPythagoras differencesinstead of coordinates of points as the basic quantities,
and the geometric meaning for each step of the proof is clear.Another important feature of
the area method is that the machine proofs produced by the method/program are generally
very short; the formulas in the proofs usually have onlya few terms, and hence are readable
by people.

The method is complete forconstructive geometry theorems, i.e., those statements whose
diagrams can be drawn using a ruler and a pair of compasses only. The area is used to deal
with geometry relations like incidence and parallelism. Another basic geometry quantity in
our method is the Pythagoras difference, which is used to deal with geometry relations like
perpendicular and congruence of line segments. Besides thearea and Pythagoras differ-
ence, we also use other geometry quantities, such as the full-angle, the volume, the vector,
and the complex number. The reason we use more geometry quantities is that for each
geometry quantity, there are certain geometry theorems which can be proved easily using
this quantity.

Another aspect ofautomated geometry theorem provingrelates to the difficulty of learn-
ing and teaching geometry. About two thousand years ago, an Egyptian king asked Euclid
whether there was an easier way to learn geometry. Euclid’s reply was, “There is no royal
road to geometry.” Of course, the difficulty here was not the basic geometry concepts, such
as points, lines, angles, triangles, lengths, areas, etc. The difficulty has been with many
other fascinating facts (theorems) and how to use logical reasoning to justify (prove) these
theorems based on only a few basic facts (axioms) that are so obvious that they can be
taken for granted. One can draw dozens of triangles with three medians and find the fact
that the three medians of a triangle intersect at the same points. However, the empirical
observation is only a justification of formation of a conjecture whose correctness must be
proved by other means – logical reasoning.

1The prover is available via ftp at emcity.cs.twsu.edu: pub/geometry.
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Unlike algebra, in which most problems can be solved according to some systematic
method or algorithm, a human proof requires a different set of tricks for each geometry
theorem, making it difficult for students to get started with a proof. In the two thousand
years since the time of the Egyptian king, people have continued to wish for an easy way
to learn geometry.

In response to this difficulty and in working with middle school students, J. Z. Zhang
has established a new geometry axiom system based on the notion of area [40, 41, 42].
Using his new system, Zhang has made a great effort in promoting a new reform in high
school geometry education in China. The successful implementation of his method has
led to its use in Chinese geometry textbooks for teachers’ colleges. In addition, the area
method has been used in recent years to train students of Chinese teams for participation in
the International Mathematical Olympiads.

One of the goals of this book is to make learning and teaching of geometry easy. The
machine proofs generated have a shape that a student of mathematics could learn to de-
sign with pencil and paper. By reading the machine produced proofs in this book, many
readers might be able to use the mechanical method to prove difficult geometry theorems
themselves.

This book consists of six chapters. The first chapter is aboutthe basic concepts of
geometry, area and ratio of lengths. Then we introduce the new method, thearea method
for proving geometry theorems. This chapter can stand aloneas a supplement to textbooks
of high school or college geometry. We present this chapter at an elementary level with
many interesting examples solved by the new method, with theintention of attracting many
readers at various levels, from high school students to university professors. It is also our
hope that people will be able to prove many difficult geometry theorems using the method
introduced in this chapter.

Beginning with Chapter 2, we formalize or mechanize the method by describing the
method in an algorithmic way. Those who are interested in geometry only will have a
clearer idea about this mechanical procedure of proving geometry theorems. Those who
wish to write their own computer programs will be able to produce short and readable
proofs of difficult geometry theorems. Experts will be able to find further extensions, de-
velopments and improvements in this new direction. Only when more and more people are
participating in projects of this kind will real advances ingeometry education be possible.
One of our goals in writing this book is to encourage such research and advances.

The last chapter, Chapter 6, is a collection of 400 theorems proved by our computer
program, including machine proofs of 205 theorems printed in full. Most of this chap-
ter was generated mechanically, including machine proofs in TEX typesetting form. This
chapter is an integral and important part of the book, because it alone shows the power of
our mechanical method and computer program. Even reading the proofs produced by our
computer program is enjoyable.
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Chapter 1

Geometry Preliminaries

In this chapter, we will provide geometry background for therest of this book. The pre-
sentation is informal and the prerequisite in geometry is minimal. Anyone with a semester
of high school geometry can read and understand this chapter. We will present a new sys-
tematic proof method, thearea method, which can be used to solve numerous geometry
problems at various levels of difficulty, ranging from problems in high school textbooks
to those in mathematics competitions. Those who are mainly interested in machine proofs
may skip this chapter and start from Chapter 2 directly.

1.1 Introduction

Geometry, like other sciences, is concerned with the laws ina specific domain. For ge-
ometry this domain is space. However, reasoning plays a muchmore important role in
geometry and in other branches of mathematics than in other sciences.

There are two kinds of reasoning:inductive reasoninganddeductive reasoning.

Necessity and curiosity have at all times caused people to investigate phenomena and
to find the laws governing the physical universe. Drawing three medians of a triangle, one
finds that the three medians intersect at the same point. By making repeated experiments,
one can come to the conclusion that the three medians of any triangle always intersect at
the same point. This kind ofinductive reasoning, which is fundamental in experimental
sciences, is also very important for observing new facts andlaws in mathematics.

However, in geometry or mathematics, inductive reasoning generally cannot serve as
the justification of the correctness of the observed fact. Tojustify the observed fact, we
have to give aproof of the fact. Here the terminology “proof” has a distinctive meaning.
Based on already proved facts (theorems), we need to uselogical or deductive reasoning
to derive this new fact about three medians. Once we prove a fact in this way, we call it a

1
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theorem. The truth of the fact is thus beyond doubt. Here we prove a theorem “based on
already proved facts.” However, the proof of these “alreadyproved facts” is based on other
“ already proved facts.” In the final analysis, we have to choose a few basic facts whose
correctness is so evident in our everyday life that we can take them for granted without any
proofs. For example, the fact that for any two distinct points there is one and only one line
passing through them is so evident that we can use it without proof. Such kinds of facts are
very basic and are calledaxioms or postulates.

The selection of axioms is by no means evident. For example, Euclid’s fifth postulate,
“from any point not on a line, there is one andonly oneline passing through the point and
parallel to the given line,” is a very evident fact for many people. However, for over two
thousand years, mathematicians tried to prove this fact using other basic postulates. The
failure of these attempts finally led to the Non-Euclidean geometries and a revolution in
mathematics. There is a special branch of mathematics,foundations of geometry, which is
exclusively concerned with the related topics.

Generally, the traditional proof method in geometry proceeds as follows: first we es-
tablish (prove) various basic propositions or lemmas, e.g., the theorems of congruence of
two triangles. Then we use these basic propositions to provenew theorems. We can en-
large the set of basic propositions by including some of these newly proved theorems. In
the traditional methods used by Euclid and many other geometers since then, theorems of
congruence and similarity of triangles are the very basic tools. Although the method based
on congruence and similarity leads to elegant proofs for many geometry theorems, it also
has weaknesses:

(1) In a diagram of a geometry statement to be proved, rarely do there exist congruent or
similar triangles. In order to use the propositions on congruent or similar triangles, one has
to construct auxiliary lines. As we know, adding auxiliary lines is one of the most difficult
and tricky steps in the proofs of geometry theorems. This also leads to a changeable and
uncertain strategy in the effort of finding a proof.

(2) In propositions on congruent or similar triangles, there is asymmetry between the
hypothesis and conclusion. For example, in order to prove the congruence of the segments
AB andXY, we need to construct (or find)△ABC and△XYZand to prove the congruence
of the two triangles. Generally, this in turn requires us to prove the congruence of three
pairs of geometry elements (segments or angles). In order toprove one identity, we need
to find three other identities!

As a consequence, it is very difficult to find an effective method for solving geometry
problems based on congruence and similarity.

In this book, we will use the area of triangles as the basic tool for solving geometry
problems. The traditional area method is one of the oldest and most effective methods
in plane geometry. One of the most important theorems in geometry, the Pythagorean
theorem, was first proved using the area method. But the area method has generally been
considered as a set of special tricks for solving geometry problems. J. Z. Zhang has been
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studying the area method since 1975. He has recognized its generality and has developed it
into a systematic method for solving geometry problems [40,41, 42].1 A large number of
geometry problems at various levels of difficulty, ranging from basic propositions in high
school textbooks to those in mathematics competitions, have been provided with elegant
proofs using the area method. This chapter is a summary of thebasic facts about the area
method together with many geometry theorems solved by this method.

Another feature of the area method is that the deduction in the method is achieved
mainly by algebraic computation. This makes the area methodready for mechanization,
which is the main theme of this book.

1.2 Directed Line Segments

For most of the book, we are concerned withplane geometry. Thus our starting point is a
plane, which we sometimes refer to as theEuclidean plane. The basic geometry objects on
a plane arepointsandlines.

We use capital English lettersA, B, C, ... to denote points on the Euclidean plane.

For two distinct pointsA and B, there is one and only one linel that passes through
pointsA andB. We useAB or BA to denote this line. In addition, we can give a line one
of the two directions and talk aboutdirected lines. Thus directed lineAB has the direction
from pointA to pointB, whereas the directed lineBAhas the opposite direction from point
B to A.

Two pointsA andB on a directed line determine adirected line segmentwhose length
AB is positive if the direction fromA to B is the same as the direction of the line and
negative if the direction fromA to B is in the opposite direction. Thus

(1.1) AB= −BA

andAB= 0 if and only if A = B.

Let A, B,P, andQ be four points on the same line such thatA , B. Then the ratio of
PQ andAB is meaningful; let it bet. We have

PQ

AB
= t, or PQ= tAB.

If the two directed line segmentsABandPQ have the same direction thent ≥ 0; if they
have opposite directions thent ≤ 0. If P or Q is not on lineAB, then we cannot compare

1This systematic method has been used to train students of Chinese teams for participat-
ing in the International Mathematical Olympiad in solving geometry problems.
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or do arithmetic operations betweenAB andPQ, because the sign ofAB depends on the
direction of lineAB which has nothing to do with the direction of linePQ.

If point P is on lineAB thenAB= AP+ PB or

(1.2)
AP

AB
+

PB

AB
= 1.

We call AP
AB

and PB
AB

theposition ratiosor theposition coordinatesof point P with respect to
AB. It is clear that for two real numberss andt such thats+ t = 1, there is a unique point
P on ABwhich satisfies

AP

AB
= t,

PB

AB
= s.

In particular, the statement that pointO is the midpoint of segmentABmeansAO
AB
= OB

AB
= 1

2.

Two distinct points always determine a line. However, threepoints are generally not on
the same line. If they are, we say that the three points arecollinear. In fact, the most fasci-
nating facts about many elegant geometry theorems discovered over the past two thousand
years have been that no matter how you draw a certain geometryfigure, the three partic-
ular points in the figure are always collinear. Connected with each theorem, there is the
collinear line named after the mathematician who discovered it, for example, Pappus’ line,
Euler’s line, Gauss’ line, Pascal’s line, Simson’s line, etc.

A B

1A
1B

C

1C

P Q S

Figure 1-1

Example 1.1 (Pappus’ Theorem)Let points A,
B and C be on one line, and A1, B1 and C1

be on another line. Let AB1 meet A1B in P,
AC1 meet A1C in Q, and BC1 meet B1C in S .
Show that P, Q, and S are collinear.

Please draw a few diagrams for this geometric configuration on a piece of paper. Note
that the three intersection pointsP, Q andS are always collinear. If you have our software
package, you can see this fact more vividly. First, the program helps you to draw one
diagram in a few seconds on the computer screen. Then you can use the mouse to move
any of the user-chosen points, e.g., pointC1. The diagram is continuously changed on the
screen while you can see that the three moving pointsP, Q, andS are always on the same
line. This observation convinces almost everyone that thisstatement is always true.

However, in order to justify the truth of a fact in mathematics, empirical observations
are not enough. We need a proof of the truth of the fact using the mathematical reasoning.
The proof of Pappus’ theorem (or of many other geometry theorems) is by no means easy,
especially to high school students. The main objective of this book is to present a new
systematicproof method. We believe that the serious reader can learn this method easily.
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Once you know this method and work with a few examples, you canprove a difficult
theorem in a few minutes. For a proof of Pappus’ theorem, see page 14.

Exercises 1.2

1. LetA, B, andC be three collinear points. Show thatAB
2
+BC

2
= AC

2
+2AB·CB. (Use

(1.1) and (1.2). Do the same for the following exercises.)

2. LetA, B, C, andD be four collinear points. ThenAB ·CD+ AC · DB+ AD · BC = 0.

3. Four collinear pointsA, B,C, and D are called aharmonic sequenceif AC
BC
= −AD

BD
.

Show that four collinear pointsA, B,C, andD form a harmonic sequence if and only
if AB

CB
+ AB

DB
= 2.

4. Show that four collinear pointsA, B,C, andD form a harmonic sequence if and only if

OC ·OD = OA
2

whereO is the midpoint ofAB.

1.3 Areas and Signed Areas

The next geometric object is the triangle. As we know, three non-collinear pointsA, B, and
C form a triangle which is denoted by△ABC. The area of△ABC is denoted by▽ABC. The
reader can safely assume that▽ABC is 1

2h · BC whereh is the altitude of the triangle on the
sideBC. In our area method, however, we do not consider this a basic fact. Instead, we use
other simple facts about the area as basic propositions. IfA, B, andC are collinear,△ABC
is called degenerate and▽ABC is defined to be zero.

For any four pointsA, B,C, andP in thesame plane, we can form four triangles△ABC,
△PAB, △PBC, and△PAC and the areas of the four triangles satisfy seven different rela-
tions, depending on the relative position of the pointsA, B,C andP.

A

B C

P

Figure 1-2

If point P is inside the triangleABCas shown in Figure 1-2, we have

▽ABC= ▽PAB+ ▽PBC+ ▽PCA.
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A B

CP

A B

C

P

A B

C

PFigure 1-3
For the three cases shown in Figure 1-3, we have

▽ABC= ▽PAB+ ▽PBC− ▽PCA If ABCPis convex.
▽ABC= ▽PAB− ▽PBC+ ▽PCA If ABPC is convex.
▽ABC= − ▽ PAB+ ▽PBC+ ▽PCA If APBC is convex.

A B

C

P

A

B

C

P A

B

C

P

Figure 1-4

For the three cases shown in Figure 1-4, we have

▽ABC= ▽PAB− ▽PBC− ▽PCA If C is in the interior of△PAB.
▽ABC= − ▽ PAB+ ▽PBC− ▽PCA If A is in the interior of△PBC.
▽ABC= − ▽ PAB− ▽PBC+ ▽PCA If B is in the interior of△PAC.

We see that the above relations among the areas of triangles formed from the four points
are very complicated. However, if we introduce the signed area of an oriented triangle, we
can greatly simplify the relations of these areas; the sevenrelations can be reduced to just
one equality.

A triangleABC has two orientations: ifA–B–C is counterclockwise, triangleABC has
the positive orientation; otherwise triangleABChas the negative orientation. Thus△ABC,
△BCA, and△CABhave the same orientation, whereas△ACB, △CBA, and△BAC have the
opposite orientation.

Thesigned area of an oriented triangle ABC, denoted bySABC, has the same absolute
value as▽ABCand is positive if the orientation of triangleABC is positive; otherwiseSABC

is negative. We thus have

SABC = SBCA = SCAB = −SACB = −SBAC = −SCBA.

Now the seven equations for▽ABC,▽PAB,▽PBC, and▽PCA can be summarized as
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just one equation: regardless of the position among pointsA, B,C, andP, we always have

(1.3) SABC = SPBC+ SPCA+ SPAB

Remark for Advanced Readers. Based on analytic (coordinate) geometry, the proof of
(1.3) is more strict and straightforward, and we do not have to discuss each of the seven
cases separately. Suppose we have a coordinate system on theplane and the coordinates for
all four points. For example, the coordinates of the pointsA, B andC are (ax, ay), (bx, by),
and (cx, cy), respectively. Twice the signed areaSABC of the triangleABC is the polynomial
(ax−bx)(by−cy)− (ay−by)(bx−cx). Then checking the validity of (1.3) is a straightforward
computation.

Furthermore, we do not even need to use the brute force computation of polynomials to
prove (1.3). Since (1.3) is valid whenP is inside the triangleABC and (1.3) is equivalent
to a polynomial equation, that equation must be true. Since the truth of the equation is
independent of the relative position of the four points, (1.3) is valid in all cases. With this
argument in mind, the understanding of many other identities in this book or in geometry is
much easier. For many geometry statements or theorems ofequality type, the order relation
(inside, between, etc.) is irrelevant. By the above argument based on polynomials, if the
statement is true in one case, then it is true in all cases regardless of the relative order
position of the points involved.

There are many geometry theorems in which the order relationis essential. Proving
of these theorems is beyond the scope of our current computerprogram based on the area
method. One of the important examples is “A triangle with twoequal internal angle bi-
sectors is an isosceles triangle.” In this chapter we will prove many such theorems using
the area method. However, the proofs are informal in the sense that we use some facts
other than the basic propositions of the area method used in our computer program.End of
Remark.

Similarly, we can also define oriented quadrilaterals. Given four pointsA, B, C, andD,
we define anoriented quadrilateral ABCDaccording to the point orientationA–B–C–D.
ThusBCDA, CDAB, andDABC denote the same oriented quadrilateral asABCDbecause
their point orientation is the same. Four points can form six(4!/4) different orientations,
hence six different oriented quadrilaterals:ABCD, ADCB, ACBD, ADBC, ACDB, and
ABDC, as shown in Figure 1-5.

A B

C
D

A B

C
D

A B

C
D

Figure 1-5
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Now we can define the area of an oriented quadrilateralABCD to be

SABCD = SABC+ SACD.

In order to justify thatSABCD is well-defined, we need to prove that for the above definition,
we have

SABCD = SBCDA = SCDAB = SDABC

which is a direct consequence of (1.3).

The definition of the signed area here can be generalized to anorientedn–polygon with
anyn > 4.

Exercises 1.3

1. Prove the following properties of the areas of quadrilaterals.

SABCD= SBCDA = SCDAB = SDABC = −SDCBA = −SCBAD = −SBADC = −SADCB,
SABCD= SABC− SADC = SBCD− SBAD, and
SABBC= SABCC= SAABC= SABCA= SABC.

2. For any five pointsA, B,C,P, andQ in the same plane, we haveSPAQB+SPBQC= SPAQC.

1.4 The Co-side Theorem

The following is the firstbasic propositionof the area method.

A B

P

C

Figure 1-6

Proposition 1.4Let A, B, and C be three dis-
tinct collinear points, and P a point not on
line AB. Then we haveSPBC

SPAB
= BC

AB
, or if

BC = tAB then SPBC = tSPAB.

Proposition 1.4 is obvious if we use the area formulas:▽PBC= 1
2h·BC,▽PAB= 1

2h·AB
whereh is the distance from pointP to line AB. Notice that the areas involved here are
signed areas of oriented triangles.

Two triangles with a common side are said to be a pair ofco-side triangles. From Propo-
sition 1.4 we can easily infer the co-side theorem, which is the most important proposition
of the area method. By using this theorem alone, we can prove many difficult theorems
easily.
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A B

P

Q

M
N

A B

P

Q

M
A

B

P

Q

M

A B

P

Q

M

Figure 1-7
Proposition 1.5 (The Co-side Theorem)Let M be the intersection of the lines AB and PQ and
Q , M. Then we haveSPAB

SQAB
= PM

QM
.

Figure 1-7 shows four possible cases of the co-side theorem.Here we give two proofs of
Proposition 1.5, which are valid for all the four cases.

Proof 1.Let N be a point on the lineAB such thatMN = AB. By Proposition 1.4

SPAB

SQAB
=

SPMN

SQMN
=

PM

QM
.

Proof 2. SPAB
SQAB
=

SPAB
SPAM
· SPAM

SQAM
· SQAM

SQAB
= AB

AM
· PM

QM
· AM

AB
= PM

QM
.

We mentioned early that in the diagrams of geometry theorems, rarely are there similar
or congruent triangles. But there are plenty of co-side triangles. For instance, in each of
the four diagrams in Figure 1-7 there are 18 pairs of co-side triangles!

Propositions 1.4 and 1.5 are twobasic propositions. We will expand the set of basic
propositions and, based on them, introduce ourarea proof method. Using the area method
to prove theorems, no skillful trick is needed: we need only to follow systematic or pre-
scribed steps to reach the completion of a proof. We will use several non-trivial examples
to illustrate how to use the basic propositions to prove theorems.

Example 1.6Let△ABC be a triangle and P be any point in the plane (inside or outside of
the triangle). Let D be the intersection of lines AP and CB, i.e., D = AP∩ CB. Also let
E = BP∩ AC, and F= CP∩ AB. Show thatPD

AD
+ PE

BE
+ PF

CF
= 1.

A B

C

P

F

E

D

A B

C

P

F

E

D

A B

C

P

F

E

D

Figure 1-8

The hypotheses of most geometry theorems can be stated in aconstructive way:
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beginning with some arbitrarily chosen points, lines, and circles, we introduce new points
by taking arbitrary points on or taking intersections of thelines and circles;

from the constructed points, new lines and circles can be formed;

we now can introduce new points from these new lines and circles, etc;

finally, a figure is formed consisting of points, lines, and circles.

Such kinds of geometry theorems are calledtheorems of constructive type.

Example 1.6 is a theorem of constructive type. Beginning with the arbitrarily chosen
(free) pointsA, B, C andP, we introduce new pointsD, E, andF by constructing intersec-
tions of linesAP andBC, linesBP andAC, and linesCP andAB. Our aim is toeliminate
the constructed points from the left-hand side of the conclusion

PD

AD
+

PE

BE
+

PF

CF

in the reverse order of the points in which they are introduced until all points in the expres-
sion are free points. Then the expression is equal to or is easily proved to be equal to the
right-hand side of the conclusion.

Proof. By using the co-side theorem three times we can eliminate points D,E, and F
respectively:

PD

AD
=

SPBC

SABC
,

PE

BE
=

SPCA

SABC
,

PF

CF
=

SPAB

SABC
.

By (1.3) on page 7,

PD

AD
+

PE

BE
+

PF

CF
=

SPBC+ SPCA+ SPAB

SABC
=

SABC

SABC
= 1.

If not using the signed area, we would have to discuss several(seven) cases whenP is
inside or outside the triangleABC. Figure 1-8 shows three possible cases of the example.
The use of the signed area makes the proof concise and more strict. The reader will see this
advantage throughout this book in other examples.

At this point, we need to mention that thenon-degenerate conditionswhich are nec-
essary for a geometry statement to be true are not stated explicitly in the example. Here
triangleABCmust be non-degenerate, i.e.,SABC , 0, as we generally implicitly assume in
geometry textbooks. But this is not enough. We need each of the intersection pointsD, E
andF to be normal, i.e., there is one and only one intersection point. This imposes con-
ditions on the pointP. For detailed discussion of non-degenerate conditions, see Chapter
2.
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Example 1.7 (Ceva’s Theorem)The same hypotheses (constructions) as Example 1.6. Show
that

AF

FB
· BD

DC
· CE

EA
= 1.

Proof. Our aim is still to eliminate the constructed pointsF, E andD from the left-hand
side of the conclusion. Using the co-side theorem three times, we can eliminateE, F, and
D

AF

FB
· BD

DC
· CE

EA
=

SAPC

SBCP
· SBPA

SCAP
· SCPB

SABP
= 1.

The above proof for Ceva’s theorem can be extended immediately to prove Ceva’s the-
orem for an arbitrary (2m+ 1)-polygon withm≥ 1.

Example 1.8 (Ceva’s Theorem for a (2m+ 1)-polygon) Let a point O and an arbitrary polygon
V1...V2m+1 be given. Let Pi be the intersection of line OVi and the side Vi+mVi+m+1. Then

2m+1∏

i=1

Vi+kPi

PiVi+k+1

= 1

where the subscripts are understood to be mod2m+ 1.

Proof. By the co-side theorem,

Vi+kPi

PiVi+m+1

=
SOViVi+m

SOVi+m+1Vi

, i = 1, ..., 2m+ 1.

Multiplying the above equations together and noticing thatthe (i + m)-th element in the
denominatorSOV(i+m)+m+1Vi+m = SOViVi+m is just thei-th element in the numerator, we prove the
result.

A B

C

D
E

F A B

C

D

E

F

Figure 1-9

Example 1.9 (Menelaus’ Theorem)F,D, and E are three points on sides AB, BC, and CA of
a triangle ABC respectively. Show that E, F, and D are collinear if and only ifAF

FB
· BD

DC
· CE

EA
=

−1.
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Proof. A transversalmay meet two sides of a triangle and the third side produced, or all
three sides produced (Figure 1-9). The following proof is valid for both cases. IfE, F, and
D are collinear, by the co-side theorem,

AF

FB
= −SAEF

SBEF
,

BD

DC
= −SBEF

SCEF
,

CE

EA
= −SCEF

SAEF
.

Then AF
FB
· BD

DC
· CE

EA
= −1.

Conversely, letE, F, andD be points onAC, AB, andBC such thatAF
FB
· BD

DC
· CE

EA
= −1.

Let EF meetBC in H. Then we need only to showD = H. By what we just proved
AF
FB
· BH

HC
· CE

EA
= −1. As a consequenceBH

HC
= BD

DC
, i.e.,D = H.

We can extend the Menelaus’ theorem tom-sidedpolygons.

Example 1.10 (Menelaus’ Theorem for anm-polygon) Let V1 · · ·Vm be an m-polygon. A line
XY meets ViVi+1, i = 1, ...,m in Pi. Then

m∏

i=1

ViPi

PiVi+1

= (−1)m.

Proof. By the co-side theorem,

ViPi

PiVi+1

= − SViXY

SVi+1XY
, i = 1, ...,m.

Multiplying them equations together, we obtain the result.

We can use the area method to solve many geometry problems other than theorem prov-
ing.

Example 1.11Let ABC be a triangle, D and E be two points on the lines AC and ABsuch
that CD = uAD andAE = vBE. Let P be the intersection of BD and CE. ExpressPD

PB
in

terms of u and v.

A

B C

E
D

P

Figure 1-10

Solution. We need to eliminate the con-
structed pointsP, E, andD successively. By
the co-side theorem we have2

PD

PB
=

SDCE

SBCE
.

2Here we mention triangleDCE. The sideDE of the triangle is not in the figure. Our
method will add those kinds of auxiliary lines automatically.
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Now the right-hand side of the above equality is free of the point P. We still need to
eliminate the pointsE andD from it. By the co-side theorem again, we have:

SDCE

SBCE
=

SEDC

SEAC
· SEAC

SEBC
=

DC

AC
· EA

EB
=
−uAD

AD− uAD
· vEB

EB
=

uv
(u− 1)

.

Let us look at the special case whenu = v = −1, i.e.,D andE are the midpoints of the
sideAC andAB respectively. Then

PD

PB
= −1

2
.

The following theorem follows from this fact immediately.

Example 1.12 (The Centroid Theorem)The three medians of a triangle meet in a point, and
each median is trisected by this point.

Example 1.13The same hypotheses as Example 1.11. ExpressSPBC

SABC
in terms of u and v.

Solution.By (1.3) on page 7 and the co-side theorem, we have

SABC

SPBC
=

SAPC

SPBC
+

SABP

SPBC
+

SPBC

SPBC
=

AE

EB
+

AD

DC
+ 1 = −v− 1

u
+ 1 =

u− 1− uv
u

.

Therefore,SPBC

SABC
= u

u−1−uv.

R

Q

P

F

E

D

A

CB

Figure 1-11

Example 1.14Take three points D,E, and F
on sides AC, AB, and BC of the triangle ABC
such thatCD

AD
= u, AE

BE
= v, BF

CF
= w. Let R=

AF ∩ BD, P= BD∩ EC, and Q= AF ∩CE.
ExpressSPQR

SABC
in terms of u, v, and w.

Solution.By (1.3) on page 7 and Example 1.13,

SPQR = SABC− SPBC− SQCA− SRAB

= (1− u
u− 1− uv

− w
w− 1− wu

− v
v− 1− wv

)SABC

=
(1+ wuv)2

(1− u+ uv)(1− v+ wv)(1− w+ wu)
SABC.

Remark 1.15
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1. In Example 1.14, if u= v = w = −1
2 then we haveSPQR

SABC
= 1

7.

2. As a consequence of Example 1.14, we have proved a strongerversion of the Ceva
theorem: lines AF, BD, and CE are concurrent if and only if SPQR = 0, i.e., if and
only if uvw+ 1 = 0 or

CD

AD
· AE

BE
· BF

CF
= −1.

L K

B

C

A

D

F G

Figure 1-12

Example 1.163 Let L be the intersection of AB
and CD, K the intersection of AD and BC,
F the intersection of BD and KL, and G the
intersection of AC and KL. Then

LF

KF
=

LG

GK
.

Proof 1.By the co-side theorem, we can eliminate pointF: LF
KF
=

SLBD

SKBD
. We need further to

eliminate pointsK andL:

SLBD =
LB

AB
SABD =

SBCDSABD

SBCAD
,SKBD =

KB

CB
SCBD =

SBADSCBD

SBACD
.

Then LF
KF
=

SBCAD

SBACD
. Similarly, we can prove thatLG

GK
=

SBCAD

SBACD
= LF

KF
.

Proof 2.The following proof is shorter.

LF

KF
=

SLBD

SKBD
=

SLBD

SKBL

SKBL

SKBD
=

DA

AK
· LC

DC
=

SDAC

SAKC

SLAC

SDAC
=

SLAC

SAKC
=

LG

GK
.

Example 1.17 (Pappus’ Theorem)Let points A, B and C be on one line, and A1, B1 and C1 be
on another line. Let P= AB1 ∩ A1B, Q= AC1 ∩ A1C, and S= BC1 ∩ B1C. Show that P,
Q, and S are collinear.

3This theorem is sometimes referred as the basic principle ofthe projective geometry. It
can be used to define the harmonic sequence geometrically. For more details see page 372.



1.4 The Co-side Theorem 15

A B

1A
1B

C

1C

P Q S

Figure 1-13

Proof. We generally convert a problem of
collinearity into a ratio problem in the following
way. LetZ1 = PQ∩ BC1 andZ2 = PQ∩ B1C.
We need only to prove thatZ1 = Z2. This is
equivalent to

PZ1

QZ1

· QZ2

PZ2

= 1. (1)

We can eliminate pointsZ2 andZ1 from (1) using the co-side theorem.

PZ1

QZ1

· QZ2

PZ2

=
SPBC1

SQBC1

·
SQCB1

SPCB1

. (2)

Now we want to eliminate pointsQ andP from the right-hand side of (2) using the follow-
ing identities which can be easily obtained using the co-side theorem.

SQBC1 =
QC1

AC1
· SABC1 =

SA1CC1 ·SABC1
SACC1A1

SQCB1 =
QC
A1C
· SA1CB1 =

SACC1 ·SA1CB1
SACC1A1

SPBC1 =
PB
A1B
· SA1BC1 =

SABB1 ·SA1BC1
SABB1A1

SPCB1 =
PB1

AB1
· SACB1 =

SA1BB1·SACB1
SABB1A1

.

Substituting these into (2) and applying Proposition 1.4, we have

SPBC1

SQBC1

·
SQCB1

SPCB1

=
SABB1

SACB1

· SA1BC1

SA1BB1

· SACC1

SABC1

· SA1CB1

SA1CC1

=
AB

AC
· A1C1

A1B1

· AC

AB
· A1B1

A1C1

= 1.

The following extension of the co-side theorem is also very useful.

A B

P
Q

R

Figure 1-14

Proposition 1.18Let R be a point on line PQ.
Then for any two points A and B

SRAB=
PR

PQ
SQAB+

RQ

PQ
SPAB.
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Proof. By the co-side theoremSRAP
SQAP
= PR

PQ
, SRPB

SQPB
= PR

PQ
. By (1.3) on page 7,

SRAB = SPAB+ SRAP+ SRPB= SPAB+
PR

PQ
(SAPQ− SBPQ)

= SPAB+
PR

PQ
(SAPB+ SABQ)

= (1− PR

PQ
)SPAB+

PR

PQ
SQAB

=
PR

PQ
SQAB+

RQ

PQ
SPAB.

Example 1.19 (0.116, 4, 7)The circumdiameters AP, BQ, CR of a triangle ABC meet the
sides BC, CA, AB in the points K, L, M. Show that(KP/AK) + (LQ/BL) + (MR/CM) = 1.

A B

C

O

PQ

R

KL

M

Figure 1-15

Proof. By the co-side theorem,

RM

CM
=

SABR

SABC
,
QL

BL
=
−SACQ

SABC
,
PK

AK
=

SBCP

SABC
.

Note thatO is the midpoint ofAP, BQ, andCR. Us-
ing Proposition 1.18, we can eliminate pointsR,Q,
andP.

SABR=2SABO− SABC, SACQ =2SACO+ SABC, SBCP =2SBCO− SABC.

Thus

RM

MC
+

QL

LB
+

PK

KA
=
−(2SBCO+ 2SAOC+ 2SABO− 3SABC)

SABC
=

SABC

SABC
= 1.

Remark 1.20In summary, we see that to prove a geometry theorem using the area method
systematically, we generally follow three steps: first, formulate the geometry theorem in
a constructive way and state the conclusion of the theorem asan expression in areas and
ratios of directed line segments; second, based on the basicpropositions about areas, try
to eliminate the points from the conclusion in the reverse order in which the points are
introduced; finally state whether the conclusion is true or not.

Exercises 1.21

1. There are 48 pairs of co-side triangles in each diagram of Figure 1-8. Try to count how
many co-side triangles are there in Figure 1-12.
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2. If A, B,C, andD are on the same line, then for pointsP andQ such thatSPCQD , 0, we
haveSPAQB/SPCQD = AB/CD.

3. The same hypotheses as Example 1.6. Show thatAP
AD
+ BP

BE
+ CP

CF
= 2.

4. Let ABCDbe a quadrilateral andO a point. LetE, F, G, andH be the intersections of
lines AO, BO, CO, andDO with the corresponding diagonalsBD,AC, BD, andAC of
the quadrilateral. Show thatAH

HC
CF
FA

BE
ED

DG
GB
= 1.

5. (Lesening’s Theorem) Continuing from Example 1.17, letL1, L2, L3 be the intersections
of linesOPandCC1, linesOQandBB1, and linesOS andAA1. Show thatL1, L2, L3 are
collinear.

1.5 Parallels

Definition 1.22 Let AB and CD be two non-degenerate lines. If AB and CD do not have any
common point, we say that AB is parallel to CD. We use the notation AB ‖ CD to denote
the fact that A, B,C, and D satisfy one of the following conditions: (1) AB and CD are
parallel; (2) A= B or C = D; or (3) A, B, C and D are on the same line.

A parallelogramis an oriented quadrilateralABCD such thatAB ‖ CD, BC ‖ AD, and
no three vertices of it are on the same line. LetABCDbe a parallelogram. It is clear that
line AB and lineDC have the same direction. LetABCDbe a parallelogram andP,Q two
points onCD. We define

PQ

AB
=

PQ

DC
to be theratio of two parallel line segments.

We have the following very useful and simple result which is also basic to our method.

Proposition 1.23Let A, B, C, and D be four points. AB‖ CD if and only if SABC = SABD or
SADBC = 0.

If we assume the area for a triangle to beah/2, then Proposition 1.23 is obvious. However,
we can prove it using Proposition 1.4 (see page 57 for details). With Proposition 1.23, we
can prove many other theorems easily.

A B

C
D

O

Figure 1-16

Example 1.24Let O be the intersection of the
two diagonals AC and BD of a parallelogram
ABCD. Show thatAO= OC, or AO

OC
= 1.
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The construction of the figure proceeds as follows. First we have three arbitrarily chosen
points A, B andC. Then we take a pointD such thatAB = DC. Finally, we take the
intersection of two linesAC andBD to obtain the pointO. Thus we need to eliminateO
from the expressionAO

OC
, then eliminate the pointD from the new expression. Here is the

proof.

Proof.

AO
OC
=

SABD
SBCD

by the co-side theorem

=
SABC

SBCA
(sinceAB ‖ CD andAD ‖ BC, SABD = SABC,SBCD = SBCA.)

=
SABC

SABC
= 1.

A

B

X

C

Y

Z

Figure 1-17

Example 1.25Three parallel lines cut two
lines at A, B, C, and X, Y, Z respectively.
Show that

AB

CB
=

XY

ZY
.

This proposition is considered a very basic property of parallel lines in high school
geometry. Here we can prove it very elegantly .

Proof. By the co-side theorem and Proposition 1.23, we have

AB

CB
=

SABY

SCBY
=

SXBY

SZBY
=

XY

ZY
.

A B

C D

P

Q

M

Figure 1-18

Example 1.26Lines AB and CD are parallel.
Let P = AC∩ BD and Q= AD ∩ BC. Line
PQ intersects line AB at M. Show that M is
the midpoint of AB, i.e.,AM = MB.

Proof 1. By the co-side theorem, we can eliminateM: AM
MB
=

SPAQ

SPQB
. By the co-side theorem

again, we can eliminateQ:

SPAQ=
AQ

AD
SPAD =

SABC

SABDC
SPAD,SPQB=

BQ

BC
SPCB =

SBDA

SBDCA
SPCB.

Now by Proposition 1.23,AM
MB
=

SPAD
SPCB
=

SPCD+SCAD

SPCD+SCBD
= 1

Proof 2.The following proof is shorter.

AM

MB
=

SPAQ

SPQB
=

SPAQ

SQAB
·

SQAB

SPQB
=

PD

DB
· CA

PC
=

SCPD

SCDB
· SCDA

SCPD
=

SCDA

SCDB
= 1.
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A B

R

C

Q
P

Figure 1-19

Example 1.27 (Pascalian Axiom4) Let A, B and
C be three points on one line, and P, Q, and
R be three points on another line. If AQ‖ RB
and BP‖ QC then AP‖ RC.

Proof. We need to proveSRAP= SCAP. SinceAQ ‖ RBandBP ‖ QC, by Proposition 1.23
we have

SRAP = SRAQ+ SAPQ= SBAQ+ SAPQ= SBAPQ

= SBAP+ SBPQ= SBAP+ SBPC = SCAP.

S

A

B

C

A

B

C

1

1

1

Figure 1-20

Example 1.28 (Desargues’ Axiom)S AA1,
S BB1, and S CC1 are three distinct lines. If
AB ‖ A1B1 and AC‖ A1C1 then BC‖ B1C1.

Proof. We need to showSB1BC = SC1BC.
Noting thatAB ‖ A1B1 and AC ‖ A1C1, by
the co-side theorem we can eliminateB1 and
C1

SBCC1=
CC1

CS
SS BC=

AA1

AS
SS BC; SBCB1= =

BB1

BS
SS BC=

AA1

AS
SS BC.

HenceSB1BC = SC1BC.

2D

2C

2B

2A
1D

1C

1B

1AD C

BA

Figure 1-21

Example 1.29Let A1, B1, C1, and D1 be points
on the sides CD, DA, AB, and BC of a
parallelogram ABCD such that CA1/CD =
DB1/DA = AC1/AB = BD1/BC = 1/3.
Show that the area of the quadrilateral
formed by the lines AA1 BB1, CC1, and DD1

is one thirteenth of the area of parallelogram
ABCD.

4This result is a special case of Pappus’ theorem. It was referred to as Pascal’s theorem
by Hilbert in [24] and was used as an axiom in [5].
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Proof. By the co-side theorem,

SABCD

SABA2

= 2 · SABA2 + SA2BD + SA2AD

SABA2

= 2(1+
DB1

B1A
+

SAA1D

SABA1

) = 2(1+
1
2
+

2
3

) =
13
3

Then

SA2B2C2D2

SABCD
=

SABCD− SABA2 − SBCB2 − SCDC2 − SDAD2

SABCD
= 1− 12

13
=

1
13
.

P Q

A B

CD

Figure 1-22

Proposition 1.30Let ABCD be a parallelo-
gram, P and Q be two points. Then SAPQ+

SCPQ = SBPQ+ SDPQ or SPAQB= SPDQC.

Proof. Let O be the intersection ofAC andBD. SinceO is the midpoint ofAC, by Propo-
sition 1.18,SAPQ+ SCPQ = 2SOPQ. For the same reason,SBPQ+ SDPQ = 2SOPQ. We have
proved the first formula. The second formula is just another form of the first one.

Exercises 1.31

1. In Example 1.28, letAA1 ‖ BB1 ‖ CC1 are three parallel lines. IfAB ‖ A1B1 and
AC ‖ A1C1 thenBC ‖ B1C1.

2. Let l be a line passing through the vertex ofM of a parallelogramMNPQand intersect-
ing the linesNP, PQ, andNQat pointsR, S, andT. Show that 1/MR+1/MS = 1/MT.

3. The diagonals of a parallelogram and those of its inscribed parallelogram are concurrent.

4. Use the same notations as Example 1.29. IfCA1/CD = DB1/DA = AC1/AB =
BD1/BC = r then

SA2B2C2D2
SABCD

= r2

r2−2r+2.

5. LetP,Q be the midpoints of the diagonals of a trapezoidABCD. ThenPQ is half of the
difference of the two parallel sides ofABCD.

6. A line parallel to the base of trapezoidABCDmeets its two sides and two diagonals at
H, G, F, andE. Show thatEF = GH.

1.6 The Co-angle Theorem

In this section, we will discuss more basic theorems, the co-angle theorems, in the area
method. However we have not incorporated these theorems into our computer program.
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An angle is the figure consisting of a pointO and two rays emanating fromO. The
symbol for angle is∠. We assume the value of the angle is≥ 0 and≤ 180◦.

In a triangleABC, we use∠A, ∠B, and∠C to represent the three inner angles of the
triangle at verticesA, B, andC respectively. Then we have the following formula for the
area of a triangleABC (for details see Section 1.8 below.)

(1.4) ▽ABC=
1
2

AB · BCsin(∠B) =
1
2

AC ·CBsin(∠C) =
1
2

AB · ACsin(∠A).

If ∠ABC= ∠XYZor ∠ABC+ ∠XYZ= 180◦, we say△ABC and△XYZareco-angle trian-
gles.

B

A

C

X

Z1Z

Figure 1-23

Proposition 1.32 (The Co-angle Theorem)If ∠ABC =

∠XYZ or∠ABC+ ∠XYZ = 180◦, we have▽ABC
▽XYZ =

AB·BC
XY·YZ.

Proof 1.This is a consequence of (1.4).

Proof 2.The following proof uses the co-side theorem only. Without loss of generality, we
assume thatB = Y andZ is on lineBC (Figure 1-23). If∠ABC = ∠XYZ, X is on lineAB.
We have

▽ABC
▽XYZ

=
▽ABC
▽ABZ

· ▽ABZ
▽XYZ

=
BC
BZ
· AB

XY
=

AB · BC
XY · YZ

.

If ∠ABC+ ∠XYZ= 180◦, the result can be proved similarly.

The co-angle theorem, though obvious, can be used to prove nontrivial geometry theo-
rems easily.

Example 1.33In triangle ABC, if∠B = ∠C then AB= AC.

Proof. By the co-angle theorem, 1= ▽ABC
▽ACB =

AB·BC
AC·BC =

AB
AC.

Example 1.34If ABCD is a parallelogram, then AB= CD.

Proof. SinceABCD is a parallelogram, we have∠CAB = ∠ACD and▽ABC = ▽BCD =
▽ACD. By the co-angle theorem, we have

1 =
▽ABC
▽ACD

=
AC · AB
AC ·CD

=
AB
CD
.

Example 1.35F is a point on side BC of△ABC such that AF is the bisector of∠BAC. Then
AB
AC =

FB
FC .
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Proof. By the co-side and co-angle theorems,

FB
FC
=
▽FAB
▽FAC

=
FA · AB
FA · AC

=
AB
AC
.

Example 1.36In triangles ABC and XYZ, if∠A = ∠X, ∠B = ∠Y thenAB
XY =

BC
YZ =

CA
ZX.

Proof. From the hypotheses, we also have∠C = ∠Z. By the co-angle theorem,

▽ABC
▽XYZ

=
AB · AC
XY · XZ

=
AB · BC
XY · YZ

=
AC ·CB
XZ · ZY

.

The result follows from the above formula immediately.

Two triangles are said to besimilar if their corresponding angles are equal. The above
example implies that the corresponding sides of two similartriangles are proportional.

Example 1.37In triangle ABC, AB= AC, AB⊥AC, and M is the midpoint of AB. The
perpendicular from A to CM meets BC in P. Show that PC= 2PB.

A B

C

M

P

Figure 1-24

Proof. Note that∠PAC = ∠AMC and ∠PAB =
∠ACM. By the co-side and co-angle theorems,

PC
PB

=
▽PAC
▽PAB

=
▽PAC
▽MAC

· ▽MAC
▽PAB

=
PA · AC
MA · MC

· AC · MC
PA · AB

=
AC · AC
MA · AB

=
AB · AB
MA · AB

=
AB
MA
= 2.

Example 1.38AM is the median of triangle ABC. D,E are points on AB,AC such that
AD = AE. DE and AM meet in N. Show thatDN

NE =
AC
AB.

A

B CM

E

D
N

Figure 1-25

Proof. From BM = MC, we have▽ABM = ▽ACM.
Now by the co-angle theorem,

DN
NE

=
▽ADN
▽ANE

=
▽ADN
▽ABM

· ▽ACM
▽ANE

=
AD · AN
AB · AM

· AC · AM
AN · AE

=
AD · AC
AB · AE

=
AC
AB
.
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Example 1.39Four rays passing through a point O meet two lines sequentially in A, B,C, D
and P,Q,R, S . Show thatAB·CD

AD·BC =
PQ·RS
PS·QR.

O

A

P

B

Q

C

D

R
S

Figure 1-26

Proof. By the co-side and co-angle theorem

AB ·CD · PS · QR
AD · BC · PQ · RS

=
AB
AD
· CD

BC
· PS

PQ
· QR

RS

=
▽OAB
▽OAD

· ▽OCD
▽OBC

· ▽OPS
▽OPQ

· ▽OQS
▽ORS

=
▽OAB
▽OPQ

· ▽OCD
▽ORS

· ▽OPS
▽OAD

· ▽OQR
▽OBC

=
OA ·OB ·OC ·OD ·OP ·OS ·OQ ·OR
OP ·OQ ·OR·OS ·OA ·OD ·OB ·OC

= 1.

Example 1.40AM is the median of triangle ABC. A line meets the rays AB,AC, and AM at
P,Q, and N respectively. Show thatAM

AN =
1
2( AC

AQ +
AB
AP).

A

B CM

P
QN

Figure 1-27

Proof. By the co-angle theorem,

AP · AQ
AB · AC

=
▽APQ
▽ABC

=
▽APN
▽ABC

+
▽AQN
▽ABC

=
▽APN

2▽ ABM
+
▽AQN

2▽ ACM

=
AP · AN

2AB · AM
+

AQ · AN
2AC · AM

=
1
2

(
AP
AB
+

AQ
AC

)
AN
AM

Multiplying the two sides of the above formula byAM·AB·AC
AN·AP·AQ, we obtain the result.

B C

A

M
N

Figure 1-28

Example 1.41Take two points M,N on the
sides AB,AC of triangle ABC such that
∠MCB= ∠NBC= ∠A/2. Then BM= CN.

Proof. Since∠BMC = ∠A + ∠ACB− ∠A/2 and∠CNB = ∠A + ∠ABC− ∠A/2, we have
∠BMC+ ∠CNB = ∠A + ∠ACB+ ∠ABC = 180◦. Hence in trianglesBMC andCNB, we
have∠MCB= ∠NBC, ∠BMC+ ∠CNB= 180◦. By the co-angle theorem,

MC · BC
NB · BC

=
▽BMC
▽CNB

=
BM · MC
CN · NB
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i.e., 1= BM/CN.

B

C

A D

Figure 1-29

Example 1.42 (Pythagorean Theorem5) In
triangle ABC, let BC= a,CA = b,AB = c, and
∠ACB= 90◦. Show that a2 + b2 = c2.

Proof. Let the altitude on sideAB be CD = h. Then▽ACD + ▽BCD = ▽ABC, i.e.,
▽ACD
▽ABC +

▽BCD
▽ABC = 1. Since∠ACD= ∠ABC, ∠BCD= ∠CAB, by the co-angle theorem we have

bh/(ac) + ah/(bc) = 1.

Also note thatab = 2 ▽ ABC = ch, we haveh = ab/c. Substituting this into the above
equation, we prove the result.

Proposition 1.43 (The Co-angle Inequality)If ∠ABC> ∠XYZ and∠ABC+ ∠XYZ< 180◦ then
▽ABC
▽XYZ >

AB·BC
XY·YZ.

Proof 1.This is a consequence of (1.4) on page 21 and the property of the sine function.

Proof 2. The following proof does not use the trigonometric functions. Draw an isosceles
trianglePQRsuch thatQP = PR and∠QPR = ∠ABC− ∠XYZ. ProduceQR to S such
that∠RPS= ∠XYZ. Then we have∠QPS = ∠ABC and▽QPS > ▽RPS. By the co-angle
theorem

Q R

P

S

Figure 1-30

▽ABC
▽XYZ

=
▽ABC
▽QPS

▽QPS
▽RPS

▽RPS
▽XYZ

=
AB · BC
QP · PS

▽QPS
▽RPS

RP· PS
XY · YZ

=
AB · BC
XY · YZ

▽QPS
▽RPS

(QP= RP)

>
AB · BC
XY · YZ

.

Corollary 1.44

1. If ∠ABC> ∠XYZ and∠ABC+ ∠XYZ> 180◦ then ▽ABC
▽XYZ <

AB·BC
XY·YZ.

5In Chinese literature, this theorem is called the Gou-Gu theorem and is attributed to
Shang-Gao (1100 B.C.). This celebrated theorem is one of themost important theorems in
the whole realm of geometry. There are about 370 proofs for this theorem in [28].
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2. (The Converse of the Co-angle Theorem)If ▽ABC
▽XYZ =

AB·BC
XY·YZ then ∠ABC = ∠XYZ or

∠ABC+ ∠XYZ= 180◦.

Example 1.45In triangle ABC, if∠B > ∠C then AC> AB.

Proof. By the co-angle inequality, 1= ▽ABC
▽ACB >

AB·BC
AC·BC =

AB
AC. .

Corollary 1.46

1. Among the segments from a point to any point on a line, the perpendicular is the
shortest.

2. The area of any quadrilateral is less than or equal to half of the products of its two
diagonals.

Example 1.47If AB ≥ AC and P is a point between B and C then AB> AP.

A

B CP

Figure 1-31

Proof. SinceAB ≥ AC, we have∠ACB ≥ ∠ABC.
Then∠APB= ∠ACB+ ∠CAP> ∠ABC= ∠ABP. By
the co-angle inequality, we haveAB> AP.

Example 1.48The sum of any two sides of a triangle is larger than the third one.

A

B C D

Figure 1-32

Proof. ProduceBC to D such thatCD = AC. Then
∠BDA= ∠CDA= ∠CAD= ∠BAD−∠BAC< ∠BAD.
In triangle ABD, by Example 1.45 we haveAB <
BD = BC+CD = BC+ AC.

Example 1.496 Take three points M,K, and L on the three sides AB, BC, and CA of triangle
ABC respectively. Show that at least one of▽AML,▽BMK, and▽CKL is less that14▽ABC.

Proof. Let AM = r ·AB, BK = s·BC, andCL = t ·AC. Thenr, s, andt are positive numbers
less that 1. AlsoBM = (1− r)AB,CK = (1− s)BC, andAL = (1− t)AC. By the co-angle
theorem,

6This is a problem from the 1966 International Mathematical Olympiad.
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A B

C

M

L K

Figure 1-33

▽AML
▽ABC

· ▽BMK
▽ABC

· ▽CKL
▽ABC

=
AM
AB
· AL

AC
· BM

AB
· BK

BC
· CK

BC
· CL

AC
= r · (1− t) · (1− r) · s · (1− s) · t
= r(1− r) · s(1− s) · t(1− t) ≤ (1/4) · (1/4) · (1/4).

As a consequence, one of▽AML
▽ABC ,

▽BMK
▽ABC , and ▽CKL

▽ABC must be less than 1/4.

A

B

C

P

X

YZ

N

M

Figure 1-34

Example 1.50 (Erdös’ Inequality) P is a point inside
the triangle ABC. Let the distances between the point
P and the lines BC,CA, and AB be x, y, and z respec-
tively. Show that PA+ PB+ PC ≥ 2(x+ y+ z).

Proof.Take pointsN andM onABandACsuch thatAM = AB,AN = AC. ThenMN = BC
and

z · AC+ y · AB= z · AN+ y · AM = 2(▽APN+ ▽APM) ≤ PA · MN = PA · BC

i.e.,z · (AC/BC) + y · (AB/BC) ≤ PA. Similarly

x · (AB/AC) + z · (BC/AC) ≤ PB; x · (AC/AB) + y · (BC/AB) ≤ PC.

Adding the three equations together, we have

PA+ PB+ PC ≥ x · ( AB
AC
+

AC
AB

) + y(
BC
AB
+

AB
BC

) + z · (BC
AC
+

AC
BC

) ≥ 2(x+ y+ z).

Example 1.51 (The Steiner-Lehmus Theorem7) In triangle ABC, if the bisectors for angles B
and C are equal then AB= AC.

B C

I

A

E DP

Figure 1-35

Proof. Without loss of generality, we assumeAB ≥
AC. Then∠ACB ≥ ABC. Let I be the intersection
of BD andCE. Then∠DCI ≥ EBI. Take a point
P betweenDI such that∠PCI = ∠EBI. We need
only to show thatP = D. In trianglesPCI andEBI,
∠PCI = ∠EBI, ∠PIC = ∠EIB. Then∠CPI = ∠BEI.

In trianglesPBC andEBC, ∠CPB= ∠BEC, ∠PCB≥ ∠EBC. By the co-angle theorem and
the co-angle inequality,

PC · PB
BE ·CE

=
▽PBC
▽EBC

≥ PC · BC
BE · BC

,
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i.e., PB
CE ≥ 1. ThereforePB≥ CE = DB. SinceP is onDB, we haveP = D.

Exercises 1.52

1. We mentioned earlier that rarely are there congruent and similar triangles in the diagram
of a geometry theorem, but there are many co-side triangles.There are also many co-
angle triangles in any figure. Try to count the co-angle triangles in Figures 1-23, 1-24,
and 1-25. This is why the co-angle theorem works well for manygeometry theorems.

2. On the two sidesAB and AC two squaresABDE and ACFG are erected externally.
Show that▽ABC= ▽AEG.

3. In triangleABC, the bisector of the external angle (at vertexA) meetsBC in D. Show
that AB

AC =
BD
CD.

4. In triangleABC, the bisectors of the inner and external angles (at vertexA) meetBC in
D andE. Show thatBD

CD =
BE
CE.

1.7 Pythagoras Differences

To solve geometry problems involving perpendiculars and congruence of line segments, we
need to introduce a new geometry quantity: thePythagoras difference. To do that, we first
introduce the concept of co-area of triangles.

A B

Q P

C

Figure 1-36

On sideAB of a triangleABC, a squareABPQ is
erected such thatSABC andSABPQhave the same sign
(Figure 1-36). Theco-area CBAC is a real number
such that

CBAC =

{
▽ACQ if ∠A ≤ 90◦;
− ▽ ACQ if ∠A > 90◦.

SimilarlyCABC is equal to▽BPCor−▽BPCaccording to whether∠B is acute or obtuse.
Generally speaking,CBAC,CABC, andCACB are different. But we haveCBAC = CCAB,CABC =

CCBA, andCACB = CBCA.

Proposition 1.53For triangle ABC, we have CABC+CBAC = AB2/2.

Proof. As in Figure 1-36, if both∠A and∠B are acute then

CABC+CBAC = ▽BPC+ ▽ACQ= ▽ABPQ/2 = AB2/2.

7For interesting extensions of this theorem, see [37].
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If ∠A is obtuse and∠B is acute then

CABC+CBAC = ▽BPC− ▽ACQ= ▽ABPQ/2 = AB2/2.

If ∠A is acute and∠B is obtuse then

CABC+CBAC = − ▽ BPC+ ▽ACQ= ▽ABPQ/2 = AB2/2.

By Proposition 1.53,

CABC+CBAC =
AB2

2
,CBCA+CABC =

BC2

2
,CBAC+CBCA =

CA2

2
.

From the above equations, we have

CABC = (AB2 + BC2 − AC2)/4,

CBAC = (AB2 + AC2 − BC2)/4,

CACB = (AC2 + BC2 − AB2)/4.

Definition 1.54 We call AB2 + BC2 − AC2 the Pythagoras difference of triangle ABC with
regard to B, and denote it by PABC, i.e.,

PABC = 4CABC = AB2 + BC2 − AC2.

Proposition 1.55 (Pythagorean Theorem)

1. PABC = 0 if and only if∠ABC= 90◦.

2. PABC > 0 if and only if∠ABC< 90◦.

3. PABC < 0 if and only if∠ABC> 90◦.

Proof. As shown in Figure 1-36, it is clear that▽BPC= 0 if and only if∠ABC= 90◦. The
second and third cases come from the definition of the co-areas directly.

Proposition 1.56 (The Pythagoras Difference Theorem)If ∠ABC, 90◦, we have

1. ∠ABC= ∠XYZ if and only ifPABC

PXYZ
= AB·BC

XY·YZ;

2. ∠ABC+ ∠XYZ= 180◦ if and only if PABC

PXYZ
= −AB·BC

XY·YZ.

Proof. This proposition is a consequence of the definition of Pythagoras difference and the
converse of the co-angle theorem on page 25.
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Example 1.57In triangle ABC, let BC= a,CA = b, and AB= c. Express the length m of
the median CM in terms of a, b, and c.

A B

C

M

Figure 1-37

Solution. Without loss of generality, let us assume
that ∠A is not a right angle. Applying Proposition
1.56 to trianglesBACandMAC, we have

PMAC

PBAC
=

MA ·CA
AB ·CA

=
1
2

(AB= 2MA).

HencePBAC = 2PMAC. i.e.,b2 + c2 − a2 = 2(b2 + c2/4−m2). Now it is clear that

m2 = (a2 + b2 − c2/2)/2.

Example 1.58In triangle ABC, let BC= a,CA = b, and AB= c. Express the length h of
the altitude CD in terms of a, b, and c.

A B

C

D

Figure 1-38

Solution.Without loss of generality, we assume that
∠A is acute. Applying Proposition 1.56 to triangles
DAC andBAC, we have

PDAC/PBAC = (AD · b)/(b · c) = AD/c.

Let x = AD. By the Pythagorean theorem,b2 − h2 = x2. ThenPDAC = x2 + b2 − h2 = 2x2.
Thus

x/c = PDAC/PBAC = 2x2/(b2 + c2 − a2),

i.e., x = (b2 + c2 − a2)/(2c). Sincex2 = b2 − h2, we obtain the final result:

h2 = b2 − (b2 + c2 − a2)2/(4c2).

Example 1.59In triangle ABC, let BC= a,CA = b, and AB= c. Express the length of the
bisector CF in terms of a, b, and c.

A B

C

F

Figure 1-39

Solution. We assume that∠A , 90◦. Applying
Proposition 1.56 to trianglesBACandFAC

PFAC/PBAC = (AF · b)/b · c = AF/c.



30 Chapter 1. Geometry Preliminaries

By Example 1.36,AF/BF = b/a; henceAF = (bc)/(a+ b). Let x = CF. We have

AF/c = PFAC/PBAC = (AF2 + b2 − x2)/(b2 + c2 − a2).

SubstitutingAF = bc/(a+ b) into the above equation, we obtain

x2 = ab((a+ b)2 − c2)/(a+ b)2.

We define thePythagoras difference for an oriented quadrilateral ABCDas follows.

PABCD = AB2 − BC2 +CD2 − DA2.

It is easy to derive the following properties for the Pythagoras differences of quadrilaterals.

1. PABCD = PCDAB = PBADC = PDCBA.

2. PABCD = −PBCDA = −PDABC = −PADCB = −PCBAD.

3. PABCD = PBAC− PDAC = PABD− PCBD = PDCA − PBCA = PCDB − PADB.

4. PABBC= PABC,PAABC= −PBAC,PABCC= −PACB,PABCA= PBAC.

5. PABAC= 0,PABCB= 0.

6. PAPBQ+ PBPCQ= PAPCQ. (The additivity of the Pythagoras difference.)

Proposition 1.60If A, B, and C are collinear, we have PABC = 2BA · BC.

Proof. SinceAC = AB−CB, we have

PABC = AB
2
+CB

2 − AC
2
= AB

2
+CB

2 − (AB−CB)2 = 2BA · BC.

Definition 1.61 We use the notation AB⊥CD to denote that four points A, B,C, and D satisfy
one of the following conditions: line AB is perpendicular toline CD; A= B; or C = D.

The following result gives a criterion forAB⊥CD using the Pythagoras difference.

A

B D

C

M

Figure 1-40

Proposition 1.62AC⊥BD if and only if PABCD =

PABD− PCBD = 0.

Proof. Let M andN be the feet of the perpendicu-
lars from pointsA andC to line BD. Then by the
Pythagorean theorem,
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PABD = AB
2
+ BD

2 − AD
2

= AM
2
+ BM

2
+ BD

2 − AM
2 − MD

2

= BM
2
+ BD

2 − (BD− BM)2

= 2BM · BD.

Similarly PCBD = 2BN · BD. We havePABD = PCBD if and only if MB = NB, i.e., M = N
which is equivalent toAC⊥BD.

Proposition 1.63Let P and Q be the feet of the perpendiculars from points A and Cto BD.
Then PABCD = 2QP · BD.

Proof. By Propositions 1.62 and 1.60,

PABCD = PABD− PCBD = PPBD− PQBD

= 2BP · BD− 2BQ · BD = 2QP · BD.

Proposition 1.64Let ABCD be a parallelogram. Then for two points P and Q, we have
PPAQB= PPDQC.

Proof. This is a consequence of Proposition 1.63.

Proposition 1.65Let D be the foot drawn from point P to a line AB (A, B). Then we have

AD

DB
=

PPAB

PPBA
,

AD

AB
=

PPAB

2AB
2
,

DB

AB
=

PPBA

2AB
2
.

Proof. By Proposition 1.62,

PPAB = PDAB = 2AB · AD, PPBA = PDBA = 2BA · BD.

The result is clear now.

Proposition 1.66Let AB and PQ be two nonperpendicular lines and Y be the intersection of
line PQ and the line passing through A and perpendicular to AB(Figure 1-41). Then

PY

QY
=

PPAB

PQAB
,

PY

PQ
=

PPAB

PPAQB
,

QY

PQ
=

PQAB

PPAQB
.
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A B

P

Q

Y

P Q1 1

Figure 1-41

Proof. We need only to show the first equa-
tion. LetP1 andQ1 be the orthogonal projec-
tions from P and Q to line AB respectively.
By Proposition 1.62,PPAB

PQAB
=

PP1AB

PQ1AB
=

AP1·AB
AQ1·AB

=

AP1

AQ1
= PY

QY
.

Example 1.67 (The Orthocenter Theorem)Show that the three altitudes of a triangle are con-
current.

C B

A

E

F

H

Figure 1-42

Proof. Let the two altitudesAF andBE of triangle
ABCmeet inH. We need only to proveCH⊥AB, i.e.,
PACH = PBCH. By Proposition 1.62,PACH = PACB =

PBCA = PBCH.

FE

D

O
C

BA

Figure 1-43

Example 1.68 (Orthocenter-dual)Let ABCO
be a quadrilateral. From point O perpendiculars to
OA,OB, and OC are drawn which meet BC,CA, and
AB in D,E, and F respectively. Show that D,E, and
F are collinear.

Proof. Let DE and AB meet inZ. We need only to showZ = F, i.e., AF
BF
= AZ

BZ
. By

Proposition 1.66, we can eliminateF: AF
BF
=

PAOC

PBOC
. By the co-side theorem, we can eliminate

Z: BZ
AZ
=

SBDE
SADE

. To eliminateE, by Proposition 1.66 we have

SBDE =
EC

AC
SBDA =

PCOB

PCOAB
SBDA, SADE =

EA

AC
SACD =

PAOB

PCOAB
SACD.

Then

AF

BF
· BZ

AZ
=

PAOC

PBOC
· SBDAPCOB

PCOAB
· PCOAB

PAOBSACD

=
PAOC

PAOB
· SBDA

SACD
=

PAOC

PAOB
· BD

CD
=

PAOC

PAOB
· PAOB

PAOC
= 1.

A

B C

D

E

F

G

Figure 1-44

Example 1.69On the two sides AB and AC of trian-
gle ABC, two squares ABDE and ACFG are drawn
externally. Show that BG⊥CE.
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Proof.

PBCGE = PBCGA+ PBAGE (Additivity)
= PBCAA+ PACGA+ PBAAE+ PAAGE (Additivity)
= −PBAC− PGAE (AG⊥AC,AB⊥AE)
= 0 (∠BAC+ ∠GAE= 180◦)

B C

A

D

J

M

N

Figure 1-45

Example 1.70In triangle ABC, take a point J on the
altitudes AD. Lines BJ and CJ meet AC and AB in
N and M respectively. Show that∠MDA = ∠ADN.

Proof. To prove∠MDA = ∠ADN, by the co-angle
theorem and Proposition 1.56 we need only to show
PMDA/SMDA = PADN/SADN.

SMDA =
AM
AB

SBDA =
SAJC

SAJBC
SBDA the co-side theorem;

SADN =
AN
AC

SADC =
SABJ

SABCJ
SADC the co-side theorem;

PADN =
NC
AC

PADA =
SBCJ

SABCJ
PADA Proposition 1.65;

PMDA =
MB
AB

PADA =
SBCJ

SAJBC
PADA Proposition 1.65;

Then
PADN

PMDA

SMDA

SADN
=

SBDA

SADC

SAJC

SABJ
=

BD

DC

DC

BD
= 1.

Exercises 1.71

1. In Example 1.69, show thatBG= CE.

2. In Example 1.69, letM be the midpoint ofBC. Show thatAM⊥EG andEG= 2AM.

3. The sum of the squares of the diagonals of a parallelogram is equal to sum of the squares
of the four sides of the given parallelogram. (Use Example 1.57.)

4. In the quadrilateralABCD, if ∠ABC= ∠CDA= 90◦ andP is the intersection ofAC and
BD then PBAD

PBCD
= AP

CP.

1.8 Trigonometric Functions

We have discussed two major geometric quantities: the area and the Pythagoras differ-
ence. Area is a well-known concept and has been used since thetime of Euclid. On the
other hand, the Pythagoras difference is unfamiliar to most readers. In this section, we
will introduce the trigonometric functions and use them to represent areas and Pythagoras
differences.
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A B

C

Figure 1-46

The sine and cosine functions can be defined in the usual
way. LetABCbe a triangle with∠B = 90◦. Then

sin(∠A) =
BC
AC
, cos(∠A) =

AB
AC
.

We can also use the area to define trigonometric functions.

Definition 1.72 sin(∠A) is twice the signed area of a triangle ABC such that AB= AC = 1.

It is easy to see that the two definitions are consistent. The following properties of the
trigonometric functions can be derived from the definition directly.

1. sin(0)= sin(180◦) = 0; sin(90◦) = 1.

2. sin(∠X) = sin(180◦ − ∠X).

3. sin(∠A) = sin(∠B) if and only if ∠A = ∠B or ∠A+ ∠B = 180◦.

4. Let us assume that∠A+ ∠B ≤ 180◦. ThenA < B implies sin(∠A) < sin(∠B), and vise
versa. (This is a consequence of Proposition 1.43.)

Proposition 1.73SABC =
1
2AB · AC · sin(∠A).

Proof. Take two pointsX andY on AB andAC respectively such thatAX = AY = 1. By
the co-angle theorem

▽ABC= ▽AXY
AB · AC
AX · AY

= ▽AXY · AB · AC =
1
2

AB · AC · sin(∠A).

Applying the above proposition to the three angles of triangle ABC respectively, we
have

▽ABC=
1
2

bcsin(∠A) =
1
2

acsin(∠B) =
1
2

absin(∠C).

As a direct consequence, we have

Proposition 1.74 (The Sine Law)In triangle ABC, let BC= a,CA= b, and AB= c. Then

sin(∠A)/a = sin(∠B)/b = sin(∠C)/c.

The following is a very useful property of trigonometric functions.
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A B

P

C

Figure 1-47

Proposition 1.75 (The Visual Angle Theorem)
Emanating from P, there are three rays PA,PB, and
PC such that∠APC = α, ∠CPB = β, and∠APB =
γ = α + β < 180◦. Then A, B, and C are collinear if
and only if

sin(∠γ)/PC = sin(∠α)/PB+ sin(∠β)/PA.

Proof. If points A, B, andC are collinear then we have▽PAB= ▽PAC+ ▽PCB, i.e.,

PA · PB · sin(∠γ) = PA · PC · sin(∠α) + PB · PC · sin(∠β).

We obtain the result by dividingPA · PB · PC from both sides of the above formula.
Conversely, from the above formula, we have▽PAB = ▽PAC + ▽PCB which implies
▽ABC= | ▽ PAB− ▽PAC− ▽PCB| = 0, i.e.,A, B, andC are collinear.

Proposition 1.75 has many applications.

A B

C

E

Figure 1-48

Example 1.76In triangle ABC,∠ACB= 120◦; CE is
the bisector of angle C. Show that1/CE = 1/CA+
1/CB.

Proof. By Proposition 1.75,

sin(120◦)/CE = sin(60◦)/CA+ sin(60◦)/CB.

Since sin(120◦) = sin(180◦ − 120◦) = sin(60◦), we obtain the result by dividing sin(60◦)
from both sides of the above equation.

C

BA D

Figure 1-49

Example 1.77In the right triangle ABC , let BC=
a,AC = b, and CD = h be the altitude on the hy-
potenuse. Show that1/h2 = 1/a2 + 1/b2.

Proof. Let α = ∠ACD, β = ∠BCD. By Proposition 1.75

sin(α + β)/h = sin(α)/a+ sin(β)/b.

We have sin(α + β) = sin(∠ACB) = 1, sin(α) = sin(∠CBD) = h/a, sin(β) = sin(∠CAD) =
h/b. Substituting these into the above equation, we obtain the result.
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Definition 1.78 Let∠A be an angle. The cosine of∠A is defined as follows.

cos(∠A) =

{
sin(90◦ − ∠A) if ∠A ≤ 90◦;
− sin(∠A− 90◦) if ∠A > 90◦.

Proposition 1.79 (The Cosine Law)In triangle ABC, we have

PABC = 2AB ·CB · cos(∠B).

Proof. In Figure 1-36, if∠B ≤ 90◦

CABC =
1
2

AB · BC · sin(90◦ − ∠B) =
1
2

AB · BC · cos(∠B).

ThusPABC = 4CABC = 2AB · BC · cos(∠B). Other cases can be proved similarly.

Example 1.80Letα andβ both be acute angles. Show that

sin(α + β) = sin(α) cos(β) + sin(β) cos(α).

Proof. In Proposition 1.75, let us assume thatPC⊥AB, PC = h, PA= b, andPB= a. Then

sin(α + β) = (h/a) sin(α) + (h/b) sin(β) = sin(α) cos(β) + sin(β) cos(α).

It is easy to show that the angles in the preceding example arenot necessarily acute. In
Example 1.80, letα + β = 90◦. We have the well-known formula:

sin(α)2 + cos(α)2 = 1.

Example 1.81sin(30◦) = 1
2; sin(45◦) =

√
2/2; sin(60◦) =

√
3/2.

Proof. In Proposition 1.80, settingα = β = 30◦, we have

sin(60◦) = 2 sin(30◦) cos(30◦).

Since cos(30◦) = sin(90◦ − 30◦) = sin(60◦), we have sin(30◦) = 1
2. Similarly settingα =

30◦, β = 60◦, we have sin(60◦) =
√

3/2; settingα = β = 45◦, we have sin(45◦) =
√

2/2.

So far, the angles are always positive. To represent the signed areas using trigonometric
functions, we need to introduce theoriented angle, which is also denoted by∠.

Definition 1.82 The oriented angle)∠ABC is a real number such that (1) the absolute value
of )∠ABC is the same as the ordinary angle∠ABC, and (2))∠ABC has the same sign with
SABC.
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It is clear that for any angleα, we have−180◦ < α ≤ 180◦. The arithmetic for oriented
angles is understood to be mod 360◦ and between−180◦ and 180◦,

Definition 1.83 We extend the definition of the sine and cosine functions to the oriented
angles as follows. Let)∠α be a negative angle. Then

sin()∠α) = − sin(−)∠α), cos()∠α) = cos(−)∠α).

With the above definition, the properties for these two functions proved before are still
valid. In particular, we have

Proposition 1.84SABC =
1
2AB · BC · sin()∠ABC),PABC = 2AB · BC · cos()∠ABC).

Example 1.85 (The Herron-Qin Formula8) In triangle ABC,

16S2
ABC = 4AB

2 ·CB
2 − P2

ABC.

Proof. By Proposition 1.84, sin()∠ABC) = 2SABC

AB·BC, cos()∠ABC) = PABC

2AB·BC. Since
sin()∠ABC)2 + cos()∠ABC)2 = 1, we have

4S2
ABC

AB2 · BC2
+

P2
ABC

4AB2 · BC2
= 1.

Thus 16S2
ABC = 4AB

2 ·CB
2 − P2

ABC.

A B

P

Q

O

Y

X

Figure 1-50

Definition 1.86 The oriented angle between
two directed lines PQ and AB, denoted by
)∠(PQ,AB), is defined as follows. Take points
O,X, and Y such that OYQP and OXBA are
parallelograms. Then we define)∠(PQ,AB) =
)∠XOY.

With the above definition, it is easy to check the following properties for the oriented
angles.

1. )∠(PQ,AB) = −)∠(AB,PQ).

2. )∠(PQ,AB) = 180◦ + )∠(QP,AB) = 180◦ + )∠(PQ, BA).

8Qin (1247 A.D.) is an ancient Chinese mathematician who discovered the area formula
for triangles in exact form of this proposition [171].
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3. )∠(PQ,AB) = )∠(QP, BA).

4. )∠(PQ,AB) + )∠(AB,CD) = )∠(PQ,CD).

We can now represent the signed area and the Pythagoras difference of quadrilaterals using
trigonometric functions.

Proposition 1.87SABCD=
1
2AC · BD · sin()∠(AC, BD)).

Proof. Take a pointX such thatAXDB is a parallelogram. ThenAX = BD. By Proposition
1.30,SABCD = SAACX= SXAC =

1
2XA · AC · sin()∠XAC) = 1

2AC · BD · sin()∠(AC, BD)).

Proposition 1.88PABCD = 2AC · BD · cos()∠(AC,DB)).

Proof. Take a pointX such thatCXDB is a parallelogram. ThenCX = BD. By Propo-
sition 1.64,PABCD = −PCBAD = −PCCAX = PXCA = 2XA · AC · cos()∠XCA) = 2AC · BD ·
cos()∠(AC,DB)).

Example 1.89 (The Herron-Qin Formula for Quadrilaterals)For a quadrilateral ABCD, we have

16S2
ABCD= 4AC

2 · BD
2 − P2

ABCD.

Proof. By Propositions 1.87 and 1.88, sin()∠(AC, BD)) = 2SABCD

AC·BD , cos()∠(AC,DB)) = PABCD

2AC·BD.

Since sin()∠(AC, BD))2 + cos()∠(AC,DB))2 = 1, we have

4S2
ABCD

AC2 · BD2
+

P2
ABCD

4AC2 · BD2
= 1.

Thus 16S2
ABCD= 4AC

2 · BD
2 − P2

ABCD.

Exercises 1.90

1. Use Example 1.80 to prove the following formulas

sin(α − β) = sin(α) cos(β) − cos(α) sin(β)

cos(α + β) = sin(α) sin(β) − cos(α) cos(β)

cos(α − β) = sin(α) sin(β) + cos(α) cos(β)

2. Let tan(α) = sin(α)
cos(α) . Show that

tan(α + β) =
tan(α) + tan(β)

1− tan(α) tan(β)
, tan(α − β) = tan(α) − tan(β)

1+ tan(α) tan(β)
.
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3. Prove the following version of the Herron-Qin formula forquadrilaterals.

S2
ABCD= (p− a)(p− b)(p− c)(p− d) − a · b · c · d · cos(

∠B+ ∠D
2

)2

wherea = AB, b = BC, c = CD, d = DA, andP = (a + b + c + d)/2. (Hint. We have
S2

ABCD= (SABC+ SACD)2. Then use Proposition 1.84.)

4. Continue from the above exercise. IfABCD is convex and cyclic thenS2
ABCD = (p −

a)(p− b)(p− c)(p− d).

5. Continue from the above exercise. IfABCDalso has an inscribed circle thenS2
ABCD =

abcd.

1.9 Circles

In this section, we will discuss another important geometric object: the circle. Points on
the same circle are calledco-circularor cyclic.

I

J X

A

B

Figure 1-51

O
J

AB

C

Figure 1-52

Let J be a fixed reference point on the circle,I the antipodal ofJ, andX a point on
the tangent of the circle at pointJ such thatSIJX > 0 (Figure 1-51). For any pointA on
the circle,)∠A is defined to be the oriented angle)∠AJX, i.e., the (oriented) inscribed angle
corresponding to the arcJA. Then for two pointsA andB on the circle,)∠B − )∠A = )∠BJA
(Figure 1-51).

We now define theoriented chordon the circle. The absolute value of the oriented chord
ÃB is AB while its sign is the same as the sign of the oriented angle)∠BJA, or equivalently
the same as the sign ofSBJA. In Figure 1-51, sinceSBJA > 0, we havẽAB> 0. The oriented
chord J̃A is always positive.

Proposition 1.91With the above notations, we have

ÃB = dsin()∠BJA) = dsin()∠B− )∠A)
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J̃A = dsin()∠AJX)

where d is the diameter of the circle.

Proof. The signs of the two sides of the equation are equal. Thus we need only to check the
absolute values of both sides of the equation. Since∠BAJ= ∠BIJ or ∠BAJ+∠BIJ = 180◦,
we have

AB= sin(∠BJA)
BJ

sin∠BAJ
= sin(∠BJA)

BJ
sin∠BIJ

= sin(∠BJA) · IJ.

Proposition 1.92Let the diameter of the circumcircle of triangle ABC be d. Then SABC =

ÃB · B̃C · ÃC/(2d).

Proof. As shown in Figure 1-52, we have∠ABC = ∠CJA or ∠ABC = 180◦ − ∠CJA. By
Propositions 1.73 and 1.91,

▽ABC=
1
2

AB · BC| sin(∠ABC)| = 1
2

AB · BC · | sin(∠CJA)| = 1
2d

AB · BC ·CA.

We still need to check whether the signs of both sides of the formula are the same. At first,
it is easy to see that when interchanging two vertices of the triangle, the signs of both sides
of the equation will change. Therefore, we need only to checka particular position for
the three verticesA, B, andC, e.g., the case shown in Figure 1-52. In this case, we have
SABC ≥ 0,SCJB ≥ 0,SBJA ≥ 0, andSCJA ≥ 0. HenceÃB≥ 0, B̃C ≥ 0, andÃC ≥ 0.

Proposition 1.93 (The Co-circle Theorem)If the circumcircles of triangles ABC and XYZ are
the same or equal thenSABC

SXYZ
= ÃB·B̃C·C̃A

X̃Y·ỸZ·Z̃X
.

Proof. This is a direct consequence of Proposition 1.92.

Example 1.94 (Ptolemy’s Theorem)Let A, B,C, and D be four points on the same circle. Then
ÃB · C̃D+ ÃD · B̃C = ÃC · B̃D.

Proof. We choseA to be the reference point. By Proposition 1.91,

ÃB · C̃D+ ÃD · B̃C− ÃC · B̃D

= d2(sin()∠B) sin()∠D − )∠C) + sin()∠D) sin()∠C − )∠B) − sin()∠C) sin()∠D − )∠B))

= 0.

Example 1.95 (Brahmagupta’s Formula)Let A, B,C, and D be four points on the same circle.
Then

S2
ABCD= (p− ÃB)(p− B̃C)(p− C̃D)(p− ÃD)

where p= 1
2(ÃB+ B̃C+ C̃D+ ÃD).
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Proof. By Example 1.89 and Ptolemy’s theorem

16S2
ABCD = 4ÃC

2 · B̃D
2 − P2

ABCD

= 4(ÃB · C̃D+ ÃD · B̃C)2 − P2
ABCD

= ((ÃB+ C̃D)2 − (ÃD− B̃C)2)((ÃD+ B̃C)2 − (ÃB− C̃D)2)

= 16(p− ÃB)(p− B̃C)(p− C̃D)(p− ÃD).

O

A
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D

E

G F

Figure 1-53

Example 1.96A, B,C, and D are four co-circle
points. For any point E on the same circle, lines DE
and CE meet AB in F and G. Show thatAF

BF
· BG

AG
is

independent of E.

Proof. By the co-side theorem and the co-circle theorem,

AF

BF
· BG

AG
=

SADE

SBDE

SBCE

SACE

=
ÃD · D̃E · ẼA · B̃C · C̃E · ẼB

B̃D · D̃E · ẼB · ÃC · C̃E · ẼA
=

ÃD · B̃C

B̃D · ÃC

which is independent ofE.
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O
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A

B

C

Figure 1-54
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Example 1.97 (Pascal’s Theorem)Let A, B, C,
A1, B1, and C1 be six points on a circle. Let
P = AB1 ∩ A1B, Q = AC1 ∩ A1C, and
S = BC1 ∩ B1C. Show that P, Q, and S are
collinear.

Proof. Note that the pointsP,Q, andR in this example are constructed in the same way as
in Example 1.17 on page 14. LetZ1 = PQ∩ BC1 andZ2 = PQ∩ B1C. We need only to
show

G =
PZ1

QZ1

· QZ2

PZ2

= 1.

By Example 1.17, we haveG =
SABB1SA1BC1SACC1 SA1CB1
SACB1SA1BB1SABC1SA1CC1

. Now G = 1 follows from the co-circle
theorem immediately.

Example 1.98 (The General Butterfly Theorem)A, B,C,D,E, and F are six co-circle points.
Lines CD and EF meet AB in M and N. Lines CF and DE meet AB in G and H. Show
that MG

AG
· BH

NH
= BM

AN
. (Figure 1-55)
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Figure 1-56Proof. By the co-side theorem

G =
MG

AG
· BH

NH
· AN

BM
=

SMCF

SACF

SBDE

SNDE

AN

AB
· AB

BM
=

SMCF

SACF

SBDE

SNDE

SAFE

SAFBE

SADBC

SBDC
.

By the co-side theorem again,

SMCF

SDCF
=

MC

DC
=

SABC

SADBC
,
SFDE

SNDE
=

FE

NE
=

SAFBE

SABE
.

ThenG = SDCFSABCSBDESAFE

SACFSABESFDESBDC
. Now G = 1 follows from the co-circle theorem immediately.

In Example 1.98, whenG = H becomes the midpoint ofAB, we obtain the ordinary
butterfly theorem:

Example 1.99 (The Butterfly Theorem)C,D,E, and F are four points on circle O (Figure 1-
56). G is the intersection of DE and CF. Through G draw a line perpendicular to OG,
meeting CD in M and EF in N. Show that G is the midpoint of MN.

In the above examples, no Pythagoras differences occur in the proof. To deal with
Pythagoras differences, we need to develop some new tools.

We still assume that there is a fixed reference pointJ on the circle whose diameter isd.

O

A
B

C

J O

A

B

C

J

Figure 1-57
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Proposition 1.100Let d be the diameter of the circumcircle of triangle ABC. Then PABC =

2ÃB · C̃Bcos()∠CJA).

Proof. By the cosine theorem for oriented angles,|PABC| = 2AB · BC| cos(∠ABC)|. As
shown in Figure 1-57, we have∠ABC= ∠CJAor ∠ABC= 180◦ − ∠CJA. Then

|PABC| = 2AB · BC · | cos(∠CJA)|.

We still need to check whether the signs of both sides of the equation are equal. At first,
when interchanging the position ofA andC, the signs of both sides of the equation will not
change. Therefore, we need only to consider the following two cases:J is on the arcAC or
on the arcAB. In the first case, we havẽAB≥ 0, C̃B≤ 0. Since)∠ABC+ )∠CJA= 180◦, PABC

and cos()∠CJA) always have opposite signs. Therefore the proposition is true in this case. In
the second case, we havẽAB ≤ 0, C̃B ≤ 0. By the inscribe angle theorem,)∠CJA= )∠CBA.
ThusPABC and cos()∠CJA) always have the same sign.

Proposition 1.101 (Co-circle Theorem for Pythagoras Differences)If the circumcircles of trian-
gles ABC and XYZ are the same and PXYZ , 0, then

PABC

PXYZ
=

ÃB · B̃Ccos()∠AJC)

X̃Y · ỸZcos()∠XJZ)
.

Proof. This is a direct consequence of Proposition 1.100.
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O

D
E

F

G

Figure 1-58

Example 1.102 (Simson’s Theorem)Let D be a point
on the circumcircle of triangle ABC. From D three
perpendiculars are drawn to the three sides BC, AC,
and AB of triangle ABC. Let E, F, and G be the three
feet respectively. Show that E, F and G are collinear.

Proof. By Menelaus’ theorem (Example 1.9 on page 11), we need only toshow

G =
AG

GB
· BE

EC
· CF

FA
= −1.

By Propositions 1.65 and 1.101

G =
PBADPACDPDBC

PABDPDACPDCB

=
B̃A · ÃDcos()∠BJD)ÃC · C̃Dcos()∠AJD)D̃B · B̃Ccos()∠DJC)

ÃB · B̃Dcos()∠AJD)D̃A · ÃCcos()∠DJC)D̃C · C̃Bcos()∠DJB)
= −1



44 Chapter 1. Geometry Preliminaries

Example 1.103Let V1, · · · ,Vm, and P be m+1 co-circle points, Pi the orthogonal projections
from P to ViVi+1, i = 1, ...,m. Show that

m∏

i=1

ViPi

PiVi+1

= (−1)m

where the subscripts are understood to be mod m.

Proof. By Propositions 1.65 and 1.101

ViPi

PiVi+1

=
PPViVi+1

PPVi+1Vi

=
P̃Vi · ṼiVi+1 cos()∠PJVi+1)

P̃Vi+1 · Ṽi+1Vi cos()∠PJVi)
, i = 1, ...,m.

Multiplying them equations together, we obtain the result.

Exercises 1.104

1. A, B,C, andD are four co-circle points.AB andCD meet inP. Show thatP̃A · P̃B =
P̃C · P̃D.

2. Show that the diameter of the circumcircle of triangleABC is equal to the product of
two sides dividing the altitude on the third side of the giventriangle.

3. Prove Example 1.99 directly.

4. In Example 1.102, ifD is an arbitrary point. Show thatDO2 = AO2(1− 4SEFG

SABC
).

5. Continue from the above exercise. Show thatD is on a fixed circle withO as its center
if and only if SEFG is a constant.

1.10 Full-Angles

To define the concept of angles, we need the concept ofrays. As a consequence, we need
to compare the order of points on a line. In algebraic language, this means that we need
to use inequalities to describe angles. In this section, we introduce a new kind of angle,
the description of which does not require inequalities. Angles of this kind will be used to
simplifying the proofs of many geometry theorems.

Definition 1.105 A full-angle consists of an ordered pair of lines l and m and isdenoted by
∠[l,m]. Two full-angles∠[l,m] and∠[u, v] are equal if there exists a rotation K such that
K(l) ‖ u and K(m) ‖ v.

If A, B andC,D are distinct points onl andm respectively, then∠[l,m] is also denoted by
∠[AB,CD], ∠[BA,CD], ∠[AB,DC], ∠[AB,m], and∠[l,DC]. For three pointsA, B, andC,
let ∠[ABC] = ∠[AB, BC].
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Definition 1.106 If l⊥m, ∠[l,m] is said to be a right full-angle and is denoted by∠[1]. If
l ‖ m,∠[l,m] is said to be a flat full-angle and is denoted by∠[0].

To give a criterion for the equality of two full-angles, we need to introduce thetangent
functionfor full-angles.

Definition 1.107 The tangent function for the full-angle∠[PQ,AB] is defined to be

tan(∠[PQ,AB]) =
sin()∠(PQ,AB))
cos()∠(PQ,AB))

.

We need to check that this definition is well-defined. That is when interchangingP,Q or
A, B, sin()∠(PQ,AB))

cos()∠(PQ,AB)) does not change. This comes from the following equations

sin()∠(PQ,AB)) = − sin()∠(PQ, BA)) = − sin()∠(QP,AB)),
cos()∠(PQ,AB)) = − cos()∠(PQ, BA)) = − cos()∠(QP,AB)).

As a consequence, we see that the sine and cosine functions for a full-angle are mean-
ingless.

Proposition 1.108∠[AB,PQ] = ∠[XY,UV] if and only if)∠(AB,PQ) = )∠(XY,UV) or )∠(AB,PQ)−
)∠(XY,UV) = 180◦.

Proof. Without loss of generality, we may assumeAB ‖ XY. Then∠[AB,PQ] = ∠[XY,UV]
if and only if PQ ‖ UV, i.e., if and only if )∠(AB,PQ) = )∠(XY,UV) or )∠(AB,PQ) −
)∠(XY,UV) = 180◦.

Proposition 1.109tan(∠[AB,PQ]) = 4SAPBQ

PAQBP
.

Proof. This is a consequence of Propositions 1.87 and 1.88.

Proposition 1.110
∠[AB,PQ] = ∠[XY,UV] if and only iftan(∠[AB,PQ]) = tan(∠[XY,UV]).

Proof. If ∠[AB,PQ] = ∠[XY,UV], by Proposition 1.108 we have)∠(AB,PQ) = )∠(XY,UV) or
)∠(AB,PQ) − )∠(XY,UV) = 180◦. It is clear that tan(∠[AB,PQ]) = tan(∠[XY,UV]) for both
cases. If tan(∠[AB,PQ]) = tan(∠[XY,UV]) then we have

sin()∠(AB,PQ))
cos()∠(AB,PQ))

=
sin()∠(XY,UV))
cos()∠(XY,UV))

.

The above equation holds if and only if)∠(AB,PQ) = )∠(XY,UV) or )∠(AB,PQ)− )∠(XY,UV) =
180◦, i.e.,∠[AB,PQ] = ∠[XY,UV] by Proposition 1.108.
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Example 1.111Let ABC be a triangle such that AB= AC. Then∠[ABC] = ∠[BCA]. Con-
versely, if∠[ABC] = ∠[BCA] and A, B, and C are not collinear then AB= AC.

Proof. If AB= AC, we have

tan(∠[ABC]) =
4SABC

PABC
=

4SBCA

BC2
=

4SBCA

PBCA
= tan(∠[BCA]).

Then∠[ABC] = ∠[BCA]. Conversely, if∠[ABC] = ∠[BCA] andSABC , 0, by the definition
of the tangent function we havePABC = PBCA, i.e.,AB2 = AC2.

In the above example, we do not need to say that the corresponding “inner” angles of an
isosceles triangles are equal. To describe the “inner” angle, we need inequalities.

Example 1.112Let l,m, and t be three lines. Then l‖ m if and only if∠[l, t] = ∠[m, t].

Notice that in the above criterion for parallel, we do not need to mention that the angles
should be the “corresponding angles,” the exact description of which needs inequalities.

Example 1.113 (The Inscribed Angle Theorem)If A, B,C, and D are cyclic points then∠[AB, BC] =
∠[AD,DC].

If using angle in the usual sense, we need two conditions:∠ABC = )∠ADC or ∠ABC+
∠ADC = 180◦ and to distinguish these two cases, we need inequalities.

The proofs for the above two examples will be given later. From these examples, we see
that the concept of full-angles makes many geometry relations concise. We will see later
that this will lead to short proofs for many geometry theorems.

Definition 1.114 Let l,m, u, and v be four lines. Let K be a rotation such that K(l) ‖ v. We
define∠[u, v] + ∠[l,m] = ∠[u,K(m)].

It is easy to check that the addition of full-angles is associative and commutative. The main
properties of the full-angles are summarized as follows.

Q1 ∠[u, v] = ∠[0] if and only if u ‖ v.

Q2 ∠[u, v] = ∠[1] if and only if u⊥v.

Q3 ∠[1] + ∠[1] = ∠[0].

Q4 ∠[u, v] + ∠[0] = ∠[u, v].

Q5 ∠[u, v] + ∠[l,m] = ∠[l,m] + ∠[u, v].
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Q6 ∠[u, v] + (∠[l,m] + ∠[s, t]) = (∠[u, v] + ∠[l,m]) + ∠[s, t].

Q7 ∠[u, s] + ∠[s, v] = ∠[u, v].

Q8 if ∠[u, v] = ∠[0] then for any linet we have∠[u, t] = ∠[v, t]. Conversely, if for a linet
we have∠[u, t] = ∠[v, t] then∠[u, v] = 0.

Q8 is Example 1.112 which can be derived from Q1–Q7 as follows. If ∠[u, v] = 0, we have

∠[u, t] = ∠[u, v] + ∠[v, t] (Q7)
= ∠[0] + ∠[v, t] the hypothesis
= ∠[v, t] + ∠[0] (Q5)
= ∠[v, t] (Q4).

Conversely, if∠[u, t] = ∠[v, t]

∠[u, v] = ∠[u, t] + ∠[t, v] (Q7)
= ∠[v, t] + ∠[t, v] the hypothesis
= ∠[v, v] (Q7)
= ∠[0] (Q1).

The following properties of the full-angles are also often used.

Q9 If AB= AC, we have∠[AB, BC] = ∠[BC,AC]. Conversely, if∠[AB, BC] = ∠[BC,AC]
thenAB= AC or A, B, andC are collinear.

Q10 PointsA, B,C, andD are on the same circle or on same line if and only if∠[AB, BC] =
∠[AD,DC].

Q11 If AB is the diameter of the circumcircle of triangleABC then∠[AC, BC] = ∠[1]

Q12 If O is the circumcenter of triangleABC then∠[BO,OC] = 2∠[AB,AC].

Q9 is Example 1.111. For the proofs of Q10, Q11, and Q112, see Example 3.52 on page
131.

Example 1.115Two circles O and Q meet in two points A and B. A line passing through A
meets circles O and Q in C and E. A line passing through B meets circles O and Q in D
and F. Show that CD‖ EF.

Figure 1-59 shows five possible cases for this example. The following proof based on full-
angles is valid for all cases. If we do not use full-angles, wemust give different proofs for
different figures.
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Figure 1-59Proof.

∠[DC, FE] = ∠[DC,DB] + ∠[DB, FE] (by Q7)
= ∠[AC,AB] + ∠[FB, FE]

(by Q10 and Q8 sinceA, B,C,D are cyclic andD ∈ BF)
= ∠[AE,AB] + ∠[AB,AE]

(by Q8 and Q10 sinceE ∈ AC andA, B, F,E are cyclic)
= ∠[AE,AE] (by Q7)
= ∠[0]. (by Q2)
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Figure 1-60

Example 1.116In triangle ABC, two altitudes AD and BE meet in H. G is the footof the
perpendicular from point H to AB. Show that∠[DG,GH] = ∠[HG,GE].

Proof.

∠[DG,GH] + ∠[GE,HG]
= ∠[DB, BH] + ∠[AE,HA] (Q10;B,D,G,H;A,E,G,H cyclic.)
= ∠[BC, BE] + ∠[AC,AD] (Q8;D∈BC;B∈EH;E∈AC;H∈AD.)
= ∠[BC,AC] + ∠[AC, BE] + ∠[AC, BC] + ∠[BC,AD] (Q7)
= ∠[BC,AC] + ∠[1] + ∠[AC, BC] + ∠[1] (AC⊥BE andBA⊥AD)
= ∠[BC, BC] + ∠[0] (Q7,Q3)
= ∠[0].
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As in Figure 1-60, if both∠BAC and∠ABC are acute angles, we have∠DGH = ∠EGH; if
one of them is obtuse, then∠DGH+ ∠EGH = 180◦. Thus, if we do not use full-angles, we
must give two proofs for the two cases.

A

B CD

L

M

N

N

Figure 1-61

Example 1.117 (The Nine Point Circle)Let the
midpoints of the sides AB, BC, and CA of
△ABC be L,M, and N, and AD the altitude
on BC. Show that L,M,N, and D are on the
same circle.

Proof. We need to show∠[LM,MD] =
∠[LN,ND] or equivalently, ∠[LM,MD] +
∠[ND, LN] = ∠[0].

∠[LM,MD] + ∠[ND, LN]
= ∠[AC, BC] + ∠[ND, LN] (Q8; LM ‖ AC; M,D, B,C are collinear)
= ∠[AC, BC] + ∠[ND, BC] + ∠[BC, LN] (Q7)
= ∠[AC, BC] + ∠[BC,AC] + ∠[0] (Q9,Q1;ND = NC; BC ‖ LN)
= ∠[AC,AC] = ∠[0].
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Figure 1-62

Example 1.118The circumcenter of triangle
ABC is O. AD is the altitude on side BC.
Show that∠OAD= |∠C − ∠B|.

Proof. Let M be the midpoint ofBC, MO and
AB meet inE. We need only to show that
∠[AD,AO] = ∠[CE,AC].

∠[AD,AO] + ∠[AC,CE]
= ∠[AD,AC] + ∠[AC,AO] + ∠[AC, BC] + ∠[BC,CE] (Q7)
= ∠[AD, BC] + ∠[CO,AC] + ∠[BE, BC] (Q7,Q9 (BE = CE))
= ∠[1] + ∠[CO,MO] + ∠[MO,AC] + ∠[BA, BC] (Q7; E∈BA;AD⊥BC)
= ∠[1] + ∠[AC, BA] + ∠[MO,AC] + ∠[BA, BC] (Q12)
= ∠[1] + ∠[MO, BC] (Q7)
= ∠[1] + ∠[1] = ∠[0].

Summary of Chapter 1
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• Signed areas and Pythagoras differences are used to describe some basic geometry
relations: collinearity, parallelism, perpendicularity, congruence of line segments,
and congruence of full-angles.

1. Three pointsA, B, andC are collinear if and only ifSABC = 0.

2. PQ ‖ AB if and only if SPAQB= SPAB− SQAB = SBPQ− SAPQ= 0.

3. PQ⊥AB if and only if PPAQB= PPAB− PQAB = PBPQ− PAPQ= 0.

4. ∠[AB,PQ] = ∠[XY,UV] if and only if SAPBQ

PAPBQ
=

SXUYV

PXUYV
.

• The following results are powerful tools for solving difficult geometry problems.

1. (The Co-side Theorem) LetM be the intersection of the linesAB andPQ and
Q , M. Then we haveSPAB

SQAB
= PM

QM
.

2. (The Co-angle Theorem) LetX,Y andZ be three non-collinear points. Then
∠ABC= ∠XYZor ∠ABC+ ∠XYZ= 180◦ if and only if ▽ABC

▽XYZ =
AB·BC
XY·YZ.

3. (The Pythagoras Difference Theorem) Let∠ABC , 90◦. Then∠ABC = ∠XYZ
if and only if PABC

PXYZ
= AB·BC

XY·YZ; ∠ABC+ ∠XYZ= 180◦ if and only if PABC

PXYZ
= −AB·BC

XY·YZ.

4. (The Visual Angle Theorem) Emanating fromP, there are three raysPA,PB,
andPC such that∠APC= α, ∠CPB= β, and∠APB= γ = α + β < 180◦. Then
A, B, andC are collinear if and only if sin(∠γ)/PC = sin(∠α)/PB+sin(∠β)/PA.

• The concept of oriented angles is introduced to represent the signed areas and Pythago-
ras differences.

SABC =
1
2
· AB · BC · sin()∠ABC)

PABC = 2 · AB · BC · cos()∠ABC)

SABCD =
1
2
· AC · BD · sin()∠(AC, BD))

PABCD = 2 · AC · BD · cos()∠(AC,DB))

• The Herron-Qin formulas give connections between the signed area and the Pythago-
ras difference.

16S2
ABC = 4AB

2 ·CB
2 − P2

ABC

16S2
ABCD = 4AC

2 · BD
2 − P2

ABCD.
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The Area Method

In this chapter, we will present the area method in the narrowsense, that is, as a method of
mechanical theorem proving for constructive geometry statements only involving two ge-
ometry relations: collinearity and parallel. In other words, we are dealing with constructive
geometry statements in affine geometry.

2.1 Traditional Proofs Versus Machine Proofs

We start this section with a comment on the traditional Euclidean proof method from [2].

One of the main defects in the traditional Euclidean proof isits almost com-
plete disregard of such notions as thetwo sides of a lineand theinterior of an
angle. Without clarification of these ideas, absurd consequencesresult.

The following example shows that this defect may occur even in very simple proofs.

A B

C
D

E

Figure 2-1

Example 2.1Let ABCD be a parallelogram
(i.e, AB ‖ CD, BC ‖ AD), E be the inter-
section of the diagonals AC and BD. Show
that AE= CE.

The traditional proof of this theorem is first to prove△ACB� △CAD (henceAB= CD),
then to prove△AEB � △CED (henceAE = CE). In proving the congruence of these
triangles, we have repeatedly used the fact∠CAB = ∠ACD. This fact is quite evident

51
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because the two angles are the alternative angles with respect to parallelsAB andCD.
However, here we have implicitly assumed the “trivial fact”that pointsD and B are on
opposite sides of lineAC. The last fact is harder to prove than the original statement.
(Please try it!)

This extremely simple example reveals the difficulty in implementing a powerful and
sound geometry theoremproverbased on congruence and similarity of triangles. Of course,
one may develop an interactive prover so that the user can input some trivial facts such as
the one in the previous paragraph. These facts can be stored by the program in a data base.
Then one would face a much more severe problem of theconsistency of proofs.

Example 2.2Every triangle is isosceles. Let ABC be a triangle as shown inFigure 2-2. We
want to prove CA= CB.

A B

C

D

O

E
F

Figure 2-2

Proof. Let D be the intersection of the per-
pendicular bisector ofABand the internal bi-
sector of angleACB. Let DE ⊥ AC and
DF ⊥ CB. It is easy to see that△CDE �
△CDF and△ADE � △BDF. HenceCE +
EA= CF + FB, i.e.,CA= CB.

Try to solve thisparadox.

Another defect in the traditional Euclidean proofs is the lack of non-degenerate condi-
tions. Each geometry theorem is valid only under some auxiliary conditions which are not
stated explicitly in the theorem. For instance, in Example 2.1 we need to assume thatA, B,
andC are not collinear. We call such kinds of conditions the non-degenerate conditions
of the theorem, which may become complicated for difficult theorems. Without explicitly
stated non-degenerate conditions, the traditional proofsof geometry theorems are gener-
ally not strict. First, in each step of the proof, we use some lines or triangles which are
implicitly assumed to be in normal positions, i.e., each line is uniquely determined and
each triangle does not degenerate to a line. However, in a machine proof these conditions
should be explicitly stated or justified. Second, during a proof, we need to use other known
theorems; but in the statement of the cited theorems the nondegenerate conditions are usu-
ally not given explicitly. Hence the correctness of the use of these known theorems is not
fully justified.

Partially due to these defects, it is very difficult to incorporate the traditional Euclidean
proof methods into a computer program so that skillful proofs can be automatically pro-
duced by computers. Researchers have been studying automated generation of traditional
proofs using computer programs since the work by H. Gelernter, J. R. Hanson, and D. W.
Loveland [103] in the early 60s. In spite of the enormous amount of research and great
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improvements [43, 83, 106, 141, 129, 144], the successes in this direction have been lim-
ited in the sense that no program has been developed which canprove non–trivial geometry
theorems efficiently.

On the other hand, A. Tarski, introduced a decision procedure for what he calledele-
mentary geometry, based on the algebraic method in the 1930s [34]. Tarski’s quantifier
elimination method was later improved and redesigned by A. Seidenberg [147], G. Collins
[84] and others. In particular, Collins’cylindrical decomposition algorithmis the first
Tarski type algorithm which has been implemented on a computer. Solutions of several
nontrivial problems of elementary geometry and algebra have been obtained using the im-
plementation [45, 46, 114].

Meanwhile, Wen–Tsün Wu introduced a highly successful algebraic method of me-
chanical geometry theorem proving [164]. Inspired by Wu’s work, many researchers have
developed efficient computer programs for proving geometry theorems [36,12, 55, 92,
120, 126, 133,?, 156]. Nearlyone thousandtheorems from Euclidean geometry, non-
Euclidean geometry, differential geometry, and mechanics have been proved by various
provers based on Wu’s method and its variants [12, 69, 70, 135, 157]. Many hard theorems
whose traditional proofs need an enormous amount of human intelligence, such as Feuer-
bach’s theorem, Morley’s trisector theorem etc., can be proved by computer programs based
on algebraic methods within seconds. In addition, Wu first recognized the importance of
the non-degenerate conditions in mechanical geometry theorem proving.

However, algebraic methods can only tell whether a statement is true or not. If we want
to know the proofs, we usually have to look at tedious computations of polynomials in the
coordinates of the related points. So the goal of automatically producingreadableproofs
for geometry theorems has not been achieved.

The goal of this book is to present a method which can produce short and readable proofs
for geometry statements efficiently. The starting point of this book is the mechanization of
a special case of thearea methoddiscussed in Chapter 1. Our machine proof method has
the following advantages.

• Auxiliary points and lines will be added automatically if they are needed.

• Sufficient non-degenerate conditions can be generated automatically.

• The proof produced according to the method is independent ofthe diagram.

A key fact behind the success of our method (or Wu’s algebraicmethod) is that the validity
of most elementary geometry theorems involving equalitiesonly is independent of the rel-
ative order positions of the points involved. Such geometrytheorems belong tounordered
geometry. In unordered geometry, the proofs of these theorems can be very simple. How-
ever, the ordinary proofs of these theorems involve the order relation (among points and
lines), hence are not only complicated, but also not strict,see for example, Example 2.1.
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Here we list several other examples. In the statement of Ceva’s theorem (Example 1.7
on page 11) we usually assume thatP is inside the triangleABC. But this restriction onP
is not necessary: the statement is true regardless of whether P is inside or outside triangle
ABC. The proof produced by the area method is valid for all cases.Also see Examples 1.9
on page 11, 1.115 on page 47, and 1.116 on page 48.
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Figure 2-3

For the Butterfly theorem (Example 1.99 on page 42), as shown in Figure 2-3, we have
three different diagrams, which are often treated as different theorems in geometry text-
books. The proof for this theorem based on the area method is valid for all three cases.

A
B

C

O

D

E

F

Figure 2-4

Remark 2.3
1. For a strict proof of Example 2.1 using the area,

see Example 1.24 on page 17. To prove it using
congruence triangles, you may start from points
A, B, andC to construct pointD as follows:E is
the midpoint ofAC andD is the symmetry ofB
with respect toE.

2. The problem in the “proof” of Example 2.2 is that
we use a wrong diagram. The correct diagram for
Example 2.2 is Figure 2-4.

2.2 Signed Areas of Oriented Triangles

We will formally define two geometry quantities: theratio of the signed lengths of directed
parallel line segmentsand thesigned areas of oriented triangles. Properties of these two
quantities will serve as the basis of our area method. Those who are mainly interested in
machine proofs may skip the next subsection and read Subsection 2.2.2 directly.
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2.2.1 The Axioms

We use capital English letters with or without subscripts todenote points. The only basic
geometry relation is a trinary relationcollinear, i.e., three pointsA, B, andC are collinear.
The exact meaning of collinear is given by Axioms A.1–A.6.

Let R be the field of the real numbers.

Axiom A.1 For three collinear points P, A, and B such that A, B, AP
AB

is an element inR
and satisfies

AP

AB
= −PA

AB
=

PA

BA
= −AP

BA

and PA
AB
= 0 iff (abbr. if and only if) P= A.

AP
AB

is called theratio of the directed segments APandAB. Let r = AP
AB

. We sometimes

also writeAP= rAB.

Axiom A.2 Let A and B be two distinct points. For r∈ R, there exists a unique point P
which is collinear with A and B and satisfies (1)AP

AB
= r and (2) AP

AB
+ PB

AB
= 1.

Three pointsA, B, andC determine anoriented triangle ABC. We use the order of the
vertices of a triangle to represent its orientation. Thus triangles△ABC, △BCA, and△CAB
have the opposite orientation, whereas△ACB,△CBA, and△BAChave the same orientation,
i.e., a triangle has two orientations.

Thesigned areaof an oriented triangleABC, denoted bySABC, is an element inR which
satisfies the following four basic properties.

Axiom A.3 SABC = SCAB = SBCA = −SBAC = −SCBA = −SACB. If A, B, and C are three
non-collinear points, we have SABC , 0.

Axiom A.4 There exist at least three points A, B, and C such that SABC , 0.

Axiom A.5 For any four points A, B, C, and D, we have

SABC = SABD+ SADC + SDBC.

Axioms A.4 and A.5 are called thedimension axioms. Axiom A.4 ensures that not all
the points are collinear. Axiom A.5 ensures that all the points are in one plane.

As a consequence of Axiom A.5, we can define the signed area of oriented quadrilater-
als. Thesigned area of an oriented quadrilateral ABCDis defined to be

SABCD = SABC+ SACD.

By Axioms A.3 and A.5, it is clear that



56 Chapter 2. The Area Method

SABCD= SABD− SCBD;
SABCD= SBCDA = SCDAB = SDABC;
SABCD= −SADCB = −SDCBA = −SCBAD = −SBADC.

Axiom A.6 Let A, B, and C be three collinear points such thatAB = λAC. Then for any
point P, we have SPAB= λSPAC.

Axiom A.6 is the most important property of the area. We will see in the next section
that most of the interesting and nontrivial properties of area come from this axiom.

It is convenient to extend the notion of collinearity to be a geometry relation among any
set of points: one or two points are always collinear, and a set of points are collinear if any
three points in it are collinear. We can thus introduce a new geometry object: the line.

Definition 2.4 A line is a maximal set of collinear points. Let l be a line and P∈ l. Then we
say that P is on line l (instead of in line l).

Proposition 2.5Three points A, B, and C are collinear iff SABC = 0.

Proof. If SABC = 0, then by Axiom A.3A, B, andC are collinear. Now let us assume
that A, B, andC are collinear. IfA = C, sinceCC = 2CC = 0, by Axiom A.6 we have
SACC = 2SACC = 0. If A , C andλ = AB

AC
, by Axiom A.6,SABC = λSACC = 0.

Corollary 2.6 Two distinct points A and B determine a unique line AB which isthe set of all
points P satisfying SABP= 0.

Proof. Let C,D, andE be three distinct points on lineAB. We need to show thatC,D, and
E are collinear, i.e.,SCDE = 0. By Proposition 2.5

SADE =
AD

AB
· SABE = 0.

ThenA,D, andE are collinear. SimilarlyC,D, andA are collinear. By Proposition 2.5

SCDE =
DE

DA
· SCDA = 0.

In what follows, when speaking about a lineAB, we always assume thatA , B. A point
P on lineAB is determined uniquely byAP

AB
or PB

AB
. We thus call

xP =
AP

AB
, yP =

PB

AB

theposition ratioor position coordinatesof the point P with respect toAB. It is clear that
xP + yP = 1.
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2.2.2 Basic Propositions

The basic propositions presented in this section are the basis of our area method. We first
extend Axiom A.6 to the following convenient form.

A B

P

D C

Figure 2-5

Proposition 2.7If points C and D are on line
AB and P is any point not on line AB (Figure
2-5), then

SPCD

SPAB
=

CD

AB
.

Proof. Without loss of generality, let us assumeC , A. Then

SPCD

SPAB
=

SPCD

SPCA
· SPCA

SPAB
=

CD

CA
· CA

AB
=

CD

AB
.

Proposition 2.8 (The Co-side Theorem)Let M be the intersection of two lines AB and PQ.
Then

PM

QM
=

SPAB

SQAB
;

PM

PQ
=

SPAB

SPAQB
;

QM

PQ
=

SQAB

SPAQB
.

Proof. See Proposition 1.5 on page 9.

Proposition 2.9Let R be a point on line PQ. Then for any two points A and B

SRAB=
PR

PQ
SQAB+

RQ

PQ
SPAB.

Proof. See Proposition 1.18 on page 15.

Similar to Chapter 1, we use the notationAB ‖ PQ to denote the fact thatA, B,P, andQ
satisfy one of the following conditions: (1)A = B or P = Q; (2) A, B, P andQ are on the
same line; or (3) lineAB and linePQ do not have a common point.

Proposition 2.10PQ ‖ AB iff SPAB= SQAB, i.e., iff SPAQB= 0.

Proof. If SPAB , SQAB, it is clear thatA , B, P , Q, andA, B,P, andQ are not collinear.

Let O be a point on linePQ such thatPO
PQ
=

SPAB

SPAQB
. ThusOQ

PQ
= − SQAB

SPAQB
. By Proposition 2.9,

SOAB =
PO
PQ

SQAB+
OQ
PQ

SPAB = 0. By Proposition 2.5, pointO is also on lineAB, i.e.,AB is
not parallel to linePQ. Conversely, ifPQ ∦ AB thenA , B, P , Q and linesAB andPQ
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intersection at a unique pointO. By Proposition 2.8,OP
OQ
=

SPAB
SQAB
= 1. ThusP = Q which is

a contradiction.

A parallelogramis a quadrilateralABCDsuch thatAB ‖ CD, BC ‖ AD, and no three
vertices of it are on the same line. LetABCDbe a parallelogram andP,Q be two points on
CD. We define theratio of two parallel line segmentsas follows

PQ

AB
=

PQ

DC
.

In our machine proofs,auxiliary parallelogramsare often added automatically and the
following two propositions are used frequently.

Proposition 2.11Let ABCD be a parallelogram. Then for two points P and Q, we have

SAPQ+ SCPQ = SBPQ+ SDPQ or SPAQB= SPDQC.

Proof. See Proposition 1.30 on page 20.

P

A B

CD

Figure 2-6

Proposition 2.12Let ABCD be a parallelo-
gram and P be any point. Then

SPAB = SPDC − SADC = SPDAC.

Proof. By Proposition 2.11,

SPAB = SPDB− SPCB = SDBCP = SDBC + SDCP = SPDC − SADC.

So far, we do not mention the existence of parallel lines. Thefollowing statement shows
that Euclid’s parallel postulate is a consequence of our axioms.

Example 2.13 (Euclid’s Parallel Axiom)Passing through a point not on a line l, there exists a
unique line which is parallel to l.

Proof. Let P be a point not on the lineAB. By Axiom A.2, we can take pointsO andQ such
that O is the midpoint ofPA andQ is the symmetric point ofB with O, i.e., QO = OB.
By the co-side theoremSQAB = 2SOAB = SPAB. By Proposition 2.10,PQ ‖ AB. To
show the uniqueness, letT be another point such thatTP ‖ AB. By Proposition 2.12,
ST PQ= ST AB− SPAB= 0, i.e.,T is on linePQ.

Example 2.14If PR ‖ AC and QS‖ BD thenSPQRS

SABCD
= PR

AC
· QS

BD
.
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Proof. Let X, Y be points such thatPR= AX, QS = BY. By Proposition 2.11,

SPQRS= SPBRY= SPBY− SRBY=
BY

BD
(SPBD− SRBD) =

QS

BD
SPBRD.

Similarly, we haveSPBRD=
PR
AC

SABCD.

Example 2.15If line PQ is parallel to line AB thenAB
PQ
=

SPAB
SAQP

Proof. Let R be a point such thatAR= PQ. By Propositions 2.7 and 2.11,

AB

PQ
=

AB

AR
=

SPAB

SPAR
=

SPAB

SPAQ
.

2.3 The Hilbert Intersection Point Statements

In Chapter VI of Hilbert’s classic book, “Foundations of Geometry”, he introduced a class
of geometry statements which he called the “pure point of intersection theorems.” Ac-
cording to Hilbert, every “pure point of intersection theorem” can be put in the following
form:

Choose an arbitrary set of a finite number of points and lines.Then draw in
a prescribed manner any parallels to some of these lines. Choose any points
on some of the lines and draw any lines through some of these points. Then,
if connecting lines, points of intersection and parallels are constructed through
the points existing already in the prescribed manner, a definite set of finitely
many lines is eventually reached, about which the theorem asserts that they
either pass through the same point or are parallel.

Hilbert also gave a mechanical proving method for statements of this type. His result can
be summarized as follows.

Theorem 62 in [24].Every pure point of intersection theorem that holds in affine
geometry takes, through the construction of suitable auxiliary points and lines,
the form of a combination of finite number ofPascal’s configurations.

By Pascal’s configuration, he meant the diagram of Example 1.27 on page 19.

The above result calledHilbert’s Mechanization theoremby Wu [166], is the first me-
chanical theorem proving method for a class of geometry statements, i.e., classCH in this
book.



60 Chapter 2. The Area Method

Hilbert’s mechanization theorem works as follows. First, we prove a theorem using
algebraic calculations (see [166] and Chapter 3 of [36]). Since each arithmetic operation
of numbers, e.g.a+ b = b+ a, a ∗ b = b ∗ a, can be represented by Pascal configurations,
the algebraic proof can thus be converted into a series of Pascal configurations. But the
geometric proofs produced in this way are expected to be verylong and cumbersome, and
as far as we know no single theorem has been proved in this way.The aim of this chapter is
to provide an efficient method of producing short and readable proofs for the Hilbert pure
point of intersection statements.

2.3.1 Description of the Statements

To describe theHilbert intersection point statementsprecisely, we need the concepts of
geometry quantities and constructions.

In this chapter, by ageometric quantitywe mean

• the ratio of two oriented segments on one line or on two parallel lines, or

• the signed area of an oriented triangle or an oriented quadrilateral.

A constructionis used to introduce a new point from some known points. We need the
following constructions.

C1 Take arbitrary pointsY1, · · · ,Ym on the plane.Yi are free points, i.e.,Yi can move freely
on the plane.

C2 Take a pointY on linePQ. PointY is a semi-free point, i.e. pointY can move freely
on the linePQ.

To make sure that pointY can be taken properly, we will introduce a nondegenerate
(abbr. ndg) conditionP , Q, i.e., the linePQ is well defined.

C3 Take a pointY on linePQ such thatPY = λPQ whereλ can be a rational number, a
rational expression in geometry quantities, or a variable.Notice thatλ is the position
ratio of pointY with regard toPQ.

If λ is a fixed quantity thenY is a fixed point; ifλ is a variable thenY is a semifree
point. The ndg conditions for this construction areP , Q andλ is meaningful, i.e.,
its denominator does not vanish.

C4 Take the intersectionY of line PQ and lineUV. PointY is a fixed point. The ndg
condition is thatP , Q, U , V, and the linesPQ andUV have one and only one
common point, i.e.,PQ∦ UV.

C5 Take a pointY on the line passing through pointR and parallel to linePQ. HereY is
a semi-free point. The ndg condition isP , Q.
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C6 Take a pointY on the line passing throughR and parallel to linePQ such thatRY =
λPQ, whereλ can be a rational number, a rational expression in geometry quantities,
or a variable.

If λ is a fixed quantity thenY is a fixed point; ifλ is a variable thenY is a semifree
point. The ndg conditions are the same as those of C3.

C7 Take the intersectionY of line UV and the line passing throughR and parallel to line
PQ. PointY is a fixed point. The ndg condition is thatPQ∦ UV.

C8 Take the intersectionY of the line passing through pointR and parallel toPQ and the
line passing through pointW and parallel to lineUV. PointY is a fixed point. The
ndg condition is thatPQ∦ UV.

PointY in each of the above constructions is said to be introduced bythat construction.

We need to show that the above constructions are always possible. That is the introduced
points do exist. C1 and C2 are trivial. The existence of the point Y in C3 comes from Axiom
A.2. C5 and C6 come from Example 2.13 and C3. By Example 2.13, C7 and C8 can be
reduced to C4. For C4, sincePQ∦ UV, line PQ andUV have a unique common point.

Definition 2.16 A Hilbert intersection point statement can be represented by a list

S = (C1,C2, . . . ,Ck,G)

where

1. Each construction Ci introduces a new point from the points which are introduced by
the previous Cj, j = 1, · · · i − 1; and

2. G = (E1,E2) where E1 and E2 are polynomials in some geometric quantities about
the points introduced by the constructions Ci and E1 = E2 is the conclusion of S .

The ndg condition of S is the set of ndg conditions of Ci and the condition that the denomi-
nators of the length ratios in E1 and E2 are not zero. The set of all the Hilbert intersection
point statements is denoted byCH.

As indicated by the definition, the ndg conditions of a statement in CH can be generated
automatically. Take Ceva’s theorem (Example 1.7 on page 11)as an example.

Example 2.17 (Ceva’s Theorem)We describe the statement in the following constructive way.

Take four arbitrary points A, B,C, and P.

Take the intersection D of BC and AP.
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Take the intersection E of AC and BP.

Take the intersection F of AB and CP.

Show thatAF
FB
· BD

DC
· CE

EA
= 1.

According to the definition, the ndg conditions for Ceva’s Theorem are

BC ∦ AP; AC ∦ BP; AB∦ CP; F , B; D , C; E , A,

i.e., pointP can not be on the three sides of△ABCand the three dotted lines in Figure 2-7.

A

B C

P

D

EF

Figure 2-7

You may wonder that the condition “A, B, andC not collinear” is not in the ndg con-
ditions. Indeed, whenA, B, and C are three different points (this comes from the ndg
condition) on the same line, Ceva’s theorem is still true (now F = C,D = A, andE = B)
and the proofs based on the area method is still valid in this case. The ndg conditions pro-
duced according to our method guarantee that we can produce aproof for the statement.
Certainly, we can avoid this seemingly unpleasant fact by introducing a new construction,
TRIANGLE, which introduces three noncollinear points. Buttheoretically, this is not nec-
essary.

Also the ndg conditions are not unique for a geometry statement: they depend on the
constructive description of the statements. For instance,Ceva’s theorem can be described
as follows.

Take three arbitrary pointsA, B, C.
Take a pointE on lineAC.
Take a pointF on lineAB.
Take the intersectionP of BE andCF.
Take the intersectionD of BC andAP.

Show thatAF
FB
· BD

DC
· CE

EA
= 1.

Now the ndg conditions of Ceva’s theorem areA , C,A , B, BE ∦ CG, BC ∦ AP, B ,
F,C , D, andA , P.

The ndg conditions generated according to Definition 2.16 are sufficient, i.e., if a ge-
ometric statement is true in the usual sense then it must be true strictly under these ndg
conditions. For more details, see Algorithm 2.32 on page 70.
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2.3.2 The Predicate Form

A Hilbert intersection point statement can be transformed into predicate form. We first
introduce some basicpredicates.

1. (POINTP): P is a point in the plane.

2. (COLL P1,P2,P3): pointsP1, P2, andP3 are on the same line. It is equivalent to
SP1P2P3 = 0.

3. (PARAP1,P2,P3,P4): P1P2 ‖ P3P4. It is equivalent toSP1P3P2P4 = 0.

Each construction is equivalent to the conjunction of several predicates.

C2 Take a pointY on linePQ. The predicate form is (COLLY P Q) andP , Q.

C3 Take a pointY on line PQ such thatPA = λPQ. The predicate form is (COLLY P
Q), λ = PY

PQ
, andP , Q.

C4 Take the intersectionY of line PQand lineUV. The predicate form is (COLLY P Q),
(COLL Y U V), and¬(PARA U V P Q).

C5 Take a point on the line passing through pointRand parallel to linePQ. The predicate
form is (PARAY R P Q) andP , Q.

C6 Take a pointY on the line passing throughR and parallel to linePQ such thatRY =
λPQ. The predicate form is (PARAY R P Q), λ = RY

PQ
, andP , Q.

C7 Take the intersectionY of line UV and the line passing throughR and parallel to line
PQ. The predicate form is (COLLY U V), (PARA Y R P Q), and¬(PARA P Q U
V).

C8 Take the intersectionY of the line passing through pointR and parallel toPQ and the
line passing through pointW and parallel to lineUV. The predicate form is (PARA
Y R P Q), (PARA Y W U V), and¬(PARA P Q U V).

The predicate form of each constructionC has two parts: the equation partE(C) and the
ndg condition¬D(C).

Now a constructive statementS = (C1, · · · ,Cr , (E, F)) can be transformed into the fol-
lowing predicate form

∀Pi [(E(C1) ∧ · · · ∧ E(Cr) ∧ ¬D(C1) ∧ · · · ∧ ¬D(Cr))⇒ (E = F)]

wherePi is the point introduced byCi .



64 Chapter 2. The Area Method

It is clear that the predicate form of a statement depends on how we describe the state-
ment constructively. For the first constructive description of Ceva’s theorem (Example 2.17
on page 61), its predicate form is

∀A, B,C,P,E, F,D(HYP⇒ CONC)

where

HYP= (COLL D B C) ∧ (COLL D A O) ∧ ¬(PARA B C A O) ∧
(COLL E A C) ∧ (COLL E B O) ∧ ¬(PARA A C B O) ∧
(COLL F A B) ∧ (COLL F C D) ∧ ¬(PARA A B C O) ∧
B , F ∧ D , C ∧ A , E

CONC= (
AF

FB
· BD

DC
· CE

EA
= 1).

Exercises 2.18

1. We define a new predicate (CONCP1 P2 P3 P4 P5 P6) which means that the linesP1P2,
P3P4, andP5P6 are concurrent. Use an equation in areas to represent this predicate.

2. Construction C3 is to take a point on a line with position ratio λ. Show that if point
Y is introduced by one of the eight constructions thenY can also be introduced by
constructions C1 and C3. The reason we use more constructions is that we want to
describe geometry statements using fewer constructions, and as a consequence to obtain
short proofs for the statements.

2.4 The Area Method

Before presenting the method, let us re-examine the proof ofCeva’s theorem (Example 1.7
on page 11). By describing Ceva’s theorem constructively (Example 2.17 on page 61), we
can introduce an order among the points naturally:A, B,C,P,D,E, andF, i.e., the order
according to which the points are introduced. The proof is actually to eliminate the points
from the conclusions according to the reverse order:F,E,D,P,C, B, andA. We thus have
the proof:

AF
FB
= −SACP

SBCP
Eliminate pointF.

CE
EA
=

SBCP

SABP
Eliminate pointE.

BD
DC
= −SABP

SACP
Eliminate pointD.

Then
AF

FB
· BD

DC
· CE

EA
=

SACPSBCPSABP

SBCPSACPSABP
= 1.

Thus the key step of the method is toeliminate points from geometry quantities. We will
show how this is done in the following three subsections.
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2.4.1 Eliminating Points from Areas

We first show that construction C2 is a special case of construction C3. This is because
taking an arbitrary pointY on lineUV is equivalent to taking a pointY on UV such that
UA = λUV for an indeterminateλ. Similarly, construction C5 is a special case of construc-
tion C6: taking an arbitrary point on the line passing through pointW and parallel toUV is
equivalent to taking a pointY such thatWA= λUV for an indeterminateλ.

We will discuss C1 in Section 2.4.3. Thus we need only to consider five constructions
C3, C4, C6, C7, and C8.

Lemma 2.19Point Y is introduced by construction C3, i.e., Y satisfiesPY = λPQ. To
eliminate point Y from SABY, we have

SABY = λSABQ+ (1− λ)SABP.

Proof. This is Proposition 2.9.

Lemma 2.20Point Y is introduced by construction C4, i.e., Y= PQ∩ UV. To eliminate
point Y from SABY, we have

SABY =
1

SPUQV
(SPUVSABQ+ SQVUSABP).

Proof. By Proposition 2.9, we have

SABY =
PY

PQ
SABQ+

YQ

PQ
SABP.

By the co-side theorem, we havePY
PQ
=

SPUV

SPUQV
,

YQ
PQ
=

SQVU

SPUQV
. Substituting this into the

previous equation, we obtain the conclusion. SincePQ∦ UV, we haveSPUQV , 0.

Lemma 2.21Point Y is introduced by construction C6, i.e., Y satisfiesRY = λPQ. To
eliminate point Y from SABY, we have

SABY = SABR+ λSAPBQ

A B

P

Q

RY
S

Figure 2-8

Proof. We take a pointS such thatRS= PQ.
By Lemma 2.19,

SABY = λSABS+ (1− λ)SABR.

By Proposition 2.11, we have

SABS = SABR+ SABQ− SABP= SABR+ SAPBQ.

Substituting this into the previous formula, we obtain the conclusion.
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Lemma 2.22Point Y is introduced by construction C7, i.e., Y is the intersection of line UV
and the line passing through R and parallel to line PQ. To eliminate point Y from SABY, we
have

SABY =
1

SPUQV
(SPUQRSABV− SPVQRSABU).

Proof. Take a pointS such thatRS= PQ. By Lemma 2.20, we have

SABY =
1

SRUS V
· (SUS RSABV+ SVRSSABU). (1)

We also have

SRUS V= SPUQV by Proposition 2.11.
SUS R= SUQP− SRQP= SPUQR by Proposition 2.12.
SVS R= SVQP− SRPQ= SPRQV by Proposition 2.12.

Substituting these into (1), we obtain the conclusion.

Lemma 2.23Let point Y be introduced by construction C8. To eliminate point Y from SABY,
we have

SABY =
SPWQR

SPUQV
· SAUBV+ SABW.

Proof. By Lemma 2.21,SABY = SABW+
WY
UV

SAUBV. Now the lemma comes from Lemma
2.26 below.

2.4.2 Eliminating Points from Length Ratios

Y

A

P Q

SC

D

Figure 2-9

Lemma 2.24Let point Y be introduced by construc-
tion C3. To eliminate Y fromAY

CD
, we have

AY

CD
=



AP
PQ
+λ

CD
PQ

if A ∈ PQ;

SAPQ

SCPDQ
otherwise.

Proof. If A ∈ PQ then AY
CD
= AP+PY

CD
=

AP
PQ
+ PY

PQ

CD
PQ

=
AP
PQ
+λ

CD
PQ

. Otherwise, take a pointS such that

AS = CD. ThenY is the intersection ofPQ andAS andAS ‖ CD. By Propositions 2.8
and 2.11,

AY

CD
=

AY

AS
=

SAPQ

SAPS Q
=

SAPQ

SCPDQ
.
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Lemma 2.25Let point Y be introduced by construction C4. To eliminate point Y from AY
CD

,
we have

AY

CD
=


SAUV

SCUDV
if A is not on UV

SAPQ

SCPDQ
otherwise

Proof. The proof is the same as the second case of Lemma 2.24.

Y

A

R

S

T

C

D

P Q

Figure 2-10

Lemma 2.26Let point Y be introduced by construction C6.
Then we have

AY

CD
=



AR
PQ
+r

CD
PQ

if A ∈ RY.

SAPRQ

SCPDQ
if A < RY.

Proof. The first case is obvious. For the second case, take pointsT andS such thatRT
PQ
= 1

and AS
CD
= 1. By the co-side theorem,

AY

CD
=

AY

AS
=

SART

SARS T
=

SAPRQ

SCPDQ
.

Lemma 2.27Let Y be introduced by construction C7. To eliminate point Y from G = AY
CD

,
we have

AY

CD
=


SAUV

SCUDV
if A is not on UV

SAPRQ

SCPDQ
if A is on UV

Proof. If A is not onUV then the proof is the same as the second case of Lemma 2.24. IfA
is onUV, then the proof is the same as the second case of Lemma 2.26. SincePQ ∦ UV,
we haveSCPDQ, 0.

Lemma 2.28Let point Y be introduced by construction C8. To eliminate point Y from G=
AY
CD

, we have

AY

CD
=


SAPRQ

SCPDQ
if AY is not parallel to PQ

SAUWV

SCUDV
otherwise.

Proof. The proof is the same as the proof of the second case of Lemma 2.26.

2.4.3 Free Points and Area Coordinates

In Subsections 2.4.1 and 2.4.2, we present methods of eliminating fixed or semi-free points
from geometry quantities. For a geometry statementS = (C1,C2, . . . ,Ck, (E, F)), we can
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use these lemmas to eliminate all the nonfree points introduced byCi . Now the newE
andF are rational expressions in indeterminates, areas and Pythagoras differences offree
points. These geometric quantities are generally not independent, e.g. for any four points
A, B,C,D we have

SABC = SABD+ SADC + SDBC.

In order to reduceE andF to expressions of independent variables, we introduce the con-
cept ofarea coordinates.

Definition 2.29 Let A, O, U, and V be four points such that O,U, and V are not collinear.
The area coordinates of A with respect to OUV are

xA =
SOUA

SOUV
, yA =

SOAV

SOUV
, zA =

SAUV

SOUV
.

It is clear that xA+yA+zA = 1. Since xA, yA, and zA are not independent, we also call xA, yA

the area coordinates of Q with respect to OUV.

O U

V

T

A

Figure 2-11

Proposition 2.30The points in the plane are in
a one to one correspondence with the triples
(x, y, z) satisfying x+ y+ z= 1.

Proof. Let O,U, and V be three non-collinear points. Then for each pointA, its area
coordinates satisfyxA + yA + zA = 1. Conversely, for anyx, y, andzsuch thatx+ y+ z= 1
we will find a pointA whose area coordinates arex, y, andz. If z = 1, take a pointA such
that OA

UV
= x. Then by Lemma 2.21,xA =

SOUA

SOUV
= x, yA = −x = y, andzA = 1. If z, 1, take

a pointT onUV such thatUT
UV
= x

1−z; take a pointA onOT such thatAT
OT
= z. By the co-side

theorem,zA =
SAUV

SOUV
= AT

OT
= z. By the co-side theorem again, we have

xA =
SOUA

SOUV
= (1− z)

SOUT

SOUV
= x

SOUV

SOUV
= x.

Similarly, yA = y.

The following lemma reduces any area to an expression of areacoordinates with respect
to three given reference points.

Lemma 2.31Let O, U, and V be three noncollinear points. Then for points A, B, and Y, we
have

SABY =
1

SOUV

∣∣∣∣∣∣∣∣

SOUA SOVA 1
SOUB SOVB 1
SOUY SOVY 1

∣∣∣∣∣∣∣∣
.
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O

U V

Y

W

O

U V

Y

Figure 2-12

Proof. Since by Axiom A.5SABY = SOAB+ SOBY− SOAY, we need only to computeSOBY

andSOAY. Let W be the intersection ofUV andOY. Then by Lemma 2.20 we have

SOBW =
1

SOUYV
(SOBV · SOUY+ SOBU · SOYV).

By Proposition 2.8, we haveSOBY

SOBW
=

SOUYV

SOUV
. Thus

SOBY =
1

SOUV
· (SOBV · SOUY + SOBU · SOYV). (1)

If OY ‖ UV, (1) can be proved as follows. By Example 2.15,OY
UV
=

SOUY

SOUV
. By Lemma 2.21

SOBY =
OY

UV
· SOUBV =

SOUY

SOUV
(SOBV + SOUB) =

SOBV · SOUY + SOBU · SOYV

SOUV
.

Now we have proved that (1) is true under the condition thatO,U,V are not collinear.
Similarly, we have

SOAY =
1

SOUV
· (SOAV · SOUY + SOAU · SOYV);

SOAB =
1

SOUV
· (SOAV · SOUB+ SOAU · SOBV).

Substituting (1) and the above formulas intoSABY = SOAB+ SOBY − SOAY, we obtain the
conclusion.

Use the same notations as in Lemma 2.31, letxA =
SOUA

SOUV
, yA =

SOVA

SOUV
; xB =

SOUB

SOUV
, yB =

SOVB

SOUV
; xY =

SOUY

SOUV
, yY =

SOVY

SOUV
. Then the formula in Lemma 2.31 becomes

SABY = SOUV

∣∣∣∣∣∣∣∣

xA yA 1
xB yB 1
xY yY 1

∣∣∣∣∣∣∣∣

which is quite similar to the formula of the area of a trianglein terms of the Cartesian
coordinates of its three vertices.
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Algorithm 2.32 (AFFINE)

INPUT: S = (C1,C2, . . . ,Ck, (E, F)) is a statement inCH.

OUTPUT: The algorithm tells whetherS is true or not, and if it is true, produces a proof
for S.

S1. For i = k, · · · , 1, do S2, S3, S4 and finally do S5.

S2. Check whether the ndg conditions ofCi are satisfied. The ndg conditions of a statement
have two forms:A , B andPQ ∦ UV. For the first case, we check whetherAB

XY
= 0

whereX,Y are two arbitrary points onAB. For the second case, we check whether
SPUV = SQUV. If the ndg condition of a geometry statement is not satisfied, the
statement istrivially true. The algorithm terminates.

S3. Let G1, · · · ,Gs be the geometric quantities occurring inE andF. For j = 1, · · · , s do
S4.

S4. Let H j be the result obtained by eliminating the point introduced by constructionCi

from G j using Lemmas 2.24–2.31 and replaceG j by H j in E andF to obtain the new
E andF.

S5. Finally, E andF are expressions of free parameters. IfE is identical toF, S is true
under the ndg conditions. OtherwiseS is false in the Euclidean plane geometry.

Proof of the correctness.If E = F then it is clear thatS is true. Notice that all the elimi-
nation lemmas in this section have the property that after applying a lemma to a geometry
quantity that has geometric meaning (i.e., its denominatoris not zero), the expression ob-
tained also has geometric meaning under the ndg conditions of this statement. Therefore
all the geometric quantities occurring in the proof have geometric meaning.

The geometric quantities inE andF are all free parameters, i.e., in the geometric con-
figuration ofS they can take arbitrary values. SinceE , F, by Proposition 2.33 below we
can take some concrete values for these quantities such thatwhen replacing these quantities
by the corresponding values inE andF, we obtain two different numbers. In other words,
we obtain a counter example forS.

Proposition 2.33Let P be a nonzero polynomial of indeterminates x1, · · · , xn with real num-
bers as coefficients. Show that we can find rational numbers e1, · · · , en such that P(e1, · · · , en) ,
0.

The proof is left as an exercise.
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For the complexity of the algorithm, letm andn be the number of free and non-free
points in a statement respectively. To eliminate each non-free point, we need to apply the
lemmas in Subsections 2.4.1 and 2.4.2 to each geometry quantity involving this point once.
Also note that each lemma will replace a geometric quantity by a rational expression with
degree less than or equal to two. Then if the conclusion of thegeometry statement is of
degreed, the expression obtained after eliminating then non-free points is at most degree
2nd. Also note that after eliminating them free points using Lemma 2.31, each quantity
will be replaced by an expression of degree two. Then the finalresult is at most degree
2d2n = d2n+1.

This simple exponential complexity of the algorithm seems discouraging. But we will
see that on the contrary this method can produce short proofsfor almost all statements in
CH very efficiently. One reason is that during the proof, the common factors ofE andF can
be removed. This simple trick alone usually reduces the sizes of the polynomials occurring
in a proof drastically. Also the algorithm still has much room for improvement in order to
obtain short proofs, as shown in Section 2.5 below.

Exercises 2.34

1. LetO, U, andV be three noncollinear points. Then for pointsA, B, andY, we have

SABY =
1

SOUV

∣∣∣∣∣∣∣∣

SOUA SOVA SUVA

SOUB SOVB SUVB

SOUY SOVY SUVY

∣∣∣∣∣∣∣∣
.

2. Show that each polynomialP(x) ∈ R[x] of degreed has at mostd different roots. Use
this result to prove Proposition 2.33.

3. LetP(x) = xd + ad−1xd−1 + ... + a0 be a polynomial, andm= max(1,
∑d

i=1 |ai |). Then for
anyr > mwe haveP(r) , 0. Use this result to prove Proposition 2.33.

4. Prove the Examples in Sections 1.2 and 1.3 using Algorithm2.32.

2.4.4 Working Examples

Before going further, we want to explain a little bit about the meaning of the axioms, propo-
sitions, lemmas, and algorithms in this book. Since the goalof this book is to provide a
method of proving theorems, the algorithms are our final goals. The input to an algorithm
is a geometry statement. The output of the algorithm is a proof or a disproof of the state-
ment. The algorithms use the lemmas to eliminate points fromgeometry quantities. In the
proofs of the lemmas, only the basic propositions are used. Finally, the basic propositions
are consequences of the axioms.

We can thus divide the proofs produced by Algorithm 2.32 intothree levels:

1. a proof is at the first level or lemma levelif in that proof we only use the lemmas;
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2. a proof is at the second level or proposition levelif in that proof we not only give the
result obtained by applying the lemmas but also the process of how the results are
obtained by using the basic propositions;

3. a proof is at the third level or axiom levelif in that proof we only use the axioms.

Theoretically, proofs at all levels can be produced automatically. But only proofs at the first
or second level are relatively short. If we limit ourselves to the six axioms only, the proofs
produced according to our algorithms are generally very long. Also, it is not reasonable to
limit oneself to axioms only. The proofs of the geometry statements in Chapter 1 are all at
the proposition level and most of the proofs given in this chapter are at the lemma level.

Algorithm 2.32 has been implemented as a prover on a computer. At the present time,
this prover can only produce proofs at the lemma level. In what follows, when speaking
abouta machine proof, we mean the proof (in LaTeX form) produced by this prover. For
instance, the machine proof for Ceva’s theorem (Example 1.7) is as follows.

The machine proof

−CE
AE
· BD
CD
· AF

BF

F
=
−(−SACP)
−SBCP

· CE
AE
· BD
CD

E
=
−SBCP·SACP

SBCP·(−SABP) · BD
CD

simpli f y
=

SACP

SABP
· BD

CD

D
=

SABP·SACP

SABP·SACP

simpli f y
= 1

The eliminants

AF
BF

F
=

SACP

SBCP

CE
AE

E
=

SBCP

−SABP

BD
CD

D
=

SABP
SACP

In the proof,a
P
= b means thatb is the result obtained by eliminating pointP from a;

a
simpli f y
= b means thatb is obtained by canceling some common factors from the denomi-

nator and numerator ofa; “eliminants” are the results obtained by eliminating points from
separate geometry quantities. The prover can also give the ndg conditions and the predicate
form of the geometry statement.

We use a sequence of consecutive equations to represent a proof. Some might argue that
this proof looks different from the usual form of proofs. It is actually very easy to rewrite a
proof in consecutive equations as the usual form. For instance, the above machine proof of
Ceva’s theorem is essentially the same as the proof of Ceva’stheorem on page 11.

It is clear that the proofs produced according to Algorithm 2.32 depend on how we
describe a geometry statement constructively. For the samestatement, some descriptions
will lead to long proofs while other descriptions will lead to short ones. Both the way of
introducing points and the way of formulating the conclusions will affect the output. We
use some examples to show some heuristic rules in specifyingthe statement in constructive
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form which may lead to short proofs.

Example 2.35 (Menelaus’ Theorem)A transversal meets the sides AB, BC, and CA of a tri-
angle ABC in F,D, and E. Show thatAF

FB
· BD

DC
· CE

EA
= −1.

First describe the statement in the constructive way.

A B

C

D

E

F

Figure 2-13

Take three arbitrary pointsA, B,C.

Take a pointD on lineBC.

Take a pointE on lineAC.

Take the intersectionF of line DE and lineAB.

Show thatAF
FB
· BD

DC
· CE

EA
= −1.

The ndg conditions areC , B, A , C, DE ∦ BA, B , F, C , D, andA , E.

The machine proof

CE
AE
· BD
CD
· AF

BF

F
=
−SADE
−SBDE

· CE
AE
· BD
CD

E
=

( AE
AC
−1)·(−SACD)· AE

AC

(−SABD· AE
AC
+SABD)· AE

AC

· BD
CD

simpli f y
=

SACD

SABD
· BD

CD

D
=

BD
BC
·(SABC· BD

BC
−SABC)

SABC· BD
BC
·( BD

BC
−1)

simpli f y
= 1

The eliminants

AF
BF

F
=

SADE
SBDE

SBDE
E
= − (( AE

AC
−1)·SABD)

SADE
E
= − (SACD· AE

AC
)

CE
AE

E
=

AE
AC
−1

AE
AC

SABD
D
=SABC· BD

BC

SACD
D
=( BD

BC
−1)·SABC

BD
CD

D
=

BD
BC

BD
BC
−1

The above proof produced according to our algorithm is not the simplest one. By de-
scribing the example constructively as follows, we can obtain a much shorter proof.

Take arbitrary pointsA, B,C,X,Y.

D is the intersection ofBC andXY.

E is the intersection ofAC andXY.

F is the intersection ofAB andXY.

Show thatAF
FB
· BD

DC
· CE

EA
= −1.
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The machine proof
CE
AE
· BD
CD
· AF

BF

F
=

SAXY
SBXY
· CE

AE
· BD
CD

E
=

SCXY·SAXY

SBXY·SAXY
· BD

CD

simpli f y
=

SCXY

SBXY
· BD

CD

D
=

SCXY·SBXY

SBXY·SCXY

simpli f y
= 1

The eliminants

AF
BF

F
=

SAXY

SBXY

CE
AE

E
=

SCXY

SAXY

BD
CD

D
=

SBXY

SCXY

Example 2.36 (Gauss-line Theorem)Let A0,A1,A2, and A3 be four points on a plane, X be the
intersection of A1A2 and A0A3, and Y be the intersection of A0A1 and A2A3. Let M1,M2,
and M3 be the midpoints of A1A3, A0A2, and XY respectively. Then M1,M2, and M3 are
collinear.

3M

2M
1M

Y

X

3A
2A

1A0A

Figure 2-14

The constructive description
Take arbitrary pointsA0, A1, A2, andA3.
X = A0A3 ∩ A1A2.
Y = A2A3 ∩ A1A0.
M1 is the midpoint ofA1A3.
M2 is the midpoint ofA0A2.
M3 is the midpoint ofXY.
Show thatSM1M2M3 = 0

Here is the machine proof.
SM1M2M3

n
= 1

2SYM1M2+
1
2SXM1M2

n
= ( 1

2 )·( 1
2SA2YM1+

1
2SA2XM1+

1
2SA0YM1+

1
2SA0XM1 )

n
= ( 1

4 )·(− 1
2SA2A3X+

1
2SA1A2Y− 1

2SA0A3Y− 1
2SA0A1X)

n
= (− 1

8 )(S2
A0A2A1A3

SA2A3X+S2
A0A2A1A3

SA0A1X+SA0A2A1A3SA1A2A3SA0A1A2

−SA0A2A1A3SA0A2A3SA0A1A3)

simpli f y
= (− 1

8 )·(SA0A2A1A3 ·SA2A3X+SA0A2A1A3 ·SA0A1X+SA1A2A3 ·SA0A1A2−SA0A2A3 ·SA0A1A3)
n
= (− 1

8 )·(−SA0A2A1A3 ·SA0A1A3A2 ·SA1A2A3 ·SA0A2A3+SA0A2A1A3 ·SA0A1A3A2 ·SA0A1A3 ·SA0A1A2+

S2
A0A1A3A2

·SA1A2A3 ·SA0A1A2−S2
A0A1A3A2

·SA0A2A3 ·SA0A1A3)

simpli f y
= ( 1

8 )·(SA0A2A1A3 ·SA1A2A3 ·SA0A2A3−SA0A2A1A3 ·SA0A1A3 ·SA0A1A2−

SA0A1A3A2 ·SA1A2A3 ·SA0A1A2+SA0A1A3A2 ·SA0A2A3 ·SA0A1A3)

n
= ( 1

8 )·(0)
simpli f y
= 0
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Herea
n
= b meansb is the numerator ofa. To showa = 0, we need only to show its

numerator is zero.

If we describe the statement as follows, then we can obtain a shorter proof.

Take arbitrary pointsA0, A1, A2, A3.
X = A0A3 ∩ A1A2. Y = A2A3 ∩ A1A0.
M1 is the midpoint ofA1A3. M2 is the midpoint ofA0A2.
M3 is the midpoint ofXY. Z = M2M1 ∩ XY.

Show that XM3

YM3
= XZ

YZ
.

The machine proof

( XM3
YM3

)/( XZM3
YZM3

)

ZM3
=
−SYM1M2
−SXM1M2

· XM3
YM3

M3
=

( 1
2 )·SYM1M2

SXM1M2 ·(−
1
2)

M2
=
−( 1

2SA2YM1+
1
2SA0YM1)

1
2SA2XM1+

1
2SA0XM1

M1
=
−( 1

2SA1A2Y− 1
2SA0A3Y)

− 1
2SA2A3X− 1

2SA0A1X

Y
=

SA0A1A2A3
SA0A1A2A3

simpli f y
= 1

The eliminants
XZM3
YZM3

ZM3
=

SXM1M2
SYM1M2

XM3
YM3

M3
= − (1)

SXM1M2

M2
=

1
2(SA2XM1+SA0XM1)

SYM1M2

M2
=

1
2(SA2YM1+SA0YM1)

SA0XM1

M1
= − 1

2(SA0A1X)
SA2XM1

M1
= − 1

2(SA2A3X)
SA0YM1

M1
= − 1

2(SA0A3Y)
SA2YM1

M1
=

1
2(SA1A2Y)

SA2A3X+SA0A1X=SA0A1A2A3

So for a “nice” expression of the conclusion of a statement, we can obtain a short proof.
The idea is to express the conclusion asa = b such thata andb are symmetric in some
sense. For example, if we want to prove three pointsP, Q, andR are collinear, and if one
of the three points, sayR, is on (LINE E F) whereE andF are points in the statement,
then we usually introduce a new pointN by (INTERN (LINE P Q) (LINE E F)) and prove
the equivalent conclusionN = R or ER

FR
= EN

FN
. According to our experience with many

examples, the proof for this new conclusion is shorter than the proof forSPQR = 0. The
following example shows that this rule is also true for the length ratios.

Example 2.37A line parallel to the base of trapezoid ABCD meet its two sides and two
diagonals at H, G, F, and E. Show that EF= GH.

We may describe the statements as follows.

A B

CD

EH
FG

Figure 2-15

Take arbitrary pointsA, B, C.
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Take a pointD such thatDC ‖ AB.
Take a pointE on lineBC.
Take the intersectionH of line AD
and the line passing throughE and parallelAB.
F = BD∩ EH.
G = AC∩ EF.
Prove thatEF

AB
= −HG

AB
.

The machine proof
EF
AB

−HG
AB

G
=

SABC

−SACH
· EF

AB

F
=

SBDE·SABC

−SACH·SABD

H
=
−SBDE·SABC·(−SABD)
(−SACD·SABE)·SABD

simpli f y
=

−SBDE·SABC

SACD·SABE

E
=
−(−SBCD· BE

BC
)·SABC

SACD·SABC· BE
BC

simpli f y
=

SBCD

SACD

D
=
−SABC·CD

AB

−SABC·CD
AB

simpli f y
= 1

The eliminants

HG
AB

G
=

SACH

SABC

EF
AB

F
=

SBDE

SABD

SACH
H
=

SACD·SABE

SABD

SABE
E
=SABC· BE

BC

SBDE
E
= − (SBCD· BE

BC
)

SACD
D
= − (SABC·CD

AB
)

SBCD
D
= − (SABC·CD

AB
)

By changing the conclusion toEF
GH
= 1, the proof will become much longer.

2.5 More Elimination Techniques

The eleven lemmas (2.19–2.31) provide a complete method of eliminating points from
geometry quantities. But if only these lemmas are used, the proofs for some geometry
theorems are still too long to be readable. In order to produce short and readable proofs for
geometry theorems, we will provide more elimination techniques.

2.5.1 Refined Elimination Techniques

Lemmas 2.19–2.31 only give the elimination result in the general case. In some special
cases, the elimination results could be much simpler, e.g.,see Excises 2.38, 2.39, and 2.40
below. By only using these refined elimination results, we can obtain much shorter proofs
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for many geometry theorems.

Exercise 2.38Prove the following version of Lemma 2.20. Let Y= PQ∩ UV. To eliminate
point Y from SABY, we have

SABY =



SABU if AB ‖ UV;
SABP if AB ‖ PQ;
SUBV·SAPQ

SUPVQ
if U,V,A are collinear;

SAUV·SBPQ

SUPVQ
if U,V, B are collinear;

SAPQ·SBUV

SPUQV
if P,Q,A are collinear;

SPBQ·SAUV

SPUQV
if P,Q, B are collinear;

1
SUPVQ

(SUPQ · SABV − SVPQ · SABU) if U or V is on AB;
1

SPUQV
(SPUV · SABQ+ SQVU · SABP) otherwise.

Exercise 2.39Prove the following version of Lemma 2.22. Let Y be the intersection of the
line UV and the line passing through R and parallel to line PQ.To eliminate point Y from
SABY, we have

SABY =



SABU if AB ‖ UV;
SABR if AB ‖ PQ;
SUBV·SAPRQ

SUPVQ
if U,V,A are collinear;

SAUV·SBPRQ

SUPVQ
if U,V, B are collinear;

SAUV·SBQRP

SPUQV
if AY ‖ PQ;

SBUVSAPRQ

SPUQV
if BY ‖ PQ;

1
SPUQV

(SPUQR · SABV+ SPRQV · SABU) otherwise.

Exercise 2.40Prove the following version of Lemma 2.23. Let Y be the intersection of the
line passing through point R and parallel to PQ and the line passing through point W and
parallel to line UV. We have

SABY =



SABW if AB ‖ UV;
SABR if AB ‖ PQ;
SAUWV·SBQRP

SPUQV
if AY ‖ PQ;

SBUWV·SAPRQ

SPUQV
if BY ‖ PQ;

SBVWU·SAPRQ

SUPVQ
if AY ‖ UV;

SAUWV·SBPRQ

SUPCQ
if BY ‖ UV;

SABY =
SPWQR

SPUQV
· SAUBV+ SABW otherwise.
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To use these elimination methods, we have first to decide whether three points are
collinear, or whether two lines are parallel. We can use Algorithm 2.32 to do so. But
this process is too time consuming. A faster way is to collectall the obvious collinear and
parallel relations from the constructions and use them as criteria. For instance, in Ceva’s
theorem (Example 2.17 on page 61) we can find the following collinear point sets easily:
{A, B, F}, {A,C,E}, {B,C,D}, {A,D,P}, {B,E,P}, and{C, F,P}.

Once we obtain all the lines and parallels for a geometry statement, we can use them to
simplify some geometry quantities. For instance,

SP1P2P3P4 =



0 if P1P3 ‖ P2P4;
SP1P3P4 if P1,P2,P3 are collinear;
SP1P2P4 if P2,P3,P4 are collinear;
SP1P2P3 if P1,P3,P4 are collinear;
SP2P3P4 if P1,P2,P4 are collinear.

Example 2.41Let A, B, and P be three noncollinear points, and C be a point on line PA.
The line passing through C and parallel to AB intersects PB atD. Q is the intersection of
AD and BC. M is the intersection of AB and PQ. Show that M is the midpoint of AB.

The example can be described in the following constructive way.

A B

DC

Q

P

M

Figure 2-16

Take three arbitrary pointsA, B, andP.
Take a pointC on lineAP.
D is the intersection of lineBP and the line

passing throughC and parallel toAB.
Q is the intersection of linesAD andBC.
M is the intersection of linesABandPQ.
Show thatAM

BM
= −1.

The ndg conditions:A , P, P < AB, AD ∦ BC, andAB∦ PQ.

The machine proof

− AM
BM

M
=
−SAPQ

SBPQ

Q
=
−SAPD·SABC·(−SABDC)
(−SBPC·SABD)·SABDC

simpli f y
=

−SAPD·SABC

SBPC·SABD

D
=
−SBPC·SABC

−SBPC·SABC

simpli f y
= 1

The eliminants

AM
BM

M
=

SAPQ

SBPQ

SBPQ
Q
=

SBPC·SABD

SABDC

SAPQ
Q
=

SAPD·SABC

SABDC

SABD
D
=SABC

SAPD
D
= − (SBPC)
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Our prover first collects the collinear point sets:

{M,P,Q}; {Q,A,D}; {Q, B,C}; {M,A, B}; {D, B,P}; {C,A,P};

and the parallel lines:DC ‖ MAB.

To eliminateD from SABD, we use the first case of Exercise 2.39:SABD = SABC. To elim-
inateD from SAPD, sinceP, B, andD are collinear we can use the fourth case of Exercise
2.39:

SAPD =
SABPSPACB

SBAPB
= −SPACB

SinceP,A, andC are collinear,SPACB= SPAC+ SPCB = SBPC.

2.5.2 The Two-line Configuration

Another commonly used technique is thetwo-line configuration. This trick works only
when there exist at least five free or semi-free points and these points are on two lines
l1 and l2. If l1 ‖ l2, let α be the oriented distance from linel1 to line l2. If l1 ∦ l2 let
β = sin()∠(l1, l2)) andO be the intersection ofl1 andl2.

Let l1 andl2 be two lines satisfying the above conditions. Then we have the following
elimination procedure.

Case 1.G = SABC.

SABC =



0 if A, B,C are collinear
1
2αBC if l1 ‖ l2, A ∈ l1, andB,C ∈ l2
−1

2αBC if l1 ‖ l2, A ∈ l2, andB,C ∈ l1
1
2βOA · BC if l1 ∦ l2, A ∈ l1, andB,C ∈ l2
−1

2βOA · BC if l1 ∦ l2, A ∈ l2, andB,C ∈ l1.

Case 2.G = AB
CD

. We haveG = ( AB
CD

) = AB/CD, i.e., we break one geometry quantity into
the ratio of two quantities.

Case 3.G = AB

AB=



OB−OA if l1 andl2 intersects atO
O1B−O1A if l1 ‖ l2, A ∈ l1 andB ∈ l1
O2B−O2A if l1 ‖ l2, A ∈ l2 andB ∈ l2

whereO1 andO2 are fixed points onl1 andl2 respectively.

For the constructive description of Menelaus’ theorem on page 73, we have the following
machine proof using the two-line trick.
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CE
AE
· BD
CD
· AF

BF

F
=
−SADE

−SBDE
· CE

AE
· BD
CD

2lines
=

CE·BD·(−CD·AE·β)·(2)
(−CE·BD·β)·(2)·CD·AE

simpli f y
= 1

The eliminants
AF
BF

F
=

SADE

SBDE

SBDE= − 1
2(CE·BD·β)

SADE= − 1
2(CD·AE·β)

Example 2.42 (Pappus’ Theorem)Let points A, B and C be on one line, and A1, B1 and C1 be
on another line. Let P= AB1 ∩ A1B, Q= AC1 ∩ A1C, and S= BC1 ∩ B1C. Show that P,
Q, and S are collinear.

A B

1A
1B

C

1C

P Q S

Figure 2-17

The input to the program.

Take arbitrary pointsA, A1, B, B1.
Take a pointC on lineAB.
Take a pointC1 on lineA1B1.
P = A1B∩ AB1.
Q = AC1 ∩ A1C.
S = B1C ∩ BC1.
T = B1C ∩ PQ.
Prove thatB1S

CS
=

B1T
CT
.

The machine proof

( B1S

CS
)/( B1T

CT
)

T
=

SCPQ

SB1PQ
· B1S

CS

S
=

(−SBB1C1)·SCPQ

SB1PQ·(−SBCC1 )

Q
=

SBB1C1 ·SA1CP·SACC1 ·SAA1C1C

(−SB1C1P·SAA1C)·SBCC1 ·(−SAA1C1C)

simpli f y
=

SBB1C1 ·SA1CP·SACC1
SB1C1P·SAA1C·SBCC1

P
=

SBB1C1 ·SA1BC·SAA1B1 ·SACC1 ·SAA1B1B

(−SA1BB1 ·SAB1C1)·SAA1C·SBCC1 ·(−SAA1B1B)

simpli f y
=

SBB1C1 ·SA1BC·SAA1B1 ·SACC1
SA1BB1·SAB1C1 ·SAA1C·SBCC1

2lines
=

B1C1·OB·β·(−BC·OA1·β)·A1B1·OA·β·(−AC·OC1·β)·((2))4

(−A1B1·OB·β)·B1C1·OA·β·AC·OA1·β·(−BC·OC1·β)·((2))4

simpli f y
= 1

The eliminants
B1T

CT

T
=

SB1PQ

SCPQ

B1S

CS

S
=

SBB1C1
SBCC1

SB1PQ
Q
=
−SB1C1P·SAA1C

SAA1C1C

SCPQ
Q
=

SA1CP·SACC1
−SAA1C1C

SB1C1P
P
=
−SA1BB1 ·SAB1C1

SAA1B1B

SA1CP
P
=

SA1BC·SAA1B1
−SAA1B1B

SBCC1= − 1
2(BC·OC1·β)

SAA1C=
1
2(AC·OA1·β)

SAB1C1=
1
2(B1C1·OA·β)

SA1BB1= − 1
2(A1B1·OB·β)

SACC1= − 1
2(AC·OC1·β)

SAA1B1=
1
2(A1B1·OA·β)

SA1BC= − 1
2(BC·OA1·β)

SBB1C1=
1
2(B1C1·OB·β)
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2.6 Area Method and Affine Geometry

We shall first discuss briefly the relationship between geometry and algebra, beginning with
passages from E.Artin’s book “Geometric Algebra”, [5]:

We are all familiar with analytic geometry where a point in a plane is de-
scribed by a pair (x, y) of real numbers, a straight line by a linear, a conic
by a quadratic equation. Analytic geometry enables us to reduce any elemen-
tary geometric problem to a mere algebraic one. The intersection of a straight
line and a circle suggests, however, enlarging the system byintroducing a new
plane whose points are pairs ofcomplexnumbers. An obvious generalization
of this procedure is the following. Letk be a given field; construct a plane
whose “points” are the pairs (x, y) of elements ofk and define lines by linear
equations. ...

A much more fascinating problem is, however, the converse. Given a plane
geometry whose objects are the elements of two sets, the set of points and
the set of lines; assume that certain axioms of geometric nature are true. Is it
possible to find a fieldk such that the points of our geometry can be described
by coordinates fromk and the lines by linear equations?

These passages suggest that there are two approaches to defining geometry.

The Algebraic Approach.Starting from a number systemE (usually fields), we can define ge-
ometry objects and relations between those objects in theCartesian productEn (or En/E∗

in projective geometry). In modern geometry, especially inalgebraic geometry, this ap-
proach indisputably prevails. If we take this approach, then there are only a few differences
between algebra and geometry; geometry can be regarded as a part of algebra.

However, the second approach suggested by Artin is more attractive from the point of
view of traditional proofs of geometry theorems.

The Geometric Approach.By this approach we mean the one that was used byEuclid and
Hilbert. In the Euclid-Hilbert system, number systems are developed as parts of the ge-
ometry. For each model of atheory of geometry, we can prove the existence of a number
system (usually a field) inherent to that geometry. This fieldis called thefield associated
with that geometry. That geometry then can be represented as theCartesian productof its
associated field. Though beautiful and elegant, the Euclid-Hilbert approach is on the other
hand a heavy burden to develop.

The axiom systems which we have adopted in this chapter is a mixture of the above
approaches. First we take the number systems for granted. Onthe other hand we use a
geometric language instead of an algebraic one. This systemis a modification of an axiom
system developed by J.Z. Zhang for the purpose of geometry education [40]. It has the
advantage of providing simple but also general methods of solving geometric problems, a
virtue the algebraic and the geometric approaches do not possess.
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2.6.1 Affine Plane Geometry

Affine geometryis the study ofincidenceandparallelism. There are two kinds of geometric
objects: points and lines. The only basic relation in this geometry is that ofincidence, i.e.,
a pointA is on a linel, or equivalently, a linel passes through (contains) a pointA. Two
lines which do not have a point in common are calledparallel lines. The following is a
group of axioms of affine plane geometry [5].

Axiom H.1. Given two distinct points P and Q, there exists a unique line passing through
both P and Q.

Axiom H.2. Given a line l and a point P not on l, there exists one and only one line m such
that P lies on m and such that m is parallel to l.

Axiom H.3. There exist three distinct points A, B, C such that C does not lie on the line
passing through A and B.

Axiom H.4 (Desargues’ Axiom).Let l1, l2, l3 be distinct lines which are either parallel or
meet in a point S . Let A, A1 be points on l1, B, B1 points on l2 and C, C1 points on l3 which
are distinct from S if our lines meet. We assume line AB‖ A1B1 and BC‖ B1C1. Show that
AC ‖ A1C1.

Axiom H.5 (Pascalian Axiom).Let l and l1 be two distinct lines, and A, B, C and A1, B1, C1

be distinct points on l and l1, respectively. If BC1 ‖ B1C and AB1 ‖ A1B, then AC1 ‖ A1C.

A geometry in which all the above five axioms hold is called anaffine geometry.

The above is a geometric approach for defining affine geometry. Now let us start at the
other end and give a definition of affine geometry based on the algebraic approach.

Let E be a field. FromE we can construct astructureΩ as follows. Let

L̃ = {(a, b, c) | a, b, c ∈ E, a , 0 orb , 0}.

We define a relation∼ in L̃ as: (a, b, c) ∼ (a′, b′, c′) if and only if there is ak ∈ E such that
k , 0 and (a, b, c) = (ka′, kb′, kc′). It is easy to see that∼ is an equivalence relation. Let
L̃/ ∼ (the set of all equivalence classes ofL̃) be denoted byL. Define|Ω| to beE2 ∪ L. An
elementp in |Ω| is a point if and only ifp ∈ E2 (i.e., p = (x, y), x, y ∈ E); an elementl in
|Ω| is a line if and only ifl ∈ L. A point p = (x, y) is on a linel = (a, b, c) if and only if
ax+by+c = 0. Two linesl1 = (a, b, c) andl2 = (a′, b′, c′) are parallel if there exists ak ∈ E
andk , 0 such thata = ka′, b = kb′.

It is easy to check the following theorem.

Theorem 2.43Axioms H.1-H.5 are valid in the structureΩ.

Proof. It can be easily checked that the five axioms are valid inΩ. H4 and H5, particularly,
can be proved automatically using Wu’s method (Example 121 and Example 346 in [12]).
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The converse of the above theorem is a much deeper result.

Theorem 2.44Every geometry G of the theory H.1-H.5 is isomorphic to a structureΩ with
some fieldE.

The key step of the proof is to introduce thesegment arithmeticand hence to introduce the
field E inherent toG. The fieldE, uniquely determined by geometryG up to isomorphism,
is called thefield associated withgeometryG. Desargues’ axiommakes it possible to
introduce a division ringE andPascalian axiommakesE a commutative field. Each alge-
braic rule of operation (e.g., associativity of addition) corresponds to a geometry theorem.
The process of introducing number systems in this way is the core of the Euclid-Hilbert
approach. For details, see [24], [5], and [36].

2.6.2 Area Method and Affine Geometry

Suppose that the number fieldE in the six axioms A.1–A.6 is not the real number fieldR
but an arbitrary field. We shall show that these six axioms define anaffine geometry.

Theorem 2.45Show that all the five Axioms H.1-H.5 are consequences of Axioms A.1-A.6.

Proof. Axiom H.1 follows from Corollary 2.6. Axiom H.3 is a consequence of Axioms
A.3 and A.4. For Axiom H.2, see Example 2.13 on page 58. H.4 andH.5 can be proved
automatically by our prover. For their proofs, see the following examples.

Example 2.46 (Desargues’ Axiom)S AA1, S BB1, and S CC1 are three distinct lines. If AB‖
A1B1 and AC‖ A1C1 then BC‖ B1C1.

S

A

B

C

A

B

C

Figure 2-18

1

1

1

Take arbitrary pointsS, A, B, andC.
Take a pointA1 on lineS A.
Take the intersectionB1 of line S Band
the line passing throughA1 and parallel toAB.
Take the intersectionC1 of line S Cand
the line passing throughA1 and parallel toAC.
Prove thatSB1BC = SC1BC.
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The machine proof
SBCB1
SBCC1

C1
=

SBCB1 ·SS AC

SACA1 ·SS BC

B1
=

SABA1 ·SS BC·SS AC

SACA1 ·SS BC·SS AB

simpli f y
=

SABA1 ·SS AC

SACA1 ·SS AB

A1
=

(−SS AB·
S A1
S A
+SS AB)·SS AC

(−SS AC·
S A1
S A
+SS AC)·SS AB

simpli f y
= 1

The eliminants

SBCC1

C1
=

SACA1 ·SS BC

SS AC

SBCB1

B1
=

SABA1 ·SS BC

SS AB

SACA1

A1
= − ((

S A1
S A
−1)·SS AC)

SABA1

A1
= − ((

S A1
S A
−1)·SS AB)

The ndg conditions areS , A, S,A, B andS,A,C are not collinear, which are conse-
quences of the hypotheses of the statement.

Example 2.47 (Pascalian Axiom)Let A, B and C be three points on one line, and A1, B1, C1

be three points on another line. If AB1 ‖ A1B and AC1 ‖ A1C then BC1 ‖ B1C.

A B

A

C

B
C

Figure 2-19

1

1

1
The constructive description.
Take arbitrary pointsA, B, andA1.
Take a pointC on lineAB.
Take a pointB1 such thatB1A ‖ BA1.
Take the intersectionC1 of line A1B1 and
the line passing throughA and parallel toCA1.
Prove thatSBCB1 = SC1CB1.

The machine proof
SBCB1
SCB1C1

C1
=

SBCB1 ·SA1CB1
−SAA1B1C·SA1CB1

simpli f y
=

SBCB1
−SAA1B1C

B1
=
−SBA1C·

AB1
BA1

−SBA1C·
AB1
BA1

simpli f y
= 1

The eliminants

SCB1C1

C1
=−SAA1B1C

SAA1B1C
B1
=SBA1C·

AB1
BA1

SBCB1

B1
= − (SBA1C·

AB1
BA1

)

The ndg conditions areA , B, B , A1, andA1B1 ∦ CA1 which are all in the statements
of H.5.
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Now we have the converse theorem.

Theorem 2.48In the affine geometry associated with any fieldE, we can define length ratios
and areas such that Axioms A.1-A.6 are valid.

Proof. Let Pi = (xi , yi), i = 1, · · · , 4, be four points on a linel such thatP3 , P4. Then

P1P2

P3P4

=

{ x1−x2
x3−x4

if y3 = y4.
y1−y2

y3−y4
otherwise.

Let Pi = (xi , yi), i = 1, 2, 3, be three points. Then define

SP1P2P3 = k

∣∣∣∣∣∣∣∣

x1 y1 1
x2 y2 1
x3 y3 1

∣∣∣∣∣∣∣∣

wherek is any nonzero element inE. Axioms A.1-A.6 can be verified by direct calculation.

Now it is clear that Algorithm 2.32 is for the constructive statements not only in Eu-
clidean geometry but also in affine geometry associated with any field, even finite fields.
In other words, the area method works also forfinite geometries. For examples related to
various fields, finite or infinite, see Subsection 2.7.2.

The completeness of Algorithm 2.32 is based on Proposition 2.33. For an arbitrary field
E, we have.

Proposition 2.49Let E be an infinite field and P a nonzero polynomial of indeterminates
x1, · · · , xn with coefficients inE. Show that we can find elements e1, · · · , en in E such that
P(e1, · · · , en) , 0.

Proof. We prove the result by induction onn. If n = 1, letP(x1) be of degreed. ThenP(x1)
has at mostd different roots. SinceE is infinite in anyd + 1 distinct elements ofE there
exists one which is not a root ofP(x1). Suppose that the result is true forn− 1. We writeP
as follows

P(x1, ..., xn) = as(x1, ..., xn−1)x
s
n + ... + ao(x1, ..., xn−1).

If s = 0, we need do nothing. Ifs > 0, by the induction hypotheses there are elements
e1, .., en−1 in E such thatas(e1, ..., en−1) , 0. Let Q(xn) = P(e1, ..., en−1, xn) , 0. Now the
result can be proved similarly to the casen = 1.

If E is a finite field, then the above result is false and we do not know whether there exist
efficientalgorithms to check the existence of such elements. Obviously, a slow algorithm
exists: we can check all possible elements inEn sinceE is finite.

Note that the area is not an invariant in the affine geometry. But due to the following
fact the ratios of areas are invariants.
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Exercise 2.50Let M be a2× 2 matrix, Pi ∈ E2, i = 1, 2, 3. Let Qi = Pi M, i = 1, 2, 3. Then

SQ1Q2Q3 = |M|SP1P2P3

where|M| is the determinant of M.

So we can use ratios of areas instead of areas as geometry quantities. Also it is worth men-
tioning that in the proofs of all the examples in this and the preceding chapters, the areas
always occur in the form of ratios. This is not a coincidence.Let C(r1, · · · , rd, a1, · · · , as)
= 0 be the conclusion of a geometry theorem where ther i are length ratios and theai are
areas of triangles. LetM = λI be the multiplication of an indeterminateλ and the unit
matrix I . After transforming each pointP in the plane toPM, C = 0 is still valid. By
Exercise 2.50,C = (r1, · · · , rd, λ

2a1, · · · , λ2as) = 0. Therefore, ifE is an infinite field, each
homogeneous component ofP in the variablesa1, · · · , as must be zero, i.e., without loss
of generality we can assumeP is homogeneous in the area variables. That isC can be
expressed as a polynomial of the ratio of lengths and the ratio of areas.

2.7 Applications

Besides theorem proving, the area method can be used to solveother geometry problems
such as deriving unknown formulas automatically. In this section, we will show the appli-
cation of the area method in three geometry topics: the formula derivation, the existence of
n3 configurations, and the transversal problems.

2.7.1 Formula Derivation

Algorithm 2.32 can be used to derive unknown formulas. We usea simple example to
illustrate how this works.

Example 2.51Let L, M, and N be the midpoints of the sides AB, BC, and CA of triangle
ABC respectively. Find the area of triangle LMN.

Solution.SinceN is the midpoint ofAC, by Proposition 2.9,SLMN=
1
2(SCLM + SALM). By

the co-side theorem,SALM= − 1
2(SACL), SCLM=

1
2(SBCL). ThenSLMN=

1
2SBCL− 1

2SACL

2

=
SABC

4 .

Example 2.52Let A1, B1, and C1 be points on the sides BC, CA, and AB of a triangle
ABC such that BA1/A1C = r1, CB1/B1A = r2, and AC1/C1B = r3. Show that

SA1B1C1
SABC

=
r3r2r1+1

(r1+1)(r2+1)(r3+1).
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A

B CA

B

C

Figure 2-20

1

1

1

Constructive description
Take arbitrary pointsA, B, andC.
Take a pointA1 such thatBA1

A1C
= r1.

Take a pointB1 such thatCB1

B1A
= r2.

Take a pointC1 such thatAC1

C1B
= r3.

Compute
SA1B1C1

SABC

The machine derivation.
SA1B1C1

SABC

C1
=

SBA1B1·r3+SAA1B1
SABC·(r3+1)

B1
=
−SACA1 ·r2−SACA1+SABA1 ·r3·r2

2+SABA1 ·r3·r2

SABC·(r3+1)·(r2+1)2

simpli f y
=

−(SACA1−SABA1 ·r3·r2)

SABC·(r3+1)·(r2+1)

A1
=
−(−SABC·r3·r2·r2

1−SABC·r3·r2·r1−SABC·r1−SABC)

SABC·(r3+1)·(r2+1)·(r1+1)2

simpli f y
=

r3·r2·r1+1
(r3+1)·(r2+1)·(r1+1)

The eliminants

SA1B1C1

C1
=

SBA1B1 ·r3+SAA1B1
r3+1

SAA1B1

B1
=
−SACA1

r2+1

SBA1B1

B1
=

SABA1 ·r2

r2+1

SABA1

A1
=

SABC·r1
r1+1

SACA1

A1
=
−SABC

r1+1

Remark. As a consequence of Example 2.52, we “discover” Menelaus’ theorem:A1, B1,

andC1 are collinear iff r1r2r3 = −1.

Example 2.53Let A1, B1, C1, D1 be points on the sides CD, DA, AB, BC of a parallelogram
ABCD such that CA1/CD = DB1/DA = AC1/AB = BD1/BC = r. Let A2B2C2D2 be the
quadrilateral formed by the lines AA1 BB1, CC1, DD1. Compute

SABA2
SABCD

and
SA2B2C2D2

SABCD
.

2D

2C

2B

2A
1D

1C

1B

1AD C

BA

Figure 2-21

The constructive description
Take arbitrary pointsA, B, andC.
Take a pointD such thatAB

DC
= 1.

Take a pointA1 such thatCA1

CD
= r.

Take a pointB1 such thatDB1

DA
= r.

A2 = AA1 ∩ BB1.
Compute

SABA2
SABCD

.
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The machine derivation.
SABA2
SABCD

A2
=

SABB1 ·SABA1
SABCD·SABA1B1

B1
=

(−SABD·r+SABD)·SABA1
SABCD·(SADA1 ·r−SADA1+SABA1 )

simpli f y
=

−(r−1)·SABD·SABA1
SABCD·(SADA1 ·r−SADA1+SABA1 )

A1
=

−(r−1)·SABD·(SABD·r−SABC·r+SABC)
SABCD·(SACD·r2−2SACD·r+SACD+SABD·r−SABC·r+SABC)

D
=

−(r−1)·(SABC)2

(2SABC)·(SABC·r2−2SABC·r+2SABC)

simpli f y
=

−(r−1)
(2)·(r2−2r+2)

The eliminants

SABA2

A2
=

SABB1 ·SABA1
SABA1B1

SABA1B1

B1
=SADA1 ·r−SADA1+SABA1

SABB1

B1
= − ((r−1)·SABD)

SADA1

A1
= (r−1)·SACD

SABA1

A1
=SABD·r−SABC·r+SABC

SACD
D
=SABC

SABCD
D
=2(SABC)

SABD
D
=SABC

Thus
SABA2
SABCD

= 1−r
2(r2−2r+2). To compute

SA2B2C2D2
SABCD

, we have

SA2B2C2D2 = SABCD− SABA2 − SBCB2 − SCDC2 − SDAD2

= (1− 4 · 1− r
2(r2 − 2r + 2)

)SABCD

=
r2

r2 − 2r + 2
SABCD

Example 2.54Let E, F, H, and G be points on sides AB, CD, AD, and BC such thatAE
AB
=

DF
DC
= r1 and AH

AD
= BG

BC
= r2. Let EF and HG meet in I. ComputeEI

EF
and HI

HG
.

A B

C

D

E

F

H
GI

Figure 2-22

Constructive description
Take arbitrary pointsA, B, C, D.
Take a pointE such thatAE

AB
= r1.

Take a pointF such thatDF
DC
= r1.

Take a pointH such thatAH
AD
= r2.

Take a pointG such thatBG
BC
= r2.

I = EF ∩ HG.
ComputeHI

GI
.

The machine proof for this example is a little long. The following proof is the modifi-
cation of the machine proof.
HI
GI

=
SHEF
SGEF

=
r2·SDEF+(1−r2)·SAEF

r2·SCEF+(1−r2)·SBEF
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=
r2·r1·SDEC+(1−r2)·r1·SABF

r2·(1−r1)·SDEC+(1−r2)·(1−r1)·SABF

simpli f y
=

r1
1−r1

Thus HI
EG
=

HI
IG

HI
IG
+1
= r1. Similarly EI

EF
= r2.

Example 2.55The sides AB and DC of a quadrilateral are cut into2n+ 1 equal segments
by points P1, · · · ,P2n and Q1, · · · ,Q2n respectively. Show that

(1) SPnPn+1Qn+1Qn =
1

2n+1SABCD.

(2) If sides BC and AD are cut into2m + 1 equal segments by points R1, · · · ,R2m and
S1, · · · ,S2m respectively, then the area of the quadrilateral formed by the lines PnQn,
Pn+1Qn+1, RmSm, and Rm+1Sm+1 is 1

(2n+1)(2m+1)SABCD.

Figure 2-23 shows the casen = m = 2. Note that in the following machine proof for (1),
we use some different names for pointsPn,Pn+1,Qn+1,Qn. We also use a trick: pointQn+1

is introduced two times (Q andV) so that different elimination methods will be used to
eliminateQn+1 in different cases.

Constructive description
Take arbitrary pointsA, B, C, D.

Take a pointX such thatAX
AB
= n

2n+1.

Take a pointU such thatDU
DC
= n

2n+1.

Take a pointQ such thatDQ
DC
= n+1

2n+1.

Take a pointV such thatUV
DC
= 1

2n+1.

Take a pointY such thatXY
AB
= 1

2n+1.

Compute(SAXY+SUXV)
SABCD

.

The eliminants

SXQY
Y
=
−SABQ

2n+1

SXUV
V
=
−SCDX

2n+1

SABQ
Q
=

SABD·n+SABC·n+SABC

2n+1

SCDX
X
=

SBCD·n+SACD·n+SACD

2n+1

SABCD=SACD+SABC

SBCD=SACD−SABD+SABC

A

B

CD

P

P
P

P

1

3
2

4

Q QQ Q1 32 4

S

S

S

S

1

3

2

4

R

R

R

R

1

3

2

4

Figure 2-23

The machine proof
−(SXQY+SXUV)

SABCD

Y
=
−(2SXUV·n+SXUV−SABQ)

SABCD·(2n+1)

V
=
−(−2SCDX·n−SCDX−2SABQ·n−SABQ)

SABCD·(2n+1)2
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simpli f y
=

SCDX+SABQ

SABCD·(2n+1)

Q
=

2SCDX·n+SCDX+SABD·n+SABC·n+SABC

SABCD·(2n+1)2

X
=

2SBCD·n2+SBCD·n+2SACD·n2+3SACD·n+SACD+2SABD·n2+SABD·n+2SABC·n2+3SABC·n+SABC

SABCD·(2n+1)3

simpli f y
=

SBCD·n+SACD·n+SACD+SABD·n+SABC·n+SABC

SABCD·(2n+1)2

area−co
=

2SACD·n+SACD+2SABC·n+SABC

(SACD+SABC)·(2n+1)2

simpli f y
= 1

2n+1

By Example 2.54,PnQn andPn+1Qn+1 are cut into 2m+ 1 equal segments byRiSi, i =
1, ..., 2m respectively. Now (2) comes from (1) directly.

For more examples of formula derivation, see Examples 1.11,1.12, 1.13, and the exam-
ples in the next subsection.

2.7.2 Existence of n3 Configurations

We define a planeconfigurationas a system ofp points andl lines arranged in a plane in
such a way that every point of the system is incident with a fixed numberλ of lines of the
system and every straight line of the system is incident witha fixed numberπ of points
of the system. We characterize such a configuration by the symbol (pλ, lπ). For example,
the triangle forms the configuration of (32, 32). The four numbersp, l, λ, andπ may not
be chosen arbitrarily. For, by the conditions we have stipulated,λp straight lines of the
system, in all, pass through thep points; however, every line is countedπ times because
it passes throughπ points; thus the number of linesl is equal toλp

π
. Therefore, for every

configuration (pλ, lπ), we haveλp = πl.

We only discuss those configurations in which the number of points is equal to the
number of lines, i.e., for whichp = l. Then it follows from the relationλp = πl, thatλ = π.
The symbol for such a configuration is always of the form (pλ, pλ). We shall introduce the
more concise notation (pλ) for such a configuration.

We shall further limit the numberλ. λ = 1 yields only the trivial configuration con-
sisting of a point and a line passing through it. The caseλ = 2 is realized by the closed
polygons in the plane. On the other hand, the caseλ = 3 includes the most important con-
figurations in projective geometry, the Fano configuration,Desargues’ configuration, and
Pappus’ configuration. In this case the number of points,p, must be at least seven. For
through any given point of the configuration there pass threelines, on each of which there
must be two further points of the configuration. If in a geometry, there existp points and
lines consisting of a (p3) configuration, we say that the configuration (p3) can berealized
in that geometry.

As an application of the area method, we obtain the sufficient and necessary conditions
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for the existence of the (73), (83), and (93) configurations. For more complicated configu-
rations, see [152].

Example 2.56There exists only one(73) configuration and this configuration can only be
realized in the geometry whose associated fieldE is of characteristic 2. (Fano plane)

Proof. Let the seven points bePi , i = 1, · · · , 7. The only possible (73) configuration consists
of the lines:

P1 P1 P2 P2 P3 P3 P1

P2 P4 P4 P5 P4 P5 P6

P3 P5 P6 P7 P7 P6 P7

P P

P

P

P

P

P

Figure 2-24

1 2

7

4

5

3

6

Consider the following geometry problem.
Take arbitrary pointsP1, P2, P4.
Take a pointP3 on lineP1P2.
Take a pointP5 on lineP1P4.
P6 = P2P4 ∩ P3P5.
P7 = P2P5 ∩ P3P4.
ComputeSP1P6P7.

Using Algorithm 2.32, we have

SP1P6P7 =
(2) · ( P1P5

P1P4
− 1) · ( P1P3

P1P2
− 1) · P1P3

P1P2
· SP1P2P4 · P1P5

P1P4

( P1P5

P1P4
· P1P3

P1P2
− 1) · ( P1P5

P1P4
− P1P3

P1P2
)

.

The (73) configuration exists iff SP1P6P7 = 0, i.e.

(2) · (P1P5

P1P4

− 1) · (P1P3

P1P2

− 1) · P1P3

P1P2

· SP1P2P4 ·
P1P5

P1P4

= 0.

If P1P5

P1P4
− 1 = 0, we haveP4 = P5. If P1P3

P1P2
− 1 = 0, we haveP2 = P3. If P1P3

P1P2
= 0, we have

P1 = P3. If SP1P2P4 = 0, we haveP1,P2, andP4 are collinear. IfP1P5

P1P4
= 0, we haveP1 = P5.

All the above cases will lead to degenerate configurations. Then the (73) configuration
exists iff 2 = 0, i.e., the associate field of the geometry is of characteristic 2.

Configuration (83) also has only one possible table:

P1 P1 P1 P2 P2 P3 P3 P4

P2 P4 P6 P3 P7 P4 P5 P5

P5 P8 P7 P6 P8 P7 P8 P6
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Theorem 2.57The(83) configuration only exists in the geometry such that
√
−3 belongs to

E, the field associated with the geometry.

Proof. Consider the following geometry problem.
Take arbitrary pointsP1, P2, P4.

Take a pointP5 such thatP1P5

P1P2
= r1.

Take a pointP6 such thatP4P6

P4P5
= r2.

Take a pointP8 such thatP1P8

P1P4
= r3.

P7 = P2P8 ∩ P1P6. P3 = P2P6 ∩ P5P8.
ComputeSP3P7P4.

Using Algorithm 2.32,SP3P7P4 is found to be

(r2
3(r2r2 + r2r1 − 2r2 + r1r1 − r1 + 1)− r3r1(r2 − 2r1 + 1)+ r2

1)SP1P2P3(r1 − 1)r2

(r3r2r1 − r2r1 + r2 − 1)(r3(r2r1 − r2 − r1 + 1)+ r1)
.

ThenSP3P7P4 = 0 iff

r2
3(r2r2 + r2r1 − 2r2 + r1r1 − r1 + 1)− r3r1(r2 − 2r1 + 1)+ r2

1 = 0

has solutions forr3. The discriminant of the quadratic equation is−3(r2 − 1)2r2
1, and there-

fore the result.

Contrary to the (73) and (83) configurations which do not exist in the Euclidean plane,
the casen = 9 gives rise to three essentially different configurations, all of which can be
realized in the Euclidean plane. The first (93) configuration is that related to the Pappus
theorem, a machine proof of which can be found in Example 2.42on page 80.

Example 2.58Prove the existence of the(93) configuration as shown in Figure 2-25.

Proof. Consider the following geometry problem.

P P

P

P

P

P

P

P

P

Figure 2-25

1

2

3

4

5

6

7

8

9

Take arbitrary pointsP1, P3, andP5.
Take a pointP7 such thatP1P7

P1P3
= r1.

Take a pointP8 such thatP1P8

P1P5
= r2.

Take a pointP9 such thatP3P9

P3P5
= r3.

Take a pointP2 such thatP5P2

P5P7
= r4.

P4 = P1P9 ∩ P2P8.
P6 = P3P8 ∩ P2P9.
ComputeSP4P6P7.



2.7 Applications 93

Using Algorithm 2.32,SP4P6P7 is found to be

(r4(r3r2 + r3r1 − 2r3 − r2r1 − r2 + 2)− 2r3r2 + 2r3 + 2r2 − 2)r1r2(1− r1)r3r4SP1P3P5

(r4r2r1 − r4 + r3r2 − r3 − r2 + 1)(r4r3r1 − r4r3 + r4 − r3r2 + r3 + r2 − 1)
.

ThenSP4P6P7 = 0 iff r4(r3r2 + r3r1 − 2r3 − r2r1 − r2 + 2)− 2r3r2 + 2r3 + 2r2 − 2 = 0,
or equivalently, iff

r4 = (2r3r2 − 2r3 − 2r2 + 2)/(r3r2 + r3r1 − 2r3 − r2r1 − r2 + 2)

Example 2.59Show the existence of the(93) configuration as shown in Figure 2-26.

Proof. Consider the following geometry problem.

P P

P

P

P

P

PP

P

Figure 2-26

1 4

7

3

6

8

95

2

Take arbitrary pointsP1, P4, andP7.
Take a pointP3 such thatP1P3

P1P7
= r1.

Take a pointP6 such thatP1P6

P1P4
= r2.

Take a pointP8 such thatP3P8

P3P6
= r3.

Take a pointP9 such thatP4P9

P4P7
= r4.

P5 = P1P8 ∩ P3P9.
P2 = P4P8 ∩ P6P9.
ComputeSP2P5P7.

Using the program, we haveSP2P5P7 =
− f1· f2·SP1P4P7

d1·d2
where

f1 = r4(r2 − r1) − r2r1 + r1

f2 = r4(r
2
3r

2
2 − r2

3r2r1 + r2
3r

2
1 − r2

3r1 + r3r2r1 − r3r2 − 2r3r
2
1 + 2r3r1 + r2

1 − r1)

−r2
3r

2
1 + r2

3r1 + 2r3r
2
1 − 2r3r1 − r2

1 + r1

d1 = r4(r3(r2 − r1) + r1 − 1)− r3r1(r2 + 1)+ r2r1 − r1

d2 = r4(r3(r2 − r1) + r1) − r3r1(r2 + 1)− r1.

Using the program again, we may check thatf1 = 0 (i.e.,r4 = (−r2r1+ r1)/(r1− r2)) implies
P3,P6, andP9 are collinear, which is a degenerate case. Iff2 = 0, that is,

r4 =
−r2

3r
2
1 + r2

3r1 + 2r3r2
1 − 2r3r1 − r2

1 + r1

r2
3r

2
2 − r2

3r2r1 + r2
3r

2
1 − r2

3r1 + r3r2r1 − r3r2 − 2r3r2
1 + 2r3r1 + r2

1 − r1

thenSP2P5P7 = 0, and we obtain a realization for the configuration shown in Figure 2-26.

Remark 2.60From the above two examples and Example 2.42, the three93 configurations
can be realized rationally, i.e., they can be realized in thegeometry associated with the
field of rational numbers.
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2.7.3 Transversals for Polygons

First, Example 1.8 on page 11 can be further generalized to the following form. Notice that
in these theorems involvingm points, the subscripts are understood to be modm.

Theorem 2.61 (Ceva’s Theorem for anm-polygon) Let V1...Vm be an m-polygon , and O a point.
Let Pi be the intersection of line OVi and the side Vi+kVi+k+1.
Then C(m, k) =

∏m
i=1

Vi+kPi

PiVi+k+1
= 1 iff m is an odd number and k= m−1

2 .

Proof. By the co-side theorem,

Vi+kPi

PiVi+k+1

=
SOViVi+k

SOVi+k+1Vi

, i = 1, ...,m.

Multiply the above equations together. We have thatC(m, k) = 1 iff the elements in the
numerator are the same as the elements in the denominator. Let us assume that thei-th
element in the numerator is the same as thej-th element in the denominator, i.e.,SOViVi+k =

SOVj+k+1V j . Then

i = j + k+ 1 mod(m); i + k = j mod (m).

The above two equations have solutions fori and j iff

2k+ 1 = 0 mod(m).

The only nontrivial solution of the above equation is 2k+1 = mwhich proves the theorem.

By polygrams, we mean the figures formed by the diagonals of polygons. The Menelaus
and Ceva type theorems are about the transversals for the sides of polygons. We will
discuss some results involving the transversals of polygrams which were discovered by B.
Grünbaum and G. C. Shephard using numerical searching ([108]). Using the area method,
we can not only prove these results easily but also strengthen some of them.

Example 2.62Let ABCD be a quadrilateral and O a point. Let E, F, G, and H be the in-
tersections of lines AO, BO, CO, and DO with the corresponding diagonals of the quadri-
lateral. Show thatAH

HC
CF
FA

BE
ED

DG
GB
= 1.

C
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Constructive description
Take arbitrary points
A, B, C, D, andO.
E = BD∩ AO.
F = AC∩ BO.
G = BD∩CO.
H = AC∩ DO.
Prove that
CF
FA
· BE

ED
· AH

HC
· DG

GB
= 1.

The machine proof
DG
BG
·CF

AF
· BE

DE
· AH
CH

H
=

SADO

SCDO
· DG

BG
·CF

AF
· BE

DE

G
=

(−SCDO)·SADO

SCDO·SBCO
· CF

AF
· BE
DE

simpli f y
=

−SADO

SBCO
· CF

AF
· BE

DE

F
=
−(−SBCO)·SADO

SBCO·SABO
· BE

DE

simpli f y
=

SADO

SABO
· BE

DE

E
=

(−SABO)·SADO

SABO·(−SADO)

simpli f y
= 1

The eliminants
AH
CH

H
=

SADO

SCDO

DG
BG

G
=
−SCDO

SBCO

CF
AF

F
=
−SBCO

SABO

BE
DE

E
=

SABO

SADO

Example 2.62 is a special case of the following result.

Theorem 2.63Let an arbitrary polygon V1...Vm and a point O be given, together with a
positive integer k such that1 ≤ k ≤ m

2 . Let Pi,k be the intersection of line OVi and line
Vi−kVi+k. Then

m∏

i=1

Vi+kPi,k

Pi,kVi−k

= 1.

Proof. By the co-side theorem

Vi+kPi,k

Pi,kVi−k

=
SOViVi+k

SOVi−kVi

, i = 1, ..,m.

Multiplying the m equations together and noticing that the elements in the numerator and
in the denominator are the same, we prove the result.

The following more intricate extension of Ceva’s theorem contains the above example
as the special casej = k.

Theorem 2.64Let an arbitrary polygon V1...Vm and a point O be given, and integers j and
k that satisfy1 ≤ j ≤ n−2, 1 ≤ k ≤ n−2 and j+k ≤ n−1. Let Pj,k,i denote the intersection
point of the line Vi+kVi− j and the line OVi. We put

C(m, j, k) =
m∏

i=1

Vi+kP j,k,i

P j,k,iVi− j

.

Then C(m, j, k) = (−1)mC(n, j,m− k) = 1
C(m,k, j) .
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Proof. By the co-side theorem

C(m, j, k, i) =
Vi+kPi,k, j

Pi,k, jVi− j

=
SOViVi+k

SOVi− jVi

. (1)

Replacingk by m− k in (1), we have

C(m, j,m− k, i) =
Vi+m−kPi,m−k, j

Pi,m−k, jVi− j

=
SOViVi+m−k

SOVi− jVi

= −
SOVi−kVi

SOVi− jVi

. (2)

Interchangingk and j in (1), we have

C(m, k, j, i) =
SOViVi+ j

SOVi−kVi

. (3)

From (1) and (2), it is clear thatC(m, j, k) = (−1)mC(n, j,m− k). From (1) and (3), we have
C(m, j, k) = 1

C(m,k, j) .

Example 2.65As shown in Figure 2-28, ABCDE− PQRS T is a pentagram. Then
AT
PD

DR
S B

BP
QE

ES
TC

CQ
RA
= AP

T D
DS
RB

BQ
PE

ET
SC

CR
QA
= 1.

To proveAT
PD

DR
S B

BP
QE

ES
TC

CQ
RA
= 1, we formulate the problem as follows.

A B

C

D

E

P

Q

R

ST

Figure 2-28

Constructive description
Take arbitrary pointsA, B, C, D, andE.
P = AD∩ BE.
Q = AC∩ BE.
R= BD∩ AC.
S = BD∩CE.
T = AD∩CE.
Show that

AT
AD

DR
DB

BP
BE

ES
EC

CQ
CA
= PD

AD
S B
DB

QE
BE

TC
EC

RA
CA
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The machine proof
−1

EQ
BE
· DP

AD
·CT
CE
· BS

BD
· AR

AC

· ES
CE
· DR

BD
·CQ

AC
· BP

BE
· AT
AD

T
=

−SACE·(−SACDE)
EQ
BE
· DP

AD
·(−SACD)· BS

BD
· AR
AC
·SACDE

· ES
CE
· DR

BD
·CQ

AC
· BP

BE

simpli f y
=

−SACE
EQ
BE
· DP

AD
·SACD· BS

BD
· AR

AC

· ES
CE
· DR

BD
·CQ

AC
· BP

BE

S
=

−SBDE·SACE·SBCDE
EQ
BE
· DP

AD
·SACD·SBCE· AR

AC
·(−SBCDE)

· DR
BD
·CQ

AC
· BP

BE

simpli f y
=

SBDE·SACE
EQ
BE
· DP

AD
·SACD·SBCE· AR

AC

· DR
BD
·CQ

AC
· BP

BE

R
=

SBDE·SACD·SACE·SABCD
EQ
BE
· DP

AD
·SACD·SBCE·SABD·(−SABCD)

· CQ
AC
· BP

BE

simpli f y
=

SBDE·SACE

− EQ
BE
· DP

AD
·SBCE·SABD

· CQ
AC
· BP

BE

Q
=

SBDE·(−SBCE)·SACE·(−SABCE)

−SACE· DP
AD
·SBCE·SABD·SABCE

· BP
BE

simpli f y
=

−SBDE
DP
AD
·SABD
· BP

BE

P
=
−SBDE·(−SABD)·SABDE

(−SBDE)·SABD·(−SABDE)

simpli f y
= 1

The eliminants

CT
CE

T
=

SACD

SACDE

AT
AD

T
=

SACE

SACDE

BS
BD

S
=

SBCE

SBCDE

ES
CE

S
=

SBDE
−SBCDE

AR
AC

R
=

SABD

SABCD

DR
BD

R
=

SACD

−SABCD

EQ
BE

Q
=

SACE

−SABCE

CQ
AC

Q
=
−SBCE

SABCE

DP
AD

P
=
−SBDE
SABDE

BP
BE

P
=

SABD

SABDE

The second result in Example 2.65 is equivalent to the following statement.
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B E

A

C
D

1A

1B

1C

1D

1E

Figure 2-29

Example 2.66 (Theorem of Pratt-Kasapi)Let
ABCDE be a pentagon. A1B1 ‖ AC, B1C1 ‖
BD, C1D1 ‖ CE, D1E1 ‖ AD, E1A1 ‖ EB.
Show that A1B · B1C · C1D · D1E · E1A =
BB1 ·CC1 · DD1 · EE1 · AA1.

The constructive description.

Take arbitrary pointsA, B, C, D, andE.
Take the intersectionA1 of the line passing throughBand parallel toCAand the line passing
throughA and parallel toEB.
Take the intersectionB1 of the line passing throughC and parallel toBD and the line
passing throughB and parallel toAC.
Take the intersectionC1 of the line passing throughD and parallel toCE and the line
passing throughC and parallel toBD.
Take the intersectionD1 of the line passing throughE and parallel toAD and the line
passing throughD and parallel toCE.
Take the intersectionE1 of the line passing throughAand parallel toBEand the line passing
throughE and parallel toAD.
Show that A1B

BB1

B1C

CC1

C1D

DD1

D1E

EE1

E1A

AA1
= 1.

The machine proof

− ED1
EE1
· DC1
DD1
·CB1
CC1
· BA1

BB1
· AE1

AA1

E1
=
−(−SBED1)·(−SADE)

(−SADA1 )·(−SABE) ·
DC1
DD1
·CB1
CC1
· BA1

BB1

D1
=
−(−SABDE)·SCDE·(−SADC1 )·SADE

SADA1 ·SABE·(−SADE)·SACDE
· CB1

CC1
· BA1

BB1

simpli f y
=

SABDE·SCDE·SADC1
SADA1 ·SABE·SACDE

· CB1
CC1
· BA1

BB1

C1
=

SABDE·SCDE·SACDE·SBCD·(−SCEB1)

SADA1 ·SABE·SACDE·SCDE·(−SBCDE) ·
BA1
BB1

simpli f y
=

SABDE·SBCD·SCEB1
SADA1 ·SABE·SBCDE

· BA1
BB1

B1
=

SABDE·SBCD·(−SBCDE·SABC)·(−SBDA1)

SADA1 ·SABE·SBCDE·SBCD·(−SABCD)

simpli f y
=

−SABDE·SABC·SBDA1
SADA1 ·SABE·SABCD

A1
=
−SABDE·SABC·SABCD·SABE·(−SABCE)

SABDE·SABC·SABE·SABCD·SABCE

simpli f y
= 1

The eliminants
AE1
AA1

E1
=

SADE
SADA1

ED1
EE1

E1
=

SBED1
SABE

DC1
DD1

D1
=

SADC1
SADE

SBED1

D1
=
−SABDE·SCDE

SACDE

CB1
CC1

C1
=
−SCEB1
SCDE

SADC1

C1
=

SACDE·SBCD

−SBCDE

BA1
BB1

B1
=
−SBDA1
SBCD

SCEB1

B1
=

SBCDE·SABC

SABCD

SADA1

A1
=

SABDE·SABC

−SABCE

SBDA1

A1
=

SABCD·SABE

SABCE
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Examples 2.65 and 2.66 are special cases of the following general results. Note that the
proofs of these general results are a natural extension of the machine proofs for the two
examples.

Let V1...Vm be a polygram and 1≤ d ≤ m
2 , 1 ≤ j ≤ m

2 integers. We denote byPd, j,i the
intersections of linesViVi+d and linesVi+ jVi+ j+d, i = 1, ...,m. ThenPd, j,i− j is the intersection
of line Vi− jVi− j+d and lineViVi+d. Let

T(m, d, j) =
m∏

i=1

ViPd, j,i

Pd, j,i− jVi+d

; S(m, d, j) =
m∏

i=1

ViPd, j,i− j

Pd, j,iVi+d

.

The result in Example 2.65 isT(5, 2, 1) = S(5, 2, 1) = 1. In general, we have

Theorem 2.67T(m, d, j) = 1 iff one of the following cases are true

• d + 2 j = m;

• 2d+ j = m.

Proof. By the co-side theorem,

ViPd, j,i

Pd, j,i− jVi+d

=
ViPd, j,i

ViVi+d

· ViVi+d

Pd, j,i− jVi+d

=
SViVi+ jVi+ j+d

SViVi+ jVi+dVi+ j+d

SVi− jViVi− j+dVi+d

SVi− jVi− j+dVi+d

.

Multiplying the m equations together, we see thatT(d, j,m) = 1 iff the areas of triangles
and the areas of quadrilaterals in the numerator are the sameas the ones in the denominator
respectively. Let us assume that thei-th area in the numerator is the same as thex-th area
in the denominator, i.e.SViVi+ jVi+ j+d = ±SVx− jVx− j+dVx+d. Then the point sets{Vi,Vi+ j,Vi+ j+d}
and {Vx− j ,Vx− j+d,Vx+d} should be the same. Considering the order, there are six possible
matches. One of the matches is

i + j = x+ d; i + j + d = x− j; i = x− j + d

where the= is understood to bemod(m). Then it is easy to see that the three equations are
true for all i andx iff

2d+ j = 0 mod(m).

Since 1≤ d ≤ m
2 , 1 ≤ j ≤ m

2 , the only possible solution is 2d + j = m. The other five cases
can be treated similarly andd + 2 j = m is the only nontrivial solution.

Theorem 2.68S(m, d, j) = 1 iff one of the following cases are true

• d + 2 j = m;

• 2d = j;
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• 2 j = d.

Proof. By the co-side theorem,

ViPd, j,i− j

Pd, j,iVi+d

=
ViPd, j,i− j

ViVi+d

· ViVi+d

Pd, j,iVi+d

=
SViVi− jVi− j+d

SVi+ jVi+ j+dVi+d

SVi+ jViVi+ j+dVi+d

SViVi− jVi+dVi− j+d

.

Now, we can prove it in a similar way as Theorem 2.67.

At the present time, our prover can not deal with geometry statements aboutm-polygons
for an arbitrary numberm. But our prover can prove these results for any concretem, e.g.
quadrilaterals, pentagons, etc.

Summary of Chapter 2

• The following basic propositions are the deductive basis ofthe area method.

1. If pointsC andD are on lineABandP is any point not on lineAB, thenSPCD

SPAB
=

CD
AB
.

2. (The co-side theorem) LetM be the intersection of two non parallel linesAB
andPQ andM , Q. Then

PM

QM
=

SPAB

SQAB
;

PM

PQ
=

SPAB

SPAQB
;

QM

PQ
=

SQAB

SPAQB
.

3. LetR be a point on linePQ. Then

SRAB=
PR

PQ
SQAB+

RQ

PQ
SPAB.

4. PQ ‖ AB iff SPAQB= SPAB− SQAB = SBPQ− SAPQ= 0.

5. LetABCDbe a parallelogram,P andQ be two points. Then

SAPQ+ SCPQ = SBPQ+ SDPQ or SPAQB= SPDQC.

6. LetABCDbe a parallelogram andP be any point . Then

SPAB= SPDC − SADC = SPDAC.

• The Hilbert intersection point statements are geometry statements whose hypothe-
ses can be described constructively and whose conclusions can be represented by
polynomial equations in two geometry quantities: the ratioof collinear or parallel
segments and the signed areas of triangles or quadrilaterals.
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• The area method can efficiently produce short and readable proofs for the Hilbert in-
tersection point statements. The proving process is to eliminate points from geometry
quantities using Lemmas 2.19 - 2.31.

• The area method works for constructive statements in the affine geometry associated
with any field.

• The area method is used to solve the following geometry problems: deriving un-
known geometry formulas, finding the necessary and sufficient conditions for the
existence ofn3 configurations, and proving theorems about the transversals for arbi-
trary polygons.
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Chapter 3

Machine Proof in Plane Geometry

In Chapter 2, we presented an automated theorem proving method for constructive state-
ments involving collinearity and parallelism. In this chapter, we will discuss constructive
statements involving perpendicular lines and circles. Thekey tool for dealing with perpen-
dicularity is thePythagoras difference, which is essentially the same as the inner product.
Therefore, the method presented in this chapter is actuallyfor constructive statements in
metric geometry.

3.1 The Pythagoras Difference

For three pointsA, B, andC, thePythagoras difference PABC is defined as

PABC = AB
2
+CB

2 − AC
2
.

Note that in the above definition, we use a new geometry object: thesquare distance be-

tween two points A and B, i.e.,AB
2
. For four pointsA, B,C, andD, we define

PABCD = AB
2
+CD

2 − BC
2 − DA

2
.

For basic properties of the Pythagoras difference, see Section 1.7.

3.1.1 Pythagoras Difference and Perpendicular

Besides collinear and parallel considered in Chapter 2, we now have a new basic geometry
relation: line l is perpendicularto line l′, denoted byl⊥l′. Following are some basic
properties of the perpendicularity.

103
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1. If l⊥l′ thenl′⊥l.

2. LetP be a point andl a line. Then there exists a unique linel′ which passes through
point P and is perpendicular to linel.

3. If two distinct linesl′ andl′′ are both perpendicular to linel thenl′ is parallel to line
l′′.

4. (Pythagorean Theorem)AB⊥BC iff AC
2
= AB

2
+ BC

2
, i.e., iff PABC = 0.

For the proof of the Pythagorean theorem, see Example 1.42 onpage 24 and Proposi-
tion 1.55 on page 28. But here, we take Pythagorean theorem asa basic property of the
Pythagoras difference. Other propositions in this subsection can be derived from it.

For four pointsA, B,C, andD, the notationAB⊥CD implies that one of the following
conditions is true:A = B, or C = D, or the lineAB is perpendicular to lineCD.

Proposition 3.1AB⊥CD iff PACD =PBCD or PACBD = 0.

Proof. See Proposition 1.62 on page 30.

The above generalized Pythagorean proposition is one of themost useful tools in our
mechanical theorem proving method.

Proposition 3.2Let D be the foot of the perpendicular drawn from point P to a line AB.
Then we have

AD

DB
=

PPAB

PPBA
,

AD

AB
=

PPAB

2AB
2
,

DB

AB
=

PPBA

2AB
2
.

Proof. See Proposition 1.65 on page 31.

Proposition 3.3Let AB and PQ be two nonperpendicular lines and Y be the intersection of
line PQ and the line passing through A and perpendicular to AB. Then

PY

QY
=

PPAB

PQAB
,

PY

PQ
=

PPAB

PPAQB
,
QY

PQ
=

PQAB

PPAQB
.

Proof. See Proposition 1.66 on page 31.

Proposition 3.4Let A, B, and C be three different collinear points. Then for any point P if
PPAC , 0 we havePPAB

PPAC
= AB

AC
.
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A B

P

CQ

Figure 3-1

Proof. Let Q be the orthogonal projection
from P to line AB. By Proposition 3.1,
PPAB = PQAB = 2AQ · AB; PPAC = PQAC =

2AQ · AC. Now the result is clear.

A B

P

Q

R

P QR

Figure 3-2

1 11

Proposition 3.5Let R be a point on line PQ
with position ratios r1 = PR

PQ
, r2 =

RQ
PQ

with
respect to PQ. Then for any points A and B,
we have

PRAB = r1PQAB+ r2PPAB

PARB = r1PAQB+ r2PAPB− r1r2PPQP.

Proof. We first assume

RA
2
= r1QA

2
+ r2PA

2 − r1r2PQ
2

(1)

RB
2
= r1QB

2
+ r2PB

2 − r1r2PQ
2
. (2)

ThenPRAB= RA
2
+AB

2−RB
2
= r1(QA

2
+AB

2−QB
2
)+ r2(PA

2
+AB

2−PB
2
) = r1PQAB+

r2PPAB. The second one can be proved similarly. To prove (1), let us first notice that by
Proposition 3.4,

PAPR

PAPQ
=

PR

PQ
= r1.

Then

r1QA
2
+ r2PA

2 − r1r2PQ
2
= r1QA

2
+ (1− r1)PA

2 − r1(1− r1)PQ
2

= PA
2
+ r1(QA

2 − PA
2 − PQ) + r2

1PQ
2

= PA
2
+ PR

2 − r1PAPQ

= PA
2
+ PR

2 − PAPR= AR
2
.

3.1.2 Pythagoras Difference and Parallel

Proposition 3.6For a parallelogram ABCD, we haveAC
2
+ BD

2
= 2AB

2
+ 2BC

2
, i.e.,

PABC = −PBAD.

Proof. Let O be the intersection of the diagonalsAC andBD. By Proposition 3.5,AC
2
=

4AO
2
= 4(1

2AB
2
+ 1

2AD
2 − 1

4BD
2
) = 2AB

2
+ 2AD

2 − BD
2
.
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The following proposition shows how the Pythagoras difference changes under aparal-
lel translation.

Proposition 3.7Let ABCD be a parallelogram. Then for any points P and Q, we have

PAPQ+ PCPQ = PBPQ+ PDPQ or PAPBQ= PDPCQ

PPAQ+ PPCQ = PPBQ+ PPDQ+ 2PBAD

Proof. Let O be the intersection ofAC andBD. By the first equation of Proposition 3.5,
2POPQ = PAPQ+ PCPQ = PBPQ+ PDPQ. By the second equation of Proposition 3.5,

2PPOQ = PPAQ+ PPCQ−
1
2

PACA = PPBQ+ PPDQ−
1
2

PBDB.

We need only to show that 2PBAD =
1
2(PACA−PBDB) which is a consequence of Proposition

3.6.

Proposition 3.8Let ABCD be a parallelogram and P be any point. Then

PPAB = PPDC − PADC = PPDAC

PAPB = PAPA− PPDAC

Proof. By Proposition 3.7,PPAB = PPAC− PPAD = PCADP = PPDAC = PPDC − PADC. For the
second equation,PAPB = PAPA+ PAPC− PAPD = PAPA+ PCPDA = PAPA− PPDAC.

Proposition 3.9If PR ‖ AC and QS‖ BD thenPPQRS

PABCD
= PR

AC
· QS

BD
.

Proof. Let X andY be points such thatPR= AX, QS = BY. By Propositions 3.7 and 3.4,

PPQRS= PPBRY= PPBY− PRBY=
QS

BD
(PPBD− PRBD) =

QS

BD
PPBRD.

Similarly we havePPBRD=
PR
AC

PABCD.

Proposition 3.10Let AB‖ CD. ThenAB
CD
=

PADBC

2CD
2 .

Proof. By Proposition 3.9,AB
CD
= AB

CD
· CD

CD
=

PACBD

PCCDD
=

PADBC

2CD
2 .

Exercises 3.11
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1. LetABCDbe a parallelogram. Then

1. PABC = PADC = −PBAD = −PBCD.
2. PABD = PBDC; PCBD = PADB.
3. PADB− PADC = 2AD

2
.

2. Let ABCDbe a parallelogram andO be the intersection of its diagonals. For any point
P, show that

1. PPAB+ PPBC+ PPCD + PPDA = 2(AB
2
+ BC

2
).

2. PAPD+ PBPC− PCPD− PDPD = 2(AB
2 − BC

2
).

3. PAPD+ PBPC+ PCPD+ PDPD = 8PO
2
.

3.1.3 Pythagoras Difference and Area

In this subsection, we will prove the Herron-Qin formula which connects the area and the
Pythagoras differences of a triangle.

Definition 3.12 Let F be the foot of the perpendicular drawn from point R to line PQ. The
signed distance from R to PQ, denoted by hR,PQ, is a real number which has the same sign
as SRPQ and |hR,PQ| = |RF|.

Proposition 3.13For any two triangles ABC and RPQ, let hA = hA,BC, hR = hR,PQ. Show
that SABC

|BC|hA
=

SRPQ

|PQ|hR
.

B C

A

R

P QF

M

Figure 3-3

Proof. Without loss of generality, we assume
that pointsB,C,P, andQ are on the same line.
As in Figure 3-3, letRF be the altitude of tri-
angleRPQandM be a point onRF such that
AM ‖ BC. ThenSABC = SMBC. By Proposi-
tions 2.7 and 2.8,

SABC

SAPQ
=

BC

PQ
;

SMPQ

SRPQ
=

MF

RF
.

Multiplying the two formulas together and noticing thathA andhR have the same sign as
SABC andSRPQ, we have SABC

|BC|hA
=

SRPQ

|PQ|hR
.

Corollary 3.14 For a triangle ABC, we have

hA,BC|BC| = hB,CA|AC| = hC,AB|AB|.
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Proof. Putting△RPQto be△BCAand△CAB in Proposition 3.13 respectively, we obtain
the result.

By Proposition 3.13, we haveSABC = khA|BC| = khB|AC| = khC|AB| wherek is a
constant which is independent of the triangleABC. Settingk = 1/2, we obtain the usual
formula for the areas of triangles.

Proposition 3.15For a triangle ABC,

SABC =
1
2

hA|BC| = 1
2

hB|AC| = 1
2

hC|AB|.

Proposition 3.16 (The Herron-Qin Formula)For a triangle ABC, we have16S2
ABC = 4AB

2
AC

2−
P2

BAC.

C

A

B F

Figure 3-4

Proof. Let F be the foot of the perpendicular line
drawn from pointA to lien BC. By Proposition 3.4,
PABC

PABF
= BC

BF
. Then

PABC =
BC

BF
PABF =

BC

BF
PFBF = 2BC · BF.

Then 16S2
ABC = 4AF

2 · BC
2
= 4(AB

2 − BF
2
)BC

2
= 4AB

2 · AC
2 − P2

BAC.

Proposition 3.17 (The Herron-Qin Formula for Quadrilaterals) For any quadrilateral

ABCD, we have16S2
ABCD= 4AC

2 · BD
2 − P2

ABCD.

Proof.Take a pointX such thatCXDBis a parallelogram. ThenCX = BD. By Propositions
2.11, 3.7, and the Herron-Qin formula for triangles,

S2
ABCD = S2

AACX= S2
XAC

=
1
16

(4AX
2 · AC

2 − P2
XAC)

=
1
16

(4BD
2 · AC

2 − P2
XAAC)

=
1
16

(4BD
2 · AC

2 − P2
BADC).

You may compare the proofs for the two the Herron-Qin formulas based on trigonometric
functions on page 38. The proof given here is independent of the concept of angles.

Exercises 3.18
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1. Prove the following forms of the Herron-Qin formula.

• 16S2
ABC = PACBPABC+ PBCBPBAC.

• 16S2
ABC = PBACPACB+ PACAPABC.

• 16S2
ABC = PCABPCBA+ PABAPACB.

2. The absolute value of the area of a square
is equal to the square of its side. Use this
result to prove the Pythagorean theorem.
(Hint. Use Figure 3-5.)

Figure 3-5

3.2 Constructive Geometry Statements

By constructive geometry statements, we mean statements which are assertions about con-
figurations that can be drawn using only a ruler and a pair of compasses. More precisely,
these configurations can be constructed by first taking arbitrary points, lines and circles and
then taking the intersections of two lines and of lines and circles in a prescribed manner.
From the constructed points, we can form new lines and circles. By forming the intersec-
tions of these new lines and circles, we can obtain new points, etc. Finally, we obtain a
configuration consisting of points, lines and circles. The class of constructive statements is
denoted byC.

It is clear that the Hilbert intersection point statements belong to classC. In this sec-
tion, we introduce a new subset ofC, i.e., the linear constructive geometry statementCL,
which is larger thanCH and has the advantage that on one hand it contains most of the com-
monly used geometry theorems and on the other hand its readable proofs can be obtained
efficiently by a mechanical method.

3.2.1 Linear Constructive Geometry Statements

Now we have three basicgeometric quantities:

• the area of a triangle or a quadrilateral,

• the Pythagoras difference of a triangle or a quadrilateral, and

• the ratio of parallel line segments.



110 Chapter 3. Machine Proof in Plane Geometry

By Proposition 3.10, the ratio of parallel line segments canbe represented as expressions
in Pythagoras differences.

Points are the basic geometry objects. From points, we can introduce two other basic
geometric objects: lines and circles. Astraight linecan be given in one of the following
four forms.

(LINE U V) is the line passing through two pointsU andV.

(PLINE W U V) is the line passing through pointW and parallel to (LINEU V).

(TLINE W U V) is the line passing through pointW and perpendicular to (LINEU V).

(BLINE U V) is the perpendicular-bisector ofUV.

To make sure that the four kinds of lines are well defined, we need to assumeU , V which
is called thenondegenerate condition(ndg) of the corresponding line.

A circle with point O as its center and passing through pointU is denoted by (CIRO
U).

A constructionis one of the following ways of introducing new points. For each con-
struction, we also give its ndg condition and the degree of freedom for the constructed
point.

C1 (POINT[S] Y1, · · · ,Yl). Take arbitrary pointsY1, · · · ,Yl in the plane. EachYi has two
degrees of freedom.

C2 (ON Y ln). Take a pointY on a lineln. The ndg condition of C2 is the ndg condition
of the lineln. PointY has one degree of freedom.

C3 (ON Y (CIR O P)). Take a pointY on a circle (CIRO P). The ndg condition isO , P.
PointY has one degree of freedom.

C4 (INTER Y ln1 ln2). PointY is the intersection of lineln1 and lineln2. PointY is a
fixed point. The ndg condition isln1 ∦ ln2. More precisely, we have
1. If ln1 is (LINE U V) or (PLINE W U V) andln2 is (LINE P Q) or (PLINE R P

Q), then the ndg condition isUV ∦ PQ.

2. If ln1 is (LINE U V) or (PLINEW U V) andln2 is (BLINE P Q) or (TLINE R P
Q), then the ndg condition is¬(UV⊥PQ).

3. If ln1 is (BLINE U V) or (TLINE W U V) andln2 is (BLINE P Q) or (TLINE R
P Q), then the ndg condition isUV ∦ PQ.

C5 (INTER Y ln (CIR O P)). PointY is the intersection of lineln and circle (CIRO P)
other than pointP. Line ln could be (LINEP U), (PLINE P U V), and (TLINEP U
V). The ndg conditions areO , P, Y , P, and lineln is not degenerate. PointY is a
fixed point.
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C6 (INTER Y (CIR O1 P) (CIR O2 P)). PointY is the intersection of the circle (CIRO1

P) and the circle (CIRO2 P) other than pointP. The ndg condition isO1,O2, andP
are not collinear. PointY is a fixed point.

C7 (PRATIO Y W U V r). Take a pointY on the line passing throughW and parallel to
lineUV such thatWY= rUV, wherer can be a rational number, a rational expression
in geometric quantities, or a variable.

If r is a fixed quantity, thenY is a fixed point; ifr is a variable thenY has one degree
of freedom. The ndg condition isU , V. If r is a rational expression in geometry
quantities then we will further assume that the denominatorof r could not be zero.

C8 (TRATIO Y U V r). Take a pointY on line (TLINEU U V) such thatr = 4SUVY

PUVU
(= UY

UV
),

wherer can be a rational number, a rational expression in geometricquantities, or a
variable.

If r is a fixed quantity thenY is a fixed point; ifr is a variable thenY has one degree
of freedom. The ndg condition is the same as that of C7.

The pointY in each of the above constructions is said to beintroducedby that construction.

Since there are four kinds of lines, constructions C2, C4, and C5 have 4, 10, and 3
possible forms respectively. Thus, in total, we have 22 different forms of constructions.

Now classCL, the class of thelinear constructive geometry statements, can be defined
similarly asCH, i.e., a statement in classCL is a list

S = (C1,C2, . . . ,Ck,G)

whereCi, i = 1, . . . , k, are constructions such that eachCi introduces a new point from the
points introduced before; andG = (E1,E2) whereE1 andE2 are polynomials in geometric
quantities of the points introduced by theCi andE1 = E2 is the conclusion of the statement.

Let S = (C1,C2, . . . ,Ck, (E1,E2)) be a statement inCL. Thendg conditionof S is the
set of ndg conditions of theCi plus the condition that the denominators of the length ratios
in E1 andE2 are not equal to zero.

We call the statements inCL linear, because each of the constructions C1–C8 introduces
a unique point. For the constructions involving circles, this fact may not be obvious. See
the next subsection for more discussions.

Example 3.19The orthocenter theorem on page 32 can be described in the following con-
structive way.

((POINTSA B C)
(INTER E (LINE A C) (TLINE B A C))
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(INTER F (LINE C B) (TLINE A C B))
(INTER H (LINE A F) (LINE B E))
(PACH = PBCH)) AB⊥CH.

The ndg condition:A , C, C , B, AF ∦ BE.

3.2.2 A Minimal Set of Constructions

There are a total of 22 constructions and three kinds of geometry quantities. So to provide
an elimination method for each construction and each geometry quantity, we need to con-
sider 22 * 3= 66 cases. Instead of considering all these cases, we introduce a minimal set
of constructions which are equivalent to all the 22 constructions but much fewer in number.

A minimal set of constructionsconsists of C1, C7, C8 and the following two construc-
tions.

C41 (INTER Y (LINE U V) (LINE P Q)).

C42 (FOOTY P U V), or equivalently (INTERY (LINE U V) (TLINE P U V))). The ndg
condition isU , V.

We first show how to represent the four kinds of lines by one kind: (LINE U V).

For ln = (PLINE W U V), we first introduce a new pointN by (PRATION W U V1).
Thenln = (LINE W N).

For ln = (TLINE W U V), we have two cases: ifW, U, V are collinear,ln = (LINE N
W) whereN is introduced by (TRATION W U1); otherwiseln = (LINE N W) whereN is
given by (FOOTN W U V).

(BLINE U V) can be written as (LINEN M) whereN andM are introduced as follows
(MIDPOINT M U V) (i.e., (PRATIOM U U V 1/2)), (TRATIO N M U 1).

Since now there is only one kind of line, to represent all the 22 constructions by the
constructions in the minimal set we need only to consider thefollowing cases.

• (ON Y (LINE U V)) is equivalent to (PRATIOY U U V r) wherer is anindetermi-
nate.

• (INTER Y (LINE U V) (CIR O U)) is equivalent to two constructions: (FOOTN O
U V), (PRATIOY N N U -1).

• C6 can be reduced to (FOOTN P O1 O2) and (PRATIOY N N P-1).

• For C3, i.e., to take an arbitrary pointY on a circle (CIRO P), we first take an
arbitrary pointQ. ThenY is introduced by (INTERY (LINE P Q) (CIR O P)).
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Proposition 3.20The existence of the point introduced by each of the 22 constructions fol-
lows from Axiom A.2 on page 55.

Proof. We can limit ourselves to the five minimal constructions. Constructions C1, C7, and
C41 have been discussed on page 61. LetY be introduced by (FOOTY P U V). Then by
Proposition 3.2 pointY is a point onUV with the position ratioPPUV

PUVU
. HenceY does exist

by Axiom A.2. LetY be introduced by (TRATIOY U V r). ThenY can also be introduced
as follows (check this).

(POINT M); (FOOTN M U V); (PRATIO B U M N 1); (PRATIOY U U B rPUVU

4SUVB
).

ThusY exists.

Exercises 3.21

1. Show that constructions C1, C7, and C8 can also serve as a minimal set of constructions.
The reason we use a larger minimal set is that constructions C41 and C42 are used
frequently and special treatment of them will lead to short proofs.

2. We introduce a new construction (LRATIOY U V r) which means taking a pointY on
UV such thatUY = rUV. Show that C1, C8 and the above construction also form a
minimal set of constructions. (See Example 2.13).

3. Show that constructions C1, C7, and C42 could form a minimal set of constructions.

3.2.3 The Predicate Form

The constructive description of geometry statements can betransformed into the commonly
used predicate form. In addition to the three predicates POINT, COLL, and PARA intro-
duced on page 63, we introduce two new predicates.

1. Perpendicular (PERP P1,P2,P3,P4): [(P1 = P2)∨(P3 = P4)∨(P1P2 is perpendicular
to P3P4)]. It is equivalent toPP1P3P2P4 = 0.

2. Congruence (CONG P1,P2,P3,P4): SegmentP1P2 is congruent toP3P4. It is equiv-
alent toPP1P2P1 = PP3P4P3.

To transform constructions into predicate forms, we need only to consider the minimal set
of constructions introduced in the preceding subsection. Also constructions C1, C41, and
C7 have been discussed in Section 2.3.2. We thus need only to consider C42 and C8.

C42 (FOOTY P U V) is equivalent to (COLLY U V), (PERPY P U V), andU , V.

C8 (TRATIO Y U V r) is equivalent to (PERPY U U V), r = 4SUVY

PUVU
, andU , V.
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Now a constructive statementS = (C1, · · · ,Ck, (E, F)) can be transformed into the follow-
ing predicate form

∀Pi[(P(C1) ∧ · · · ∧ P(Ck))⇒ (E = F)]

whereP(Ci) is the predicate form forCi andPi is the point introduced byCi.

We will now discuss what geometry properties can be the conclusion of a geometry
statement inCL, i.e., what geometry properties can be represented by polynomial equations
of geometry quantities. To illustrate that, let us give an algebraic interpretation for the area
and Pythagoras difference. LetA, B,C, andD be four points in the Euclidean plane. Then
SABCD andPABCD are propositional to the exterior and inner product of the diagonalsAC
andBD of the quadrilateralABC: (see Chapter 5 for details)

SABCD=
1
2

[
−−→
AC,
−−→
BD], PABCD = 2〈−−→AC,

−−→
BD〉.

So any geometry property that can be represented by an equation of the inner and exterior
products can be the conclusion of a geometry statement. As examples, we show how to
represent several often used geometry properties by the geometry quantities.

(COLLINEAR A B C). PointsA, B, andC are collinear iff SABC = 0. For other variants,
see the comments after Example 2.36 on page 74.

(PARALLEL A B C D). AB is parallel toCD iff SACD = SBCD.

(PERPENDICULARA B C D). AB is perpendicular toCD iff PACD = PBCD.

(MIDPOINT O A B). O is the midpoint ofAB iff AO
OB
= 1.

(EQDISTANCEA B C D). AB has the same length asCD iff PABA = PCDC.

(HARMONIC A B C D). A, B andC, D are harmonic points iff AC
CB
= DA

DB
.

(EQ-PRODUCTA B C D P Q R S). The product ofAB andCD is equal to the product
of PQ andRS, which is equivalent toAB

PQ
= ± RS

CD
if AB ‖ PQ andRS ‖ CD; PACBD =

±PPRQS if AB ‖ CD andPQ ‖ RS; PABAPCDC = PPQPPRS Rotherwise.

(TANGENT O1 A O2 B). Circle (CIRO1 A) is tangent to circle (CIRO2 B) iff d2 + r2
1 +

r2
2 − 2dr1 − 2dr2 − 2r1r2 = 0 whered = O1O2

2
, r1 = O1A

2
, r2 = O2B

2
.

3.3 Machine Proof for Class CL

3.3.1 The Algorithm

In Chapter 2, we have seen that the process of proving geometry theorems using the area
method actually eliminates points from geometry quantities. To prove geometry theorems



3.3 A Proof Method for CL 115

in classCL, we need to eliminate points introduced by constructions: C1, C7, C8, C41, C42
from three geometry quantities: the area, the Pythagoras difference, and the length ratio.

Let G(Y) be one of the following geometry quantities:SABY,SABCY,PABY, or PABCY for
distinct pointsA, B, C, andY. For three collinear pointsY, U, andV, by Propositions 2.9
and 3.5 we have

(I ) G(Y) =
UY

UV
G(V) +

YV

UV
G(U).

We call G(Y) a linear geometry quantityfor variableY. Elimination procedures for all
linear geometry quantities are similar for constructions C7, C41, and C42.

Lemma 3.22Let G(Y) be a linear geometry quantity and point Y be introduced by construc-
tion (PRATIO Y W U V r). Then we have

G(Y) =

{
(UW

UV
+ r)G(V) + (WV

UV
− r)G(U) if W is on line UV.

G(W) + r(G(V) −G(U)) otherwise.

Proof. If W,U, andV are collinear, we haveUY
UV
= UW

UV
+ r; YV

UV
= WV

UV
− r. Substituting these

into (I), we obtain the first formula. For the second one, takea pointS such thatWS= UV.
By (I)

G(Y) =
WY

WS
G(S) +

YS

WS
G(W) = rG(S) + (1− r)G(W).

By Propositions 2.11 and 3.7,G(S) = G(W) + G(V) − G(U). Substituting this into the
above equation, we obtain the result. Notice that in both cases, we need the ndg condition
U , V.

Lemma 3.23Let G(Y) be a linear geometry quantity and Y be introduced by (INTER Y
(LINE U V) (LINE P Q)). Then

G(Y) =
SUPQG(V) − SVPQG(U)

SUPVQ
.

Proof. By the co-side theorem,UY
UV
=

SUPQ

SUPVQ
, YV

UV
= − SVPQ

SUPVQ
. Substituting these into (I), we

prove the result.

Lemma 3.24Let G(Y) be a linear geometry quantity and Y be introduced by (FOOT Y P U
V). Then

G(Y) =
PPUVG(V) + PPVUG(U)

2UV
2

.
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Proof. By Proposition 3.2,UY
UV
=

PPUV

PUVU
, YV

UV
=

PPVU

PUVU
. Substituting these into (I), we prove the

result,

Let G(Y) = PAYB. By Proposition 3.5, for three collinear pointsY, U, andV

(II ) G(Y) =
UY

UV
G(V) +

YV

UV
G(U) − UY

UV
· YV

UV
PUVU.

We callPAYBaquadratic geometry quantityfor variableY. Since in the above three lemmas
we have obtained the position ratiosUY

UV
, YV

UV
for Y when it is introduced by constructions

C7, C41,C42, we can substitute them into (II) to eliminate pointY from G(Y). Notice that
in the case of constructionC7, we need to use the second formula of Proposition 3.7. The
result is as follows.

Lemma 3.25Let Y be introduced by (PRATIO Y W U V r). Then we have

PAYB= PAWB+ r(PAVB− PAUB+ PWUV) − r(1− r)PUVU.

Construction C8 needs special treatment.

Lemma 3.26Let Y be introduced by (TRATIO Y P Q r). Then we have SABY = SABP −
r
4PPAQB.

A

B

P Q

Y

A

Figure 3-6

1

Proof. Let A1 be the orthogonal projection fromA to
PQ. Then by Propositions 2.10 and 3.2

SPAY

SPQY
=

SPA1Y

SPQY
=

PA1

PQ
=

PA1PQ

PQPQ
=

PAPQ

PQPQ
.

ThusSPAY =
PAPQ

PQPQ
SPQY =

r
4PAPQ. Similarly, SPBY =

PBPQ

PQPQ
SPQY =

r
4PBPQ. Now SABY =

SABP+ SPBY− SPAY= SABP− r
4PPAQB.

Lemma 3.27Let Y be introduced by (TRATIO Y P Q r). Then we have PABY = PABP −
4rSPAQB.

A

B

P Q

Y

A

B

Figure 3-7

1

1Proof. Let the orthogonal projections fromA andB to PY
beA1 andB1. Then

PBPAY

PYPY
=

PB1PA1Y

PYPY
=

A1B1

PY
=

SPA1QB1

SPQY
=

SPAQB

SPQY
.
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By the Herron-Qin formula,S2
PQY =

1
4PQ

2 · PY
2
. ThenPYPY= 2PY

2
= 4rSPQY. Therefore

PABY = PABP− PBPAY= PABP− 4rSPAQB.

Lemma 3.28Let Y be introduced by (TRATIO Y P Q r). Then we have

PAYB= PAPB+ r2PPQP− 4r(SAPQ+ SBPQ).

Proof. By Lemma 3.27,
PAPY = 4rSAPQ,PBPY = 4rSBPQ.

By the Herron-Qin formula,

PYPY= 2PY
2
= 4rSPQY = r2PPQP.

ThenPAYB= PAPB− PAPY− PBPY+ PYPY= PAPB+ r2PPQP− 4r(SAPQ+ SBPQ).

By Proposition 3.10 the ratios of parallel line segments canbe represented by Pythagoras
differences. Thus, we have given a complete method of eliminating points from geometry
quantities. But usually, we consider the length ratios separately in order to obtain short
proofs. The methods of eliminating pointY introduced by C41 and C7 from length ratios
have been given by Lemmas 2.25 and 2.26. For other constructions, we have

Lemma 3.29Let Y be introduced by (FOOT Y P U V). We assume D, U; otherwise
interchange U and V.

G =
DY

EF
=

{ PPEDF
PEFE

if D ∈ UV.
SDUV

SEUFV
if D < UV.

Proof. If D ∈ UV, let T be a point such thatDT = EF. By Propositions 3.2 and 3.8

G =
DY

EF
=

DY

DT
=

PPDT

PDT D
=

PPEDF

PEFE
.

The second equation is a direct consequence of the co-side theorem.

Lemma 3.30Let Y be introduced by (TRATIO Y P Q r).

G =
DY

EF
=



PDPQ

PEPFQ
if D < PY.

SDPQ− r
4 PPQP

SEPFQ
if D ∈ PY.

Proof. The first case is a direct consequence of Proposition 3.3. IfD ∈ PY, then DY
EF
=

DP
EF
− YP

EF
. By the co-side theorem,

DP

EF
=

SDPQ

SEPFQ
;

YP

EF
=

SYPQ

SEPFQ
=

rPPQP

4SEPFQ
.
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Now the second result follows immediately.

For a geometry statementS = (C1,C2, . . . ,Ck, (E, F)), after eliminating all the non-free
points introduced byCi from E and F using the above lemmas, we obtain two rational
expressionsE′ andF′ in indeterminates, areas and Pythagoras differences offree points.
These geometric quantities are generally not independent,e.g., for any three pointsA, B,
andC we have theHerron-Qin formula(Proposition 3.16):

16S2
ABC = 4AB

2
AC

2 − (AC
2
+ AB

2 − BC
2
)2.

We thus need to reduceE′ andF′ to expressions in independent variables. To do that, we
first introduce three new pointsO,U, andV such thatUO⊥OV. We will reduceE′ andF′

to expressions in thearea coordinatesof the free points with respect toOUV.

Lemma 3.31For three points A, B, and C, we have

1. SABC =
1

SOUV

∣∣∣∣∣∣∣∣

SOUA SOVA 1
SOUB SOVB 1
SOUC SOVC 1

∣∣∣∣∣∣∣∣
.

O

M

U

V

A

B

Figure 3-8

2. PABC = AB
2
+CB

2 − AC
2
.

3. AB
2
=

OU
2
(SOVA−SOVB)2

S2
OUV

+
OV

2
(SOUA−SOUB)2

S2
OUV

.

4. S2
OUV =

1
4OU

2
OV

2
.

Proof. Case 1 is Lemma 2.31. Case 2 is the definition of the Pythagorasdifference. For
case 3, we introduce a new pointM by construction

(INTER M (PLINE A O U) (PLINE B O V)).

Then by the Pythagorean theorem,AB
2
= AM

2
+BM

2
. By the second case of Lemma 2.26,

AM
OU
=

SAOBV

SOOUV
=

SAOV−SBOV

SOUV
; BM

OV
=

SAOU−SBOU

SOUV
. We have proved case 3. Case 4 is a consequence

of Proposition 3.13.

Using Lemma 3.31,E andF can be written as expressions ofOU,OV, and the area
coordinates of the free points.

Remark 3.32In Lemma 3.31, we actually use the Cartesian coordinates of points to repre-
sent areas and Pythagoras differences. For a point P, let xP =

2SOUP

|OU| , yP =
2SOVP

|OV| . Then the
formulas in Lemma 3.31 become

1’. SABY =
1
2

∣∣∣∣∣∣∣∣

xA yA 1
xB yB 1
xY yY 1

∣∣∣∣∣∣∣∣
.



3.3 A Proof Method for CL 119

3’. AB
2
= (xA − xB)2 + (yA − yB)2.

Algorithm 3.33 (PLANE)

INPUT: S = (C1,C2, . . . ,Ck, (E, F)) is a statement inCL.

OUTPUT: The algorithm tells whetherS is true or not, and if it is true, produces a proof
for S.

S1. For i = k, · · · , 1, do S2, S3, S4 and finally do S5.

S2. Check whether the ndg conditions ofCi are satisfied. The ndg condition of a construc-
tion has three forms:A , B, PQ ∦ UV, or PQ 6⊥ UV. For the first case, we check
whetherPABA = 2AB

2
= 0. For the second case, we check whetherSPUV = SQUV.

For the third case, we check whetherPPUV = PQUV. If a ndg condition of a geometry
statement is not satisfied, the statement istrivially true. The algorithm terminates.

S3. Let G1, · · · ,Gs be the geometric quantities occurring inE andF. For j = 1, · · · , s do
S4.

S4. Let H j be the result obtained by eliminating the point introduced by constructionCi

from G j using the lemmas in this section and replaceG j by H j in E andF to obtain
the newE andF.

S5. Now E andF are rational expressions in independent variables. Hence if E = F, S is
true. OtherwiseS is false.

Proof of the correctness.Only the last step needs explanation. IfE = F, the statement
is obviously true. Otherwise, by Proposition 2.33 we can findspecific values for the free
parameters inE and F such that when substituting them intoE and F, we obtain two
different numbers, i.e., we have found a counterexample.

For the complexity of the algorithm, letn be the number of the non-free points in a
statement which is described using constructions C1–C8. Bythe analysis in Section 3.2,
we will use at most 5nconstructions in the minimal set to represent the hypotheses (we need
five minimal constructions to represent construction (INTER A (BLINE U V) (BLINE P
Q))). Then we will use at most 5n minimal constructions to describe the statement. Notice
that each lemma will replace a geometric quantity by a rational expression with degree less
than or equal to three. Then if the conclusion of the geometrystatement is of degreed, the
output of our algorithm is at most degree 35nd. In the last step, we need to represent the
area and Pythagoras difference by area coordinates. In the worst case, a geometry quantity
(Pythagoras difference) will be replaced by an expression of degree five. Thusthe degree
of the final polynomial is at most 5d35n.
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Remark 3.34In Section 2.6, we showed that the area method is for affine geometry over any
field. Algorithm 3.33 is actually for metric geometry over any field whose characteristic is
not2. We have to exclude the case of characteristic2. Otherwise, for three collinear points
A, B, and C we have PABC = 2AB ·CB= 0, i.e., AB⊥BC. For more details, see Chapter 5.

3.3.2 Refined Elimination Techniques

We have presented a complete method for proving geometry statements in classCL by
considering a minimal set of constructions. But if we use only those five constructions,
we must introduce many auxiliary points in the description of geometry statements. More
points usually mean longer proofs. In this section we will introduce more constructions
and more elimination techniques which can be used to obtain shorter proofs.

The elimination lemmas in Section 3.3.1 can be refined in two ways: first we may
consider more constructions instead of the minimal set; second for each elimination lemma
we may give the elimination results in some special cases of the configuration. As an
example of the second way of refinement, prove the following result.

Exercise 3.35Let point Y be introduced by construction (FOOT Y P U V). Provethe fol-
lowing results.

SABY =



SABU if AB ‖ UV;
SABP if AB⊥UV;
SUBVPPUAV

PUVU
if U,V, and A are collinear;

SAUVSPUBV

SUVU
if U,V, and B are collinear.

PABY =



PABP if AB ‖ UV;
PABU if AB⊥UV;
PABUPPBU

PUBU
if U,V, and B are collinear.

PAYB =



16S2
PUV

PUVU
if A = B = P;

P2
PUV

PUVU
if A = B = U;

P2
PVU

PUVU
if A = B = V;

−PPVUPPUV

PUVU
if A = U, B = V.

To use the above elimination technique, similar to in Section 2.5.1, we need to find the
collinear point sets, parallel lines, and perpendicular lines which are obvious from the
constructive description of the geometry statement. See the following example.

Example 3.36The following machine proof of the orthocenter theorem on page 32 uses the
above exercise.
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Constructive description
( (POINTSA B C)

(FOOT E B A C)

(FOOT F A B C)

(INTER H (LINE A F) (LINE B E))

(PERPENDICULARA B C H) )

The machine proof
PACH

PBCH

H
=

PACB

PACB

simpli f y
= 1

The eliminants

PBCH
H
=PACB

PACH
H
=PACB

From the description of the statement, we can find the sets of collinear points:

{H,A, F}, {F,C, B}, {H,E, B}, {E,A,C},

and the sets of perpendicular lines:

HAF⊥BCF,HEB⊥EAC.

Then by Exercise 3.35,PBCH = PACB andPACH = PACB sinceAB⊥CH andCA⊥BH.

Exercise 3.37Let G(Y) be a linear geometry quantity of Y, and Q(Y) a quadratic geometry
quantity of Y. If Y is on line UV then

G(Y) = UY
UV

G(V) + YV
UV

G(U);

Q(Y) = UY
UV

Q(V) + YV
UV

Q(U) − 2 · UY
UV
· YV

UV
· UV

2
.

DY
EF
=



SDUV

SEUFV
if D < UV;

DU
UV
+ UY

UV
EF
UV

if D ∈ UV.

For several constructions, we need to compute the position ratio of Y with respect to UV
and substitute them into the above formulas to eliminate Y. Precisely, we have

1. If Y is introduced by (INTER Y (LINE U V) (PLINE R P Q)) then
UY
UV
=

SUPRQ

SUPVQ
, YV

UV
= − SVPRQ

SUPVQ
.

2. If Y is introduced by (INTER Y (LINE U V) (TLINE P P Q)) then
UY
UV
=

PUPQ

PUPVQ
, YV

UV
= − PVPQ

PUPVQ
.

3. If Y is introduced by (INTER Y (LINE U V) (BLINE P Q)) then
UY
UV
=

PUPQ−PQ
2

PUPVQ
, YV

UV
= −PVPQ−PQ

2

PUPVQ
.

4. If Y is introduced by (INTER Y (LINE U V) (CIR O U)) then
UY
UV
= 2 · POUV

PUVU
, YV

UV
=

POVO−POUO

PUVU
.

Exercise 3.38If Y is introduced by (INTER Y (PLINE W U V) (PLINE R P Q)) then
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G(Y) = G(W) + r(G(V) −G(U));

Q(Y) = Q(W) + r(G(V) −G(U)) − 2r(1− r)UV
2

where r= SWPRQ

SUPVQ
.

Exercise 3.39Of the 22 constructions, there are still eight which are not discussed (Take
points on a BLINE, a PLINE, or a TLINE; Take the intersectionsof two TLINEs, two
BLINEs, a TLINE and a PLINE, a TLINE and a BLINE, and a PLINE anda BLINE; Take
the intersection of a circle and a PLINE or a TLINE.) Try to eliminate a point introduced
by one the eight constructions from a geometry quantity.

3.4 The Ratio Constructions

By the ratio constructions, we mean the constructions PRATIO and TRATIO and other
constructions which can be reduced to them. These constructions are the most subtle con-
structions; appropriate use of the ratio constructions maylead to elegant proofs for geom-
etry statements.

3.4.1 More Ratio Constructions

We first introduce the following constructions for convenience.

C9 (MIDPOINT Y U V). Y is the midpoint ofUV. It is equivalent to (PRATIOY U U V
1/2).

C10 (SYMMETRY Y U V). Y is the symmetry of pointV with respect to pointU. It is
equivalent to (PRATIOY U U V -1).

C11 (LRATIO Y U V r). Y is a point onUV such thatUY
UV
= r. It is equivalent to (PRATIO

Y U U V r).

C12 (MRATIO Y U V r). Y is a point onUV such thatUY
YV
= r. It is equivalent to (PRATIO

Y U U V r
1+r ).

Four collinear pointsA, B,C, andD are said to form aharmonic sequenceif

CA

CB
= −DA

DB
.

Given two pointsA andB, we have the following ways of introducing pointsC andD such
thatA, B,C, andD form a harmonic sequence.
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(ON C (LINE A B)), (LRATIO D A B
CA
CB

CA
CB
+1

);

(MRATIO C A B r), (MRATIO D A B−r).

For convenience, we can introduce a new construction

C13 (HARMONIC D C A B) introduces a pointD such that, for three collinear pointsA,
B, andC, A, B,C, andD form a harmonic consequence.

Another important geometry concept related to ratios isinversion. Suppose that we have
given a circle with a centerO and a radiusr , 0. Let P andQ be any two points collinear
with O such that

OP ·OQ= r2.

ThenP is said to be theinversionof Q with regard to the circle andO is called the inversion
center. We introduce a new construction as follows

C14 (INVERSION P Q O A) means thatP is the inversion ofQ with regard to circle (CIR
O A). This construction is equivalent to

(LRATIO P O A OA
OQ

) if Q ∈ OA,

(LRATIO P O Q POAO

POQO
) otherwise.

The ratior in the ratio constructions could be rational numbers, variables, or expressions
in geometry quantities. Now we allowr to be any algebraic numbers by adding a new
special construction.

C15 (CONSTANT p(r)) wherep(r) is an irreducible polynomial in the variabler. This
construction introduces an algebraic numberr which is a root ofp(r) = 0.

With the help of construction CONSTANT, we can deal with statements involving special
angles such as 30◦, 45◦, and 60◦, etc. In the rest of this section, we will use several examples
to show how to solve geometry problems using the ratio constructions.

The construction TRATIO can be used to express geometry statements involvingsquares
easily.

Example 3.40The following is the machine proof of Example 1.69 on page 32.

Constructive description
((POINTSA B C)

(TRATIO E A B 1)

(TRATIO G A C −1)

(PERPENDICULARE C G B) )

The machine proof
PBGE

PBGC

G
=

PACA+4SACE−4SABC

PBAC+PACA−4SABC

E
=

PBAC+PACA−4SABC

PBAC+PACA−4SABC

simpli f y
= 1

The eliminants

PBGC
G
=PBAC+PACA−4SABC

PBGE
G
=PACA+4SACE−4SABC

SACE
E
=

1
4(PBAC)
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Example 3.41On the two sides AC and BC of triangle ABC, two squares ACDE andBCFG
are drawn. M is the midpoint of AB. Show that CM is perpendicular to DF. (Figure 3-9)

Constructive description
((POINTSA B C)

(TRATIO D C A 1)

(TRATIO F C B −1)

(MIDPOINT M A B)

(PERPENDICULARD F C M) )

The machine proof
PDCM

PFCM

M
=

1
2 PBCD
1
2 PACF

F
=

PBCD

4SABC

D
=

4SABC

(4)·SABC

simpli f y
= 1

The eliminants

PFCM
M
=

1
2(PACF)

PDCM
M
=

1
2(PBCD)

PACF
F
=4(SABC)

PBCD
D
=4(SABC)

A
B M

C
D

EF

V

N

Figure 3-10
M

G

F
E

D

C

BA

Figure 3-9

Example 3.421 Let M be a point on line AB. Two squares AMCD and BMEF are drawn
on the same side of AB. Let U and V be the center of the squares AMCD and BMEF. Line
BC and circle VB meet in N. Show that A,E, and N are collinear. (Figure 3-10)

Constructive description
((POINTSA B) (ON M (LINE A B)) (TRATIO C M A 1)

(TRATIO E M B −1) (MIDPOINT V E B) (INTER N (LINE B C) (CIR V B))

(INTER T (LINE B C) (LINE A E)) ( BN
CN
= BT

CT
) )

1This is a problem from the 1959 International Mathematical Olympiad.



3.4 The Ratio Constructions 125

The machine proof

( BN
CN

)/( BT
CT

)
T
=
−SACE

−SABE
· BN

CN

N
=

PCBV·SACE

SABE·(PCBV− 1
2 PBCB)

V
=

( 1
2 PCBE)·SACE

SABE·( 1
2 PCBE− 1

2 PBCB)

E
=

(PMBC+4SBMC)·( 1
4 PMABC−SAMC)

(− 1
4 PABM)·(PMBC−PBCB+4SBMC)

C
=
−(PBMB−PAMB)·(PBMB+PAMA−PABM)

PABM·(−PAMB−PAMA)

M
=

(−PABA· AM
AB
+PABA)·(2PABA·( AM

AB
)2−PABA· AM

AB
)

(−PABA· AM
AB
+PABA)·(2PABA·( AM

AB
)2−PABA· AM

AB
)

simpli f y
= 1

The eliminants
BT
CT

T
=

SABE

SACE

BN
CN

N
=

PCBV

( 1
2 )·(2PCBV−PBCB)

PCBV
V
=

1
2(PCBE)

SABE
E
= − 1

4(PABM)
SACE

E
=

1
4(PMABC−4SAMC)

PCBE
E
=PMBC+4SBMC

PBCB
C
=PBMB+PAMA

SAMC
C
= − 1

4(PAMA)
PMABC

C
=PBMB−PABM

SBMC
C
= − 1

4(PAMB)
PMBC

C
=PBMB

PABM
M
= − (( AM

AB
−1)·PABA)

PAMA
M
=PABA·( AM

AB
)2

PAMB
M
=( AM

AB
−1)·PABA· AM

AB

PBMB
M
=( AM

AB
−1)2·PABA

For more examples involving squares, see Section 9.4.

Example 3.43Given four points A, B,C, and D which form a harmonic sequence and a
point O outside the line AB, any transversal cuts the four lines OA, OB, OC, and OD in
four harmonic points.
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Constructive description
( (POINTSO A B X Y)

(MRATIO C A B r)

(MRATIO D A B −r)

(INTER P (LINE O A) (LINE X Y))

(INTER Q (LINE O B) (LINE X Y))

(INTER R (LINE O C) (LINE X Y))

(INTER S (LINE O D) (LINE X Y))

(HARMONIC P Q S R) )

The machine proof

(− PS
QS

)/( PR
QR

)

S
=

−SODP
PR
QR
·SODQ

R
=
−SODP·SOCQ

SOCP·SODQ

Q
=
−SODP·(−SOXY·SOBC)·SOXBY

SOCP·(−SOXY·SOBD)·SOXBY

simpli f y
=

−SODP·SOBC

SOCP·SOBD

P
=
−(−SOXY·SOAD)·SOBC·SOXAY

(−SOXY·SOAC)·SOBD·SOXAY

simpli f y
=

−SOAD·SOBC

SOAC·SOBD

D
=
−(−SOAB·r)·SOBC·(−r+1)

SOAC·(−SOAB)·(−r+1)

simpli f y
=

−r ·SOBC

SOAC

C
=
−r ·(−SOAB)·(r+1)

SOAB·r ·(r+1)

simpli f y
= 1

The eliminants

PS
QS

S
=

SODP

SODQ

PR
QR

R
=

SOCP

SOCQ

SODQ
Q
=
−SOXY·SOBD

SOXBY

SOCQ
Q
=
−SOXY·SOBC

SOXBY

SOCP
P
=
−SOXY·SOAC

SOXAY

SODP
P
=
−SOXY·SOAD

SOXAY

SOBD
D
=

SOAB

r−1

SOAD
D
=

SOAB·r
r−1

SOAC
C
=

SOAB·r
r+1

SOBC
C
=
−SOAB

r+1

For more examples involving harmonic sequences, see Section 6.3.

Example 3.44The inverse of a circle passing through the center of inversion is a line.

O
A

X

P
Q U

R

G

Figure 3-12

Constructive description
((pointsO A X)

(lratio P O A r1)

(inversionQ P O A)

(midpointU P O)

(inter R (l O X) (cir U O))

(inversionG R O A)

(perpendicularG Q O A) )

The machine proof
PAOG

PAOQ

=
PAOR·POAO

PAOQ·PORO

R
=

(2PXOU·PAOX)·POAO·POXO

PAOQ·(4P2
XOU)·POXO

simpli f y
=

PAOX·POAO

(2)·PAOQ·PXOU

U
=

PAOX·POAO

(2)·PAOQ·( 1
2 PXOP)

=
PAOX·POAO

OA
OP
·POAO·PXOP

simpli f y
=

PAOX
OA
OP
·PXOP

P
=

PAOX·r1
PAOX·r1

simpli f y
= 1

The eliminants

PAOG=
PAOR·POAO

PORO

PORO
R
=

(4)·(PXOU)2

POXO

PAOR
R
=

(2)·PXOU·PAOX

POXO

PXOU
U
=

1
2(PXOP)

PAOQ=
OA
OP
·POAO

PXOP
P
=PAOX·r1

OA
OP

P
=

1
r1
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For more examples involving inversions, see Section 10.3.

The ratio constructions are used extensively in the following example. Also notice that
the construction CONSTANT is used to describe equilateral triangles.

Example 3.45Three equilateral triangles A1BC, AB1C, ABC1 are erected on the three sides
of triangle ABC. Show that CA1C1B1 is a parallelogram.

1B

1A

1C

C

BA G

E
F

Figure 3-13

Constructive description
( (pointsA B C)

(constantr2−3)

(midpointE A C)

(tratio B1 E A r)

(midpointF B C)

(tratio A1 F C r)

(midpointG A B)

(tratioC1 G B −r)

(parallelA1 C1 C B1) )

The machine proof
SCB1A1
SCB1C1

C1
=

SCB1A1
1
4 PB1BCG·r+SCB1G

G
=

(4)·SCB1A1

− 1
2 PBCB1 ·r+

1
2 PACB1 ·r+2SBCB1+2SACB1

A1
=

(−8)·(− 1
4 PB1CF ·r+SCB1F )

PBCB1 ·r−PACB1 ·r−4SBCB1−4SACB1

F
=

(2)·( 1
2 PBCB1 ·r−2SBCB1)

PBCB1 ·r−PACB1 ·r−4SBCB1−4SACB1

B1
=

PCABE·r+PBCE·r−4SBCE+4SABE·r2

PCABE·r+PCAE·r+PBCE·r−PACE·r−4SBCE+4SABE·r2

E
=

1
2 PBCB·r+ 1

2 PACB·r− 1
2 PABC·r+2SABC·r2−2SABC

1
2 PBCB·r+ 1

2 PACB·r− 1
2 PABC·r+2SABC·r2−2SABC

simpli f y
= 1

The eliminants

SCB1C1

C1
=

1
4(PB1BCG·r+4SCB1G)

SCB1G
G
=

1
2(SBCB1+SACB1)

PB1BCG
G
= − 1

2(PBCB1−PACB1)
SCB1A1

A1
= − 1

4(PB1CF ·r−4SCB1F)
SCB1F

F
=

1
2(SBCB1)

PB1CF
F
=

1
2(PBCB1)

SACB1

B1
= − 1

4(PCAE·r)
PACB1

B1
=PACE

SBCB1

B1
= − 1

4(PCABE·r−4SBCE)
PBCB1

B1
=PBCE+4SABE·r

PACE
E
=

1
2(PACA)

PCAE
E
=

1
2(PACA)

SABE
E
=

1
2(SABC)

SBCE
E
=

1
2(SABC)

PBCE
E
=

1
2(PACB)

PCABE
E
=

1
2(PBCB−PABC)

Note that the conditionr2 = 3 is not needed in the proof, i.e., the result is true if triangles
B1AC, A1BC, andC1ABare similar isosceles triangles. The above proof is used to illustrate
the use of ratio constructions. For a much shorter proof of this example, see Example 5.61
on page 253.



128 Chapter 3. Machine Proof in Plane Geometry

3.4.2 Mechanization of Full-Angles

As an application of the construction TRATIO, we will present an automated theorem
proving method for geometry theorems involving full-angles. The formal definition of
full-angles is as follows.

Definition 3.46 An ordered pair of lines AB and CD determines a full-angle, denoted by
∠[AB,CD], which satisfies

1. ∠[AB,CD] = ∠[PQ,UV] if and only if

SACBDPPUQV = SPUQVPACBD.

Thus the tangent function for the full-angle,

tan(∠[AB,CD]) =
4SACBD

PADBC

is a well defined geometry quantity.

2. For all parallel lines AB‖ PQ,∠[0] = ∠[AB,PQ] is a constant.

3. For all perpendicular lines AB⊥PQ,∠[1] = ∠[AB,PQ] is a constant.

4. There exists an operation “+” for full-angles which is associative and commutative.
Furthermore, we have

• ∠[1] + ∠[1] = ∠[0].

• If PQ ‖ UV then∠[AB,PQ] + ∠[UV,CD] = ∠[AB,CD].

• The tangent function of the sum of two full-angles is defined as follows

tan(∠[AB,CD] + ∠[PQ,UV]) =
tan(∠[AB,CD]) + tan(∠[PQ,UV])

1− tan(∠[AB,CD]) tan(∠[PQ,UV])
.

You can find the geometric background for the above definitionin Section 1.10. For three
pointsA, B, andC, let ∠[ABC] = ∠[AB, BC].

Remark 3.47According to the above definition,∠[AB,CD] = ∠[PQ,UV] if and only if one
of the following conditions holds.

1. (PARA A B C D) and (PARAP Q U V);

2. (PERPA B C D) and (PERPP Q U V);

3. A , B, C , D, P , Q, U , V and the full-angle∠[AB,CD] is equal to the full-angle
∠[PQ,UV].
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Proposition 3.48 (The Co-angle Theorem)In triangles ABC and XYZ, if∠[ABC] = ∠[XYZ],
∠[ABC] , ∠[1], and∠[ABC] , ∠[0], then

SABC

SXYZ
=

PABC

PXYZ
= λ where λ2 =

AB
2 · BC

2

XY
2 · ZY

2
.

Proof. By Definition 3.46 if∠[ABC] = ∠[XYZ] then SABC

SXYZ
=

PABC

PXYZ
= λ. By the Herron-Qin

formula
16S2

ABC+ P2
ABC = 4AB

2 ·CB
2
, 16S2

XYZ+ P2
XYZ = 4XY

2 · ZY
2
.

SetSABC = λSXYZ,PABC = λPXYZ in the first equation we have

λ2 =
4AB

2 ·CB
2

16S2
AYX+ P2

AYZ

=
4AB

2 ·CB
2

4XY
2 · ZY

2
.

With the concept of full-angles, the constructive geometrystatements can be extended as
follows. First we have a new geometry quantity: the tangent function of full-angles. Since
the tangent function can be represented by the area and Pythagoras difference, we do not
need to introduce new elimination techniques to eliminate points from it. Its main contri-
bution is that we may now prove assertions like∠[AB,CD] = ∠[PQ,UV] and∠[AB,CD] =
∠[PQ,UV] + ∠[XY,WZ].

The second extension is more interesting: we can introduce anew representation for
lines.

(ALINE P Q U W V) which is the linel passing throughPsuch that∠[PQ, l] = ∠[UW,WV].

With this new type of lines, we can introduce seven new constructions:

1. (ONY (ALINE P Q L M N)). Take an arbitrary point on an ALINE; the ndg condi-
tions areP , Q, L , M, andN , M.

2. (INTERY ln (ALINE P Q L M N)). Take the intersection ofln and (ALINE P Q L
M N).

• If ln = (LINE U V) or ln = (PLINE W U V), then the ndg condition is
∠[PQ,UV] , ∠[LM,MN].

• If ln = (BLINE U V) or ln = (TLINE W U V), then the ndg condition is
∠[UV,PQ] + ∠[LM,MN] , ∠[1].

• If ln = (ALINE U V X Y Z), then the ndg condition is∠[UV,PQ] , ∠[NM,ML]+
∠[XY,YZ].
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3. (INTERY (CIR O P) (ALINE P Q L M N)). The ndg conditions areY , P, P , O,
P , Q, L , M, andN , M.

To provide methods of eliminating points introduced by these new constructions from ge-
ometry quantities, we need only to reduce an ALINE to a LINE.

P

R

XQ W U

V

Figure 3-14

Proposition 3.49If UW is not perpendicular
to WV, line l =(ALINE P Q U W V) is the
same as (LINE P R) where R is introduced by
construction (TRATIO R Q P4SUWV

PUWV
).

If UW⊥WV, line l is (TLINE P P Q).

Proof. Let the line passing through pointQ and perpendicular toPQ meet linel in R. Then
R is introduced by construction (TRATIOR Q P r), where

r =
4SRQP

PQPQ
=

4SQPR

PQPR
= tan(∠[RPQ]) = tan(∠[VWU]) =

4SUWV

PUWV
.

Remark 3.50From the above proposition we see that the construction (TRATIO Y P Q r) is
actually to take a point Y such that YP⊥PQ andtan(∠[YPQ]) = r.

Now, we introduce the following predicates.

(EQANGLE A B C D E F). ∠[ABC] = ∠[DEF] iff SABCPDEF = SDEFPABC.

(COCIRCLE A B C D). PointsA, B,C, andD are co-circle iff ∠[CAD] = ∠[CBD], or
equivalently,SCADPCBD = PCADPCBD.

Example 3.51If N, M are points on the sides AC, AB of a triangle ABC and the lines BN,
CM intersect at a point J which is on the altitude AD, show thatAD is the bisector of the
angle MDN.

B C

A

D

J

M

N

Figure 3-15

Constructive description
( (POINTSA B C)

(FOOTD A B C)

(ON J (LINE A D))

(INTER M (LINE A B) (LINE C J))

(INTER N (LINE A C) (LINE B J))

(EQANGLE M D A A D N) )
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The ndg conditions:B , C, A , D, AB 6‖ CJ, AC 6‖ BJ.

The machine proof
(−SADM)·PADN

SADN·PADM

N
=

(−SADM)·(−PADJ·SABC)·SABCJ

(−SACD·SABJ)·PADM·(−SABCJ)

simpli f y
=

SADM ·PADJ·SABC

SACD·SABJ·PADM

M
=

(−SACJ·SABD)·PADJ·SABC·(−SACBJ)
SACD·SABJ·PADJ·SABC·SACBJ

simpli f y
=

SACJ·SABD

SACD·SABJ

J
=

SACD· AJ
AD
·SABD

SACD·SABD· AJ
AD

simpli f y
= 1

The eliminants

SADN
N
=
−SACD·SABJ

SABCJ

PADN
N
=

PADJ·SABC

SABCJ

PADM
M
=

PADJ·SABC

−SACBJ

SADM
M
=
−SACJ·SABD

SACBJ

SABJ
J
=SABD· AJ

AD

SACJ
J
=SACD· AJ

AD

Example 3.52 (The Inscribed Angle Theorem)Let A, B,C, and D be four points on a circle
with center O. Then∠[ACB] = ∠[ADB] and∠[AOB] = 2∠[ACB].

Proof. We first use our program to compute tan(∠[ACB]).

A B

C

O

P

Figure 3-16

Constructive description
( (POINTSA B)

(ON O (BLINE A B))

(TRATIO P B A r)

(INTER C (LINE A P) (CIR O A))

((TANGENT A C B)) )

The machine proof
(−4)·SABC

PACB

C
=

(−4)·(2POAP·SABP)·PAPA

(−2POPO·POAP+2POAP·PAPB+2POAP·PAOA)·PAPA

simpli f y
=

(4)·SABP

POPO−PAPB−PAOA

P
=

(4)·(− 1
4 PABA·r)

PBOB−PAOA+8SABO·r
O
=
−PABA·r
8SABO·r

simpli f y
=

−PABA
(8)·SABO

The eliminants

PACB
C
=

(−2)·(POPO−PAPB−PAOA)·POAP

PAPA

SABC
C
=

(2)·POAP·SABP

PAPA

PAPB
P
=PABA·(r)2

POPO
P
=PBOB+PABA·r2+8SABO·r

SABP
P
= − 1

4(PABA·r)
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From the above computation, it is clear that tan(∠[ACB]) is independent of pointP and
C, i.e., tan(∠[ACB]) = tan(∠[ADB]).

tan(2∠[ABC]) =
2 tan(∠[ABC])

1− tan(∠[ABC])2
=

8AB
2
SAOB

16S2
AOB− AB

4

=
8AB

2
SAOB

4OA
2 ·OB

2 − P2
AOB− AB

4

=
4SAOB

2AO
2 − AB

2
=

4SAOB

PAOB
= tan(∠[AOB])

i.e., 2∠[ABC] = ∠[AOB].

Example 3.53 (Morley’s Theorem)The three points of intersection of the adjacent trisectors
of the angles of any triangle form an equilateral triangle.

B C

L

A

M N

Figure 3-17

Constructive description
( (POINTSB C L)

(ON X (ALINE B L L B C))

(ON Y (ALINE B X L B C))

(ON Z (ALINE C L L C B))

(ON W (ALINE C Z L C B))

(INTER A (LINE B Y) (LINE C W))

(MIDPOINT O L C)

(CONSTANT r2 3)

(TRATIO T O C r)

(INTER Q (LINE B L) (LINE T C))

(ON H (ALINE A B T L Q))

(INTER M (LINE B X) (LINE A H)) (ON G (ALINE A C Q L T))

(INTER N (LINE C Z) (LINE A G)) ((TANGENT M L N) = r) )

Morley’s theorem is among the most difficult problems proved by our method. The proof
for it is still too long to be considered readable. Our methodneed further improvement to
produce a readable proof for this theorem.

Exercises 3.54

1. Note that the sine and cosine functions for full-angles are meaningless. But we can
define their squares. For a full-angleα, let sin2(α) = tan2(α)

1+tan2(α) , cos2(α) = 1
1+tan2(α) . Then

S2
ABCD =

1
4

AC
2 · BD

2
sin2(∠[AC, BD]), P2

ABCD = 4AC
2 · BD

2
cos2(∠[AC, BD]).

(Use the Herron-Qin formula.)
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2. Try to eliminateY from SABY if Y is introduced by (INTERY (LINE U V) (ALINE P Q
L M N)). Show that the ndg conditions ensure that all the geometric quantities occurring
in the elimination have geometric meaning.

3. If Y is introduced by (INTERY (TLINE U U O) (TLINE V V O)) then

O

U
V

Y

Figure 3-18

SABY =



SABU if AB⊥OU;
SABV if AB⊥OV;
POUVPOVU

−16SOUV
if A = U, B = V;

POVUPOUO

16SOUV
if A = O, B = U;

POUVPOVO

16SOVU
if A = O, B = V;

PABY =



PABU if AB ‖ OU;
PABV if AB ‖ OV;
POUV if A = U, B = V;

PAYB =



−PUOVPOVUPOUV

16S2
OUV

if A = U, B = V;
POUOP2

OVU

16S2
OUV

if A = O, B = U or A = B = U;
POVOP2

OUV

16S2
OUV

if A = O, B = V or A = B = V;
POUOPOVOPUVU

16S2
OUV

if A = B = O.

In the general case, this construction can be reduced to the following construction

(TRATIO Y U O POVU

4SOVU
).

Notice that this construction is actually to introduce the antipodal point ofO with respect
to the circumcircle of triangleOUV.

3.5 Area Coordinates

3.5.1 Area Coordinate Systems

In Lemma 3.31, we use an orthogonal coordinate system. In order to do this, we have to
introduce three auxiliary pointsO,U, andV. In this section, we will develop askew area
coordinate systemin which any three free points can be used as the reference points. As a
consequence, we obtain a new version of Lemma 3.31 and consequently a new version of
Algorithm 3.33. We will also prove some interesting features of the skew area coordinate
system.
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Let O, U, andV be three non-collinear points. For any pointA, let

xA =
SOUA

SOUV
, yA =

SVOA

SOUV
, zA =

SUVA

SOUV

be the area coordinates ofA with respect toOUV. It is clear thatxA + yA + zA = 1. Below
are some results proved before.

Proposition 3.55The points in the plane are in a one to one correspondence withthe triples
(x, y, z) such that x+ y+ z= 1.

Proposition 3.56For any points A, B, and C, we have

SABC = −SOUV

∣∣∣∣∣∣∣∣

xA yA 1
xB yB 1
xC yC 1

∣∣∣∣∣∣∣∣
= −SOUV

∣∣∣∣∣∣∣∣

xA yA zA

xB yB zB

xC yC zC

∣∣∣∣∣∣∣∣
.

As a consequence of Proposition 3.56, we can give the line equation in the area coordinate
system. LetP be a point on lineAB. Then the area coordinates ofP must satisfy

∣∣∣∣∣∣∣∣

xA yA 1
xB yB 1
xP yP 1

∣∣∣∣∣∣∣∣
= 0

which is the equation for lineAB. Notice that this is the same as the line equation in the
Cartesian coordinate system. Another interesting fact is the position ratio formula.

Proposition 3.57Let R be a point on line PQ and r1 =
PR
PQ

and r2 =
RQ
PQ

. Then

xR = r1xQ + r2xP; yR = r1yQ + r2yP; zR = r1zQ + r2zP.

Proof. This is a consequence of Proposition 2.9.

We will now prove the distance formula between two points.

Proposition 3.58For two points A and B, we have

AB
2
= OV

2
(xB − xA)2 +OU

2
(yB − yA)2 + (xB − xA)(yB − yA)PUOV.

O U

V

A

B

M

N

Figure 3-19

Proof. Let M andN be points such thatMA ‖
OU, MB ‖ OV, NA ‖ OV, andNB ‖ OU.
Then by Proposition 3.6.

(1) AB
2
= AM

2
+ BM

2 − PAMB

= OU
2
( AM

OU
)2 +OV

2
( BM

OV
)2 + PNAM.
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By Lemma 2.28,AM
OU
=

SBOAV

SUOV
= yB − yA,

BM
OV
=

SBOAU

SOVU
= xA − xB. By Example 3.9,PNAM =

AN
OV
· AM

OU
· PUOV = (yB − yA)(xB − xA)PUOV. Substituting these into (1), we prove the result.

Corollary 3.59 Show that

2AB
2
= POVU(xB − xA)2 + POUV(yB − yA)2 + PUOV(zB − zA)2.

Proof. We need only to observe thatzA − zB = (xB − xA) + (yB − yA).

In Algorithm 3.33, letE be an expression in areas and Pythagoras differences of free
points. Instead of using Lemma 3.31, we can use the followingprocedure to transformE
into an expression in independent variables. If there are fewer than three points involved
in E then we need do nothing; if there are more than two points, choose three free points
O, U, andV from the points occurring inE, and apply Propositions 3.56 and 3.58 toE
to transform the areas and Pythagoras differences into area coordinates with respect to

OUV. Now the newE is an expression in area coordinates of free points,OU
2
,OV

2
,UV

2
,

andSOUV. The only algebraic relation among these quantities is the Herron-Qin formula
(Proposition 3.16):

16S2
OUV = 4OU

2
OV

2 − (OV
2
+OU

2 − UV
2
)2 = 4OU

2
OV

2 − P2
UOV.

SubstitutingS2
OUV into E, we obtain an expression in independent variables.

If we assume thatOU ⊥ OV and |OU| = |OV| = 1 then the area coordinate system
becomes the Cartesian coordinate system.

Exercises 3.60

1. The process of transforming the areas and Pythagoras differences of free points into ex-
pressions in independent variables presented in this section becomes particularly simple
if there are only three free points in a geometry statement. Let the three free points
be O,U, andV. Show that any polynomialg in the areas and Pythagoras differences
involving O,U, and V can be transformed into a polynomial of the following form

g′ = f + SOUVh where f and h are polynomials ofOU
2
,OV

2
, and UV

2
. We also

have thatg = 0 iff h = f = 0.

2. If in a geometry statement there are only two free pointsU andV, and the third pointO
is introduced by the construction (ONO (BLINE U V)) or (ONO (TLINE U V)), design
a simple method of transforming a polynomial in the areas andPythagoras differences

involving pointsO,U, andV into a polynomial of independent variables. (ChoseOU
2

andUV
2

as independent variables.)
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3.5.2 Area Coordinates and Special Points of Triangles

We introduce a new construction.

C16 (ARATIO A O U V rO rU rV). Take a pointA such that

rO =
SAUV

SOUV
, rU =

SOAV

SOUV
, rV =

SOUA

SOUV

are thearea coordinatesof A with respect toOUV. The rO, rU, and rV could be
rational numbers, rational expressions in geometric quantities, indeterminates, or al-
gebraic numbers. The ndg condition is thatO,U, andV are not collinear. The degree
of freedom forA is dependent on the number of indeterminates in{rO, rU, rV}.

Lemma 3.61Let G(Y) be a linear geometry quantity and Y be introduced by (ARATIO YO
U V rO rU rV). Then

G(Y) = rOG(O) + rUG(U) + rVG(V).

O

U V

Y

T

Figure 3-20

Proof. Without loss of generality, letOY intersect
UV at T. If OY is parallel toUV, we may consider
the intersection ofUY andOV or the intersection of
VY andOU since one of them must exist. By Propo-
sition 2.10,

G(Y) =
OY

OT
G(T) +

YT

OT
G(O) =

OY

OT
(
UT

UV
G(V) +

TV

UV
G(U)) +

YT

OT
G(O).

By the co-side theorem,YT
OT
= rO; OY

OT
=

SOUYV

SOUV
; UT

UV
=

SOUY

SOUYV
; TV

UV
=

SOYV

SOUYV
. Substituting these

into the above formula, we obtain the desired result.

Lemma 3.62Let G(Y) be a quadratic geometry quantity and Y be introduced by (ARATIO
Y O U V rO rU rV). Then

G(Y) = rOG(O) + rUG(U) + rVG(V) − 2(rOrUOU
2
+ rOrVOV

2
+ rUrVUV

2
).

Proof. Continue from the proof of Lemma 3.61, By (II) on page 116

G(Y) = OY
OT

G(T) + YT
OT

G(O) − OY
OT

YT
OT

POTO

G(T) = UT
UV

G(V) + TV
UV

G(U) − UT
UV

TV
UV

PUVU.

SubstitutingG(T) into G(Y), we have

G(Y) − r = −OY
OT

UT
UV

TV
UV

PUVU − OY
OT

YT
OT

POTO = −rV
TV
UV

PUVU − rA
OY
OT

POTO,
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wherer = rOG(O) + rUG(U) + rVG(V). By (II),

POTO =
UT
UV

POVO+
TV
UV

POUO− UT
UV

TV
UV

PUVU.

Then

G(Y) − r

= −rV
TV

UV
PUVU − rO

OY

OT

UT

UV
POVO− rO

OY

OT

TV

UV
POUO+ rO

OY

OT

UT

UV

TV

UV
PUVU

= −rOrVPOVO− rOrUPOUO− rUrV(− SYUV

SOUYV
+

SOUV

SOUYV
)PUVU

= −rOrVPOVO− rOrUPOUO− rUrVPUVU.

If Y is introduced by construction ARATIO, then we need rarely toeliminateY from
G = DY

EF
. Because pointsD,E, andF are introduced before pointY, we generally do not

know whetherDY is parallel toEF or not. But in some special cases, we still need to
eliminate pointY from G. This can be done as follows. One ofO, U, andV, sayO,
satisfies the condition thatD,Y, andO are not collinear. ThenG = SODY

SOEDF
. Now, we can use

Lemma 3.61 to eliminateY.

By using the construction ARATIO, we can treat some special points of triangles easily.

Proposition 3.63The area coordinate of the centroid of a triangle ABC is(1
3

1
3

1
3).

Proof. Let G be the centroid of△ABC and M be the midpoint ofBC. SinceM is the
midpoint ofBC, we haveSABM = SAMC andSGBM = SGMC. ThenSGAB = SABM − PGBM =

SAMC − SGMC = SGCA. Similarly SGBC = SGAB = SGCA =
1
3SABC.

Proposition 3.64The area coordinate of the orthocenter of triangle ABC is

(
PABCPACB

16S2
ABC

PBACPBCA

16S2
ABC

PCABPCBA

16S2
ABC

).

A B

C

E

D

H

Figure 3-21

Proof. As in the figure, letH be the intersection of
the altitudesCD andAE. Then

rB

rA
=

SAHC

SHBC
=

AD

DB
=

PCAB

PABC

rB

rC
=

SAHC

SABH
=

CE

EB
=

PBCA

PABC
.

Then
rA : rB : rC = PABCPBCA : PCABPBCA : PABCPCAB.
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By the Herron-Qin Theorem (Exercise 3.18),PABCPBCA+PCABPBCA+PABCPCAB = 2AB
2
PBCA+

PABCPCAB = 16S2
ABC. Now the result is clear.

Exercises 3.65

1. The area coordinate of the circumscribed center of triangle ABC is

(
PBCBPBAC

32S2
ABC

PACAPABC

32S2
ABC

PABAPACB

32S2
ABC

).

(Use full-angles.)

2. Let I be the incenter or one of the excenters of△ABC. The area coordinate ofC with
respect toIBC is

(−2PIABPIBA

PAIBPABA

PIABPIBI

PAIBPABA

PIBAPIAI

PAIBPABA
).

(Use full-angles.)

3. Construction C6 on page 111 is equivalent to

(ARATIO Y P O1 O2 − 1
2PPO2O1

PO1O2O1

2PPO1O2

PO1O2O1

)

Now we can use the following new constructions:

C17 (CENTROIDG A B C). G is the centroid of triangleABC.

C18 (ORTHOCENTERH A B C). H is the orthocenter of the triangleABC.

C19 (CIRCUMCENTERO A B C). O is the circumcenter of triangleABC.

C20 (INCENTERC I A B). I is the center of the inscribed circle of triangleABC. This
construction is to construct pointC from pointsA, B, andI .

Construction C20 needs some explanation. If three verticesof a triangle are given and we
need to find the coordinates of the incenter, we generally have an equation of degree four in
the coordinates of the incenter. The reason is that we can notdistinguish the incenter and
the three excenters without using inequalities. What we do here is to reverse the problem:
when the incenter (or an excenter) and two vertices of a triangle are given, the third vertex
is uniquely determined and can be introduced using the constructions given before.

Remark 3.66In this section, we actually use the centroid theorem (Example 1.12 on page
13), the orthocenter theorem (Example 1.67 on page 32), and the incenter theorem (Ex-
ample 6.144 on page 333) in the proof of more complicated theorems. The four theorems
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themselves can be proved using the basic propositions. In general, we can use different
constructions to describe the same geometry statement, andthe more basic the construc-
tions used the less prerequisite is needed in the proof of thetheorem, and generally, the
longer the proof is. On the contrary, the more complicated the constructions used, the
more prerequisite is needed, and generally, the shorter theproof is.

For constructions C17, C18, C19, and C20, the eliminating results for some special
cases are very simple. As an example, we have

Exercise 3.67For (CIRCUMCENTER O A B C), we have

1. POAO =
PABAPACAPBCB

64S2
ABC

.

2. PABO= AB
2

3. PAOB =
PABA(PACAPBCB−32S2

ABC)

64S2
ABC

.

4. SPQO=
SPQA

2 +
SPQB

2 , if PQ⊥AB.

Example 3.68Let H be the orthocenter of triangle ABC. Then the circumcenters of the four
triangles ABC, ABH, ACH, and BCH are such that each is the orthocenter of the triangle
formed by the remaining three.

1C

1B
1A

O

H

C

BA

Figure 3-22

Constructive description
( (pointsA B C)

(orthocenterH A B C)

(circumcenterO A B C)

(circumcenterA1 B C H)

(circumcenterB1 A C H)

(circumcenterC1 A B H)

(parallelB1 C1 B C) )

The machine proof
SBCB1
SBCC1

C1
=

SBCB1 ·(2)

SBCH+SABC

B1
=

(2)·(SBCH+SABC)
(SBCH+SABC)·(2)

simpli f y
= 1

The eliminants

SBCC1

C1
=

1
2(SBCH+SABC)

SBCB1

B1
=

1
2(SBCH+SABC)
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The above machine proof uses the fourth result of Exercise 3.67.

A
B

C
X

G

D

E

F

Figure 3-23

B C

I

A

D

AI

Figure 3-24

M

2M

1M

O
H

C

BA

Figure 3-25

Example 3.69A line is drawn through the centroid of a triangle. Show that the sum of the
distances of the line from the two vertices of the triangle situated on the same side of the
line is equal to the distance of the line from the third vertex. (Figure 3-23)

Constructive description
( (pointsA B C X)

(centroidG A B C)

(foot D A G X)

(foot E B G X)

(foot F C G X)

( EB
DA
+ FC

DA
= −1) )

The machine proof

−(CF
AD
+ BE

AD
)

F
=
− BE

AD
·SAXG−SCXG

−(−SAXG)

E
=
−(−SCXG·SAXG−SBXG·SAXG)

SAXG·(−SAXG)

simpli f y
=

−(SCXG+SBXG)
SAXG

G
=
−(3SACX+3SABX)·(3)
(−SACX−SABX)·((3))2

simpli f y
= 1

The eliminants

CF
AD

F
=

SCXG

SAXG

BE
AD

E
=

SBXG

SAXG

SAXG
G
= − 1

3(SACX+SABX)

SBXG
G
= − 1

3(SBCX−SABX)

SCXG
G
=

1
3(SBCX+SACX)

Example 3.70Two tritangent centers divide the bisector on which they arelocated, harmon-
ically (Figure 3-24).

Constructive description
( (POINTSB C I)

(INCENTERA I C B)

(INTER D (LINE A I) (LINE B C))

(INTER IA (LINE A I) (TLINE B B I))

(HARMONIC A D I IA) )

The machine proof

(− IA
ID

)/( AIA
DIA

)

IA
=

PIBD
PIBA
· − IA

ID

D
=
−(−SBICA)·PCBI·SBIA

PIBA·SBICA·SBCI

simpli f y
=

PCBI·SBIA

PIBA·SBCI

A
=

PCBI·(−PBIB·PBCI·SBCI)·PBIC·PBCB

(−PCBI·PBIB·PBCI)·SBCI·PBIC·PBCB

simpli f y
= 1

The eliminants
AIA
DIA

IA
=

PIBA

PIBD

PIBD
D
=

PCBI·SBIA

SBICA

IA
ID

D
=
−SBICA

SBCI

PIBA
A
=
−PCBI·PBIB·PBCI

PBIC·PBCB

SBIA
A
=
−PBIB·PBCI·SBCI

PBIC·PBCB
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Example 3.71 (Euler’s Theorem)The centroid of a triangle is on the segment determined by
the circumcenter O and the orthocenter H of the same triangle, and divides OH in the ratio
of 1:2 (Figure 3-25).

Constructive description
( (POINTSA B C)

(CIRCUMCENTERO A B C)

(CENTROID M A B C)

(LRATIO H M O −2)

(PERPENDICULARA H B C) )

The machine proof
PABC

PCBH

H
=

PABC

3PCBM−2PCBO

M
=

PABC·(3)
−6PCBO+3PBCB+3PABC

O
=
−PABC·(2)
−2PABC

simpli f y
= 1

The eliminants

PCBH
H
=3PCBM−2PCBO

PCBM
M
=

1
3(PBCB+PABC)

PCBO
O
=

1
2(PBCB)

3.6 Trigonometric Functions and Co-Circle Points

The aim of this section is to provide an efficient method for dealing with co-circle points.
We will prove the co-circle theorems given in Section 1.9 without using trigonometric func-
tions; on the contrary, we will develop properties of trigonometric functions by using the
area and Pythagoras difference only. The readers who are interested primaryly in machine
proof may skip the following subsection and proceed directly to Subsection 3.6.2.

3.6.1 The Co-circle Theorems

Let J,A, andB be three points on a circle with centerO. In what follows, we will fixJ as a
reference point. Anoriented chord, ÃB, is a directed line segment such that̃JA (A , J) is
always positive and̃AB> 0 iff SJAB > 0.

Proposition 3.72Letδ be the diameter of the circumcircle of the triangle ABC. ThenSABC =
ÃB·C̃B·C̃A

2δ .

C

E

O B

J

A

Figure 3-26

Proof. Let CE be a diameter of circleO. By Propo-
sition 3.48,

S2
ABC

S2
ACE

=
AB

2 ·CB
2

AE
2 · δ2

.

SinceS2
ACE =

1
4AC

2 · AE
2
, we have

S2
ABC =

AB
2 · BC

2 · AC
2

4δ2
, i.e., |SABC| =

|ÃB| · |C̃B| · |C̃A|
2δ

.
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We still need to check whether the signs of both sides of the conclusion equation are the
same. At first, it is easy to see that when we interchange two vertices of the triangleABC,
the signs of both sides of the equation will change. Therefore, we need only to check a
particular position forA, B, andC, e.g., the case shown in Figure 3-26. In this case, we
haveSABC > 0, ÃB> 0, C̃B> 0, andC̃A> 0.

Let B̃C be an oriented chord on circleO andBB′ be a diameter. We define thecochord
of B̃C to beB̂C whose absolute value is equal to|CB′| and has the same sign asPBJC. It is
clear that

B̃C
2
+ B̂C

2
= δ2.

Proposition 3.73For points A, B, and C on circle O, we have PABC =
2ÃB·C̃B·ĈA

δ
.

Proof. By the Herron-Qin formula and Proposition 3.72, we have

P2
ABC = 4AB

2 ·CB
2 − 16S2

ABC =
4AB

2 ·CB
2
(δ2 − AC

2
)

δ2
.

Then|PABC| = 2|ÃB|·|C̃B|·|ĈA|
δ

. As in Proposition 1.100, we can check that the signs of the two
sides of the equation are equal.

O

D

C

B

A

E

Figure 3-27

Proposition 3.74Let A, B,C, and D be four co-circle
points, E the intersection of the circle, and the line
passing through D and parallel to AC. Then SABCD =
ÃC·B̃D·ẼB

2δ whereδ is the diameter of the circle.

Proof. If AC ‖ BD, we haveE = B andSABCD = 0. The result is clearly true. Otherwise,
sinceDE ‖ AC, we have

SABCD =
ÃC

ẼD
SEBD =

ÃC · B̃D · ẼB
2δ

.

Proposition 3.75 (Ptolemy’s Theorem)Let A, B,C, and D be four co-circle points. TheñAB ·
C̃D+ B̃C · ÃD = ÃC · B̃D.

Proof. Let E be the intersection of the circle and the line passing through D and parallel to
AC (Figure 3-27). Then by Propositions 3.72 and 3.74,

ÃC · B̃D · ẼB
2δ

= SABCD= SBCE+ SEAB =
B̃C · ẼC · ẼB+ ẼA · B̃A · B̃E

2δ
.
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Let B be the reference point. Notice that̃EB = −B̃E, ÃE = −C̃D, andC̃E = −ÃD, we
prove the result.

J

A

B

O

Q
P

S

Figure 3-28

Proposition 3.76Let AB = d be the diameter of the
circle, and P,Q be two points on the circle. Then

d · P̃Q= ÃQ · ÂP− ÃP · ÂQ.

Proof. Apply Ptolemy’s theorem toA,P, B, andQ:

ÃB · P̃Q= ÃP · B̃Q+ ÃQ · P̃B.

Let J be the reference point. IfSJAB < 0 (Figure 3-28), we havẽAB = −d, ÂQ = B̃Q, and
ÂP = B̃P. If SJAB > 0 or J = A, we haveÃB = d, ÂQ = Q̃B, andÂP = P̃B. The result is
always true.

Proposition 3.77Let AB = d be the diameter of the circle, and P,Q be two points on the
circle. Then

d · P̂Q= ÃP · ÃQ+ ÂP · ÂQ.

Proof. Let S be the antipodal ofQ (Figure 3-28). By Ptolemy’s theorem, we have

ÃB · P̃S = ÃP · B̃S+ ÃS · P̃B.

Let J be the reference point. If̃AB andQ̃S have the same sign, we have

ÃB · P̃S = dP̂Q, B̃S = ÃQ, ÃS · P̃B= ÂQ · ÂP.

If ÃB andQ̃S have different signs, we have

ÃB · P̃S = −d · P̂Q, B̃S = −ÃQ, ÃS · P̃B= −ÂQ · ÂP.

The result is true in both cases.

Propositions 3.76 and 3.77 are calleddecomposition formulas for chords. They can be
used to reduce any chord or cochord to a polynomial in chords and cochords with a fixed
point (A) as an end point.

For pointsA andB on the circle, let us define

• sin(A) = J̃A
δ

; cos(A) = ĴA
δ
.

• sin(AB) = ÃB
δ

; cos(AB) = ÂB
δ
.



144 Chapter 3. Machine Proof in Plane Geometry

Then we have derived the following properties of trigonometric functions.

sin(A)2 + cos(A)2 = 1

sin(AB) = sin(B) cos(A) − sin(A) cos(B)

cos(AB) = cos(B) cos(A) + sin(A) sin(B).

The sin(AB) and cos(AB) are actually the sine and cosine of the inscribed angle in arc AB.
But in the above definition of trigonometric functions, we did not mention the the concept
of angles.

3.6.2 Eliminating Co-Circle Points

We introduce a new construction.

C21 (CIRCLE Y1 · · · Ys), (s≥ 3). PointsY1 · · · Ys are on the same circle. There is no ndg
condition for construction C21. The degree of freedom of this construction iss+ 3.

By Propositions 3.72–3.77, we have

Lemma 3.78Let A, B, and C be points on a circle with center O and diameterδ. Then

SABC =
ÃB·C̃B·C̃A

2δ , PABC =
2ÃB·C̃B·ĈA

δ
.

ÃC = δ sin(AC), ÂC = δ cos(AC).

Using Lemma 3.78, an expression in the areas and Pythagoras differences of points on a
circle can be reduced to an expression in the diameterδ of the circle and trigonometric
functions of independent angles. Two such expressions havethe same value iff when sub-
stituting, for each angleα, (sinα)2 by 1− (cosα)2 the resulting expression should be the
same. We thus have a complete method for this construction. The reader may have noticed
that this construction must always come first in the description of a statement. Otherwise,
in the next step, we do not know how to eliminate these trigonometric functions.

The proofs of many interesting geometry theorems use this construction.

Example 3.79 (Simson’s Theorem)Let D be a point on the circumscribed circle of triangle
ABC. From D three perpendiculars are drawn to the three sidesBC, AC, and AB of triangle
ABC. Let E, F, and G be the three feet respectively. Show that E, F and G are collinear.

A B

C

O

D
E

F

G

Figure 3-29

Here is the input to our program.
((CIRCLE A B C D)
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(FOOTE D B C)

(FOOTF D A C)

(FOOTG D A B)

(INTER G1 (LINE E F) (LINE A B))

( AG
BG
=

AG1
BG1

) )

The ndg conditions:B , C, A , C, A , B, EF ∦ AB, B , G, B , G1.

Here is the machine proof. The last step of the proof uses Lemma 3.78.

The machine proof

( AG
BG

)/( AG1
BG1

)

G1
=

SBEF
SAEF
· AG

BG

G
=

PBAD·SBEF
SAEF·(−PABD)

F
=
−PBAD·PACD·SABE·PACA

(−PCAD·SACE)·PABD·PACA

simpli f y
=

PBAD·PACD·SABE

PCAD·SACE·PABD

The eliminants
AG1
BG1

G1
=

SAEF
SBEF

AG
BG

G
=

PBAD
−PABD

SAEF
F
=
−PCAD·SACE

PACA

SBEF
F
=

PACD·SABE

PACA

SACE
E
=
−PBCD·SABC

PBCB

SABE
E
=

PCBD·SABC

PBCB

PABD= − 2(B̃D·ÃB·cos(AD))

E
=

PBAD·PACD·PCBD·SABC·PBCB

PCAD·(−PBCD·SABC)·PABD·PBCB

simpli f y
=

PBAD·PACD·PCBD

−PCAD·PBCD·PABD

co−cir
=

(2ÃD·ÃB·cos(BD))·(−2C̃D·ÃC·cos(AD))·(2B̃D·B̃C·cos(CD))
−(2ÃD·ÃC·cos(CD))·(−2C̃D·B̃C·cos(BD))·(−2B̃D·ÃB·cos(AD))

simpli f y
= 1

The eliminants

PBCD= − 2(C̃D·B̃C·cos(BD))
PCAD=2(ÃD·ÃC·cos(CD))
PCBD=2(B̃D·B̃C·cos(CD))
PACD= − 2(C̃D·ÃC·cos(AD))
PBAD=2(ÃD·ÃB·cos(BD))

Example 3.80 (Pascal’s Theorem on a Circle)Let A, B,C,D,E, and F be six points on a circle.
Let P= AB∩ DF, Q = BC∩ EF, and S= CD∩ EA. Show that P,Q, and S are collinear.

Here is the input to the program.
S

Q

P

E

F

D

O

C

BA

Figure 3-30

( (CIRCLE A B C D F E)

(INTER P (LINE D F) (LINE A B))

(INTER Q (LINE F E) (LINE B C))

(INTER S (LINE E A) (LINE C D))

(INTER S1 (LINE P Q) (LINE C D))

( CS
DS
=

CS1
DS1

) )

The ndg conditions:
DF ∦ AB, EF ∦ BC, AE ∦ CD, PQ∦ CD, D , S, D , S1.
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The machine proof

(CS
DS

)/(CS1
DS1

)

S1
=

SDPQ

SCPQ
· CS

DS

S
=

SACE·SDPQ

SCPQ·SADE

Q
=

SACE·(−SDEP·SBCF)·SBFCE

(−SCFE·SBCP)·SADE·(−SBFCE)

simpli f y
=

−SACE·SDEP·SBCF

SCFE·SBCP·SADE

P
=
−SACE·(−SDFE·SABD)·SBCF·SADBF

SCFE·(−SBDF·SABC)·SADE·(−SADBF)

simpli f y
=

SACE·SDFE·SABD·SBCF

SCFE·SBDF·SABC·SADE

The eliminants
CS1
DS1

S1
=

SCPQ

SDPQ

CS
DS

S
=

SACE

SADE

SCPQ
Q
=
−SCFE·SBCP

SBFCE

SDPQ
Q
=

SDEP·SBCF

SBFCE

SBCP
P
=
−SBDF·SABC

SADBF

SDEP
P
=

SDFE·SABD
SADBF

SADE=
D̃E·ÃE·ÃD

(−2)·d

SABC=
B̃C·ÃC·ÃB

(−2)·d

SBDF=
D̃F·B̃F·B̃D

(−2)·d

SCFE=
F̃E·C̃E·C̃F

(−2)·d

SBCF=
C̃F·B̃F·B̃C

(−2)·d

The machine proof
co−cir
=

(−C̃E·ÃE·ÃC)·(−F̃E·D̃E·D̃F)·(−B̃D·ÃD·ÃB)·(−C̃F·B̃F·B̃C)·((2d))4

(−F̃E·C̃E·C̃F)·(−D̃F·B̃F·B̃D)·(−B̃C·ÃC·ÃB)·(−D̃E·ÃE·ÃD)·((2d))4

simpli f y
= 1

The eliminants

SABD=
B̃D·ÃD·ÃB

(−2)·d

SDFE=
F̃E·D̃E·D̃F

(−2)·d

SACE=
C̃E·ÃE·ÃC

(−2)·d

Example 3.81 (The General Butterfly Theorem.)As in the figure, A, B, C, D, E, F are six
points on a circle. M= AB∩CD; N = AB∩ EF; G = AB∩CF; H = AB∩DE. Show that
MG
AG

BH
NH

AN
MB
= 1.

H

N M

E

O

C

BA

F

G

D

Figure 3-31

Constructive description
( (CIRCLE A B C D E F)

(INTER M (LINE D C) (LINE A B))

(INTER N (LINE E F) (LINE A B))

(INTER G (LINE A B) (LINE C F))

(INTER H (LINE D E) (LINE A B))

( MG
AG

BH
NH
= BM

AB
BA
AN

) )
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The machine proof
MG
AG
· BH
NH

− BM
AB
· AB
AN

H
=

SBDE

− BM
AB
· AB
AN
·SDEN

· MG
AG

G
=

−SCFM ·SBDE
BM
AB
· AB

AN
·SDEN·SACF

N
=
−SCFM·SBDE·(−SAEBF)·SAEF
BM
AB
·SAEBF·SDEF·SABE·SACF

simpli f y
=

SCFM·SBDE·SAEF
BM
AB
·SDEF·SABE·SACF

M
=

(−SCDF ·SABC)·SBDE·SAEF·(−SACBD)
(−SBCD)·SDEF·SABE·SACF·(−SACBD)

simpli f y
=

SCDF ·SABC·SBDE·SAEF

SBCD·SDEF·SABE·SACF

co−cir
=

(−D̃F·C̃F·C̃D)·(−B̃C·ÃC·ÃB)·(−D̃E·B̃E·B̃D)·(−ẼF·ÃF·ÃE)·((2d))4

(−C̃D·B̃D·B̃C)·(−ẼF·D̃F·D̃E)·(−B̃E·ÃE·ÃB)·(−C̃F·ÃF·ÃC)·((2d))4

simpli f y
= 1

The eliminants
BH
NH

H
=

SBDE
SDEN

MG
AG

G
=

SCFM

SACF

SDEN
N
=

SDEF·SABE
−SAEBF

AB
AN

N
=

SAEBF

SAEF

BM
AB

M
=

SBCD

SACBD

SCFM
M
=

SCDF ·SABC

SACBD

SACF=
C̃F·ÃF·ÃC

(−2)·d

SABE=
B̃E·ÃE·ÃB

(−2)·d

SDEF=
ẼF·D̃F·D̃E

(−2)·d

SBCD=
C̃D·B̃D·B̃C

(−2)·d

SAEF=
ẼF·ÃF·ÃE

(−2)·d

SBDE=
D̃E·B̃E·B̃D

(−2)·d

SABC=
B̃C·ÃC·ÃB

(−2)·d

SCDF=
D̃F·C̃F·C̃D

(−2)·d

Example 3.82 (Cantor’s Theorem)The perpendiculars from the midpoints of the sides of a
cyclic quadrilateral to the respectively opposite sides are concurrent.

B C

D

O

A

EF

G

N

Figure 3-32

Constructive description
((CIRCLE A B C D)

(CIRCUMCENTERO A B C)

(MIDPOINT G A D)

(MIDPOINT F A B)

(MIDPOINT E C D)

(PRATIO N E O F 1)

(PERPENDICULARG N B C) )

The machine proof
PCBG

PCBN

N
=

PCBG

PCBE+PCBF−PCBO

E
=

PCBG

PCBF−PCBO+
1
2 PCBD+

1
2 PBCB

F
=

(2)·PCBG

−2PCBO+PCBD+PBCB+PABC

G
=

(−2)·( 1
2 PCBD+

1
2 PABC)

2PCBO−PCBD−PBCB−PABC

O
=
−(PCBD+PABC)·(2)
−2PCBD−2PABC

simpli f y
= 1

The eliminants

PCBN
N
=PCBE+PCBF−PCBO

PCBE
E
=

1
2(PCBD+PBCB)

PCBF
F
=

1
2(PABC); PCBO

O
=

1
2(PBCB)

PCBG
G
=

1
2(PCBD+PABC)

The ndg conditions:A, B,C are not collinear;A , D; A , B; C , D; O , F.
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3.7 Machine Proof for Class C

The classC, or the class of constructive geometry statements, are the geometry statements
which are assertions about the configurations that can be drawn by rulers and compasses
only. To describe the statements in classC, we need two new constructions.

We first introduce a new kind of circle: (CIRO r) is the the circle with centerO and
radius

√
r. As before,r could be an algebraic number, a rational expression in geometry

quantities, or a variable. Thus (CIRO P) is the same as (CIRO OP
2
).

C22 (INTER Y (LINE U V) (CIR O r)). PointY is one of the intersections of line (LINE
U V) and circle (CIRO r). The ndg conditions arer , 0, U , V. PointY is a fixed
point and has two possibilities.

C23 (INTER Y (CIR O1 r1) (CIR O2 r2)). PointY is one of the intersections of the circle
(CIR O1 r1) and the circle (CIRO2 r2). The ndg conditions areO1 , O2, r1 , 0, and
r2 , 0. PointY is a fixed point and has two possibilities.

Each of constructions C22 and C23 actually introduces two points, and we generally can
not distinguish the two points. This is the main difficulty of dealing with these two con-
structions.

3.7.1 Eliminating Points from Geometry Quantities

Proposition 3.83Let Y be one of the intersection points of line UV and circle (CIR O r).
Then we have

(III ) (
UY

UV
)2 − POUV

UV
2

UY

UV
+

OU
2 − r

UV
2
= 0.

O

XUV M Y

Figure 3-33

Proof. Let X be another intersection point of the line
UV and the circle (CIRO r), andM the midpoint of
XY. By Proposition 3.2,

UY

UV
+

UX

UV
= 2

UM

UV
=

PMUV

UV
2
=

POUV

UV
2
. (1)

By Proposition 3.5,

OU
2
=

XU

XY
OY

2
+

UY

XY
OX

2 − XU

XY
· UY

XY
XY

2
= OX

2
+ UY · UX = r + UY · UX. (2)
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From (1) and (2), it is easy to obtain the result.

Now we can give the elimination methods for construction C22easily.

Lemma 3.84Let Y be introduced by (INTER Y (LINE U V) (CIR O r)). Then

SABY =
UY
UV

SVAUB+ SABU,

PABY =
UY
UV

PVAUB+ PABU,

PAYB=
UY
UV

PVAUB+ PABU − UY
UV

(1− UY
UV

)PUVU

whereUY
UV

satisfies (III).

Proof. By Proposition 2.9,SABY =
UY
UV

SABV+ (1− UY
UV

)SABU =
UY
UV

SVAUB+SABU. The second
and third cases are consequences of Proposition 3.5.

Lemma 3.85Let Y be introduced by (INTER Y (LINE U V) (CIR O r)). Then

DY

EF
=


DU
EF
+ UY

UV
UV
EF

if D ∈ UV.
SDUV

SEUFV
otherwise.

Proof. The first case is trivial. The second case is a consequence of the co-side theorem.

Proposition 3.86Construction C23 is equivalent to the following two constructions
(LRATIO O O1 O2 r) (TRATIO Y O O1 s)

where r= O1O2
2
+r1−r2

2O1O2
2 , s2 =

r1

r2O1O2
2 − 1.

O O

Y

O

Figure 3-34

1 2

Proof.Let O be the foot of the perpendicular dropped
from pointY upon the lineO1O2. By Proposition 3.2,

O1O

O1O2

=
PYO1O2

PO1O2O1

=
O1O2

2
+ r1 − r2

2O1O2
2

.

For s, we haves2 = OY
2

OO1
2 =

r1

OO1
2 − 1 = r1

r2O1O2
2 − 1.

Lemma 3.87Let Y be introduced by (INTER Y (CIR O1 r1) (CIR O2 r2)). Then

SABY = SABO1 + rSO2AO1B −
rs
4

PO2AO1B

where r and s are the same as in Proposition 3.86.
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Proof. Let O be the foot of the perpendicular dropped from pointY upon the lineO1O2. By
Lemma 3.26,

SABY = SABO−
s
4

POAO1B

= rSABO2 + (1− r)SABO1 −
s
4

(rPO2AB+ (1− r)PO1AB− PO1AB)

= SABO1 + rSO2AO1B −
rs
4

PO2AO1B.

Lemma 3.88Let Y be introduced by (INTER Y (CIR O1 r1) (CIR O2 r2)). Then

PABY = PABO1 + rPO2AO1B − 4rsSO2AO1B

where r and s are the same as in Proposition 3.86.

Proof. Let O be the foot of the perpendicular dropped from pointY upon the lineO1O2. By
Lemma 3.27,

PABY = PABO− 4sSOAO1B

= rPABO2 + (1− r)PABO1 − 4s(rSO2AB+ (1− r)SO1AB− SO1AB)

= PABO1 + rPO2AO1B − 4rsSO2AO1B.

The methods of eliminatingY from DY
EF

andPAYB can be found in Lemmas 2.26, 3.30, 3.25,
and 3.28.

3.7.2 Pseudo Divisions and Triangular Forms

In this section, we introduce some algebraic tools which will be used in the machine proof
for statements in classC. These tools are actually parts of Wu’s method of automated ge-
ometry theorem proving, more details of which can be found in[36, 12].

Let K be a computable field of characteristic zero (e.g.,Q) andA = K[x1, ..., xn] be the
polynomial ring of the variablesx1, · · · , xn. ForP ∈ K[x] − K, we can write

P = cdxd
p + ... + c1xp + c0

whereci ∈ B[x1, ..., xp−1], p > 0, andcd , 0. We call p the class, cd the initial , xp the
leading variable, andd the leading degreeof P respectively, orclass(P) = p, init(P) = cd,
lv(P) = xp, ld(P) = d. If P ∈ K, we haveclass(P) = 0.

Let p = class(P) > 0. A polynomialQ is said to bereducedwith respect toP if
deg(Q, xp) < ld(P).

Let f = anvn + · · · + a0 andh = bkvk + · · · + b0 be two polynomials inA[v], wherev is
a new indeterminate. Supposek, the leading degree ofh in v, is greater than 0. Then the
pseudo division proceeds as follows:
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Definition 3.89 (Pseudo Division)First let r = f . Then repeat the following process until
m = deg(r, v) < k: r = bkr − cmvm−kh, where cm is the leading coefficient of r. It is easy to
see that m strictly decreases after each iteration. Thus theprocess terminates. At the end,
we have the pseudo remainder prem( f , h, v) = r = r0.

Proposition 3.90Continuing from the above definition, we have the following formula,

bs
k f = qh+ r0, where s≤ n− k+ 1 and deg(r0, v) < deg(h, v). (1)

Proof. We fix polynomialh and use induction onn = deg( f , v). If n < k, then we have
r0 = f and f = 0 · h+ r0. Supposen ≥ k and formula (1) is true for those polynomialsf ,
for which deg( f , v) < n. After the first iteration, we haver = bk f − anvn−kh, wherean is
the leading coefficient of f . Sincedeg(r, v) < n, we havebt

kr = q1h + r0 by the induction
hypothesis. Substitutingr = bk f − anvn−kh in the last formula, we have (1).

Definition 3.91 A sequence of polynomials TS= A1, ...,Ap in K[X] is said to be a triangular
form, if either p= 1 and A1 , 0 or 0 < class(Ai) < class(A j) for 1 ≤ i < j.

For a triangular formTS = A1, ...,Ap, we make a renaming of the variables. IfAi is of class
mi, we renamexmi as xi, other variables are renamed asu1, ..., uq, whereq = n − p. The
variablesu1, ..., uq are calledthe parameter setof TS. ThenTS is like

A1(u1, · · · , uq, x1)
A2(u1, · · · , uq, x1, x2)

(IV) · · ·
Ap(u1, · · · , uq, x1, · · · , xp).

For another polynomialG, we can define thesuccessive pseudo division:

Rp = prem(G,Ap, xp), . . . ,R1 = prem(R1,A1, x1).

R = R1 is called thefinal remainderand is denoted byprem(G,A1, . . . ,Ar). It is easy to
prove the following important proposition:

Proposition 3.92 (The Remainder Formula)Let TS and R be the same as the above. There are
some non-negative integers s1, . . . , sp and polynomials Q1, . . . ,Qp such that

1. Is1
1 · · · I

sp
p G = Q1A1 + · · · + QpAp + R where the Ii are the initials of the Ai.

2. deg(R, xi) < deg(Ai , xi), for i = 1, · · · , p.

Proof. We use induction onp. The casep = 1 is actually Proposition 3.90. Suppose that
p > 1 and the proposition is true forp− 1. Thus we have:

I s1
1 · · · I

sp−1

p−1 Rp−1 = Q1A1 + · · · + Qp−1Ap−1 + R,

with deg(R, xi) < deg(Ai , xi), for i = 1, . . . , p− 1. Combining this withRp−1 = I spG−QAp,
we have 1 and 2.
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Theorem 3.93Let TS= A1, ...,Ap be a triangular set, G a polynomial.
If prem(G,TS) = 0 then

∀xi[(A1 = 0∧ · · · ∧ Ap = 0∧ I1 , 0∧ · · · ∧ Ip , 0)⇒ G = 0].

Proof. Sinceprem(G,TS) = 0, by the remainder formula

I s1
1 · · · I

sp
p G = Q1A1 + · · · + QpAp.

Now it is clear thatAi = 0 andI i , 0 imply G = 0.

Definition 3.94 A triangular set A1, ...,Ap of the form (IV) is called irreducible if for each i

1. the initial Ii of Ai does not vanish in the polynomial ring
Ri = K(u)[x1, · · · , xi]/(A1, ...,Ai−1), and

2. Ai is irreducible in Ri.

Thus the sequence

F0 = K(u), F1 = A0[x1]/(A1), ..., Fp = Ap−1[xp]/(Ap) = A0[x]/(A1, ...,Ap)

is a tower of field extensions.

Example 3.95Let TS be the triangular set A1 = x2
1 − u1, A2 = x2

2 − 2x1x2 + u1. A1 is
irreducible over A0 = Q[u1]; but A2 is reducible over A1 = A0[x1]/(A1) because A2 =
(x2 − x1)2 under x21 − u1 = 0. Thus TS is reducible.

Proposition 3.96Let TS= A1, ...,Ap of the form (IV) be irreducible, and G be a polynomial
in K[u, x]. Then the following conditions are equivalent:

(i) prem(G,TS) = 0.

(ii) Let E be an extension field of K. Ifµ = (η1, · · · , ηq, ζ1, · · · , ζp) in Ed+r is a common
zero of A1, ...,Ap with ηi transcendental over K, thenµ is also a zero of G, i.e., G(µ) = 0.

Proof. For any polynomialh, let h̃ be the polynomial obtained fromh by substitutingui , xi

for ηi , ζi.

We use induction onk to prove the following assertions (for 0< k ≤ p):

(U) For any polynomialP = asxs
k+ · · ·+a0 (0 < k ≤ p, 1≤ s, ai ∈ K[u, x1, ..., xk−1], as , 0)

reduced with respect toA1, ...,Ap, if µ is a zero ofP, thenP = 0.

If k = 1, thenP = asxs
k + · · · + a0, with all a j ∈ K[u]. µ is a zero ofP meansP̃ =

ãsζ1
s + · · · + ã0 = 0. SinceP is reduced with respect toA1, s < deg(A1, x1). By the
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uniqueness of representation inalgebraic extension, we have all ˜a j = 0. Sinceηi are
transcendental overK, all a j = 0. HenceP = 0.

Now we want to prove (U) is true fork assuming it is true fork − 1. Sinceµ is a zero
of P, P̃ = ãsζk

s + · · · + ã0 = 0. Sinces < deg(Ak, xk), by the uniqueness of representation
in algebraic extensionagain, allã j = 0. Thusµ is also a zero of alla j. Since alla j are also
reduced with respect toA1, ...,Ap, a j = 0 by the induction hypothesis. HenceP = 0.

(ii) ⇒ (i). Supposeµ is a zero ofG. LetR= prem(G,A1, ...,Ap). We have the remainder
formula

I s1
1 · · · I

sp
p G = Q1A1 + · · · + QpAp + R.

Henceµ is a zero ofR. SinceR is reduced with respect toA1, ...,Ap, R= 0.

(i) ⇒ (ii). Supposeprem(G,A1, ...,Ap) = 0. Then by theremainder formula, we have

I s1
1 · · · I

sp
p G = Q1A1 + · · · + QpAp.

where theIk the are initials of theAk. Sinceprem(Ik,TS) , 0, µ is not a zero ofIk (by (ii)
⇒ (i)). Henceµ is a zero ofG.

We callµ in (ii) a generic pointof that irreducible triangular form in fieldE.

The theorem is no longer true ifA1, ...,Ap is reducible. We can find such an example by
letting A1,A2 be the same as in example 3.95 andG = x2 − x1.

Theorem 3.97Let TS= A1, ...,Ap be an irreducible triangular form, G a polynomial. If

∀xi [(A1 = 0∧ · · · ∧ Ap = 0∧ I1 , 0∧ · · · ∧ Ip , 0)⇒ G = 0]

is true in any extension field of K then prem(G,TS) = 0.

Proof. Let η1, · · · , ηq be some elements which are transcendental overK. By the definition
of irreducible triangular set, we can find a generic zeroµ = (η1, · · · , ηq, ζ1, · · · , ζp) of TS
such thatI i(µ) , 0, i = 1, · · · , p. SinceAi(µ) = 0, I i(µ) , 0, i = 1, · · · , p, we haveG(µ) = 0.
By Proposition 3.96,prem(G,TS) = 0.

Exercise 3.98Let K be the field of the rational numbers, TS= A1, ...,Ap an irreducible
triangular form, and G a polynomial. If

∀xi [(A1 = 0∧ · · · ∧ Ap = 0∧ I1 , 0∧ · · · ∧ Ip , 0)⇒ G = 0]

is true in the field of complex numbers then prem(G,TS) = 0.
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3.7.3 Machine Proof for Class C

We now return to the theory of machine proof. First, let us restate Algorithm 3.33 using
the language of triangular forms and pseudo divisions. LetS = (C1, · · · ,Cr , (E, F)) be a
statement inCL. We denote byu1, · · · , uq, x1, · · · , xp the geometry quantities occurring in
the proof ofS such that theui are the free parameters and thexi are those quantities from
which a point will be eliminated. We arrange the subscripts such that

xi =
Ui(u1, · · · , uq, x1, · · · , xi−1)

I i(u1, · · · , uq, x1, · · · , xi−1)
, i = 1, · · · , p.

Let Ai = I i xi − Ui. Then
TS = A1, · · · ,Ap

is a triangular form withI i as the initials ofAi. FurthermoreTS is irreducible sinceI i , 0
is true under the ndg conditions ofS.

Theorem 3.99Use the same notations as above. The statement S is true iff prem(E −
F,TS) = 0.

Proof. Notice that the proving process ofS is as follows: first replacexi by Ui

I i
, i = p, · · · , 1,

in E and F to obtain two polynomialsE′ and F′ in the ui only. Since theui are free
parameters, the statementS is true iff E′ = F′. The above process is equivalent to taking the
pseudo remainder ofE−F with respect toTS. ThereforeS is true iff prem(E−F,TS) = 0.

If S = (C1, · · · ,Cr , (E, F)) is a statement inC, then for eachi, Ai has two possible forms:

(1) eitherAi = I i xi + Ui, or

(2) Ai = I i x2
i + Ui xi + Vi

whereI i ,Ui, andVi are polynomials inu1, · · · , uq, x1, · · · , xi−1. TS = A1, · · · ,Ap is still a
triangular form. Let

R= prem(E − F,TS).

Then we have

Theorem 3.100 1. If R= 0, S is true.

2. If R, 0 and TS is irreducible then S is not a theorem in the complex plane.

Proof. For the first case, by Theorem 3.93 we have

∀ui xi[(A1 = 0∧ · · · ∧ Ap = 0∧ I1 , 0∧ · · · ∧ Ip , 0)⇒ E − F = 0].

Under the ndg conditions ofS, we haveI i , 0, i = 1, · · · , p. ThenE = F is true. The
second case is a consequence of Theorem 3.97.
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Remark 3.101In practice, we do not have to take the pseudo remainder of E− F with
respect to TS . The better way is to eliminate xi from E and F separately as usual, so
that we can take the advantage of removing the common factorsfrom E and F during the
proof. To eliminate xi from E, if Ai = I i xi − Ui, we need only to replace xi in E by Ui

I i
; if

Ai = I i x2
i + Ui xi + Vi, we need to keep replacing x2

i in E by−Ui xi+Vi
I i

until the degree of xi in
E is less that two.

If R, 0 andTS is reducible, we need to factorizeTS into irreducible triangular forms.
We will not discuss the factorization method in this book; those who are interested in this
topic may refer to [36, 12]. Let us assume that for someAi we have

Ai = I i x
2
i + Ui xi + Vi = (I i,1xi − Ui,1)(I i,2xi − Ui,2)

which is true under the conditionAk = 0, k = 1, · · · , i − 1. ThenTS is factored into two
triangular formsTS1 andTS2 as follows

TS1 = A1, ...,Ai,1, ...,Ap; TS2 = A1, ...,Ai,2, ...,Ap

whereAi,1 = I i,1xi − Ui,1, Ai,2 = I i,2xi − Ui,2. Geometrically, this means that the two points
introduced by a construction of type C22 or C23 can be distinguished and the two triangular
formsTS1 andTS2 correspond to the two intersections.

If R, 0 andTS is reducible, letTS be factored into several irreducible triangular forms
TS1, · · · ,TSm. Then we have three possible cases:

• For each TSi, prem(E−F,TSi) , 0, i.e., E= F is not valid for all triangular forms.
In this case, we say that the statement S is generally false.

• For some TSi, prem(E− F,TSi) , 0, while for other TSj, prem(E− F,TSj) = 0. In
this case, the statement S is true only for some configurations.

• prem(E − F,TSi) = 0 for all i. In this case, S is still true in the Euclidean geometry.
This will happen only when we want to introduce the intersection points of two circles
or a line and a circle which are tangent to each other.

With the help of algebraic tools, we have a complete method ofmachine proof for geometry
statements in classC.



156 Chapter 3. Machine Proof in Plane Geometry

A B

D C

G

E

F

A
B

D C

G

E

F

Figure 3-35

Example 3.102Let ABCD be a square. CG is parallel to the diagonal BD. Point Eis on
CG such that BE= BD. F is the intersection of BE and DC. Show that DF= DE.

Proof. As shown in Figure 3-35, letG be a point on lineAD such thatAD = DG. Then
point E has two possible positions. The following proof shows thatPDFD = PDED is true
for both positions ofE. By Lemmas 3.22 and 3.27, we have

PBCG= − PDBC

PDBC=PADB=PDGD=PBCB=PADA = PDCD=PABA

PCGC=PBDB = 2PABA

Let r = CE
CG

. By the co-side theorem, we have

PDFD =
PDCDS2

BDE

S2
BDEC

=
PABAS2

BDC

(SBDC − rSDCG)2
=

PABAS2
BDC

(SBDC + rSBDC)2
=

PABA

(1+ r)2
.

By (II) on page 116,

PDED = (1− r)PDCD + rPDGD − (1− r)rPCGC = ((1− r) + r − 2(1− r)r)PABA.

ThenPDFD = PDED is true iff

(1+ r)2((1− r) + r − 2(1− r)r) = 1

and this is the case since by Proposition 3.83,

r2 =
2rPBCG− PBCB+ PBDB

PCGC
=
−2r + 1

2
.

Example 3.103Let ABC be a triangle such that AC= BC. D is a point on AC; E is a point
on BC such that AD= BE. F is the intersection of DE and AB. Show that DF= EF.
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If we describe the statement as follows, it becomes reducible.

A
B

C

D E

E

F

Figure 3-36

1

((POINTSA B)

(ON C (BLINE A B))

(ON D (LINE A C))

(INTER E (LINE B C) (CIR B AD
2
))

(INTER F (LINE A B) (LINE D E))

(MIDPOINT F D E))

By Proposition 3.83,

(
BE

BC
)2 · PBCB− PADA = 0. (1)

SincePADA=PACA · ( AD
AC

)2 = PBCB · ( AD
AC

)2, (1) becomes

(
BE

BC
)2 · PBCB− PBCB · (

AD

AC
)2 = (

BE

BC
− AD

AC
) · (BE

BC
+

AD

AC
)PBCB = 0.

Then we have
BE

BC
=

AD

AC
or

BE

BC
= −AD

AC

which correspond to pointsE1 andE in Figure 3-36. In the first case, we haveAB ‖ DE1;
the nondegenarate condition needed to construct pointF is not satisfied. In the second case,
the conclusion is true. Here is the proof of the example.

DF
FE

F
= −SABD

SABE

E
= − SABD

BE
BC

SABC

E
=

SABD
AD
AC

SABC

D
=

SABC
AD
AC

AD
AC

SABC

simpli f y
= 1

DF
FE

F
= −SABD

SABE

SABE
E
= BE

BC
· SABC

BE
BC
= −AD

AC

SABD
D
= SABC · AD

AC

3.8 Geometry Information Bases and Machine Proofs Based
on Full-Angles

In many traditional proofs, the relationships among anglesare always used directly if pos-
sible. This may be one of the main reasons that traditional geometric proofs are very short,
skillful and interesting. But the angle is a concept involving the relation of orders, and
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is thus very difficult to fit into our machine proof system. In Section 1.10, we introduce
the concept of full-angles as the basis of machine proof of geometry statements involving
angles. In Subsection 3.4.2, we present a machine proof method for geometry statements
involving full-angles based on the property of the tangent function of full-angles. But this
approach loses some of the unique character of the traditional proofs based on angles.

This section will be devoted to another approach to mechanical generation of proofs
based on full-angles. The basic idea for this new approach isthat we will build ageometry
information base(GIB) based on the constructive description of the statement. The GIB
for a statement contains some basic geometry relations about the configuration of the state-
ment such as collinear points, parallel lines, perpendicular lines, and cyclic points, etc. In
Subsections 2.5.1 (see the paragraph after Exercise 2.40) and 3.3.2, we have touched unon
the idea of building some kind of geometry information bases. The purpose of building
the GIB in those two cases is that therefined elimination techniquesneed these geometry
relations. The GIB actually has much potential in the automated production of traditional
proofs for geometry statements. In the following subsections, we will show that elegant
proofs for many geometry theorems can be obtained by merely checking a good GIB. This
section reports our initial study of this promising approach.

3.8.1 Building the Geometry Information Base

We will use Example 1.118 to illustrate our method.

First, we will check every step in the proof of Example 1.118 to find out how to eliminate
pointsO,D andE from full-angles∠[AD,AO] and∠[AC,CE].

We first use rules Q7 and Q9 (on page 46) to eliminate pointE from ∠[AC,CE].

A

B C

O

D

E

M

Figure 3-37

(1) ∠[AC,CE] = ∠[AC, BC] + ∠[BC,CE].
SinceBE = CE and thatE is on lineAB, by Q9 we
have
(2) ∠[BC,CE] = ∠[BE, BC] = ∠[BA, BC].
To eliminate the pointsO andD, we first use Q7 to
divide∠[AD,AO] into two parts:
(3) ∠[AD,AO] = ∠[AD,AC] + ∠[AC,AO].
SinceAD ⊥ BC, by Q7 we can eliminateD.

(4) ∠[AD,AC] = ∠[AD, BC] + ∠[BC,AC] = ∠[1] + ∠[BC,AC].

The next step is to eliminateO from ∠[AC,AO].
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(5)∠[AC,AO] = ∠[CO,AC] (Q9 andAO= CO)
= ∠[CO,MO] + ∠[MO,AC] (Q7)
= ∠[AC,AB] + ∠[MO,AC] (Q12, MB = MC andAO= BO= CO)
= ∠[AC,AB] + ∠[MO, BC] + ∠[BC,AC] (Q7)
= ∠[BC,AB] + ∠[1]. (Q7, MB = MC andBO= BC)

Finally, replacing∠[AD,AC], ∠[AC,AO] in (3) by (4),(5) and∠[BC,CE] in (1) by (2),
we have the conclusion:

(6)∠[AD,AO] + ∠[AC,CE]
= ∠[AC, BC] + ∠[BA, BC] + ∠[1] + ∠[BC,AC] + ∠[BC,AB] + ∠[1]
= ∠[AC,AC] + ∠[BA,AB] + ∠[1] + ∠[1] (Q7)
= ∠[0] (Q1,Q3 and Q4)

Suppose that a program named QAP could prove the geometry theorem as above. Now
we are going to check what kinds of information would be needed for designing the pro-
gram.

Obviously, the basic properties Q1–Q12 (on page 46) about full-angles are necessary
in each step of proof. But we will soon see that it is not enoughto prove this geometry
theorem by using these rules only. Much more geometric information is needed. Let us
check the above proof step by step.

Step (1) seems very easy. But from the point of view of mechanization, it is actually
difficult to start this step. The question is why the full-angle∠[AC,CE] should be divided
into ∠[AC, BC] + ∠[BC,CE] but not anything else, for example,∠[AC,AD] + ∠[AD,CE].
Why could our program QAP foresee that the pointE will be eliminated from∠[BC,CE]?

To make QAP work like this, we can imagine that ageometric information base(GIB)
will be generated automatically before QAP proves the theorem. The program will know
that∠[BC,CE] = ∠[BA, BC] by checking GIB. So it chooses step (1) so that pointE will
be eliminated in the next step.

How do we generate the GIB?

Of course, the hypotheses of the proposition should be put into the GIB first. There are
four conditions in Example 1.118:

(G1) The circumcenter of triangleABC is O. (OA= OB= OC)

(G2) AD is an altitude of triangleABC. (AD ⊥ BC andD ∈ BC)

(G3) M is the midpoint ofBC. (BM = MC andM ∈ BC)
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(G4) E is the intersection ofAB andMO. (E ∈ AB andE ∈ MO)

But here (G1)–(G4) are only a small part of the GIB. We must putmore information into
the GIB. To see what is still needed in the GIB, we check step (2). In this step, the rules on
full-angles are not sufficient. We need the hypotheses of the proposition (i.e., conditions
(G1)–(G4)). Furthermore, we need some geometric facts which are derived by applying
some geometry knowledge to the hypotheses of the statement,(such as derivingBE = CE
from MB = MC,OB = OC and E is on the lineOM). So we also need ageometry
knowledge base(GKB) to build the GIB. As an example, in order to obtainBE = CE, our
GKB should include the following propositions:

(a) If PB= PCandQB= QC thenPQ is the perpendicular bisector ofBC. (ndg condition:
B , C andP , Q).

(b) If P is on the perpendicular bisector ofBC, thenBP= CP.

(c) If PC = PB then∠[PC, BC] = ∠[BC,PB].

(d) If P is on lineAB, then∠[PB,XY] = ∠[AB,XY].

Applying (a) to G1 and G3, QAP obtains a new information and puts it into the GIB:

(G5) MO is the perpendicular bisector ofBC.

Applying (b) to G4 and G5, we have

(G6) BE = CE.

Applying (c) to G6, we have

(G7) ∠[BC,CE] = ∠[BE, BC].

Finally, applying (d) to G4 and G7, we have

(G8) ∠[BE, BC] = ∠[AB, BC].

G8 is the deductive basis of step (2).

For step (3), QAP has to foresee that pointsD andO can be eliminated as in steps (4)
and (5) and as a consequence, it decides to split the full-angle ∠[AD,AO] into ∠[AD,AC]
and∠[AC,AO]. The following additional geometry knowledge should be included in GKB:

(e) If PQ is perpendicular toUV, then∠[PQ,XY] = ∠[1] + ∠[UV,XY].

(f) (Another form of Q12) IfO is the circumcenter of triangleABC, then∠[AC,AO] =
∠[BC,AB] + ∠[1].

Proof of (f). Let D be the intersection ofAO and the circle. By the inscribed angle
theorem,∠[AB, BC] = ∠[AD,CD]. SinceAC⊥CD, we have∠[AC,AO] = ∠[1] +
∠[DC,AD] = ∠[1] + ∠[AB, BC].
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Applying (e) to G2 and (f) to G1, QAP will put the following information into GIB:

(G9) ∠[AD,AC] = ∠[1] + ∠[BC,AC].

(G10) ∠[AC,AO] = ∠[BC,AB] + ∠[1].

When QAP finds the information G1-G10, step (6) will be done according to rules of full-
angle (Q1-Q12) easily.

Here we mentioned only the information G1–G10 which are useful for proving the state-
ment. In fact, much more information about this statement will be put into the GIB, because
QAP does not know what information will be used when it generates the GIB. It will keep
applying every rule in the GKB to all the information in GIB toget new information and to
put the new information into GIB until nothing new can be obtained.

What geometry knowledge should be included in the GKB? Is it complete? At the
present stage, the choices of the rules in the GKB are based onour experience of proving
geometry theorems. Its completeness is still not considered. But if the method in this
section fails to prove or disprove a statement, we can alwaysuse Algorithm 3.33 which is
complete for constructive geometry statements. Thus, the GIB-GKB method is actually an
expert system of proving geometry statements. Up to now, thefollowing rules have been
put into our GKB:

K1 Two pointsA andB determine one line. (ndg condition:A , B)

K2 Three pointsA, B andC determine one circle. (ndg condition:SABC , 0)

K3 ∠[PQ,XY] = ∠[UV,XY] if and only if ∠[PQ,UV] = ∠[0]. (ndg condition:X , Y)

K4 Four pointsA, B,C and D are cyclic if and only if∠[AC, BC] = ∠[AD, BD]. (ndg
condition:A, B,C andD are not collinear)

K5 AB= AC if and only if ∠[AB, BC] = ∠[BC,AC]. (ndg condition:SABC , 0)

K6 ∠[AB,XY] + ∠[XY,UV] = ∠[AB,UV]. (ndg condition:X , Y)

K7 AB⊥ BC if and only if AC is the diameter of the circumcircle of triangleABC. (ndg
condition:SABC , 0)

K8 AB is the perpendicular bisector ofXY if and only if AX = AY andBX = BY. (ndg
condition:A , B andX , Y)

K9 If point O is the circumcenter of triangleABC then∠[OA,AB] = ∠[1] + ∠[AC, BC]
(ndg condition:SABC , 0)
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Suppose that for a geometry statement, the GIB has been generated by using GKB.
The next step is how to generate a proof based on the GIB. The key idea is still to eliminate
points introduced by constructions of the given statement.But here the eliminating rules are
based mainly on the GIB rather than construction. Followingare the rules for eliminating
point X from the full-angle∠[AB,PX]:

QE1 If X is on linePQ, then∠[AB,PX] = ∠[AB,PQ].

QE2 If PX is parallel toUV, then∠[AB,PX] = ∠[AB,UV].

QE3 If PX is perpendicular toUV, then∠[AB,PX] = ∠[1] + ∠[AB,UV].

QE4 If X is on lineUV andU,P,Q and X are cyclic, then∠[AB,PX] = ∠[AB,UV] +
∠[UQ,PQ].

(because∠[AB,PX] = ∠[AB,UV]+∠[UV,PX], ∠[UV,PX] = ∠[UX,PX] = ∠[UQ,PQ].)

QE5 If X is on lineUV andPX = PU then∠[AB,PX] = ∠[AB,UV]+∠[PU,UV]. (because
∠[PU,UV] = ∠[PU,UX] = ∠[UX,PX] = ∠[UV,PX].)

QE6 If X is on lineUV andPU is the perpendicular bisector ofQX, then∠[AB,PX] =
∠[AB,UV] + ∠[PQ,QU]. (because∠[PQ,QU] = ∠[UX,PX] = ∠[UV,PX].)

QE7 If X is the circumcenter of trianglePQU, then∠[AB,PX] = ∠[AB,PQ]+∠[UQ,UP]+
∠[1]. (by K9, ∠[PQ,PX] = ∠[1] + ∠[UQ,UP])

QE8 If ∠[UV,PX] = ∠[ f ] is known, then∠[AB,PX] = ∠[AB,UV] + ∠[ f ].

Here we assume that pointsA, B,P,Q,U andV are introduced before pointX.

Exercise 3.104Prove propositions QE1-QE8 based on Q1-Q12.

3.8.2 Machine Proof Based on the Geometry Information Base

We will use the following new version of Example 1.118 to illustrate how the program
works.

Example 3.105The circumcenter of triangle ABC is O. AD is the altitude on side BC. Show
that∠[AO,DA] = ∠[BA, BC] − ∠[BC,CA].

The constructive description is A

B

N

C

O

D

E

M

Figure 3-38

((POINTSB C A)
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(FOOT D A B C)

(MIDPOINT M B C)

(MIDPOINT N A B)

(INTER E (LINE A B) (PLINE M A D))

(INTER O (LINE M E) (TLINE N N B)))
The conclusion is∠[AO,DA] + ∠[BC,CA] + ∠[BC, BA] = ∠[0] which is equivalent

to ∠[AO,DA] = ∠[BA, BC] − ∠[BC,CA].

The GIB for this example contains several groups of geometryrelations which will be
explained separately below.

(I1) p-list: includes all the points in the statement, listed in the introducing order, i.e., p-list
= (B C A D M N E O).

(I2) free-points: includes all the free points in the statement,i.e., free-points= (B C A)

(I3) all-lines: GIB can list all2 the lines in the statement.

((O N) (O E M) (E N A B) (D A) (M D B C))

which means that pointsO,E andM are collinear, etc.

(I4) p-lines: contains all the parallel lines: ((O E M) (D A)) which means thatOEM ‖ DA.

(I5) t-lines: contains all the perpendicular lines:

((O N) (E N A B)) (((O E M) (D A)) (M D B C))

which means that lineON is perpendicular to lineENAB; and linesOEM andDA
are both perpendicular to lineMDBC.

(I6) circles: contains all the circles in the statement;

((E O) N E O) ((A O) N A O) ((B O) N M B O) ((D O) M D O)
((C O) M C O) ((D E) M D E) ((B E) M B E) ((C E) M C E)
((A M) D A M) ((B A) D B A (N)) ((C A) D C A)
((B C) B C (M)) (B C (E)) (C B A(O))

which means

EO is a diameter of the circumcircle of triangleNEO;
...;
BA is a diameter andN is the center of circumcircle of triangleDBA;

2As we mentioned before, these lines are those which can be obtained directly from the
hypotheses of the geometry statement.
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BC is a diameter andM is the center of the circle through pointsB andC;
E is the center of the circle through pointsB andC; and
O is the circumcenter of triangleCBA.

Using this information, QAP gives the following proof.

∠[BC, BA] + ∠[BC,CA] + ∠[AO,AD]
= ∠[BC, BA] + ∠[BC,CA] + ∠[1] + ∠[BA, BC] + ∠[CA,AD]

(By Q7,∠[AO,AD] = ∠[AO,CA] + ∠[CA,AD].
SinceO is the circumcenter ofABC, ∠[AO,CA] = ∠[1] + ∠[BA, BC].)
= ∠[0] + ∠[BC,CA] + ∠[1] + ∠[CA, BC] + ∠[1]

(∠[BC, BA] + ∠[BA, BC] = ∠[BC, BC] = 0.
SinceAD ⊥ BC, ∠[CA,AD] = ∠[CA, BC] + ∠[BC,AD] = ∠[CA, BC] + ∠[1].)
= ∠[0]. (∠[1] + ∠[1] = ∠[0] and∠[BC,CA] + ∠[CA, BC] = ∠[0].)

In what follows, we will use more examples to illustrate the GIB-GKB method. The
examples in Section 1.10 were all produced according to the above method by our program.

Example 3.106 (Simson’s Theorem)The same as Example 3.79 on page 144.

A B

C

O

D
E

F

G

Figure 3-39

Constructive description
((CIRCLE A B C D)

(FOOT E D B C)

(FOOT F D A C)

(FOOTG D A B)

The conclusion:∠[EF, FG] = ∠[0].

Proof. The machine proof

∠[EF,GF] = ∠[EF,DF] + ∠[DF,GF] (Q7)
= ∠[EC,DC] + ∠[DA,GA] (Q10 (D,C,E, F; A,D,G, F cyclic.))
= ∠[BC,DC] + ∠[DA, BA] (Q8 (E ∈ BC; G ∈ AB)).
= ∠[BA,DA] + ∠[DA, BA] (Q10 (A, B,C,D cyclic.))
= ∠[BA, BA] = ∠[0].

There is a traditional proof which proves the theorem by showing that∠EFC = ∠GFA.
This proof is not strict: the fact that pointsE andG are in different sides ofAC is used but
not proved.

Before presenting the next example, we introduce a new geometry object: (CIRCA B C)
which stands for the circle passing through pointsA, B, andC.

Example 3.107 (Miquel Point)Four lines form four triangles. Show that the circumcirclesof
the four triangles passes through a common point.
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A

B

E
Q

D

C

P

Figure 3-40

Constructive description
( (POINT A D E Q)

(INTER B (LINE D E) (CIRC A Q E))

(INTER C (LINE A E) (CIRC D Q E))

(INTER P (LINE A B) (LINE C D))

∠[QC,CP]+∠[AP,AQ]=∠[0]

The machine proof

∠[QC,CP] + ∠[AP,AQ]
= ∠[QC,DC] + ∠[AB,AQ]

(becauseCP ‖ DC andAP ‖ AB.)
=∠[EQ,ED] + ∠[EB,EQ] = ∠[EB,ED] = ∠[0].

(becauseE,Q,D,C andA, B,E,Q are cyclic points respectively.)

Example 3.108In a circle, the lines joining the midpoints of two arcs AB andAC meet line
AB and AC at D and E. Show that AD= AE.

A

B

C

O

Q

P

M

N

D

E

Figure 3-41

Constructive description
( (POINTSA M N)

(CIRCUMCENTERO A M N)

(FOOT P A O N)

(FOOT Q A O M)

(INTER D (LINE N M) (LINE A Q))

(INTER E (LINE N M) (LINE A P))

∠[AD,DE]+∠[AE,ED]=∠[0]

The machine proof

∠[AE,DE] + ∠[AD,DE]
= ∠[AP,MN] + ∠[AQ,MN]

(becauseAE ‖ AP,DE ‖ MN, andAD ‖ AQ.)
= ∠[AP,MN] + ∠[1] + ∠[MO,MN]

(becauseAQ⊥MO.)
= ∠[1] + ∠[NO,MN] + ∠[1] + ∠[1] + ∠[AM,AN]

(AP⊥NO.

∠[MO,MN] = ∠[1] + ∠[AM,AN], becauseO is the circumcenter of△AMN)
= ∠[1] + ∠[1] + ∠[AN,AM] + ∠[AM,AN]

(sinceO is the circumcenter of△AMN, ∠[NO,MN] = ∠[1] + ∠[AN,AM].)
= 0



166 Chapter 3. Machine Proof in Plane Geometry

Example 3.109From the midpoint C of arc AB of a circle, two secants are drawnmeeting
line AB at F, G, and the circle at D and E. Show that F, D, E, and G are on the same
circle.

C

O

A

M

B

D

E

F

G

Figure 3-42

Constructive description
( (CIRCLE A C D E)

(CIRCUMCENTERO A C D)

(FOOT M A O C)

(INTER F (LINE A M) (LINE D C))

(INTER G (LINE A M) (LINE C E))

∠[CE,FG]+∠[CD,DE]=∠[0]

The Machine proof

∠[CE, FG] + ∠[CD,DE]
= ∠[CE,AM] + ∠[AC,AE]

(FG ‖ AM; sinceA,C,D, andE are cyclic,∠[CD,DE] = ∠[AC,AE].)
= ∠[1] + ∠[CE,CO] + ∠[AC,AE]

(sinceAM⊥CO, ∠[CE,AM] = ∠[1] + ∠[CE,CO].)
= ∠[1] + ∠[1] + ∠[AE,AC] + ∠[AC,AE]

(sinceA,C,D, andE are on the circle with centerO, ∠[CE,CO] = ∠[1]+∠[AE,AC].)
= 0

Example 3.110Let Q, S and Y be three collinear points and(O,P) be a circle. Circles S PQ
and YPQ meet circle(O,P) again at points R and X, respectively. Show that XY and RS
meet on the circle(O,P).

P

S

O
Q

R

Y

X

I

Figure 3-43

Constructive description
((CIRCLE R P Q S) (POINT X)

(INTER Y (LINE Q S)(CIRC P Q X))

(INTER I (LINE X Y) (LINE R P))

∠[XI,RI]+∠[RP,XP]=∠[0]

The machine proof

∠[PR,PX] + ∠[IX,RI]
= ∠[PR,PX] + ∠[XY,RS]

(becauseXI ‖ XY andRI ‖ RS.)
= ∠[PR,PX] + ∠[XY,QS] + ∠[QS,RS]
= ∠[PR,PX] + ∠[XP,QP] + ∠[QS,RS]

(becauseX,P,Y, andQ are cyclic, andQS ‖ QY.)
(becauseX,P,Y, andQ are cyclic, andIX ‖ YI.)
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= ∠[PR,PQ] + ∠[QS,RS] = ∠[0].
(PointsR,Q,P, andS are cyclic.)

Example 3.111Let ABC be a triangle. Show that the six feet obtained by drawing perpen-
diculars through the foot of each altitude upon the other twosides are co-circle.

A B

C

F

E

D

G

H

IK

Figure 3-44

Constructive description
( (POINTSA B C)

(FOOT F C A B)

(FOOT D A B C)

(FOOT E B A C)

(FOOTG F B C)

(FOOT I D A B)

(FOOT H F A C)

(FOOT K E A B)

∠[GH,GI]+∠[AK,HK]=∠[0]

The machine proof

∠[GH,GI] + ∠[AK,HK]
= ∠[GH,GI] + ∠[AB, FI ] + ∠[FE,EH]

(becauseAK ‖ AB, andK,H, F, andE are cyclic.)
= ∠[FE,EH] + ∠[GH,GI]

(becauseAB ‖ FI .)
= ∠[FE,AC] + ∠[CE,GI] + ∠[FG,CF]

(becauseEH ‖ AC, andH,G,C, andF are cyclic.)
= ∠[FE,AC] + ∠[CE, BF] + ∠[FD,DG] + ∠[FG,CF]

(becauseI ,G, F, andD are cyclic.)
= ∠[FG,CF] + ∠[FE,AC]

(becauseA,D,C, andF are cyclic.)
= ∠[AD,CF] + ∠[FE,AC]

(becauseFG ‖ AD.)
= ∠[AD,CF] + ∠[BF, BC]

(becauseE, F,C, andB are cyclic.)
= ∠[1] + ∠[BC,CF] + ∠[BF, BC]

(becauseAD⊥BC.)
= ∠[1] + ∠[BF,CF] = ∠[0]

(becauseBF⊥CF.)

Example 3.112The nine-point circle cuts the sides of the triangle at angles |B−C|, |C− A|,
and |A− B|.
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A B

C

MQ

P

S

F

N

L

Figure 3-45

Constructive description
((POINTSA B C)

(FOOT F C A B)

(MIDPOINT M B C)

(MIDPOINT Q A C)

(MIDPOINT P B A)

(MIDPOINT L F P)

(MIDPOINT S Q P)

(INTER N (TLINE L L P) (TLINE S S P))

∠[BC,AB]+∠[AC,AB]+∠[FN,LN]=∠[0]

The machine proof

∠[FN, LN] + ∠[AC,AB] + ∠[BC,AB]
= ∠[1] + ∠[FN,PF] + ∠[AC,AB] + ∠[BC,AB]

(becauseLN ‖ CF andCF⊥PF.)
= ∠[1] + ∠[1] + ∠[FQ,PQ] + ∠[AC,AB] + ∠[BC,AB]

(PointsF,Q,P are on the circle with centerN.)
= ∠[FQ,CF] + ∠[CF,PQ] + ∠[AC,AB] + ∠[BC,AB]
=∠[1] + ∠[FP,QP] + ∠[FQ,CF] + ∠[AC,AB] + ∠[BC,AB]

(becauseLN ‖ CF andCF⊥PF.)
=∠[1] + ∠[MQ, BC] + ∠[FQ,CF] + ∠[AC,AB] + ∠[BC,AB]
=∠[1] + ∠[AC,AB] + ∠[FQ,CF]

(becauseFP ‖ MQ,QP ‖ BC, andMQ ‖ AB.)
= ∠[1] + ∠[AC,AB] + ∠[1] + ∠[CF,AC] + ∠[AF,CF]

(becauseF,A,C are on the circle with centerQ.)
= ∠[AC,AB] + ∠[AF,AC]
= ∠[AC,AB] + ∠[AB,AC] = ∠[0]

Summary of Chapter 3

• We have the following formulas for the areas of triangles.

1. SABC =
1
2 |BC|hA =

1
2 |AC|hB =

1
2 |AB|hC.

2. SABC = SOUV

∣∣∣∣∣∣∣∣

xA yA 1
xB yB 1
xC yC 1

∣∣∣∣∣∣∣∣
wherexA, yA, xB, yB, xC, andyC are the area coordinates of pointsA, B, andC
with respect toOUV.

3. 16S2
ABC = 4AB

2
AC

2 − (AC
2
+ AB

2 − BC
2
)2 = 4AB

2
AC

2 − P2
BAC.
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• The following basic propositions and the ones on page 100 arethe basis of the area
method.

1. AB⊥CD iff PACD = PBCD or PACBD = 0.

2. Let R be a point on linePQ with position ratiosr1 =
PR
PQ
, r2 =

RQ
PQ

with respect
to PQ. Then

PRAB = r1PQAB+ r2PPAB

PARB = r1PAQB+ r2PAPB− r1r2PPQP.

3. LetD be the foot of the perpendicular drawn from pointP upon a lineAB. Then
we have

AD

AB
=

PPAB

2AB
2
,

DB

AB
=

PPBA

2AB
2
.

4. LetAB andPQ be two nonperpendicular lines andY be the intersection of line
PQ and the line passing throughA and perpendicular toAB. Then

PY

QY
=

PPAB

PQAB
,

PY

PQ
=

PPAB

PPAQB
,
QY

PQ
=

PQAB

PPAQB
.

5. LetABCDbe a parallelogram. Then for any pointsP andQ, we have

PAPQ+ PCPQ = PBPQ+ PDPQ or PAPBQ= PDPCQ

PPAQ+ PPCQ = PPBQ+ PPDQ+ 2PBAD.

6. LetABCDbe a parallelogram andP be any point. Then

PPAB = PPDC − PADC = PPDAC

PAPB = PAPA− PPDAC.

• A constructive configurationis a figure which can be drawn using a ruler and a pair
of compasses only. In other words, a constructive configuration can be obtained by
first taking some arbitrary points, lines, and circles in theplane, and then taking the
intersections of these lines and circles in a prescribed way. A constructive geometry
statementis an assertion about a constructive configuration, and thisassertion can be
represented by a polynomial equation of three geometry quantities: the ratios of par-
allel line segments, the signed areas of triangles or quadrilaterals, and the Pythagoras
differences. The set of all constructive statements is denoted by C. We also intro-
duced a subclass ofC, i.e., the class of the linear constructive geometry statements,
which is denoted byCL.

• A mechanical theorem proving method for classC was presented. The key idea of
the method is to eliminate points from geometry quantities.The method can be used
to produce short and readable proofs for geometry statements efficiently.
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• We report some initial results on how to use the geometry information base to gener-
ate readable proofs for geometry statements using full-angles.



Chapter 4

Machine Proof in Solid Geometry

This chapter deals with the machine proof in solid geometry.Similar to plane geometry, we
will consider those geometry statements that can be described constructively using lines,
planes, circles, and spheres. In the first three sections, wedeal with geometry statements in-
volving collinear and parallel of lines and planes. More precisely, we deal with constructive
statements in affine geometry of dimension three. Starting from Section 4, thePythagoras
difference is employed to deal with constructive statements involving perpendicular lines,
circles, and spheres.

4.1 The Signed Volume

As before, we denote byAB the signed length of the oriented segment fromA to B; we
denote bySABC the signed area of the oriented triangleABC.

In solid geometry, we have a new basic fourfold relation among points,coplanar, which
will be characterized by Axioms S.1–S.5 about signed volumes.

We assume that Axioms A.1–A.6 (on page 55) are still valid, provided that all the points
involved are coplanar. The signed areas of coplanar triangles can be compared, added, or
subtracted. For instance, ifA,O,U, andV are four coplanar points, by Axiom A.5

(4.1) SOUV = SOUA+ SOAV + SAUV.

A tetrahedronABCDhas two possible orientations. We use the order of its vertices to
represent its orientation. If we interchange two neighbor vertices, the orientation of the
tetrahedron will be changed.

The signed volume VABCD of an oriented tetrahedronABCD is a real1 number which
satisfies the following properties.

1Here, we can use any number field and the results in this chapter are still valid.

171
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Axiom S.1 When two neighbor vertices of an oriented tetrahedron are interchanged, the
signed volume of the tetrahedron will change signs, e.g., VABCD = −VABDC.

Axiom S.2If A, B, C, and D are four non-coplanar points, we have VABCD , 0.

Axiom S.3There exist at least four points A, B, C, and D such that VABCD, 0.

Axiom S.4For five points A, B,C,D, and O (Figure 4-1), we have

VABCD= VABCO+ VABOD+ VAOCD+ VOBCD.

Axioms S.3 and S.4 are calleddimensionaxioms. They ensure that we are dealing with
a proper three dimensional space: Axiom S.3 says that there are at least four non-coplanar
points; Axiom S.4 says that all points must be in the same three dimensional space.

A

B

C

D

T

Figure 4-2

A

B

C

D

O

Figure 4-1

Axiom S.5 If A, B,C, and D are four coplanar triangles and SABC = λSABD then for any
point T we have VT ABC= λVT ABD. (Figure 4-2)

We extend the coplanar to be a geometry relation among any setof points: a set con-
taining fewer than four points is always coplanar, and a set of points is coplanar if any four
points in it are coplanar. We thus can introduce a new geometry object, theplane, which is
a maximal set of coplanar points.

Proposition 4.1Four points A, B,C, and D are coplanar iff VABCD = 0.

Proof. If VABCD = 0, by Axiom S.2A, B,C, andD are coplanar. Let us assumeA, B,C,
andD to be coplanar points. IfA, B,C, andD are collinear, we haveSABC = 0. Let X be a
point not on lineAB. Then by Axiom S.5,VABCD =

SABC

SABX
VABXD = 0. If A, B, andC are not

collinear, we haveVABCD =
SBCD

SABC
VAABC= 0.

Corollary 4.2 For three non-collinear points A, B, and C, the set of all the points D satisfying
VABCD = 0 is a plane and is denoted by plane ABC.

Proof. Let P,Q,R, andS be four points in planeABC. We need to show thatVPQRS = 0.
We first show that two of the points, sayP andQ, are coplanar withA, B,C. By Axiom
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S.5,

VABPQ=
SABP

SABC
VABCQ= 0,

i.e., A, B,P, andQ are coplanar. Similarly, we can show that three ofP,Q,R, andS are
coplanar withA, B,C, and finallyP,Q,R, andS are coplanar.

In what follows, when speaking about a planeABC, we always assume thatA, B, andC
are not collinear. Similarly, when speaking about a lineAB, we assumeA , B.

4.1.1 Co-face Theorem

In this and the next subsections, we will derive some basic properties about volumes which
will serve as the basis of the volume method. First, Axiom S4 can be written in the follow-
ing convenient way.

Proposition 4.3 (The Co-vertex Theorem)Let ABC and DEF be two proper triangles in the
same plane and T be a point not in the plane. Then we haveVT ABC

VT DEF
=

SABC

SDEF
.

Proof. By Axiom S.5,

VT ABC

VT DEF
=

VT ABC

VT ABF

VT ABF

VT AEF

VT AEF

VT DEF
=

SABC

SABF

SABF

SAEF

SAEF

SDEF
=

SABC

SDEF
.

Before proving the co-face theorem, we need to define the signed volume of a special
polyhedron with five vertices.

P

A B

C

Q

P

A B

C

Q

P

A
B

C

Q

Figure 4-3

The polyhedron formed by five points in space is complicated.By PABCQ, we denote
the one with facesPAB, PBC, PAC, QAB, QBC, andQAC. Figure 4-3 shows that several
possible shapes ofPABCQ. The volume ofPABCQis defined to be

(4.2) VPABCQ= VPABC− VQABC.

By Axiom S4, we have

(4.3) VPABCQ= VPABQ+ VPCAQ+ VPBCQ.
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Proposition 4.4 (The Co-face Theorem)A line PQ and a plane ABC meet at M. If Q, M, we
have

PM

QM
=

VPABC

VQABC
;

PM

PQ
=

VPABC

VPABCQ
;

QM

PQ
=

VQABC

VPABCQ
.

P

A B

C

Q

M

P

A
B

C

Q

M

P

A

B

C

Q

M

P

A

B

C

Q

M

Figure 4-4

Proof. Figure 4-4 shows that several possible configurations of this proposition. Take
pointsA′ andB′ such thatMA′ = CA,MB′ = CB. ThenSABC = SA′B′M. By Propositions
4.3 and 2.8, we have,VPABC

VQABC
=

VPA′B′M
VQA′B′M

=
SPB′M
SQB′M

= PM
QM

. Other equations are consequences of
the first one.

The above proof is adimension reductionprocess. A quantity in the space (VPA′B′M
VQA′B′M

) is

reduced to a quantity in the plane (SPB′M
SQB′M

) which is further reduced to a quantity in a line

( PM
QM

).

A

B

C

P

Q

R

Figure 4-5

Proposition 4.5Let R be a point on a line PQ and
ABC be a triangle. Then we have

VRABC=
PR

PQ
VQABC+

RQ

PQ
VPABC.

Proof. By Proposition 4.4,

VPRBC

VPQBC
=

PR

PQ
,

VPARC

VPAQC
=

PR

PQ
,

VPABR

VPABQ
=

PR

PQ
.

By Axiom S4,

VRABC = VPABC− VPRBC− VPARC− VPABR

= VPABC−
PR

PQ
(VPQBC+ VPAQC+ VPABQ)
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= VPABC−
PR

PQ
VPABCQ

= (1− PR

PQ
)VPABC+

PR

PQ
VQABC

=
PR

PQ
VQABC+

RQ

PQ
VPABC.

A

B

C

P
QR

S M

Figure 4-6

Proposition 4.6Let R be a point in the plane PQS . Then
for three points A, B, and C we have

VRABC=
SPQR

SPQS
VS ABC+

SRQS

SPQS
VPABC+

SPRS

SPQS
VQABC.

Proof. For any pointX, let VX = VXABC. Without loss of
generality, letM be the intersection ofPR andQS. By
Proposition 4.5,

VR =
PR

PM
VM +

RM

PM
VP =

PR

PM
(
QM

QS
VS +

MS

QS
VQ) +

RM

PM
VP. (1)

By the co-side theorem,RM
PM
=

SRQS

SPQS
, QM

QS
=

SPQR

SPQRS
, MS

QS
=

SPRS

SPQRS
, PR

PM
=

SPQRS

SPQS
. Substituting

these into (1), we obtain the result.

4.1.2 Volumes and Parallels

Two planes or a line and a plane, are said to beparallel if they have no point in common.
Two lines are said to be parallel if they are in the same plane and do not have a common
point.

By the notationPQ ‖ ABC, we mean thatA, B,C,P, andQ satisfy one of the following
conditions: (1)P = Q, (2) A, B, andC are collinear, or (3)A, B, C, P, andQ are on the
same plane, or (4) linePQ and planeABCare parallel. According to the above definition,
if PQ 6‖ ABC then linePQ and planeABC have a normal intersection. For six points
A, B,C,P,Q, andR, ABC ‖ PQRiff AB ‖ PQR, BC ‖ PQR, andAC ‖ PQR.

Proposition 4.7PQ ‖ ABC iff VPABC= VQABC or equivalently VPABCQ= 0.

Proof. If VPABC , VQABC, thenP , Q andA, B, andC are not collinear. LetO be a point

on line PQ such thatPO
PQ
=

VPABC

VPABCQ
. Thus OQ

PQ
= − VQABC

VPABCQ
. By Proposition 4.5,VOABC =

PO
PQ

VQABC+
OQ
PQ

VPABC = 0. By Axiom S2, pointO is also in planeABC, i.e., linePQ is not
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parallel toABC. Conversely, ifPQ ∦ ABC thenP , Q andA, B, andC are not collinear.
Let O be the intersection ofPQ andABC. By Proposition 4.4,OP

OQ
=

VPABC

VQABC
= 1. Thus

P = Q, which is a contradiction.

Proposition 4.8PQR‖ ABC iff VPABC= VQABC= VRABC.

Proof. By Proposition 4.7,VPABC = VQABC = VRABC iff lines PQ andPR are parallel to
planeABC. We must show that for any pointD in planePQR, line PD is also parallel to
ABC. By Proposition 4.6,

VDABC =
SPQD

SPQR
VRABC+

SPDR

SPQR
VQABC+

SDQR

SPQR
VPABC

= VPABC(
SPQD

SPQR
+

SPDR

SPQR
+

SDQR

SPQR
) = VPABC

i.e.,PD ‖ ABC.

A figure P1P2...Pn is said to be atranslationof Q1Q2...Qn if PiPi+1 = QiQi+1. Let
triangleXYZ be a translation of triangleABC. Then for any pointsP,Q, andR in plane
XYZ, we define

SPQR

SABC
=

SPQR

SXYZ
.

For convenience, we use the symbol

SPQR

SABC
= λ or SPQR= λSABC

to denote the fact that planePQRis the same as or parallel to planeABC, andλ is the ratio
of the signed areasSPQR andSABC.

The following propositions about translations of line segments and triangles are often
used in the machine proof method, in order to add auxiliary translations of line segments
and triangles.

Proposition 4.9Let PQTS be a parallelogram. Then for points A, B, and C, we have

VPABC+ VT ABC= VQABC+ VS ABCor VPABCQ= VS ABCT.

Proof. This is a consequence of Proposition 4.5, because both sidesof the equation are
equal to 2VOABC whereO is the intersection ofPT andS Q.

Proposition 4.10Let triangle ABC be a translation of triangle DEF. Then for any point P
we have VPABC= VPDEFA.
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Proof. By Proposition 4.9 and (4.3),VPABC = VPAEC− VPADC = VPAEF− VPAED− VPADC =

VPAEF− VPAED− VPADF = VPDEFA.

Corollary 4.11 1. For two parallel planesABCandPQRand a pointT not in ABCwe have
SABC

SPQR
=

VT ABC

VT PQRA
.

2. For two different parallel planesABCandPQRwe haveSABC

SPQR
= −VPABC

VAPQR
.

Proof. Let XYZbe a translation ofRPQto planeABC. By the co-vertex theorem and the
preceding proposition,

SABC

SPQR
=

SABC

SXYZ
=

VT ABC

VT XYZ
=

VT ABC

VT PQRA
.

ReplacingT by P in the above equation, we prove the second result.

Proposition 4.12Let triangle ABC be a translation of triangle DEF. Then for two points P
and Q we have

VPABC+ VQDEF = VQABC+ VPDEF or VPABCQ= VPDEFQ.

In other words, when ABC moves by a translation the volume of PABCQ remains the same.

Proof. By Proposition 4.10,VPABC= VPDEF − VADEF; VQABC= VQDEF − VADEF from which
we obtain the result immediately.

From Propositions 4.9 and 4.12, we have the following interesting property for the vol-
umeVPABCQ.

Corollary 4.13 Let PQ= rS T and SABC = sSEFG then VPABCQ= rsVS EFGT.

4.1.3 Volumes and Affine Geometry of Dimension Three

This subsection has two purposes. First, we will show how to prove geometry theorems
using the basic propositions about volumes. Second, we willderive some basic properties
of lines and planes in space using the volume method.

Example 4.14If points P and Q are in plane ABC then line PQ is also in plane ABC.

Proof. For any pointR on linePQ, by Proposition 4.5,VRABC=
PR
PQ

VQABC+
RQ
PQ

VPABC = 0.
By Proposition 4.1,R is in ABC.

Example 4.15If two planes have a point in common then they have a line in common.
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Proof. Let planesABCandRPQhave a pointX in common. Without loss of generality, we
assume thatA, B,C,R,P, andQ are not common to both planes. By Proposition 4.8, two of
AB, BC, andAC, sayAB andBC could not be parallel toRPQ. Let AB andAC meetRPQ
in two distinct pointsY andZ respectively. We must show thatX,Y, andZ are collinear,
i.e.,SXYZ = 0. By Propositions 4.3 and 4.1,SXYZ

SABC
=

VRXYZ
VRABC

= 0, i.e.,SXYZ = 0.

Remark 4.16The above two examples and Corollary 4.2 are the incidence axioms in the
usual axiom system for solid geometry [6]. Therefore, the geometry defined by Axioms A.1-
A.6 and S.1-S.5 is an affine geometry of dimension three. The results related to affine plane
geometry proved in Section 2.6 are also true for affine geometry of dimension three. So
the volume method presented in Section 4.3 below is for constructive statements in affine
geometry of dimension three associated with any field.

We will now prove some basic properties for the parallel.

Example 4.17Through any point P not in plane ABC there is one and only one plane par-
allel to plane ABC.

Proof. By the Euclidean parallel axiom (Example 2.13 on page 58), there exist points
Q and R such thatPABQ and PACRare parallelograms. By Propositions 4.7 and 4.8,
PQR ‖ ABC. To prove the uniqueness, letPTS be another plane parallel toABC. By
Proposition 4.10,VT PQR= VT ABC−VPABC= 0, i.e.,T ∈ PAR. Similarly we haveS ∈ PAR.

Example 4.18If any two lines are cut by a number of parallel planes, their intercepts are
proportional.

A

C

P

R

B Q

Figure 4-7

Proof. Let the parallel planesα, β, γ cut two lines
in the sets of pointsA, B,C andP,Q,R respectively.
Let X,Y, andZ be three noncollinear points in plane
β. By the co-face theorem,

AB

CB
=

VAXYZ

VCXYZ
=

VPXYZ

VRXYZ
=

PQ

RQ
.

Example 4.19If a straight line is parallel to a straight line in a plane, itis in or parallel to
the plane. Conversely, if a line in one plane is parallel to another plane, it is parallel to
their line of intersection.
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C

D

A

E

B

F

Figure 4-8

Proof. Let AB be parallel toCD andE another point
in planeCDE. By Propositions 4.3 and 2.10,

VEACD

VEBCD
=

SACD

SBCD
= 1,

i.e., AB ‖ CDE. Conversely, letAB be parallel to
planeCDE and CD be the intersection of the two
planes. By Proposition 4.3,SACD

SBCD
=

VEACD

VEBCD
= 1, i.e.,

AB ‖ CD.

Example 4.20If two lines are each parallel to a third, they are parallel toone another.

A

B

C

E

D

FFigure 4-9

Proof. Let ABCDandABEF be two parallelograms.
We first prove thatC,D,E, andF are coplanar. By
Proposition 4.9,VCDEF = VBDEF − VADEF = VBDAF −
VADBF = 0, i.e., C,D,E, and F are coplanar. By
Proposition 4.3,SCEF

SDEF
=

VACEF

VADEF
= 1, i.e.,CD ‖ EF.

Example 4.21If a plane cuts two parallel planes, the lines of intersection are parallel.

A

B

P

C
R

Q

D

S

Figure 4-10

Proof. Let planeABPQcut planesABC andRPQat
lines AB and PQ respectively. By Proposition 4.3,
SAPQ

SBPQ
=

VAPQR

VBPQR
= 1, i.e.,AB ‖ PQ.

Example 4.22 (Co-trihedral Theorem)If OW ‖ DA, OU ‖ DB, and OV‖ DC then VOWUV

VDABC
=

OW
DA
· OU

DB
· OV

OC
.

Proof. Let R, P, Q be points such thatDR = OW, DP = OU, DQ = OV. By the co-face
theorem,

VDABC =
DA

DR
VDRBC=

DA

OW
VDRBC=

DA

OW
· DB

OU
· DC

OV
VDRPQ.

By Propositions 4.9 and 4.10,

VDRPQ= VORPQ− VWRPQ= VOWUV− VRWUV− VWRPQ.
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SinceRW ‖ PU ‖ QV, VRWUV= VRWPV= VRWPQwhich proves the result.

The above examples are about the basic properties of lines and planes. In what fol-
lows, we will prove some relatively non-trivial theorems. The proofs of these theorems are
actually modifications of the proofs produced by our program.

X
Y

Z

A

B

C

D

H

G

E

F

Figure 4-11
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Figure 4-12
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Figure 4-13

Example 4.23 (Menelaus’ Theorem for Skew Quadrilaterals)If the sides AB, BC, CD, and DA
of any skew quadrilateral are cut by a plane XYZ in the points E, F,G, and H respectively,
then AE

EB
· BF

FC
· CG

GD
· DH

HA
= 1. (Figure 4-11)

Proof. By the co-face theorem

DH

AH
=

VDXYZ

VAXYZ
,
CG

DG
=

VCXYZ

VDXYZ
,

BF

CF
=

VBXYZ

VCXYZ
,
AE

BE
=

VAXYZ

VBXYZ
.

Then it is clear thatAE
EB
· BF

FC
· CG

GD
· DH

HA
= 1. For the non-degenerate conditions of this example,

see Section 4.2

Example 4.24Let A1B1C1 be the parallel projection of any triangle ABC in any plane. Show
that the tetrahedra ABCA1 and A1B1C1A are equal in volume. (Figure 4-12)

Proof. SinceCC1 is parallel to planeAA1B1, by Proposition 4.7,VAA1B1C1 = VAA1B1C. Simi-
larly, VAA1B1C = VAA1BC.

Example 4.25If a plane divides proportionally one pair of opposite sidesof a skew quadri-
lateral, it also divides proportionally the other two sides. (Figure 4-13)

Proof. This statement is a direct consequence of Example 4.23. The following is a proof
produced by our program.2 Let r1 =

AE
EB
= DF

FC
andr2 =

AH
AD

. We need to show thatBG
BC
= r2.

By the co-face theorem,BG
BC
=

VBEFH

VBEFH−VCEFH
. By Proposition 4.5

2This may serve as an example to show the difference between people and the computer
in proving theorems. People may use all results available tomake the proof short. But the
computer does only prescribed steps according to the input.
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VCEFH = (r2 − 1)VACEF = (r2 − 1)(r1 − 1)VACDE = (r2 − 1)(r1 − 1)r1VABCD;

VBEFH = r2VBDEF = r2r1VBCDE = r2r1(r1 − 1)VABCD.

Then BG
BC
=

r2r1(r1−1)
r2r1(r1−1)−r1(r1−1)(r2−1) = r2.

4.2 Constructive Geometry Statements

In this section, we will introduce a class of constructive geometry statements which is a
generalization of the constructive statements in plane geometry.

4.2.1 Constructive Geometry Statements

In this chapter, by ageometric quantitywe mean one of the following quantities:

1. the ratio of the signed lengths of two oriented segments onone line or on two parallel
lines;

2. the ratio of the signed areas of two oriented triangles in the same plane or in two
parallel planes; or

3. the signed volume of an oriented tetrahedron.

In Section 4.4, we will introduce more geometry quantities.

We now introduce constructions in space. First, it is clear that most plane constructions
can still be used if all related points are in the same plane. We will choose several of them
as basic constructions in space.

Definition 4.26 A construction is one of the following ways of introducing new points in
space.

S1 (POINTS Y1, · · · ,Yl). Take arbitrary points Y1, · · · ,Yl in the space. Each Yi has three
degrees of freedom.

S2 (PRATIO Y W U V r). Take a point Y on the line passing through W and parallel to line
UV such thatWY = rUV, where r can be a rational number, a rational expression
in geometric quantities, or a variable.

If r is a fixed quantity, Y is a fixed point; if r is a variable, Y has one degree of
freedom. The non-degenerate (ndg) condition is U, V. If r is a rational expression
of geometry quantities then we will further assume that the denominator of r could
not equal to zero.
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S3 (ARATIO Y L M N r1 r2 r3), where r1 =
SYMN

SLMN
, r2 =

SLYN

SLMN
, and r3 =

SLMY

SLMN
are the area

coordinates of point Y with respect to LMN. The r1, r2 and r3 could be rational
numbers, rational expressions in geometric quantities, orindeterminates satisfying
r1 + r2+ r3 = 1. The degree of freedom of Y is equal to the number of indeterminates
in {r1, r2, r3}. The ndg conditions are that L,M, and N are not collinear and the
denominators of r1, r2, and r3 are not equal to zero.

S4 (INTER Y (LINE U V) (LINE P Q)). Point Y is the intersection of line PQ and line UV
which are in the same plane. The ndg condition is PQ∦ UV. Point Y is a fixed point.

S5 (INTER Y(LINE U V) (PLANE L M N)). Point Y is the intersection of a line UV and
a plane LMN. The ndg condition is that UV∦ LMN. Point Y is a fixed point.

S6 (FOOT2LINE Y P U V) Point Y is the foot from point P to line UV. The ndg condition
is U , V. Point Y is a fixed point.

Proposition 4.27Let Y be introduced by one of the six constructions S1-S6. Show that the
existence of Y follows from Axiom A.2.

Proof. Constructions S1, S2, S4, and S6 have been discussed in Proposition 3.20 on page
113. The existence of the point introduced by S3 follows fromProposition 2.30 on page
68. LetY be introduced by S5. By the co-face theoremUY

UV
=

VULMN

VULMNV
. SinceUV ∦ LMN,

we haveVULMNV , 0. By Axiom A.2,Y does exist.

Definition 4.28 A constructive statement is a list S= (C1,C2, . . . ,Ck,G) where

1. Each Ci, introduces a new point from the points introduced by the previous construc-
tions; and

2. G = (E1,E2) where E1 and E2 are polynomials in geometric quantities about the
points introduced by the Ci, and E1 = E2 is the conclusion of S .

The non-degenerate condition of S is the set of non-degenerate conditions of the construc-
tions Ci plus the condition that the geometry quantities in E1 and E2 have geometry mean-
ings, i.e., their denominators are not zero.

If the constructions are limited to S1–S5, the corresponding statements are calledHilbert’s
intersection point statementsin space. The set of all Hilbert’s intersection point statements
is denoted bySH.

The constructive description of geometry statements can betransformed into the com-
monly used predicate form. Following are several basic predicates.
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1. Point (POINT P): P is a point in the space.

2. Collinear (COLL P1 P2 P3): pointsP1, P2, andP3 are on the same line.

3. Coplanar (COPL P1 P2 P3 P4): P1,P2,P3, andP4 are in the same plane.

4. Parallel between two lines. (PRLL P1 P2 P3 P4): (COPL P1 P2 P3 P4) andP1P2 ‖
P3P4.

5. Parallel between a line and a plane. (PRLP P1 P2 P3 P4 P5): P1P2 ‖ P3P4P5.

6. Perpendicular (PERP P1 P2 P3 P4): [(P1 = P2)∨ (P3 = P4)∨ (P1P2 is perpendicular
to P3P4)]

We will now transform constructions into predicate forms.

S2 (PRATIO Y W U V r) is equivalent to (PRLLY W U V), r = WY
UV

, andU , V.

S3 (ARATIO Y L M N r1 r2 r3) is equivalent to (COPLY L M N), r1 =
SYMN

SLMN
, r2 =

SLYN

SLMN
, r3 =

SLMY
SLMN

, and¬(COLL L M N).

S4 (INTER Y (LINE U V) (LINE P Q)) is equivalent to (COLLY U V), (COLL Y P Q),
and¬(PRLL U V P Q).

S5 (INTER Y (LINE U V) (PLANE L M N)) is equivalent to (COLLY U V), (COPLY L
M N), and¬(PRLPU V L M N).

S6 (FOOT2LINEY P U V) is equivalent to (COLLY U V), (PERPY P U V), andU , V.

Now a constructive statementS = (C1, · · · ,Cr , (E, F)) can be transformed into the follow-
ing predicate form

∀P1 · · · ∀Pr ((P(C1) ∧ · · · ∧ P(Cr ))⇒ E = F)

wherePi is the point introduced byCi andP(Ci) is the predicate form ofCi.

Example 4.23 can be described in the following constructiveway.

((POINTSA B C D X Y Z)
(INTER E (LINE A B) (PLANE X Y Z))
(INTER F (LINE B C) (PLANE X Y Z))
(INTER G (LINE C D) (PLANE X Y Z))
(INTER H (LINE A D) (PLANE X Y Z))
( AE

BE
BF
CF

CG
DG

DH
AH
= 1))

The ndg conditions:
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AB∦ XYZ, BC ∦ XYZ, CD ∦ XYZ, AD ∦ XYZ,
B , E, C , F, D , G, andA , H.

The predicate form of this example is:

∀A, B, · · · ,H(HYP⇒ CONC)

where

HYP = ((COLL E A B) ∧ (COPL E X Y Z) ∧ ¬(PRLP A B X Y Z) ∧
(COLL F C B) ∧ (COPL F X Y Z) ∧ ¬(PRLP C B X Y Z) ∧
(COLL G C D) ∧ (COPL G X Y Z) ∧ ¬(PRLP C D X Y Z) ∧
(COLL H A D) ∧ (COPL H X Y Z) ∧ ¬(PRLP D A X Y Z) ∧
B , E ∧C , F ∧ D , G∧ A , H);

CONC = (
AE

BE

BF

CF

CG

DG

DH

AH
= 1).

4.2.2 Constructive Configurations

A geometric figure which can be described by constructions S1–S6 is called aconstructive
configuration. Constructions S1–S6, though simple, can be used to describe most of the
commonly used configurations about lines, planes, circles,and spheres. To illustrate, we
will introduce more geometry objects.

• We will consider four kinds of lines:

1. (LINE P Q).

2. (PLINER P Q).

3. (OLINE S P Q R): the line passing through pointS and perpendicular to plane
PQR. The ndg condition is¬ (COLL P Q R).

• We will consider six kinds of planes:

1. (PLANE L M N).

2. (PPLANEW L M N): the plane passing through a pointW and parallel to plane
LMN. The ndg condition is¬(COPL L M N).

3. (TPLANE W U V): the plane passing trough a pointW and perpendicular to
line UV. The ndg condition isU , V.

4. (BPLANE U V): the perpendicular-bisector of lineUV. The ndg condition is
U , V.
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5. (CPLANEA B P Q R): the plane passing through lineABand perpendicular to
planePQR. The ndg condition is¬(AB⊥PQR).

6. (DPLANEA B P Q): the plane passing through lineABand parallel to linePQ.
The ndg condition isAB∦ PQ.

Now we can consider more constructions:

• (ON Y ln). Take an arbitrary pointY on a lineln. Line ln could be one of the three
kinds of lines.

• (ON Y pl). Take an arbitrary pointY in a planepl. Planepl could be one of the 6
kinds of planes.

• (INTER Y ln1 ln2). Take the intersection of two linesln1 andln2 in the same plane.

• (INTER Y ln pl). Take the intersection of lineln and planepl.

• (INTER Y pl1 pl2 pl3). Take the intersectionY of three planespl1, pl2, andpl3.

Combining all the possible cases, there are totally (3+ 6+ 6+ 18+ 56=) 89 constructions.
Conveniently, all these constructions can be described by constructions S1–S6. To show
that, we need only to reduce all kinds of lines to the form (LINE P Q) and reduce all kinds
of planes to the form (PLANER P Q).

We first introduce a construction frequently used.

S7 (FOOT2PLANEY P L M N) PointY is the foot of the perpendicular from pointP to
planeLMN, i.e.,Y is the intersection of line (OLINEP L M N) and plane (PLANE
L M N). The nondegenerate condition is thatL,M, andN are not collinear.

Example 4.29Construction S7 can be represented by constructions S1-S6.

PointY can be introduced by the following sequence of constructions.

L

M N

P

TF

S

Y

Figure 4-14

(FOOT2LINET P M N)
(FOOT2LINEF L M N)
(PRATIO S T F L1)
(FOOT2LINEY P T S)

Example 4.30Find two points P and Q in plane (TPLANE W U V) such that W,P, and Q
are not collinear. Then plane (TPLANE W U V) is the same as plane (PLANE W P Q).
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U

V

P
W

Q

T

R

Figure 4-15

Proof. If W < UV, let P be introduced by
(FOOT2LINE P W U V). Take an arbitrary point
R in the space. ThenQ can be introduced by con-
structions: (FOOT2PLANET R W U V); (PRATIO
Q P T R1). It is clear that we need a nondegenerate
conditionR, T, or R is not in planeWUV.

If W ∈ UV, let Rbe an arbitrary point. We introduce pointP as follows (FOOT2LINET R
U V); (PRATIO P W T R1). Now pointQ can be introduced as in the first case.

Exercises 4.31

1. For an OLINEln, find two distinct pointsU andV such thatln =(LINE U V).

2. Let pl be a plane of the form PPLANE, BPLANE, CPLANE, or DPLANE. Findthree
noncollinear pointsW, U, andV such thatpl =(PLANE W U V).

Example 4.32The following results are clear.

1. Construction (ONY (LINE U V)) is equivalent to (PRATIOY U U V r) wherer is
an indeterminate.

2. Construction (ONY (PLANE L M N)) is equivalent to (ARATIOY L M N r1 r2

1− r1 − r2) wherer1 andr2 are indeterminates.

3. Construction (INTERY (PLANE L M N) (PLANE W U V) (PLANE R P Q)) is
equivalent to (INTERY (LINE A B) (PLANE R P Q)) whereA andB are introduced
as follows

(INTER A (LINE L M) (PLANE W U V))
(INTER B (LINE L N) (PLANE W U V))

The ndg conditions areLM ∦WUV, LN ∦ WUV,AB∦ RPQ.

From Exercise 4.31 and Example 4.32 it is clear that all 89 constructions can be described
by constructions S1–S6.

We may also consider circles and spheres. We define (CIRO P Q) to be the circle in the
planeOPQwhich hasO as its center and passes through pointP. We define (SPHEREO
P) to be the sphere with centerO and passing through pointP. Then we can introduce the
following new constructions.

S8 (ON Y (CIR O U V)). Take an arbitrary point on the circle.

S9 (ON Y (SPHEREO U)). Take an arbitrary point on the sphere.
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S10 (INTER Y ln (CIR O W P)). Take the intersection of lineln and circle (CIRO W
P) which is different fromW. Line ln could be (LINEW V), (PLINE W U V), and
(OLINE W L M N). We assume that lineln and the circle are in the same plane.

S11 (INTER Y ln (SPHEREO W)). Take the intersection of lineln and sphere (SPHERE
O W) which is different fromW. Line ln could be (LINEW V), (PLINE W U V),
and (OLINEW R P Q).

S12 (INTER Y (CIR O1 W U) (CIR O2 W V)). Take the intersection of circle (CIRO1

W U) and circle (CIRO2 W V) which is different fromW. We assume that the two
circles are in the same plane.

S13 (INTER Y (CIR O1 U V) (SPHEREO2 U)). Take the intersection of circle (CIRO1

U V) and sphere (SPHEREO2 U) which is different fromU.

Here, we introduce another 10 new constructions. In total, we introduced 100 new con-
structions including 89 constructions about lines and planes, 10 constructions about circles
and spheres, and construction S7.

Example 4.33All ten constructions involving circles and spheres can be represented by
constructions S1-S6.

Proof. For constructions S8, S10, and S12, see Section 3.2.2. By what we have discussed
above, we may assume that a line is always of the form (LINEW U). For construction S11,
let Y be introduced by (INTERY (LINE U V) (SPHEREO U)). Then pointY can also be
introduced as follows

(FOOT2LINEN O U V); (PRATIO Y N U N1).

Let Y be introduced by construction S13. ThenY can be constructed as follows

(FOOT2PLANEM O2 O1 U V); (FOOT2LINEN U M O1); (PRATIO Y N U N1).

For S9, we need to take an arbitrary pointY on (SPHEREO U). To do that, we first take
an arbitrary pointP, and thenY can be introduced by construction S11: (INTERY (LINE
P U) (SPHEREO U)).

In summary, we have

Proposition 4.34All 100 constructions introduced in this subsection can be reduced to con-
structions S1-S6.

4.3 Machine Proof for Class SH

In this section, we will present a mechanical proving methodfor Hilbert’s intersection
statements in the affine space of dimension three. It is clear that the volume method is a
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natural generalization of the area method presented in Chapter 2. As with the area method,
we must eliminate points from geometry quantities.

4.3.1 Eliminating Points from Volumes

The method of eliminating points from volumes is the basis ofthe volume method. Two
other geometry quantities, the area ratio and the length ratio, will ultimately be reduced to
volumes. In this subsection, we will discuss four constructions S2–S5. S1 will be discussed
in Subsection 4.3.4.

Lemma 4.35Let Y be introduced by (PRATIO Y W U V r). Then we have

VABCY=

{
(UW

UV
+ r)VABCV+ (WV

UV
− r)VABCU if W is on line UV.

VABCW+ r(VABCV− VABCU) in all cases.

Proof. If W,U, andV are collinear, by Proposition 4.5 we have

VABCY=
UY

UV
VABCV+

YV

UV
VABCU = (

UW

UV
+ r)VABCV+ (

WV

UV
− r)VABCU.

Otherwise, take a pointS such thatWS= UV. Then we have

VABCY=
WY

WS
VABCS+

YS

WS
VABCW= rVABCS+ (1− r)VABCW.

By Proposition 4.9, we haveVABCS = VABCW+ VABCV − VABCU. Substituting this into the
above equation, we obtain the result. Notice that in both cases, we need the ndg condition
U , V.

Lemma 4.36Let Y be introduced by (ARATIO Y L M N r1 r2 r3). Then we have

VABCY= r1VABCL+ r2VABCM+ r3VABCN.

Proof. This lemma is a direct consequence of Proposition 4.6.

Lemma 4.37Let Y be introduced by (INTER Y (LINE U V) (LINE I J)). Then we have

VABCY=
SUIJ

SUIVJ
VABCV−

SVIJ

SUIVJ
VABCU.

Proof. By Propositions 4.5 and the co-side theorem,VABCY =
UY
UV

VABCV +
YV
UV

VABCU =
SUIJVABCV−SVIJVABCU

SUIVJ
. SinceUV ∦ IJ, we haveSUIVJ , 0.
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Lemma 4.38Let Y be introduced by (INTER Y (LINE U V) (PLANE L M N)). Then we
have

VABCY=
1

VULMNV
(VULMNVABCV− VVLMNVABCU)

Proof. By Proposition 4.5 and the co-face theorem,VABCY =
UY
UV

VABCV +
YV
UV

VABCU =
VULMNVABCV−VVLMNVABCU

VULMNV
. SinceUV ∦ LMN, we haveVULMNV , 0.

Example 4.39Let Y be the intersection point of three planes WUV, LMN and RPQ. Then
Y can be constructed as follows

(INTER X (LINE L M) (PLANE R P Q))

(INTER Z (LINE L N) (PLANE R P Q))

(INTER Y (LINE X Z) (PLANE W U V))

By Proposition 4.38, we have

VABCY=
VXWUV

VXWUVZ
VABCZ− VZWUV

VXWUVZ
VABCX

VABCZ =
VLRPQ

VLRPQN
VABCN− VNRPQ

VLRPQN
VABCL

VABCX=
VLRPQ

VLRPQM
VABCM− VMRPQ

VLRPQM
VABCL

VXWUV =
VLRPQ

VLRPQM
VMWUV − VMRPQ

VLRPQM
VLWUV

VZWUV =
VLRPQ

VLRPQN
VNWUV− VNRPQ

VLRPQN
VLWUV

From the above formulas, we can express VABCY as a rational expression of volumes
formed by the known points.

Example 4.40 (Steiner’s Theorem)If two opposite edges of a tetrahedron move on two fixed
skew lines in any way whatever but remain fixed in length, the volume of the tetrahedron
remains constant.

X Z

B

A

D

C

Y

W

Figure 4-16

Constructive description
((POINTSA B C D)

(ON X (LINE A C))

(PRATIO Z X A C 1)

(ON Y (LINE B D))

(PRATIO W Y B D1)

(VXYZW = VABCD))

The ndg conditions:A , C, B , D.

Proof. By Lemma 4.35, we can eliminateW

VXYZW=VDXZY− VBXZY.
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By Lemma 4.35 again,VBXZY=VBDXZ · BY
BD

; VDXZY=( BY
BD
− 1) · VBDXZ.

ThenVXYZW= − VBDXZ = VXBZD. Similarly we can proveVXBZD= VABCD.

Example 4.41Show that a plane which bisects two opposite edges of a tetrahedron bisects
its volume.

A

B C

D

P

S

Q

R

Figure 4-17

Constructive description
((POINTSA B C D)

(MIDPOINT P A D)

(MIDPOINT S B C)

(LRATIO Q B D t)

(INTER R (LINE A C) (PLANE P S Q))

(VPCS R−VPDCS−VPDS Q =
1
2VABCD))

The ndg conditions:A , D; B , C; B , D; AC ∦ PS Q.

Proof. Using Lemma 4.38, we can eliminate pointR

VPCS R=
RC

AC
VPCS A=

VACPS · VCPS Q

VCPS Q− VAPS Q

We can eliminate the remaining points by using Lemma 4.35:

VPCS R =
−VCPS Q· VACPS

−VCPS Q+ VAPS Q
=

VCDPS · r · VACPS

VCDPS · r + VABPS · r − VABPS

=
(−1

2VBCDP) · r · (1
2VABCP)

−1
2VBCDP · r − 1

2VABCP · r + 1
2VABCP

=
(−1

2VABCD) · r · (1
2VABCD)

(2) · (−1
2VABCD)

=
1
4

(r ·VABCD)

Similarly, we can computeVPDCS = −1
4VABCD, VPDS Q=

1
4(r−1)·VABCD.

ThenVPCS R− VPDCS− VPDS Q= ( r
4 +

1
4 −

r−1
4 )VABCD=

1
2VABCD.

This proof seems to be a little complicated, but the idea behind it is quite simple: one
need only to eliminate the points from volumes using Lemmas 4.35–4.38.

4.3.2 Eliminating Points from Area Ratios

The following lemmas provide methods of eliminatingY from G = SABY
SCDE

. The proofs of
the lemmas are similar: if all the points are in one plane, methods of eliminatingY have
been given in Chapter 2. Otherwise, there is a pointT which is not in the planeABY. By
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Corollary 4.11,

(4.4) G =
SABY

SCDE
=

VT ABY

VTCDEA
.

Now the lemmas in Section 4.3.1 can be used to eliminateY from VT ABY.

Lemma 4.42Let Y be introduced by (PRATIO Y W U V r). Then we have

ABY

CDE
=



VUABWV

VUCDEV
if W is not in plane ABY

VUABW+rVUABV

VUCDEA
if W is in plane ABY but line UV is not.

SABW+r(SABV−SABU)
SCDE

if W,U,V,A, B, and Y are coplanar.

A B

Y

P Q

R

W

S

U

V

C
D E

Figure 4-18

Proof. If W < ABY, let WS be a parallel translation
of UV to lineWY. By (4.4),

ABY

CDE
=

VWABY

VWCDEY
=

1
r

VWABY

VUCDEV
.

By Propositions 4.5 and 4.9,VWABY =
WY
WS

VWS AB =

rVUABWV. We prove the first case. The second case
can be proved in a similar manner by replacingW by
U. The third case is from Lemma 2.21 on page 65.

Remark 4.43The first case of Lemma 4.42 is rarely used in practice, since in this case Y
is actually the intersection of (PLINE W U V) and (PPLANE A C D E), i.e., r is a fixed
quantity and is not easy to find.

Lemma 4.44Let Y be introduced by (ARATIO Y L M N r1 r2 r3). Then we have

ABY

CDE
=

{ r2VLABM+r3VLABN

VLCDEA
if one of L,M, and N, say L, is not in ABY

r1SABL+r2SABM+r3SABN

SCDE
if L,M, and N are in plane ABY.

Proof. If L is not in ABY,ABY
CDE
=

VLABY
VLCDEA

. Now the result comes from Lemma 4.36. The
second case is Lemma 2.31.

Lemma 4.45Let Y be introduced by (INTER Y (LINE U V) (LINE I J)). Then we have

ABY

CDE
=

{ SUIJVUABV

SUIVJVUCDEA
if one of U,V, I , and J, say U, is not in ABY.

SIUV SABJ−SJUVSABI

SCDESIUJV
if U,V, I , J,A, B, and Y are coplanar.
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Proof. If U is not in ABY, ABY
CDE
=

VUABY

VUCDEA
= UY

UV
VUABV

VUCDEA
=

SUIJ

SUIVJ

VUABV

VUCDEA
. The second case is

Lemma 2.20.

Lemma 4.46Let Y be introduced by (INTER Y (LINE U V) (PLANE L M N)). Then we
have

ABY

CDE
=

{ VULMN

VULMNV

VUABV

VUCDEA
if one of U and V, say U, is not in ABY.

VULMNSABV−VVLMNSABU

SCDEVULMNV
if U and V are in ABY.

Proof. If U is not inABY, ABY
CDE
=

VUABY

VUCDEA
= UY

UV
VUABV

VUCDEA
=

VULMN

VULMNV

VUABV

VUCDEA
. The second case is a

consequence of Proposition 2.9 and the co-face theorem.

Example 4.47 (Centroid Theorem for Tetrahedra)The four medians of a tetrahedron meet in a
point.

A B

C

D

S
Z

Y
GH

Figure 4-19

Constructive description
((POINTSA B C D)

(MIDPOINT S B C)

(LRATIO Y D S 2/3) (Y is the centroid of△DBC.)
(LRATIO Z A S 2/3) (Z is the centroid of△ABC.)
(INTER G (LINE D Z) (LINE A Y))

(INTER H (LINE C G) (PLANE A B D))

(
SABH
SABD

= 1/3))

The ndg conditions:B , C, D , S, A , S, DZ ∦ AY, CG ∦ ABD, andSABD , 0.

Proof. Points will be eliminated in the orderH,G,Z,Y,S,D,C, B, andA. By Lemma 4.46,

SABH

SABD
=

VCABD

VCABDG

VCABG

VCABDA
=

VABCG

VABDG+ VABCD
.

By Lemma 4.37,VABDG =
SDAY
SDAZY

VABDZ, VABCG =
SZAY

SZADY
VABCD. By Lemma 4.37 again,

VABDZ = 2/3VABDS = −1/3VABCD. Now

SABH

SABD
=

SZAY
SZADY

1− 1/3 SDAY
SZADY

.

Now all points are in planeADS. Then by Lemma 4.42,SZAY =
1
3SS AY=

2
9SS AD; SDAY =

1
3SDAS = −1

3SS AD; SZADY = SZAY− SDAY =
5
9SS AD. Then SABH

SABD
= 1/3.

Exercise 4.48We can also use the following general method to eliminate points from G=
SABY
SCDE

. If A, B,Y,C,D, and E are coplanar, we need to find a point T that is not in plane
ABY. Then

G =
SABY

SCDE
=

VT ABY

VTCDE
.
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Otherwise, by Corollary 4.11

G =
VCABY

VACDE
.

The advantage of this method is that we do not need to use the volume of the polyhedron
involving five points in all cases. Prove Lemmas 4.42-4.46 using the above method.

4.3.3 Eliminating Points from Length Ratios

The following lemmas present methods of eliminating pointY introduced by construction
C from the length ratioG = DY

EF
.

Y W

D

T

U V

S

E

F

Figure 4-20

Lemma 4.49Let G= DY
EF

, C =(PRATIO Y W U V r). Then

G =



DW
UV
+r

EF
UV

if D ∈WY.
VDWUV

VEWUVF
if D <WY, U< DWY.

−VUEDWV

VUEFWV
if D <WY, E< DWY.

SDUWV

SEUFV
if all points are coplanar.

Proof. The first and the last cases have been proved in Lemma 2.26. IfU < DWY, take
a pointS such thatDS = EF. By the co-face theoremG = DY

DS
=

VDWUV

VDWUVS
=

VDWUV

VEWUVF
. If

E < DWY, take a pointT such thatWT = UV. By the co-side and co-face theorems
G = DY

DS
=

SDWT

SDWS T
=

VDWT E

VDWT ES
. By Propositions 4.9 and 4.12

VDWT E = VDWVE− VDWUE = VUDEWV,

VDWT ES= VEWT EF= −VFWT E = −VFWVE+ VFWUE = VUEFWV.

ThenG = −VUEDWV

VUEFWV
.

Lemma 4.50Let G= DY
EF

, C =(ARATIO Y L M N r1 r2 r3). Then we have

G =



VDLMN

VELMNF
if D < LMN.

VDMNE−r1VLMNE

VEMNEF
. if D ∈ LMN, E < LMN,and DY∦ NM.

SDMN−r1SLMN

SEMFN
if all points are coplanar and DY∦ NM.

Proof. If D is not in planeLMN, the result is a direct consequence of Propositions 4.4 and
4.12. For the second case, by Corollary 4.13,

G =
VDMNEY

VDMNES
=

VDMNE − r1VLMNE

VEMNEF
.

The third case can be proved similarly.
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Lemma 4.51Let G= DY
EF

, C =(INTER Y (LINE U V) (LINE I J)). Then we have

G =



VDUVI

VEUVIF
D < UVIJ and¬(COLL U V I).

VEDUV

VEFVU
D ∈ UVIJ, EF < UVIJ, and D< UV.

SDUV

SEUFV
D,E, F are in UVIJ, and D< UV.

Proof. The first case is a consequence of the co-face theorem. For thesecond case, by
Corollary 4.13,

G =
DY

EF
=

VDUVEY

VEUVEF
= −VDUVE

VFUVE
.

If all points are coplanar, see Lemma 2.25.

Lemma 4.52Let G= DY
EF

, C =(INTER Y (LINE U V) (PLANE L M N)). Then we have

G =



VDLMN

VELMN−VFLMN
If D is not in plane LMN.

VDUVL

VEUVL−VFUVL
If D ∈ LMN and one of L,M,N, say L< DUV.

Proof. If D is not in planeLMN, the result is a direct consequence of the co-face theorem.
For the second case, take a pointS such thatDS = EF. Then we haveG = DY

DS
=

VDUVL

VDUVLS
=

VDUVL

VEUVLF
.

Example 4.53 (Ceva’s Theorem for Skew Quadrilaterals)The planes passing through a point O
and the sides AB, BC, CD, and DA of any skew quadrilateral meetthe opposite sides of
the quadrilateral at G,H,E, and F respectively. Show thatAE

EB
· BF

FC
· CG

GD
· DH

HA
= 1.

A

B

C

D

O

H

GF

E

Figure 4-21

Constructive description
((POINTSA B C D O)

(INTER E (LINE A B) (PLANE O C D))

(INTER F (LINE B C) (PLANE O A D))

(INTER G (LINE C D) (PLANE O A B))

(INTER H (LINE D A) (PLANE O B C))

( AE
EB

BF
FC

CG
GD

DH
HA
= 1))

The ndg conditions:AB ∦ OCD; BC ∦ OAD; CD ∦ OAB; AD ∦ OBC; B , E; C , F;
D , G, A , H.

Proof. By Lemma 4.52 or just by Proposition 4.4, we have

AE

BE
=

VACDO

VBCDO
;

BF

CF
=
−VABDO

−VACDO
;

CG

DG
=

VABCO

VABDO
;

DH

AH
=

VBCDO

VABCO
.

ThereforeAE
EB

BF
FC

CG
GD

DH
HA
= 1.
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Example 4.54 (Centroid of Tetrahedra)The four medians of a tetrahedron meet in a point
which divides each median in the ratio 3:1, the longer segment being on the side of the
vertex of the tetrahedron.

A B

C

D

S
Z

Y
G

Figure 4-22

Constructive description
((POINTSA B C D)

(MIDPOINT S B C)

(LRATIO Z A S 2/3)

(LRATIO Y D S 2/3)

(INTER G (LINE D Z) (LINE A Y))

( AG
GY
= 3))

The ndg conditions:B , C, A , S, D , S, DZ ∦ AY, G , Y.

Proof. By Lemma 4.51,AG
YG
=

SADZ

SDZY
. By Lemma 4.42,SADZ

SDZY
=

SADZ
SDS Z

−2/3 ; SADZ

SDS Z
= AZ

ZS
SADS

SADS
= 2

1.

Then AG
YG
= 3.

Exercise 4.55Let point Y be introduced by construction (INTER Y (LINE U V) (PLINE R
P Q)). Show that

•

VABCY=



SUPRQ

SUPVQ
VABCV− SVRPQ

SUPVQ
VABCU if P,Q,R,U,V are coplanar.

VPURQVABCV−VPVRQVABCU

VURQPV
otherwise.

• If D is on UV

DY

EF
=



SDPRQ

SEPFQ
If all points are coplanar.

VDPQR

VEPQRF
If D < PAR.

VPEDRQ

VQEFRP
If D ∈ PQR and E, F < RUV.

•

SABY

SCDE
=



r ′ SABV

SCDE
+ (1− r ′)SABU

SCDE
AB∈ RUV and PQ∈ RUV.

r ′′ SABV

SCDE
+ (1− r ′′)SABU

SCDE
AB∈ RUV and PQ< RUV.

r ′ VXABV

VXCDEA
+ (1− r ′) VXABU

VXCDEA
AB< RUV and PQ∈ RUV.

r ′′ VXABV

VXCDEA
+ (1− r ′′) VXABU

VXCDEA
AB< RUV and PQ< RUV.

where r′ = VUPRQ

VUPVQ
, r′′ = VUPRQ

VVPRQU
and X is U, V or R depending on which is not in plane

ABY.

Exercise 4.56Try to eliminate Y from the three geometry quantities if Y is introduced by the
following constructions.
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(INTER Y (PLINE W U V) (PLINE R P Q))

(INTER Y (PLINE W U V) (PLANE L M N))

4.3.4 Free Points and Volume Coordinates

After applying the above lemmas to any rational expressionE in geometric quantities, we
can eliminate the non-free points introduced by all constructions fromE. Now the newE
is a rational expression in indeterminates and volumes offree pointsin space. For more
than five free points in the space, the volumes of the tetrahedra formed by them are not
independent, e.g. the following equation is always true:

VABCD= VABCO+ VABOD+ VAOCD+ VOBCD.

To expressE andF as expressions in free parameters, we introduce the volume coordinates.

Definition 4.57 Let X be a point in the space. For four noncoplanar points O,W,U, and V,
the volume coordinates of X with respect to OWUV are

r1 =
VOWUX

VOWUV
, r2 =

VOWXV

VOWUV
, r3 =

VOXUV

VOWUV
, r4 =

VXWUV

VOWUV
.

It is clear that r1 + r2 + r3 + r4 = 1.

Since the sum of the volume coordinates of a point is one, we sometimes omit the last one
to obtain an independent set of coordinates.

Exercise 4.58Show that the points in the space are in a one to one correspondence with the
four-tuples(x, y, z,w) satisfying x+ y+ w+ z= 1.

Lemma 4.59Let G= VABCY, and O,W,U,V be four noncoplanar points. Then we have

G = VABCO+
VOABCVVOWUY+ VOABCUVOVWY+ VOABCWVOUVY

VOWUV

Proof. We have
VABCY= VABCO+ VABOY+ VAOCY+ VOBCY. (1)

Without loss of generality, we assume thatYOmeets planeWUV at X. (Otherwise, letYW
meet planeOUV at X, and so on.) By Proposition 4.4, we have

VOABY=
OY

OX
VOABX=

VOWUVYVOABX

VOWUV
(2)
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By Proposition 4.6,

VOABX=
SWUX

SWUV
VOABV+

SWXV

SWUV
VOABU+

SXUV

SWUV
VOABW (3)

By Lemma 4.46, we have

SWUX

SWUV
=

VOWUY

VOWUVY
;

SWXV

SWUV
=

VOVWY

VOWUVY
;

SXUV

SWUV
=

VOUVY

VOWUVY
.

Substituting them into (3) and (2), we have

VOABY=
VOWUYVOABV+ VOVWYVOABU+ VOUVYVOABW

VOWUV
(4)

Similarly, we have

VOBCY =
VOWUYVOBCV+ VOVWYVOBCU + VOUVYVOBCW

VOWUV

VOCAY =
VOWUYVOCAV+ VOVWYVOCAU + VOUVYVOCAW

VOWUV

Substituting them into (1) and with (4.3)

VOABV+ VOBCV+ VOCAV = VOABCV,

VOABU+ VOBCU + VOCAU = VOABCU, and

VOABW+ VOBCW+ VOCAW = VOABCW,

we can obtain the result.

Corollary 4.60 Use the same notations as in Lemma 4.59. For any point P let xP =
VOWUP

VOWUV
, yP =

VOWPV

VOWUV
, zP =

VOPUV

VOWUV
. Then the formula in Lemma 4.59 can be written as

VABCY= VOWUV

∣∣∣∣∣∣∣∣∣∣∣

xA yA zA 1
xB yB zB 1
xC yC zC 1
xY yY zY 1

∣∣∣∣∣∣∣∣∣∣∣

which is quite similar to the formula of the volumes in terms of the Cartesian coordinates
of its vertices.

Now we can describe the volume method as follows: for a geometry statement inSH:
S = (C1, · · · ,Cr , (E1,E2)), we can use the above lemmas to eliminate all the non-free points
and express the volumes of free points as their volume coordinates with respect to four fixed
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points. Finally, we obtain two rational expressionsR1 andR2 in independent parameters
respectively.S is a correct geometry statement ifR1 is identical toR2. For the precise
description of the algorithm, see Algorithm 4.86 on page 210.

We end this section by a methodological comment. One of the most important ideas
in the traditional method of solving problems in solid geometry is reducing a problem of
higher dimension to a problem of lower dimension and then solving it using knowledge
from plane geometry. This is the so-called “dimension reduction method.” But our volume
method always does the converse, i.e., it reduces length ratios and area ratios to volumes,
because in space the volume is easy to deal with. This can be seen from the three groups of
lemmas in Sections 4.3.1, 4.3.2, and 4.3.3. This is also the reason why the method is called
the volume method.

4.3.5 Working Examples

Example 4.61For a tetrahedron ABCD and a point O, let P= AO∩BCD, Q= BO∩ACD,

R= CO∩ ABD, and S= DO∩ ABC. Show thatOP
AP
+

OQ
BQ
+ OR

CR
+ OS

DS
= 1.

A B

C

D

O

P

S

Q

R

Figure 4-23

Constructive description
((POINTSA B C D O)

(INTER P (LINE A O) (PLANE B C D))

(INTER Q (LINE B O) (PLANE A C D))

(INTER R (LINE C O) (PLANE A B D))

(INTER S (LINE D O) (PLANE A B C))

( OP
AP
+

OQ
BQ
+OR

CR
+OS

DS
= 1))

The ndg conditions:AO∦ BCD,
BO∦ ACD, CO∦ ABD, DO ∦ ABC, A , P, B , Q, C , R, D , S.

Proof. By the co-face theorem

OS

DS
=

VABCO

VABCD
;

OR

CR
=

VABOD

VABCD
;

OQ

BQ
=

VAOCD

VABCD
;

OP

AP
=

VOBCD

VABCD
.

By Lemma 4.59,

OP

AP
+

OQ

BQ
+

OR

CR
+

OS

DS
=

VOBCD+ VAOCD+ VABOD+ VABCO

VABCD
= 1.

Example 4.62Let ABCD be a tetrahedron and O a point. Let line DO and plane ABC meet
in S ; line AD and plane OBC meet in P; line BD and plane OAC meet in Q; and line CD
and plane OAB meet in R. Show thatDO

OS
= DP

PA
+

DQ
QB
+ DR

RC
.
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Constructive description
((POINTSA B C D O)

(INTER S (LINE D O) (PLANE A B C))

(INTER P (LINE D A) (PLANE O B C))

(INTER Q (LINE D B) (PLANE O A C))

(INTER R (LINE D C) (PLANE O A B))

( DO
OS
= DP

PA
+

DQ
QB
+DR

RC
))

The eliminants
DR
CR

R
=

VABDO

VABCO
DQ
BQ

Q
=

VACDO

−VABCO

DP
AP

P
=

VBCDO

VABCO

DO
OS

S
=

VABCO−VABCD

−VABCO

VBCDO=VACDO−VABDO+VABCO−VABCD

A

B

C

D

P

O

S

R

Q

Figure 4-24

The machine proof
DO
OS

−( DR
CR
+

DQ
BQ
+DP

AP
)

R
=

VABCO

−(VABDO+VABCO· DQ
BQ
+VABCO· DP

AP
)
· DO

OS

Q
=

VABCO·(−VABCO)

−(VACDO·VABCO−VABDO·VABCO−V2
ABCO·

DP
AP

)
· DO

OS

simpli f y
=

VABCO

VACDO−VABDO−VABCO· DP
AP

· DO
OS

P
=

(VABCO)2

−VBCDO·VABCO+VACDO·VABCO−VABDO·VABCO
· DO

OS

simpli f y
=

VABCO

−(VBCDO−VACDO+VABDO) · DO
OS

S
=

(VABCO−VABCD)·VABCO

−(VBCDO−VACDO+VABDO)·(−VABCO)

simpli f y
=

VABCO−VABCD

VBCDO−VACDO+VABDO

volume−co
=

VABCO−VABCD

VABCO−VABCD

simpli f y
= 1

In the above proof,a
volume−co
= b means thatb is the result obtained by replacing each

volume using the volume coordinates with respect to four fixed points.

Example 4.63Let a line l meet four coaxial planes in A, B,C, and D respectively. The cross-
ratio of l for the four planes is defined to be(ABCD) = AC

AD
· BD

BC
. Show that for any line l

the cross ratio is fixed.



200 Chapter 4. Machine Proof in Solid Geometry

Constructive description
((POINTSX Y A B C1 D1)

(INTER C (LINE A B) (PLANE C1 X Y))

(INTER D (LINE A B) (PLANE D1 X Y))

(INTER A1 (LINE C1 D1) (PLANE A X Y))

(INTER B1 (LINE C1 D1) (PLANE B X Y))

( AC
AD

BD
BC
=

A1C1
A1D1

B1D1
B1C1

))

The eliminants
D1B1
C1B1

B1
=

VXYBD1
VXYBC1

C1A1
D1A1

A1
=

VXYAC1
VXYAD1

AC
AD

D
=

VXYD1C+VXYAD1
VXYAD1

BD
BC

D
=

VXYBD1
VXYD1C+VXYBD1

VXYD1C
C
=

VXYBD1 ·VXYAC1−VXYBC1 ·VXYAD1
VXYBC1−VXYAC1

X

Y

A B C D

A

B
C

D

Figure 4-25

1

1

1

1

The machine proof
BD
BC
· AC
AD

D1B1
C1B1

·C1A1
D1A1

B1
=

−VXYBC1

(−VXYBD1)· C1A1
D1A1

· BD
BC
· AC
AD

A1
=

VXYBC1 ·(−VXYAD1)

VXYBD1 ·(−VXYAC1 ) · BD
BC
· AC

AD

D
=

VXYBD1 ·(VXYD1C+VXYAD1 )·VXYBC1 ·VXYAD1
VXYBD1 ·VXYAC1 ·VXYAD1 ·(VXYD1C+VXYBD1)

simpli f y
=

(VXYD1C+VXYAD1)·VXYBC1
VXYAC1 ·(VXYD1C+VXYBD1)

C
=

(−VXYBD1 ·VXYAC1+VXYAD1 ·VXYAC1 )·VXYBC1 ·(−VXYBC1+VXYAC1 )

VXYAC1 ·(−VXYBD1 ·VXYBC1+VXYBC1 ·VXYAD1)·(−VXYBC1+VXYAC1 )

simpli f y
= 1

A B

C
D

G

P

R

Q

Figure 4-26

Example 4.643 Let ABCD be a tetrahedron and G the
centroid of triangle ABC. The lines passing through
points A, B, and C and parallel to line DG meet their
opposite face in P, Q, and R respectively. Show that
VGPQR= 3VABCD.

3This is a problem from the 1964 International Mathematical Olympiad.
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Constructive description
((POINTSA B C D)

(CENTROIDG A B C)

(INTER P (PLINE A D G) (PLANE B C D))

(INTER Q (PLINE B D G) (PLANE A C D))

(INTER R (PLINE C D G) (PLANE A B D))

(3VABCD = VGPQR))

The eliminants

VCDGP=−VACDG

VBDGP=−VABDG

VBCGP=VABCD

VDGPQ=−VBDGP

VCGPQ=
VCDGP·VABCD−VBCGP·VACDG

VACDG

VGPQR=
VDGPQ·VABCD−VCGPQ·VABDG

VABDG

The machine proof
(3)·VABCD

VGPQR

R
=

(3)·VABCD·VABDG

VDGPQ·VABCD−VCGPQ·VABDG

Q
=

(3)·VABCD·VABDG·(VACDG)2

−VCDGP·VACDG·VABDG·VABCD−VBDGP·V2
ACDG·VABCD+VBCGP·V2

ACDG·VABDG

simpli f y
=

(−3)·VABCD·VABDG·VACDG

VCDGP·VABDG·VABCD+VBDGP·VACDG·VABCD−VBCGP·VACDG·VABDG

P
=

(−3)·VABCD·VABDG·VACDG·(VBCDG)3

−3V3
BCDG·VACDG·VABDG·VABCD

simpli f y
= 1

In the above proof the fact thatG is the centroid of triangleABC is not used. We thus
have the following extension of Example 4.64.

Example 4.65The result of Example 4.64 is still true if point G is any pointin plane ABC.

We further ask whether the result of Example 4.64 is true or not if point G is an arbitrary
point.

Constructive description
((POINTSA B C D G)

(INTER P (PLINE A D G) (PLANE B C D))

(INTER Q (PLINE B D G) (PLANE A C D))

(INTER R (PLINE C D G) (PLANE A B D))

(3VABCD = VGPQR))

The eliminants

VCDGP=−VACDG

VBDGP=−VABDG

VBCGP=−(VABCG−VABCD)

VDGPQ=−VBDGP

VCGPQ=
VCDGP·VABCD−VBCGP·VACDG

VACDG

VGPQR=
VDGPQ·VABCD−VCGPQ·VABDG

VABDG

The machine proof
(3)·VABCD

VGPQR

R
=

(3)·VABCD·VABDG

VDGPQ·VABCD−VCGPQ·VABDG

Q
=

(3)·VABCD·VABDG·(VACDG)2

−VCDGP·VACDG·VABDG·VABCD−VBDGP·V2
ACDG·VABCD+VBCGP·V2

ACDG·VABDG

simpli f y
=

(−3)·VABCD·VABDG·VACDG

VCDGP·VABDG·VABCD+VBDGP·VACDG·VABCD−VBCGP·VACDG·VABDG
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P
=

(−3)·VABCD·VABDG·VACDG·(VBCDG)3

V3
BCDG·VACDG·VABDG·VABCG−3V3

BCDG·VACDG·VABDG·VABCD

simpli f y
=

(−3)·VABCD

VABCG−3VABCD

We thus obtain the following extension of Example 4.65:VGPQR = 3VABC iff G is in
planeABC.

4.4 Pythagoras Differences in Space

4.4.1 Pythagoras Difference and Perpendicularity

From now on, the concept of thesquare-distancebetween two points will be used. The
definition for the Pythagoras difference is the same as in the plane geometry, i.e., for△ABC

PABC = AB
2
+CB

2 − AC
2
.

For a skew quadrilateralABCD, we define

PABCD = PABD− PCBD = AB
2
+CD

2 − BC
2 − DA

2
.

Properties of the Pythagoras difference in space are quite similar to those in a plane. Propo-
sitions 3.4, 3.2, and 3.3 are true in space, since all the points involved are in the same plane.
Surprisingly, Propositions 3.1, 3.5, and 3.7 are also true in space even if the involving points
are not coplanar.

Proposition 4.66Let R be a point on line PQ with position ratio r1 =
PR
PQ
, r2 =

RQ
PQ

with
respect to PQ. Then for any points A and B in space, we have

PRAB = r1PQAB+ r2PPAB

PARB = r1PAQB+ r2PAPB− r1r2PPQP.

Proof. Since pointsP,Q,R,A andP,Q,R, B are two groups of coplanar points, we may use
Proposition 3.5 on them separately:

RA
2
= r1QA

2
+ r2PA

2 − r1r2PQ
2

RB
2
= r1QB

2
+ r2PB

2 − r1r2PQ
2
.

ThenPRAB= RA
2
+AB

2−RB
2
= r1(QA

2
+AB

2−QB
2
)+ r2(PA

2
+AB

2−PB
2
) = r1PQAB+

r2PPAB. The second equation can be proved similarly.
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Proposition 4.67Let R be a point in the plane PQS , and r1 =
SPQR

SPQS
, r2 =

SRQS

SPQS
, and r3 =

SPRS

SPQS
.

Then for points A and B we have

PRAB = r1PS AB+ r2PPAB+ r3PQAB

PARB = r1PAS B+ r2PAPB+ r3PAQB− 2(r1r2PS
2
+ r1r3QS

2
+ r2r3PQ

2
)

Proof. The proof for proposition is similar to that for Propositions 3.61 and 3.62.

Proposition 4.68Let ABCD be a parallelogram. Then for any points P and Q, we have

PAPQ+ PCPQ = PBPQ+ PDPQ or PAPBQ= PDPCQ

PPAQ+ PPCQ = PPBQ+ PPDQ+ 2PBAD

Proof. The proof is the same as for Proposition 3.7.

As in plane geometry, we use the notationAB⊥CD to denote the fact that four points
A, B,C, andD satisfy one of the following conditions:A = B, or C = D, or line AB is
perpendicular to lineCD.

Proposition 4.69AB⊥CD iff PACD = PBCD or PACBD = 0.

Proof. Let E be a point such thatAE = CD. By Proposition 4.68,PACBD = PAABE = PBAE.
By the Pythagorean theorem,AB⊥CD iff PACBD = PBAE = 0.

As consequences, Proposition 3.10 and Example 3.9 are stilltrue in space.

Just as the volume makes the machine proof for geometry theorems involving collinear
and parallel possible, the Pythagoras difference will make the machine proof for geome-
try theorems involving perpendicular possible. Before presenting the method of machine
proof, let us first get acquainted with the Pythagoras differences by proving some basic
properties of the perpendicular.

Example 4.70If a given line is perpendicular to a pair of non-parallel lines in a plane, it is
perpendicular to every lines in the given plane, i.e., the line is perpendicular to the plane.

Proof. As in Figure 4-27, linePQ is perpendicular to lineOU andOV. Let W be a point in
planeOUV. We need to show thatPQ⊥OW. By Propositions 4.67 and 4.69

P

Q

O

U

W

V

Figure 4-27

PPQW =
SOUW

SOUV
PPQV +

SOWV

SOUV
PPQU +

SWUV

SOUV
PPQO

= (
SOUW

SOUV
+

SOWV

SOUV
+

SWUV

SOUV
)PPQO = PPQO.

By Proposition 4.69 again,PQ⊥OW.
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Example 4.71 (The Theorem of Three Perpendiculars)A line PQ is perpendicular to a line AB
iff PQ is perpendicular to the orthogonal projection of AB to a plane containing PQ.

P

Q

A

OB

Figure 4-28

Proof.Let O be the orthogonal projection of pointA to plane
PQB. ThenAO⊥PQ. If PQ⊥BO, we havePPQA = PPQO =

PPQB, i.e.,PQ⊥AB. Conversely ifPQ⊥AB, we havePPQB =

PPQA = PPQO, i.e.,PQ⊥BO.

Example 4.72 (The Orthocenter Theorem for Tetrahedra)If two pairs of opposite edges of a
tetrahedron are at right angles to one another, the third pair are at right angles; and the
altitudes are concurrent, and pass through the orthocenters of the opposite faces.

A

B

C

D

R
E F

P Q

H

Figure 4-29

Proof. Let AB⊥CD and AC⊥BD. Then PABC =

PABD = PCBD = PDBC, i.e.,AD⊥BC.
Let the two altitudesAQ and DR of triangle ACD
meet inF. Then PBAQ − PFAQ = PBAD − PFAC =

PCAD − PDAC = 0, i.e.,BF⊥AQ. Similarly, BF⊥DR.
ThereforeBF is the altitude fromB to planeACD.

To prove that the four altitudes are concurrent, we first showthatBR⊥AC which follows
from PACR = PACD = PACB. Let altitudesAP andBRof triangleABC meet inE andDE
andBF meet inH. We need to show thatAH⊥BCD. By Proposition 4.69,PHDC = PBDC =

PADC, i.e.,AH⊥DC. Similarly AH⊥BC. ThusAH⊥BCD.

Example 4.73Show that the construction (FOOT2PLANE A P L M N) is equivalent to the
construction (ARATIO A L M N r1 r2 r3) where

L

M N

P

TF

S

Y

Figure 4-30

r1 =
SYMN

SLMN
=
−PPMNPLMN+2MN

2
PPML

4LN
2·LM

2−P2
MLN

r2 =
SLYN

SLMN
=
−PPNLPLNM+2NL

2
PPNM

4LN
2·LM

2−P2
MLN

r3 =
SLMY
SLMN
=
−PPLMPMLN+2ML

2
PPLN

4LN
2·LM

2−P2
MLN

Proof. We construct pointA as in Example 4.29. Then

SYMN

SLMN
=

YT

S T
=

PPTS

PTS T
=

PPTS

PLFL
.
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By Propositions 4.66 and 4.69,

PPTS = PPT L =
PPMNPPNL+ PPNMPPML − PPMNPPNM

PMNM

=
PPMNPPNL+ (2MN

2 − PPMN)PPML − PPMNPPNM

PMNM

=
−PPMNPNML + 2MN

2
PPML

PMNM

PLFL =
16S2

LMN

PMNM
=

4LN
2 · LM

2 − P2
MLN

PMNM
.

We have proved the first case. Other cases are similar.

4.4.2 Pythagoras Difference and Volume

With the concept of perpendicularity, we can obtain the exact measurement for the volume
of a tetrahedron.

Definition 4.74 Let F be the foot of the perpendicular dropped from the point Rupon the
plane LMN. The distance from R to LMN, denoted by hR,LMN, is a real number which has
the same sign as VRLMN and |hR,LMN| = |RF|.

Proposition 4.75For any two tetrahedra ABCD and RLMN, let hA = hA,BCD, hR = hR,LMN.
Show that VABCD

|SBCD|hA
=

VRLMN

|SLMN |hR
.

A

B C

D

R

L

M N

F

S

Figure 4-31

Proof. Without loss of generality, we assume
that pointsB,C,D, L,M, and N are in the
same plane. As in Figure 4-31, letRF be the
altitude of the tetrahedronRLMN andS be
a point onRF such thatAS ‖ BCD. Then
VABCD = VS BCD. By Propositions 4.3 and 4.4,

VABCD

VALMN
=

SBCD

SLMN
;

VS LMN

VRLMN
=

S F

RF
.

Multiplying the two formulas together and noting thathA andhR have the same sign as
VABCD andVRLMN, we prove the result.

Corollary 4.76 For a tetrahedron ABCD, we have

hA,BCD|SBCD| = hB,CDA|SCDA| = hC,DAB|SDAB| = hD,ABC|SABC|.
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Proof. Replacing the tetrahedronRLMN in the Proposition 4.75 byBCDA, we obtain the
first equation, etc.

By Proposition 4.75, we have

VABCD = khA,BCD|SBCD| = khB,CDA|SCDA| = khC,DAB|SDAB| = khD,ABC|SABC|

wherek is a constant which is independent of the tetrahedronABCD. Settingk = 1/3, we
obtain the usual formula for the volumes of tetrahedra.

Proposition 4.77We have

VABCD=
1
3

hA,BCD|SBCD| =
1
3

hB,CDA|SCDA| =
1
3

hC,DAB|SDAB| =
1
3

hD,ABC|SABC|.

Proposition 4.78 (The Herron-Qin Formula for Tetrahedra)Prove the following formula

144V2
ABCD= 4AB

2 · AC
2 · AD

2 − AB
2
P2

DAC − AC
2
P2

BAD− AD
2
P2

BAC+ PBACPBADPCAD.

D

A C

B

HF

G

O

Figure 4-32

Proof. Similar to Example 4.29, we construct
the altitudeBO as follows.

(FOOT2LINEF D A C)
(FOOT2LINEH B A C)
(PRATIOG H F D 1)
(FOOT2LINEO B H G)

Then

BO
2
= BH

2 − HO
2
=

4S2
ABC

AC
2
− HO

2
. (1)

By Propositions 3.1, 3.2, and 4.66

OH
2
=


OH

HG


2

HG
2
=

(
PBHG

PHGH

)2

HG
2
=

P2
BHG

4HG
2
=

P2
BHD

4DF
2

= (PBACPBCD+ PBCAPBAD− PBACPBCA)
2/(4AC

4 · 4DF
2
)

= (PBACPBCD+ (2AC
2 − PBAC)PBAD− PBACPBCA)

2/(64AC
2
S2

DAC)

= (−PBACPCAD+ 2AC
2
PBAD)2/(64AC

2
S2

DAC)

Substitute this into (1). By the Herron-Qin formula for triangles (on page 108), we have

144V2
ABCD

= 144(1/3)2BO
2
S2

ACD
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=
(16)2S2

BACS2
DAC − (−PBACPCAD+ 2AC

2
PBAD)2

4AC
2

=
(4AB

2 · AC
2 − P2

BAC)(4AD
2 · AC

2 − P2
DAC) − (−PBACPCAD + 2AC

2
PBAD)2

4AC
2

= 4AB
2 · AC

2 · AD
2 − AB

2
P2

DAC − AC
2
P2

BAD− AD
2
P2

BAC+ PBACPBADPCAD.

Corollary 4.79 (The Cayley-Menger Formula)We have the following commonly used version
of the Herron-Qin formula.

288VP1P2P3P4 =

∣∣∣∣∣∣∣∣∣∣∣∣∣∣

0 r2
12 r2

13 r2
14 1

r2
21 0 r2

23 r2
24 1

r2
31 r2

32 0 r2
34 1

r2
41 r2

42 r2
43 0 1

1 1 1 1 0

∣∣∣∣∣∣∣∣∣∣∣∣∣∣

where ri j = |PiP j |.

Proof. In the above determinant, subtracting the first row from the second, the third, and
the fourth rows and subtracting the first column from the second, the third, and the fourth
columns, the determinant becomes

∣∣∣∣∣∣∣∣∣∣∣∣∣∣

0 r2
12 r2

13 r2
14 1

r2
21 −2r2

12 −P213 −P214 0
r2

31 −P312 −2r2
13 −P314 0

r2
41 −P412 −P413 −2r2

14 0
1 0 0 0 0

∣∣∣∣∣∣∣∣∣∣∣∣∣∣

=

∣∣∣∣∣∣∣∣

2r2
12 P213 P214

P312 2r2
13 P314

P412 P413 2r2
14

∣∣∣∣∣∣∣∣
.

Expanding the last determinant and comparing the formula inProposition 4.78, we prove
the result.

4.5 The Volume Method

Since we have a new geometry quantity, the constructive statements can be enlarged in
the following way: the conclusion of a geometry statement could be the equation of two
polynomials of length ratios, area ratios, volumes and Pythagoras differences.

4.5.1 The Algorithm

Now we have six constructions S1–S6 and four geometry quantities. We need to give a
method to eliminate the point introduced by each of the constructions S1–S6 from each of
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the four quantities. This section deals with the cases whichare not discussed in Section
4.3.

Lemma 4.80Let G= PABY. Then

G =



PABW+ r(PABV − PABU)
if Y is introduced by (PRATIO Y W U V r)

r1PABL+ r2PABM + r3PABN

if Y is introduced by (ARATIO Y L M N r1 r2 r3)
SUIJ

SUIVJ
PABV − SVIJ

SUIVJ
PABU

if Y is introduced by (INTER Y (LINE U V) (LINE I J))
1

VULMNV
(VULMNPABV− VVLMNPABU)

if Y is introduced by (INTER Y (LINE U V) (PLANE L M N))
PPUVPABV+PPVUPABU

2UV
2

if Y is introduced by (FOOT2LINE Y P U V)

Proof. We only need to find the position ratio ofY with respect toUV and substitute it
into the first equation of Proposition 4.66. For the second case, see Lemma 4.36. For other
cases, see Subsection 4.3.1 for details.

From the above lemma and Proposition 4.66, it is easy to eliminateY from PAYB. We
leave this as an exercise.

Exercise 4.81Try to eliminate Y from PAYB if Y is introduced by each of the constructions
S2-S6.

Lemma 4.82If Y is introduced by (FOOT2LINE Y P U V) then

VABCY=
PPUV

PUVU
VABCV+

PPVU

PUVU
VABCU.

Proof. This is a consequence of Propositions 4.5 and 3.2.

Lemma 4.83Let Y be introduced by (FOOT2LINE Y P U V). Then

DY

EF
=



PPUDV

PEUFV
if D ∈ UV.

VDPUV

VEPUVF
D < PUV

VDUVE

VEUVF
if D ∈ PUV and E< PUV

SDUV

SEUFV
if all points are coplanar

In all cases, we assume P is not on line UV; otherwise P= Y andDY
EF
= DP

EF
.
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Proof. The first and last cases are from Lemma 3.29. The second case isa consequence
of the co-face theorem. For the third case, letT be a point such thatDT = EF. Then
DY
EF
= DY

DT
=

SDUV

SDUTV
=

VDUVE

VDUVET
=

VDUVE

VEUVEF
= −VDUVE

VFUVE
.

Lemma 4.84Let Y be introduced by (FOOT2LINE Y P U V). Then

SABY

SCDE
=



PPUVVPABV+PPVUVPABU

2UV
2
VPCDEA

if P is not in ABY.
VUABV

VUCDEV
if UV ∦ ABY.

PPUVSABV+PPVUSABU

2UV
2
SCDE

if P,U, and V are in ABY.

Proof. If P is not in ABY, by Proposition 4.3,SABY

SCDE
=

VPABY

VPCDEA
. Now the result comes from

Lemma 4.82. For the second case

SABY

SCDE
=

VUABYV

VUCDEV
=

VUABV

VUCDEV
.

The last case is Lemma 3.24.

By now, we have given methods of eliminating points introduced by constructions S2-
S6. We still need to deal with free points. By Lemma 4.59, volumes of tetrahedra can
be reduced to volume coordinates with respect to four non-coplanar points. The following
lemma will reduce the Pythagoras difference of free points to volume coordinates.

Lemma 4.85Let O, W, U, and V be four points such that OW⊥OUV, OU⊥OWV, and
OV⊥OWU. Then

(1) AB
2
= OW

2
(VAOUVB

VOWUV
)2 +OU

2
(VAOWVB

VOWUV
)2 +OV

2
(VAOWUB

VOWUV
)2.

(2) V2
OWUV =

1
36OW

2
OU

2
OV

2
.

O U

V

W

D

A

E

F
B

Figure 4-33

Proof. (2) is from Propositions 4.77 and 3.15.
For (1), letD, E, andF be points such that
AD ‖ OW, BE ‖ OV, BF ‖ OU, DE ‖ OU,
andDF ‖ OV. Then

AB
2
= AD

2
+ BD

2

= AD
2
+ BE

2
+ BF

2

= OW
2
(

AD

OW
)2 +OU

2
(
BF

OU
)2 +OV

2
(
BE

OV
)2.

By the co-face theorem,AD
OW
= −VAOUVD

VWOUV
=

VAOUVB

VOWUV
, BE

OV
=

VBOWUA

VOWUV
, and BF

OU
=

VBOWVA

VOWUV
.

Now we have the main algorithm.
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Algorithm 4.86 (Solid)

INPUT: S = (C1,C2, . . . ,Ck, (E, F)) is a constructive geometric statement.

OUTPUT: The algorithm tells whetherS is true or not, and if it is true, produces a proof
for S.

S1. For i = k, · · · , 1, do S2, S3, S4 and finally do S5.

S2. Check whether the nondegenerate conditions ofCi are satisfied. The nondegenerate
condition of a construction has three forms:A , B, PQ ∦ UV, PQ ∦ WUV. For
the first case, we check whetherPABA = 2AB

2
= 0. For the second case, we check

whetherVPQUV = 0 andSPUV = SQUV. For the third case, we check whetherVPWUV =

VQWUV. If a nondegenerate condition of a geometry statement is notsatisfied, the
statement istrivially true. The algorithm terminates.

S3. Let G1, · · · ,Gs be the geometric quantities occurring inE andF. For j = 1, · · · , s do
S4

S4. Let H j be the result obtained by eliminating the point introduced by constructionCi

from G j using the lemmas in this chapter and replaceG j by H j in E andF to obtain
the newE andF.

S5. Now E andF are rational expressions of independent variables. Hence if E = F, S
is true under the nondegenerate conditions. OtherwiseS is false in Euclidean solid
geometry.

Proof. The algorithm is correct, because the volume coordinates offree points are indepen-
dent parameters.

For the complexity of the algorithm, letn be the number of the non-free points in a
statement. If the conclusion of the geometry statement is ofdegreed, the output of our
algorithm is at most of degree 5d3n.

4.5.2 Working Examples

Example 4.87If a line divides two opposite sides of a skew quadrilateral in direct propor-
tion, and a second line divides the other two opposite sides in direct proportion, the two
lines are coplanar.

A

B

C

D

E

F

H

G

I

Figure 4-34

Constructive description
((POINTSA B C D)
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(LRATIO E A B r1)

(LRATIO F D C r1)

(LRATIO H A D r2)

(LRATIO G B C r2)

(VEFHG = 0))

The machine proof

VEFHG

n
= −VCEFH·r2+VBEFH·r2−VBEFH

n
= −(−VBDEF·r2

2+VBDEF·r2+VACEF·r2
2−VACEF·r2)

simpli f y
= (r2−1)·(VBDEF−VACEF)·r2

n
= (r2−1)·(VBCDE·r1−VACDE·r1+VACDE)·r2

n
= (r2−1)·(0)·r2

simpli f y
= 0

The eliminants

VEFHG
G
= − (VCEFH·r2−VBEFH·r2+VBEFH)

VBEFH
H
=VBDEF·r2

VCEFH
H
=(r2−1)·VACEF

VACEF
F
=(r1−1)·VACDE

VBDEF
F
=VBCDE·r1

VACDE
E
=VABCD·r1

VBCDE
E
=(r1−1)·VABCD

Example 4.88Continue from Example 4.87. Let the two lines EF and GH intersect at I.
Then EI

EF
= AH

AD
.

Constructive description
((POINTSA B C D) (LRATIO E A B r1) (LRATIO F D C r1) (LRATIO H A D r2)

(LRATIO G B C r2) (INTER I (LINE E F) (LINE H G)) ( EI
EF
= r2))

The machine proof
EI
EF
r2

I
= 1

r2·(−
SFHG
SEHG

+1)

G
=

−(−VBCEH)
r2·(−VBCFH+VBCEH)

H
=

−(−VBCDE·r2)
r2·(VBCDE·r2+VABCF·r2−VABCF)

simpli f y
=

VBCDE

VBCDE·r2+VABCF·r2−VABCF

F
=

VBCDE

VBCDE·r2−VABCD·r2·r1+VABCD·r2+VABCD·r1−VABCD

E
=

VABCD·r1−VABCD

VABCD·r1−VABCD

simpli f y
= 1

The eliminants
EI
EF

I
=

1

−(
SFHG
SEHG

−1)

SFHG
SEHG

G
=

VBCFH

VBCEH

VBCFH
H
=(r2−1)·VABCF

VBCEH
H
= − (VBCDE·r2)

VABCF
F
= − ((r1−1)·VABCD)

VBCDE
E
=(r1−1)·VABCD

Example 4.89The sides AB and DC of a skew quadrilateral are cut into2n+ 1 equal seg-
ments by points P1, · · · ,P2n and Q1, · · · ,Q2n respectively. Show that

(1) VPnPn+1Qn+1Qn =
1

(2n+1)2 VABCD.
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(2) If sides BC and AD are cut into2m + 1 equal segments by points R1, · · · ,R2m and
S1, · · · ,S2m respectively, then the area of the quadrilateral formed by the lines PnQn,
Pn+1Qn+1, RmSm, and Rm+1Sm+1 is 1

(2n+1)2(2m+1)2 VABCD.

Figure 4-35 shows the casen = m = 2. Note that in the following machine proof for (1),
we use some different names for pointsPn,Pn+1,Qn+1,Qn.

Constructive description
((POINTSA B C D)

(LRATIO X A B n
2n+1)

(LRATIO Y A B n+1
2n+1)

(LRATIO U D C n
2n+1)

(LRATIO V D C n+1
2n+1 )

(VXYVU = VABCD))

The eliminants

VXYUV
V
=
−(VDXYU·n+VCXYU·n+VCXYU)

2n+1

VCXYU
U
=

(n+1)·VCDXY

2n+1

VDXYU
U
=
−VCDXY·n

2n+1

VCDXY
Y
=
−(VBCDX·n+VBCDX+VACDX·n)

2n+1

VACDX
X
=

VABCD·n
2n+1

VBCDX
X
=
−(n+1)·VABCD

2n+1

A

B

CD

P

P
P

P

1

3
2

4

Q QQ Q1 32 4

S

S

S

S

1

3

2

4

R

R

R

R

1

3

2

4

Figure 4-35

The machine proof
−VXYUV

VABCD

V
=
−(−VDXYU·n−VCXYU·n−VCXYU)

VABCD·(2n+1)

U
=

4VCDXY·n2+4VCDXY·n+VCDXY

VABCD·(2n+1)3

simpli f y
=

VCDXY

VABCD·(2n+1)

Y
=
−VBCDX·n−VBCDX−VACDX·n

VABCD·(2n+1)2

X
=
−(−4VABCD·n2−4VABCD·n−VABCD)

VABCD·(2n+1)4

simpli f y
= 1

(2n+1)2

By Example 4.88,PnQn andPn+1Qn+1 are cut into 2m+ 1 equal segments byRiSi, i =
1, ..., 2m respectively. Now (2) comes from (1) directly.

A line joining the mid-points of two opposite edges of a tetrahedron will be called a
bimedianof the tetrahedron relative to the pair of edges considered.The common perpen-
dicular to the two opposite edges of a tetrahedron is called thebialtitudeof the tetrahedron
relative to these edges.

Example 4.90The bialtitude relative to one pair of opposite edges of a tetrahedron is per-
pendicular to the two bimedians relative to the two other pairs of opposite edges.
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A

B

CD

S

T

X

Y

N

Q

Figure 4-36

Constructive description
((POINTSX Y A C)

(FOOT2LINES A X Y)

(ON B (LINE S A))

(FOOT2LINET C X Y)

(ON D (LINE T C))

(MIDPOINT N B C)

(MIDPOINT Q A D)

(PERPENDICULARN Q X Y))

The machine proof
PYXN

PYXQ

Q
=

PYXN
1
2 PYXD+

1
2 PYXA

P
=

(2)·PYXN

PYXD+PYXA

N
=

(2)·( 1
2 PYXB+

1
2 PYXC)

PYXD+PYXA

M
=

PYXB+PYXC

PYXD+PYXA

D
=

PYXB+PYXC

−PYXT· T D
TC
+PYXT+PYXC· T D

TC
+PYXA

=
−(PYXB+PYXC)
−PYXC−PYXA

The eliminants

PYXS=PYXA

PYXB= − (PYXS· S B
S A
−PYXS−PYXA· S B

S A
)

PYXT=PYXC

PYXD= − (PYXT· T D
TC
−PYXT−PYXC· T D

TC
)

PYXN=
1
2(PYXB+PYXC)

PYXQ=
1
2(PYXD+PYXA)

B
=
−PYXS· S B

S A
+PYXS+PYXC+PYXA· S B

S A

PYXC+PYXA

=
−(−PYXC−PYXA)

PYXC+PYXA

simpli f y
= 1

Example 4.914 A plane parallel to AB and CD meets the edges AD, AC, BD, and BC in
P, Q, S , and R respectively. The plane divides the tetrahedron into two parts. Let r be the
ratio of the distances between AB, CD and the plane PQS . Find the ratio of the volumes
of the two parts.

First by the co-face theorem,

r =
VAPQS

VDPQS
=

AP

PD
.

Since the volumeV1 of AB− PQRSis equal toVABS R+ VAPRQ+ VAPS R, we will compute
VABS R

VABCD
, VAPRQ

VABCD
, and VAPS R

VABCD
separately.

4This is a problem from the 1965 International Mathematical Olympiad.
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A

B

C

D

P

Q

S

R

Figure 4-37

Constructive description
((POINTSA B C D)

(LRATIO P A D r
1+r )

(INTER Q (LINE A C) (PLINE P C D))

(INTER S (LINE B D) (PLINE P A B))

(INTER R (LINE B C) (PLANE P Q S))

(
VABS R
VABDC

))

The eliminants
SACD
SCDP

=r+1

VBCDP=
−VABCD

r+1
SABD
SABP

=
r+1

r

VABCP=
VABCD·r

r+1

VBDPQ=

(
SACD
SCDP

−1)·VBCDP

SACD
SCDP

VBCPQ=
−VABCP

SACD
SCDP

VBPQS=
VBDPQ
SABD
SABP

VABCS=
VABCD
SABD
SABP

VCPQS=

( SABD
SABP

−1)·VBCPQ

−SABD
SABP

VABS R=
VBPQS·VABCS

VCPQS−VBPQS

The machine proof
VABS R

−VABCD

R
=

−VBPQS·VABCS

−VABCD·(−VCPQS+VBPQS)

S
=

−(−VBDPQ)·(−VABCD)·((−SABD
SABP

))2

VABCD·(−VBDPQ·
SABD
SABP

−VBCPQ·
SABD
SABP

2
+VBCPQ·

SABD
SABP

)·((−SABD
SABP

))2

simpli f y
=

VBDPQ

(VBDPQ+VBCPQ·
SABD
SABP

−VBCPQ)· SABD
SABP

Q
=

(VBCDP·
SACD
SCDP

−VBCDP)·( SACD
SCDP

)2

(VBCDP·
SACD
SCDP

2
−VBCDP·

SACD
SCDP

−VABCP·
SACD
SCDP

· SABD
SABP

+VABCP·
SACD
SCDP

)· SABD
SABP

· SACD
SCDP

simpli f y
=

(
SACD
SCDP

−1)·VBCDP

(VBCDP·
SACD
SCDP

−VBCDP−VABCP·
SABD
SABP

+VABCP)· SABD
SABP

P
=

(r)3·(−VABCD)·(r+1)2

(−VABCD·r3−2VABCD·r2−VABCD·r)·(r+1)2

simpli f y
=

(r)2

(r+1)2

Similarly, we can compute

VAPRQ

VABCD
=

(r)2

(r + 1)3
,

VAPS R

VABCD
=

(r)2

(r + 1)3
.

Thus

V1 = (
(r)2

(r + 1)2
+

(r)2

(r + 1)3
+

(r)2

(r + 1)3
)VABCD =

(r)2(r + 3)
(r + 1)3

VABCD.

Let V2 = VABCD− V1 =
3r+1

(r+1)3 VABCD. Finally we haveV1
V2
=

r2(r+3)
3r+1 .
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Example 4.92 (Monge’s Theorem)The six planes through the midpoints of the edges of a
tetrahedron and perpendicular to the edges respectively opposite have a point in common.
This point is called the Monge point of the tetrahedron.

A

B C

D

L

L

A

L

Figure 4-38

1

1

2Constructive description
((POINTSA B C D)

(MIDPOINT L A B)

(FOOT2LINE L1 L C D)

(FOOT2LINE A1 A C D)

(PRATIO L2 L1 A1 A 1)

(MIDPOINT R A C)

(FOOT2LINER1 R B D)

(FOOT2LINE A2 A B D)

(PRATIO R2 R1 A2 A 1)

(INTER P (LINE L L1) (PLANE R R1 R2)) (INTER Q (LINE L L2) (PLANE R R1 R2))

(MIDPOINT S B C) (FOOT2LINES1 S A D) (FOOT2LINE B1 B A D) (PRATIO S2 S1 B1 B 1)

(INTER M (LINE P Q) (PLANE S S1 S2)) (MIDPOINT N C D) (PERPENDICULARN M A B))

The proof for this theorem is too long to print here. We need more elimination tech-
niques to produce short and readable proofs for problems like this one.

4.6 Volume Coordinate System

In Lemma 4.85, we use an orthogonal coordinate system, whichis essentially the same
as the usual Cartesian coordinate system. In order to do this, we have to introduce four
auxiliary pointsO,W,U, andV. In this section, we will develop some properties for askew
volume coordinate systemin which any four free points can be selected as the reference
points. As a consequence, we obtain a new proof of Lemma 4.85 and hence a new version
of Algorithm 4.86.

Let O, W, U, andV be four non-coplanar points. Then for any pointA, we will denote
its volume coordinates with respect toOWUVas

xA =
VOWUA

VOWUV
, yA =

VOWAV

VOWUV
, zA =

VOAUV

VOWUV
, wA =

VAWUV

VOWUV
.

It is clear thatxA + yA + zA + wA = 1. Following are some known results.

Proposition 4.93The points in the space are in a one to one correspondence withthe four-
tuples(x, y, z,w) such that x+ y+ z+ w = 1.



216 Chapter 4. Machine Proof in Solid Geometry

Proposition 4.94For any points A, B,C, and D, we have

VABCD= VOWUV

∣∣∣∣∣∣∣∣∣∣∣

xA yA zA 1
xB yB zB 1
xC yC zC 1
xD yD zD 1

∣∣∣∣∣∣∣∣∣∣∣
.

As a consequence of Proposition 4.94, we can give the equation for planes in the volume
coordinate system. LetP be a point in planeABC. Then the volume coordinates ofP must
satisfy ∣∣∣∣∣∣∣∣∣∣∣

xA yA zA 1
xB yB zB 1
xC yC zC 1
xP yP zP 1

∣∣∣∣∣∣∣∣∣∣∣
= 0

which is the equation for the planeABC.

The position ratio formula is still true

Proposition 4.95Let R be a point on line PQ and r1 =
PR
PQ

and r2 =
RQ
PQ

be the position ration
of R with respect to PQ. Then

xR = r1xQ + r2xP; yR = r1yQ + r2yP; zR = r1zQ + r2zP; wR = r1wQ + r2wP.

Proof. This is a consequence of Proposition 4.5.

We now develop the formula for the square distance between two points.

Proposition 4.96Let OXZ1Y− ZY1O1X1 be a parallelepiped. We have

OO1
2
= OX

2
+OY

2
+OZ

2
+ PXOY+ PXOZ+ PYOZ.

O
X

Y

Z

Z

X

Y

O

C

Figure 4-39

1

1

1

1

Proof. By Proposition 3.6,

OX1
2
= 2OZ

2
+ 2OY

2 − ZY
2
.

OY1
2
= 2OX

2
+ 2OZ

2 − XZ
2
.

OZ1
2
= 2OX

2
+ 2OY

2 − XY
2
. (1)

XX1
2
+ YY1

2
= 2OZ

2
+ 2XY

2
.

OO1
2
+ ZZ1

2
= 2OZ

2
+ 2OZ1

2

= 4OX
2
+ 4OY

2
+ 2OZ

2 − 2XY
2
.
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Let C be the center of the parallelepiped. By Proposition 4.66,OO1
2
= 4OC

2
= 4(1

2OY
2
+

1
2OY1

2 − 1
4YY1

2
). Then

OO1
2
+ YY1

2
= 4OX

2
+ 2OY

2
+ 4OZ

2 − 2XY
2
. (2)

Similarly, we have

OO1
2
+ XX1

2
= 2OX

2
+ 4OY

2
+ 4OZ

2 − 2ZY
2
. (3)

Solving the linear system (1), (2), (3), we have

OO1
2
= 3OX

2
+ 3OY

2
+ 3OZ

2 − ZY
2 − ZX

2 − XY
2

= OX
2
+OY

2
+OZ

2
+ PXOY+ PXOZ+ PYOZ.

Proposition 4.97Let O, W, U, and V be four free points. Then

AB
2
= OU

2
(xB − xA)2 +OV

2
(yB − yA)2 +OW

2
(zB − zA)2 +

(yB − yA)(xB − xA)PUOV + (zB − zA)(yB − yA)PWOV+

(zB − zA)(xB − xA)PWOU.

O U

V

W

A

R

M

N

P

Q B

L

Figure 4-40

Proof. We form a parallelepipedAMLN −
RPBQsuch thatAR ‖ OW, AM ‖ OU, and
AN ‖ OV. By Proposition 4.96,

AB
2
= AM

2
+ AN

2
+ AR

2

+PRAN+ PRAM+ PNAM.

By Lemma 4.49,

AR
2
= OW

2
(

AR

OW
)2 = OW

2
(
VBOUVA

VWOUV
)2 = OW

2
(zB − zA)2.

AN
2

andAM
2

can be computed similarly. By Proposition 3.9,

PNAM =
AM

OU

AN

OV
PUOV = (yB − yA)(xB − xA)PUOV.

We can computePRAN andPRAM similarly.

Once again with Algorithm 4.86, letE be an expression in volumes and Pythagoras dif-
ferences of free points. Instead of using Lemma 4.85, we can use the following procedure to
transformE into an expression in independent variables: if there are fewer than four points
occurring inE then we need do nothing. Otherwise choose four free pointsO, W, U, andV
from the points occurring inE and apply Propositions 4.94 and 4.97 toE to transform the
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volumes and Pythagoras differences into volume coordinates with respect toOWUV. Now

the newE is an expression in volume coordinates of free points,OW
2
, OU

2
,OV

2
,UV

2
,

andVOWUV. The only algebraic relation among these quantities is the Herron-Qin formula
(Proposition 4.78). SubstitutingV2

OWUV into E, we obtain an expression in independent
variables.

Example 4.98The above process of transforming an expression in volumes and Pythagoras
differences of free points into an expression in free parametersbecomes very simple when
there exist exactly four free points O,W,U, and V in a geometry statement. In this case,
we first transform the square of the volume VOWUV into Pythagoras differences using the
Herron-Qin formula (Proposition 4.78), and then express the Pythagoras differences in

terms of the six square-distances,OW
2
,OU

2
,OV

2
,UV

2
,UW

2
, andWV

2
, which form a set

of free parameters for this geometry statement.

Exercises 4.99

1. If OV⊥OU, OV⊥OW,OW⊥OU, andOU
2
= OV

2
= OW

2
= 1, the volume coordinate

system developed in this section becomes the standard Cartesian coordinate system.
Prove the following formulas in the Cartesian coordinate system.

1. AB
2
= (xB − xA)2 + (yB − yA)2 + (zB − zA)2.

2. PABC = 2((xB − xA)(xB − xC) + (yB − yA)(yB − yC) + (zB − zA)(zB − zC)).

3.

VABCD =
1
6

∣∣∣∣∣∣∣∣∣∣∣

xA yA zA 1
xB yB zB 1
xC yC zC 1
xD yD zD 1

∣∣∣∣∣∣∣∣∣∣∣
.

2. Prove the Herron-Qin formula for tetrahedra (see Propositions 4.78 and 4.79) using the
three formulas in the preceding exercise. (First notice that

VABCD = −
1
6

∣∣∣∣∣∣∣∣

xB − xA yB − yA zB − zA

xC − xA yC − yA zC − zA

xD − xA yD − yA zD − zA

∣∣∣∣∣∣∣∣
.

Let M be the matrix in the above formula. ThenV2
ABCD =

1
36|M × M∗| whereM∗ is the

transpose ofM.)

Summary of Chapter 4

• Signed volumes and Pythagoras differences are used to describe some basic geometry
relations in solid geometry: collinear, coplanar, parallel, perpendicular, and congru-
ence of line segments.
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1. Four pointsA, B,C, andD are coplanar iff VABCD = 0.

2. PQ ‖ ABC iff VPABC= VQABC or equivalently iff VPABCQ= 0.

3. PQR‖ ABC iff VPABC= VQABC= VRABC.

4. PQ⊥AB iff PPAQB= PPAB− PQAB = 0.

• We have the following formulas for the volumes of tetrahedra.
1. VABCD =

1
3hA,BCD|SBCD| wherehA,BCD is the signed altitude from pointA to

planeBCD.

2.

VABCD= VOWUV

∣∣∣∣∣∣∣∣∣∣∣

xA yA zA 1
xB yB zB 1
xC yC zC 1
xD yD zD 1

∣∣∣∣∣∣∣∣∣∣∣

wherexA, yA, zA are the volume coordinates of pointA with respect to points
O,W,U, andV.

3. (The Herron-Qin Formula)

144V2
P1P2P3P4

= 4r2
12r

2
13r

2
14− r2

12P314− r2
13P214− r2

14P312+ P314P214P312

wherer i j = |PiP j |,Pi jk = PPiP j Pk.

4. (The Cayley-Menger Formula)

288V2
P1P2P3P4

=

∣∣∣∣∣∣∣∣∣∣∣

0 r2
12 r2

13 r2
14 1

r2
21 0 r2

23 r2
24 1

r2
31 r2

32 0 r2
34 1

1 1 1 1 0

∣∣∣∣∣∣∣∣∣∣∣
.

• The following basic propositions are the basis of the volumemethod.

1. (The Co-vertex Theorem) Let ABCandDEF be two proper triangles in the same
plane andT be a point not in the plane. Then we haveVT ABC

VT DEF
=

SABC

SDEF
.

2. (The Co-face Theorem)A line PQ and a planeABC meet atM. If Q , M, we
have

PM

QM
=

VPABC

VQABC
;

PM

PQ
=

VPABC

VPABCQ
;

QM

PQ
=

VQABC

VPABCQ
.

3. LetR be a point on linePQ. Then for any pointsA, B, andC, we have

VRABC=
PR

PQ
VQABC+

RQ

PQ
VPABC.
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4. LetR be a point in the planePQS. Then for any pointsA, B, andC we have

VRABC=
SPQR

SPQS
VS ABC+

SRQS

SPQS
VPABC+

SPRS

SPQS
VQABC.

5. Let PQTSbe a parallelogram. Then for pointsA, B, andC, we haveVPABC+

VT ABC= VQABC+ VS ABC, or VPABCQ= VS ABCT.

6. Let triangleABC be a parallel translation of triangleDEF. Then for pointsP
andQ we haveVPABC= VPDEFA andVPABCQ= VPDEFQ.

Also notice that all the propositions on page 168 about Pythagoras differences are
also valid if the points involved are in the space.

• We present a mechanical proving method which can produce short and readable
proofs for many constructive geometry statements in the space.



Chapter 5

Vectors and Machine Proofs

In Section 2.6, we mentioned that there are two approaches todefining geometries: the
geometric approach and the algebraic approach. In this chapter, we will show how to
prove geometry theorems automatically in a geometry that isdefined using the algebraic
approach. The modern source for affine and metric geometries based on the algebraic
approach islinear algebraor thetheory of vector spaces(see [5, 16, 33]). In this approach,
the metric is introduced by the inner product of vectors, while the areas and volumes are
represented by the exterior product of vectors. It is interesting to note that two of the
most important concepts in this linear algebra approach to geometry, theinnerandexterior
productsof vectors, are essentially the same as the two basic geometry quantities used by
us: thePythagoras differenceand thearea (or volume). This strongly suggests that the
method based on areas, volumes, and Pythagoras differences can be stated in the language
of vectors. Moreover, the vector approach based on inner andexterior products has the
advantage that it is easy to develop; it uses more geometry quantities such as the vector
itself; and it covers more geometries such as the Minkowskian geometry. But on the other
hand, the vector approach needs more algebraic prerequisites. Also, the proofs produced
by the vector approach generally do not have such clear geometric meaning as do those
produced by the volume-Pythagoras difference approach.

5.1 Metric Vector Spaces of Dimension Three

LetE be afieldwith characteristic different from two. Avector spaceoverE is a setV with
two structures:

• V × V −→ V, denoted by (x, y) −→ x + y and

• E × V −→ V, denoted by (α, x) −→ αx

which satisfy the following properties:

221
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V1 x + y = y + x (commutative law)

V2 (x + y) + z = x + (y + z) (associate law)

V3 There exists a zero-elemento such thatx+ o = x for everyx ∈ E. o is called theorigin
of V.

V4 To every elementx there exists aninverse element:−x such thatx + (−x) = o.

V5 (αβ)x = α(βx)

V6 (α + β)x = αx + βx; α(x + y) = αx + αy (distributive laws)

V7 1 · x = x.

The elements ofV are calledvectorsand are denoted byx, y, z, · · ·; the elements ofE are
calledscalarsand are denoted byα, β, a, b, . . .. Scalars are always written on the left of the
vectors.

The vector spaceV is calledn-dimensional if there existn elementse1, · · · , en in V such
that

• for anyx ∈ V there exist scalarsα1, · · · , αn such thatx = α1e1 + · · · + αnen and

• if α1e1 + · · · + αnen = 0 thenαi = 0, i = 1, · · · , n.

Then elementse1, · · · , en satisfying the above property form abasisfor the vector spaceV.
If x = α1e1 + · · · + αnen, we say thatx is a linear combination of the vectorse1, . . . , en and
(α1, . . . , αn) are thecoordinatesof x with respect to the basise1, · · · , en.

Given an ordered basis forV, we can associate with each vectorx the uniquen-tuple
of coordinates (α1, . . . , αn) such thatx = α1e1 + · · · + αnen. This establishes a one-to-one
correspondence between the vectors inV and the elements inEn which is the Cartesian
product ofE with itself n times. It is easy to show that this correspondence preservesthe
structure of the vector spaces, i.e., it is an isomorphism between vector spaces. So we may
safely assume thatV is actuallyEn.

A nonempty subsetW of a vector spaceV is called asubspaceof V if the following
conditions hold:

1. If x ∈W andy ∈W, thenx + y ∈W.

2. If x ∈W, thenαx ∈W for α ∈ E.

Let f1, · · · , fm be vectors inV. Then the set of all the vectors like
m∑

i=1

αi fi, αi ∈ E
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is a subspace ofV and is called the subspace generated by vectorsf1, · · · , fm.

This chapter uses some basic knowledge from linear algebra,e.g., the first five chapters
of [22].

5.1.1 Inner Products and Metric Vector Space

In what follows, we assume thatn = 3 and an ordered basis forV has been given. For
x = (x1, x2, x3), y = (y1, y2, y3), andα ∈ E, we thus have

αx = (αx1, αx2, αx3) and x + y = (x1 + y1, x2 + y2, x3 + y3).

Definition 5.1 An inner product onV is a map

V × V −→ E, denoted by(x, y) −→ 〈x, y〉
which satisfies the following properties

I1 〈x, y〉 = 〈y, x〉.

I2 〈αx + βy, z〉 = α〈x, z〉 + β〈y, z〉 whereα andβ are scalars.

Proposition 5.2Let (e1, e2, e3) be a basis ofV, x = x1e1 + x2e2 + x3e3, andy = y1y1 + y2y2 +

y3y3. Show that

〈x, y〉 = (x1, x2, x3)M


y1

y2

y3



whereM = (〈ei, e j〉) is a symmetric matrix.

Proof.

〈x, y〉 =
3∑

i, j=1

xiyj〈ei, e j〉 = (x1, x2, x3)M


y1

y2

y3



whereM = (〈ei, e j〉) is a symmetric matrix.

Definition 5.3 A vector space with an inner product is called a metric vectorspace.

Definition 5.4 Two vectorsx and y are perpendicular if〈x, y〉 = 0.

A metric vector space is callednonsingularif its origin is the only vector which is
orthogonal to all vectors.
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Proposition 5.5Metric vector spaceV is nonsingular if and only if|M| = det(M) , 0.

Proof. If x = (x1, x2, x3) andy = (y1, y2, y3),

〈x, y〉 = (x1, x2, x3)M


y1

y2

y3

 .

Thenx is perpendicular to all vectors inV iff

(x1, x2, x3)M


y1

y2

y3

 = 0

for all possibleyi, i.e., iff
(x1, x2, x3)M = (0, 0, 0).

The above linear system has nonzero solution iff |M| = 0.

A vectorx is calledisotropicif x is perpendicular to itself, or equivalently if〈x, x〉 = 0.

The origino is always isotropic. Even ifV is nonsingular, there may be many nonzero
isotropic vectors. This is seen by observing that a vector isisotropic iff its coordinates
satisfy the equation

n∑

i, j=1

mi, j xi xj = 0

whereM = (mi, j). The solutions for the above equation (if exist) consist ofa cone which
is referred as thelight cone. The word light cone is originated from physics. More physics
background can be found in [38].

For x = (x1, x2, x3), let thesquareof x be

x2 = 〈x, x〉.

Suppose thatV is a metric vector space, but that we only know the value ofx2 for each
vector x ∈ V. Can we compute the inner product〈x, y〉 for all x and y? The answer is
affirmative.

Proposition 5.6In a metric vector space, the square functionx2 determines the inner prod-
uct completely.

Proof. For x, y ∈ V, by I1 and I2,

(x + y)2 = x2 + 2〈x, y〉 + y2.

SinceE is not of characteristic 2, we have

〈x, y〉 = 1
2

(x2 + y2 − (x + y)2).
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Corollary 5.7 (Pythagorean Theorem)x⊥y iff x2 + y2 − (x + y)2 = 0.

Definition 5.8 A coordinate systeme1, e2, e3 of V is called a rectangular coordinate system
if ei⊥e j for j , i.

For a rectangular basise1, e2, e3, the matrix defining the inner product is diagonal, i.e.,

M =


〈e1, e1〉

〈e2, e2〉
〈e3, e3〉

 .

For x = (x1, x2, x3) andy = (y1, y2, y3), we have

〈x, y〉 = 〈e1, e1〉x1y1 + 〈e2, e2〉x2y2 + 〈e3, e3〉x3y3.

Proposition 5.9A metric vector spaceV always has a rectangular coordinate system.

Proof. We prove the proposition using induction on the dimension ofV. If V is of dimen-
sion one, any basis of it is a rectangular basis. Suppose thatthe result is true for all vector
spaces with dimension less thann. LetV be a vector space of dimensionn. If all the vectors
in V are isotropic, by the Pythagorean theorem any basis is a rectangular basis. Otherwise,
let e1, · · · , en be a basis ofV such thate1 is a non-isotropic vector. Let

e′
i
= ei −

〈ei, e1〉
e1

2
e1, i = 2, · · · , n.

Then it is clear thate1, e′2, · · · , e
′

n are also a basis ofV and e1⊥e′
i
, i = 2, · · · , n. By the

induction hypothesis, the vector space generated bye′
i
, i = 2, · · · , n, has a rectangular basis

fi, i = 2, · · · , n. Then it is easy to check thate1, f2, · · · , fn form a rectangular basis forV.

Exercises 5.10

1. If E is the field of real numbers and the inner product ofx = (x1, x2, x3) and y =
(y1, y2, y3) is defined to be

〈x, y〉 = x1y1 + x2y2 + x3y3,

the resulting space is theEuclidean space of dimension three. Show that the Euclidean
space as defined above is a nonsingular metric vector space satisfying

I3 〈x, x〉 ≥ 0 and〈x, x〉 = 0 iff x = (0, 0, 0).

2. Then-dimensional (n ≤ 3) Minkowskian spaceis a metric vector space whose inner
product forx = (x1, . . . , xn) andy = (y1, . . . , yn) is

〈x, y〉 = x1y1 + . . . + xn−1yn−1 − xnyn.

Show that the Minkowskian space is a nonsingular metric vector space in which there
exist nonzero isotropic vectors.
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3. Show that ifE is the field of real numbers andn = 3, every nonsingular metric vector
space has a coordinate system such that its matrix is one of the following form.

M1 =


1 0 0
0 1 0
0 0 1

 ,M2 =


1 0 0
0 1 0
0 0 −1



M3 =


1 0 0
0 −1 0
0 0 −1

 ,M4 =


−1 0 0
0 −1 0
0 0 −1

 .

The matricesM1 andM2 determine, respectively, the Euclidean and the Minkowskian
spaces. We call the geometries determined byM4 andM3 thenegative Euclidean space
and thenegative Minkowskian spacerespectively.

4. Let (e1, ..., en) and (f1, ..., fn) be two different bases forV. Then there is a nonsingular
matrixP such that

( f1, ..., fn) = (e1, ..., en)P.
LetM andM′ be the matrices of the inner products corresponding to the bases (e1, ..., en)
and (f1, ..., fn). Show that

M′ = P∗MP
whereP∗ is the transpose ofP. The two matrices in the above proposition are called
congruent.

Thus two matrices are congruent iff they represent the same metric ofV relative to dif-
ferent coordinates systems. Therefore, the study of the metric vector space is equivalent
to the study of the symmetric matrices under the equivalent relation of congruence.

5. In the algebraic language, Proposition 5.9 is equivalentto the following fact. LetG be
ann × n symmetric matrix. Then there exists ann × n nonsingular matrixP such that
P∗GP is a diagonal matrix. Prove the above fact directly.

5.1.2 Exterior Products in Metric Vector Space

In what follows, we always assume thatV is a nonsingular metric vector space with a
rectangular basis (e1, e2, e3). Thus the matrix that defines the inner product is

M =


〈e1, e1〉

〈e2, e2〉
〈e3, e3〉

 .

Definition 5.11 An exterior product onV is a map

V × V −→ V, denoted by(x, y) −→ [x, y]

which satisfies the following properties



5.1. Metric Vector Spaces of Dimension Three 227

E1 [x, y] = −[y, x].

E2 [αx + βy, z] = α[x, z] + β[y, z] whereα andβ are scalars.

E3 x⊥[x, y].

Note that property E3 is not in the definition for the exteriorproduct in the general case.
We add it to make the relation between the inner and exterior products simple.

From E1 and the fact thatE is not of characteristic two, we have

[x, x] = 0.

Proposition 5.12Let (e1, e2, e3) be a rectangular basis of a nonsingular metric vector space
V. Then

[e1, e2] =
α

〈e3, e3〉
e3, [e2, e3] =

α

〈e1, e1〉
e1, [e3, e1] =

α

〈e2, e2〉
e2

whereα = 〈e1, [e2, e3]〉 = 〈e2, [e3, e1]〉 = 〈e3, [e1, e2]〉.

Proof. Since [e1, e2]⊥e1 and [e1, e2]⊥e2, it is clear that [e1, e2] = s1e3. Thuss1 =
〈e3,[e1,e2]〉
〈e3,e3〉

.
Similarly

[e2, e3] = s2e1, [e3, e1] = s3e2

wheres2 =
〈e1,[e2,e3]〉
〈e1,e1〉

, s3 =
〈e2,[e3,e1]〉
〈e2,e2〉

. Adding the above two equations, we have

[e2 − e1, e3] = s2e1 + s3e2.

Taking the exterior products ofe2 − e1 and the vectors on both sides of the above equation,
we haves3〈e2, e2〉 = s2〈e1, e1〉, i.e.,〈e2, [e3, e1]〉 = 〈e1, [e2, e3]〉. Similarly, we can prove that
〈e3, [e1, e2]〉 = 〈e2, [e3, e1]〉.

Remark 5.13The constantα = 〈e1, [e2, e3]〉 is a basic quantity related to the exterior prod-
uct. We always assume thatα , 0.

Proposition 5.14Let (e1, e2, e3) be a rectangular basis of a nonsingular metric vector space
V, x = x1e1 + x2e2 + x3e3, andy = y1e1 + y2e2 + y3e3. Then

[x, y] = α(
1

m1

∣∣∣∣∣∣
x2 x3

y2 y3

∣∣∣∣∣∣ ,
1

m2

∣∣∣∣∣∣
x3 x1

y3 y1

∣∣∣∣∣∣ ,
1

m3

∣∣∣∣∣∣
x1 x2

y1 y2

∣∣∣∣∣∣)

whereα = 〈e1, [e2, e3]〉, m1 = 〈e1, e1〉, m2 = 〈e2, e2〉, and m3 = 〈e3, e3〉.

Proof. By E1 and E2,

[x, y] =
3∑

i, j=1

xiyj[ei, e j] =

∣∣∣∣∣∣
x2 x3

y2 y3

∣∣∣∣∣∣ [e2, e3] +

∣∣∣∣∣∣
x3 x1

y3 y1

∣∣∣∣∣∣ [e3, e1] +

∣∣∣∣∣∣
x1 x2

y1 y2

∣∣∣∣∣∣ [e1, e2].

Now the result follows immediately from Proposition 5.12.
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Proposition 5.15If the metric vector space is not singular, thenx = αy iff [x, y] = 0.

Proof. By Proposition 5.9, we can chose a rectangular basis forV. If x = αy then [x, y] =
α[y, y] = 0. Conversely, let us assume [x, y] = 0. By Proposition 5.14,we have

x1

y1
=

x2

y2
=

x3

y3
= λ

for a scalarλ. Thusx = λy.

Definition 5.16 The triple scalar product for three vectorsx, y, and z in V is defined as
follows.

(x, y, z) = 〈[x, y], z〉.

Proposition 5.17Let x = (x1, x2, x3),y = (y1, y2, y3), and z = (z1, z2, z3). We have

(x, y, z) = 〈e1, [e2, e3]〉

∣∣∣∣∣∣∣∣

x1 x2 x3

y1 y2 y3

z1 z2 z3

∣∣∣∣∣∣∣∣
.

Proof. SinceV has a rectangular basis, this is a direct consequence of Proposition 5.14.

We thus have

T1 (x, y, z) = (y, z, x) = (z, x, y) = −(x, z, y) = −(z, y, x) = −(y, x, z).

T2 In a nonsingular metric space, (x, y, z) = 0 iff vectorsx, y, and z are coplanar, i.e., iff
there exist scalarsα1, α2, α3 not all zero such thatα1x + α2y + α3z = 0.

Proposition 5.18

• (The Lagrange Identity)〈[x, y], [u, v]〉 = α(〈x, u〉〈y, v〉 − 〈x, v〉〈y, u〉).

• [[ x, y], z] = α(〈x, z〉y − 〈y, z〉x)

whereα = 〈e1,[e2,e3]〉2
〈e1,e1〉〈e2,e2〉〈e3,e3〉

.

Proof. The two formulas can be obtained by direct computation. We leave them as exer-
cises.

Exercise 5.19Show that[[ r1, r2], [r3, r4]] = α(〈r4, [r1, r2]〉r3−〈r3, [r1, r2]〉r4) whereα is the
same as in Proposition 5.18.
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5.2 The Solid Metric Geometry

Let E be a field with characteristic different from two. The vector spaceE3 is also called
theaffine spaceassociated with fieldE.

Definition 5.20 A non-singular metric vector spaceE3 is called a solid metric geometry.

As usual, elements inE3 are called points. LetA andB be two points. Then the line passing
throughA andB is the set

{αA+ βB| α + β = 1}.
The plane passing through three pointsA, B, andC is the set

{αA+ βB+ γC| α + β + γ = 1}.

Two pointsA andB in E3 determine a newvector,

−−→
AB= B− A

A being theorigin andB being theendpoint.Thus two vectors
−−→
ABand

−−→
PQ are equal if and

only if A + Q = P + B. Let O be the origin ofV. For any pointA, let
−→
A =

−−→
OA. Thus we

also have −−→
AB=

−→
B − −→A.

It is easy to show that lineAB can also be written as follows

{A+ β−−→AB| β ∈ E}.

Line AB is calledisotropicif
−−→
AB

2
= 0. Similarly, the planeABCcan be written as

{A+ β−−→AB+ γ
−−→
AC| β, γ ∈ E}.

Line AB is calledparallel to line PQ if there is a scalarλ such that
−−→
AB = λ

−−→
PQ. If

−−→
AB =

λ
−−→
PQ, we say that the ratio of the parallel line segmentsABandPQ is λ, i.e.,

AB

PQ
= λ.

O U

V

W

A

R

M

N
P

Q B

L

Figure 5-2

A

B
C

P Q

Figure 5-1
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To see the geometric meaning of the addition of two vectors
−−→
AB and

−−→
PQ. Let C be a

point such that
−−→
BC =

−−→
PQ. Then (Figure 5-1)

−−→
AB+

−−→
PQ=

−−→
AB+

−−→
BC =

−−→
AC.

We will now give a geometric interpretation of the coordinates of vectors with respect
to a basis. LetO,W,U, andV be four points not in the same plane. For any vector

−−→
AB,

we form a parallepipedAMLN − RPBQ(Figure 5-2) such thatAR ‖ OW, AM ‖ OU, and
AN ‖ OV. Then

−−→
AB=

−−→
AR+

−−→
AM +

−−→
AN =

AR

OW

−−→
OW+

AM

OU

−−→
OU +

AN

OV

−−→
OV,

i.e.,
−−→
OW,

−−→
OU, and

−−→
OV form a basis forE3 and the coordinates of

−−→
AB with respect to this

basis are (AR
OW
, AM

OU
, AN

OV
).

Exercise 5.21Show that point Y is on line AB iff there is a scalarα such that
−−→
AY = α

−−→
AB;

Point Y is on plane LMN iff there are two scalarsα andβ such that
−→
LY = α

−−→
LM + β

−−→
LN.

5.2.1 Inner Products and Exterior Products

The inner productof vectors
−−→
AB and

−−→
CD satisfies

1. 〈−−→AB,
−−→
CD〉 = 0 if and only if AB⊥CD.

2. 〈−−→AB,
−−→
CD〉 = 〈−−→CD,

−−→
AB〉,

3. 〈α−→A + β−→B,−−→CD〉 = α〈−→A,−−→CD〉 + β〈−→B,−−→CD〉 whereα andβ are scalars.

Thesquare distancebetween two pointsA andB, or the square length of the vector
−−→
AB, is

defined to be
AB2 =

−−→
AB

2
= 〈−−→AB,

−−→
AB〉.

By Proposition 5.6,

2〈−−→AB,
−−→
BC〉 = AC2 − AB2 − BC2 = −PABC.

Then it is easy to check that
PABCD = −2〈−−→AC,

−−→
BD〉.

Proposition 5.22 (Pythagorean Theorem)For any points A, B,C, and D
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• AB⊥BC iff AB2 + BC2 − AC2 = 0.

• AB⊥CD iff PACBD = AC2 −CB2 + BD2 − AD2 = 0.

If four pointsA, B,C, andD are collinear orAB ‖ CD, then theproduct of the oriented
segmentsis

AB ·CD = 〈−−→AB,
−−→
CD〉

and theratio of the oriented segmentsis

AB

CD
=
〈−−→AB,

−−→
CD〉

〈−−→CD,
−−→
CD〉
.

Theexterior product[
−−→
AB,
−−→
CD] of

−−→
AB and

−−→
CD satisfies the following properties

1. [
−−→
AB,
−−→
CD] = 0 iff AB ‖ CD.

2. [
−−→
AB,
−−→
CD] = −[

−−→
CD,
−−→
AB].

3. [α
−→
A + β

−→
B,
−−→
CD] = α[

−→
A,
−−→
CD] + β[

−→
B,
−−→
CD] whereα andβ are scalars.

By Lagrange’s identity,

[
−−→
AB,
−−→
AC]

2
= α(AB2 · AC2 − 〈−−→AB,

−−→
AC〉2) = α

4
(4AB2 · AC2 − P2

BAC)

whereα is the constant defined in Proposition 5.18. Comparing with the Herron-Qin for-
mula on page 108, we see that the length of [

−−→
AB,
−−→
AC] is proportional to the area of triangle

ABC.

Remark 5.23We can determine the exact relation between the area and the exterior product
as follows. In Euclidean geometry,α = 1. By the Herron-Qin formula,

[
−−→
AB,
−−→
AC]

2
= 4S2

ABC.

Thus[
−−→
AB,
−−→
AC] is a vector

−−→
AD such that

−−→
AD is perpendicular to the plane ABC, and pointed

in such direction as to make(
−−→
AB,
−−→
AC,
−−→
AD) a right handed triple and|AD| = 2|SABC|.

We thus define thesigned area of triangle ABCto be a quantity with the same sign of

[
−−→
AB,
−−→
AC] andS2

ABC =
1
4[
−−→
AB,
−−→
AC]

2
. Then Heron-Qin’s formula in any metric geometry is

S2
ABC =

α

16
(4AB2 · AC2 − P2

BAC).
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Two planesABCandPQRareparallel if [
−−→
AB,
−−→
AC] ‖ [

−−→
PQ,
−−→
PR]. Let λ be the scalar ratio

of these two parallel vectors, i.e., [
−−→
AB,
−−→
AC] = λ[

−−→
PQ,
−−→
PR]. Thenλ = SABC

SPQR
. We thus have

λ =
SABC

SPQR
=
〈[−−→AB,

−−→
AC], [

−−→
PQ,
−−→
PR]〉

〈[−−→PQ,
−−→
PR], [

−−→
PQ,
−−→
PR]〉

.

The volumeof the tetrahedronABCD is defined to be one sixth of thetriple scalar
product:

VABCD=
1
6
〈−−→AD, [

−−→
AB,
−−→
AC]〉.

As a consequence

VABCD =
1
6

(〈−→D, [−→A,−→B]〉 + 〈−→D, [−→B,−→C]〉 + 〈−→D, [−→C,−→A]〉 − 〈−→A, [−→B,−→C]〉).

Starting from several points in the space, we can form vectors and inner and exterior
products of these vectors. Since exterior products of vectors are still vectors, we can further
form the inner and exterior products of these new vectors. Expressions thus obtained are
called recursive expressions in inner and exterior productsof vectors. It is clear that a
recursive expression in inner and exterior products of vectors can be a scalar or a vector. A
vector like

−−→
AB for pointsA andB is called asimple vector.

Proposition 5.24Any recursive expression in inner and exterior products of vectors can be
represented as a polynomial in inner products of simple vectors, exterior products of simple
vectors, and triple scalar products of simple vectors.

Proof. By Proposition 5.18, for any vectorsr1, r2, r3 andr4

1. [[r1, r2], r3] = α(〈r1, r3〉r2 − 〈r2, r3〉r1).

2. (The Lagrange Identity)〈[r1, r2], [r3, r4]〉 = α(〈r1, r3〉〈r2, r4〉 − 〈r1, r4〉〈r2, r3〉).

By repeated use of the above two identities, any recursive expression in inner and exterior
products of vectors can be represented as a polynomial of inner products of simple vectors,
exterior products of simple vectors, and triple scalar products of simple vectors.

Exercises 5.25

1. Show that with the above definition for the ratio of lengths, signed areas, signed vol-
umes, and the Pythagoras differences, Axioms A.1-A.6, S.1-S.5, and the properties of
the Pythagoras difference are true.
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2. Prove the following formula of the distance from a pointA to a linePQ

d(A,PQ)2 = AP2 − 〈
−−→
PA,
−−→
PQ〉2

PQ2
.

3. Prove the following formula of the distance from a pointA to a planeLMN.

d2
A,LMN =

〈−→LA, [
−−→
LM,
−−→
LN]〉2

[
−−→
LM,
−−→
LN]

2
.

4. Prove the following formula of the distance between two skew linesUV andPQ

d2
UV,PQ =

9(〈−−→UV, [
−−→
UP,
−−→
UQ]〉)2

[
−−→
PQ,
−−→
UV]

2
.

5.2.2 Constructive Geometry Statements

The constructive statement defined in Section 4.2 can be generalized by considering more
constructions and more geometry quantities.

Definition 5.26 By geometric quantities we mean vectors, the inner or exterior products of
vectors, or the quantities which can be represented by the inner and exterior products of
vectors.

With the geometry concepts introduced in the preceding subsection, constructions S1–
S7 on page 181 are still meaningful in our metric geometry, except for constructions S6 and
S7 whose ndg conditions need modification. We will also introduce a new construction S8.

S6 (FOOT2LINEY P U V) PointY is the foot from pointP to lineUV. PointY is a fixed

point. The ndg condition is
−−→
UV

2
, 0. Notice that in the general metric geometry

−−→
UV

2
, 0 is not equivalent toU , V.

S7 (FOOT2PLANEY P L M N) PointY is the foot of the perpendicular from pointP to
planeLMN. The nondegenerate condition is [

−−→
LM,
−−→
LN]2

, 0.

S8 (SRATIO A L M N r) Take a pointA such that
−→
LA = r[

−−→
LM,
−−→
LN], wherer can be a

rational number, a rational expression in geometric quantities, or variables.

If r is a fixed quantity,A is a fixed point; otherwise,A has one degree of freedom.
The ndg condition is [

−−→
LM,
−−→
LN]2

, 0.
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Two basic geometric relations, parallel and perpendicular, can be easily described by
the exterior and inner products. For instance, to representAB ‖ CD we need two equations
VABCD = 0 andSACD = SBCD. But using exterior product, we need only one equation
[
−−→
AB,
−−→
CD] = 0.

Proposition 5.27We have

1. AB⊥ CD ⇐⇒ 〈−−→AB,
−−→
CD〉 = 0.

2. AB‖ CD ⇐⇒ [
−−→
AB,
−−→
CD] = 0.

3. A, B, and C are collinear⇐⇒ [
−−→
AB,
−−→
AC] = 0.

4. AB⊥ PQR ⇐⇒ [
−−→
AB, [

−−→
PQ,
−−→
PR]] = 0.

5. AB‖ PQR ⇐⇒ 〈−−→AB, [
−−→
PQ,
−−→
PR]〉 = 0.

6. ABC⊥ PQR ⇐⇒ 〈[−−→AB,
−−→
AC], [

−−→
PQ,
−−→
PR]〉 = 0.

7. ABC‖ PQR ⇐⇒ [[
−−→
AB,
−−→
AC], [

−−→
PQ,
−−→
PR]] = 0.

8. A, B, C, and D are coplanar⇐⇒ 〈−−→DA, [
−−→
AB,
−−→
AC]〉 = 0.

Proof. The first two cases are from the definition. The other cases areconsequences of the
first two cases.

Example 5.28 (The Centroid Theorem for Tetrahedra)Let G be the centroid of tetrahedra ABCD.

Show that
−→
G =

−→
A+
−→
B+
−→
C+
−→
D

4 .

This example can be described constructively as follows.
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A B

C

D

S
Z

Y
G

Figure 5-3

Constructive description
((POINTSA B C D)

(MIDPOINT S B C)

(LRATIO Z A S 2/3)

(LRATIO Y D S 2/3)

(INTER G (LINE D Z) (LINE A Y))

(−→G =
−→A +−→B +−→C +−→D

4 ) )

The ndg conditions:B , C, A , S, D , S, and
DZ ∦ AY.

5.3 Machine Proof by Vector Calculation

As before, we will give methods of eliminating points from the geometry quantities.

5.3.1 Eliminating Points From Vectors

We first consider how to eliminate points from vectors.

Proposition 5.29Let R be a point on line PQ (P, Q). Then

−→
R =

PR

PQ

−→
Q +

RQ

PQ

−→
P.

Proof. We havePR
PQ

−→
Q + RQ

PQ

−→
P = PR

PQ
(
−→
Q − −→P) +

−→
P = PR

PQ

−−→
PQ+

−→
P =
−−→
PR+

−→
P =
−→
R.

Lemma 5.30Let Y be introduced by (PRATIO Y W U V r). Then

−→
Y =
−→
W+ r(

−→
V − −→U)

Proof. Since
−−→
WY=

−→
W− −→Y = r

−−→
UV, we have

−→
Y =
−→
W− r

−−→
UV.

Lemma 5.31Let Y be introduced by (ARATIO Y L M N r1 r2 r3). Then

−→
Y = r1

−→
L + r2

−→
M + r3

−→
N.

Proof. SinceY is in the planeLMN, we have

−→
LY = c1

−−→
LM + c2

−−→
LN
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wherec1 andc2 are some scalars. Then

[
−−→
LN,
−→
LY] = c1[

−−→
LN,
−−→
LM] + c2[

−−→
LN,
−−→
LN] = c1[

−−→
LN,
−−→
LM].

Thus c1 =
SLNY

SLNM
= r2. Similarly c2 = r3. Thus

−→
Y =

−→
L + r2(

−→
M − −→L ) + r3(

−→
N − −→L ) =

r1
−→
L + r2

−→
M + r3

−→
N.

Lemma 5.32Let Y be introduced by (INTER Y (LINE U V) (LINE P Q)). Then

−→
Y =

SUPQ

SUPVQ

−→
V −

SVPQ

SUPVQ

−→
U .

Proof. By Proposition 5.29,
−→
Y =

UY

UV

−→
V − VY

UV

−→
U .

Let r = UY
UV

. Then
−−→
UY = r

−−→
UV and

[
−−→
UY,
−−→
PQ] = r[

−−→
UV,
−−→
PQ].

Since [
−−→
UY,
−−→
PQ] = [

−−→
UQ,
−−→
PQ] + [

−−→
QY,
−−→
PQ] = [

−−→
UQ,
−−→
PQ], we haver = SUPQ

SUPVQ
. Similarly

VY
UV
=

SVPQ

SUPVQ
.

Lemma 5.33Let Y be introduced by (INTER Y (LINE U V) (PLANE L M N)). Then

−→
Y =

VULMN

VULMNV

−→
V − VVLMN

VULMNV

−→
U .

Proof. By Proposition 5.29,
−→
Y =

UY

UV

−→
V +

YV

UV

−→
U . (1)

Let r = UY
UV

. Then
−−→
UY = r

−−→
UV and

[
−−→
UY, [

−−→
LM,
−−→
LN]] = r[

−−→
UV, [

−−→
LM,
−−→
LN]] .

Since
[
−−→
UY, [

−−→
LM,
−−→
LN]] = [

−−→
UL, [

−−→
LM,
−−→
LN]] + [

−→
LY, [
−−→
LM,
−−→
LN]] = VULMN,

we haver = VULMN

VULMNV
. Similarly VY

UV
=

VVLMN

VULMNV
.

Lemma 5.34Let Y be introduced by (FOOT2LINE Y P U V). Then

−→
Y =

PPUV

PUVU

−→
V +

PPVU

PUVU

−→
U .
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Proof. By Proposition 5.29,
−→
Y = UY

UV

−→
V − VY

UV

−→
U . Let r = UY

UV
, or
−−→
UY = r

−−→
UV. We have

r〈−−→UV,
−−→
UV〉 = 〈−−→UY,

−−→
UV〉 = 〈−−→UP,

−−→
UV〉 + 〈−−→PY,

−−→
UV〉 = 〈−−→UP,

−−→
UV〉.

Thenr = PPUV

PUVU
. Similarly YV

UV
=

PPVU

PUVU
.

Lemma 5.35Let Y be introduced by (SRATIO Y L M N r). Then

−→
Y =
−→
L + r[

−−→
LM,
−−→
LN].

Proof. This is the definition of the construction SRATIO.

Lemma 5.36Let Y be introduced by (FOOT2PLANE Y P L M N). Then

−→
Y =
−→
P +

6VPLMN

[
−−→
LM,
−−→
LN]2

[
−−→
LM,
−−→
LN].

Proof. Let
−−→
PY = r[

−−→
LM,
−−→
LN]. Then〈−→LP,

−−→
PY〉 = r〈−→LP, [

−−→
LM,
−−→
LN]〉 = 6rVLMNP. 〈−→LP,

−−→
PY〉 =

−PY2 = − 36V2
PLMN

[
−−→
LM ,
−−→
LN]2

. Thusr = 6VPLMN

[
−−→
LM ,
−−→
LN]2

.

Example 5.37Let Y be introduced by (INTER Y (PLINE W U V) (PLINE R P Q)). Show
that
−→
Y =
−→
W+ SWPRQ

SUPVQ
(
−→
V − −→U).

Proof. Take pointsX andS such thatWX
UV
= 1 andRS

PQ
= 1. By Proposition 5.29,

−→
Y = r

−→
X + (1− r)

−→
W = r(

−→
X − −→W) +

−→
W = r(

−→
V − −→U) +

−→
W

wherer = WY
WX
=

SWPRQ

SUPVQ
.

Example 5.38Continue from Example 5.28. We can actually derive the result of this exam-
ple without knowing it previously.

Constructive description
((POINTSA B C D)

(MIDPOINT S B C)

(LRATIO Z A S 2/3)

(LRATIO Y D S 2/3)

(INTER G (LINE D Z) (LINE A Y))

(−→G ) )

The machine proof.
−→G
G
=
−−→Z ·SADY+

−→D ·SAZY
−SADYZ

Y
=

2
3
−→Z ·SADS+

1
3
−→D ·SADZ

2
3SDS Z+SADZ

Z
=

4
3
−→S ·SADS+

2
3
−→D ·SADS+

2
3
−→A ·SADS

8
3SADS

simpli f y
= 1

4(2−→S +−→D +−→A )

S
=
−→D +−→C +−→B +−→A

4

The eliminants

−→G G
=

−→Z ·SADY−−→D ·SAZY

SADYZ

SADYZ
Y
=

1
3(2SDS Z+3SADZ)

SAZY
Y
= − 1

3(SADZ)

SADY
Y
=

2
3(SADS)

SDS Z
Z
=

1
3(SADS)

SADZ
Z
=

2
3(SADS)

−→Z Z
=

1
3(2−→S +−→A )

−→S S
=

1
2(−→C +−→B )
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5.3.2 Eliminating Points from Inner and Exterior Products

Let Y be introduced by one of the constructions S1–S8. By Lemmas 5.30–5.36,

(I )
−→
Y = αr1 + βr2

for vectorsr1 andr2 and scalarsα andβ.

To eliminateY from the inner product, let us note that

〈−−→AB,
−−→
CY〉 = 〈−→B,−→Y〉 + 〈−→A,−→C〉 − 〈−→B,−→C〉 − 〈−→A,−→Y〉.

Then we need only to consider how to eliminateY from 〈−→A,−→Y〉 and〈−→Y,−→Y〉. If A , Y,

〈−→A,−→Y〉 = α〈−→A, r1〉 + β〈
−→
A, r2〉.

For 〈−→Y,−→Y〉, we have

〈−→Y,−→Y〉 = < αr1 + βr2, αr1 + βr2 >= α
2〈r1, r1〉 + β2〈r2, r2〉 + 2αβ〈r1, r2〉.

To eliminate pointY from the exterior product [
−−→
AB,
−−→
CY], let us note that

[
−−→
AB,
−−→
CY] = [

−→
A,
−→
C] + [

−→
B,
−→
Y] − [

−→
A,
−→
Y] − [

−→
B,
−→
C].

If A = Y we have [
−→
A,
−→
Y] = 0; otherwise we have

[
−→
A,
−→
Y] = α[

−→
A, r1] + β[

−→
A, r2].

Since other geometry quantities can always be represented as a rational expression in
inner and exterior products, we can eliminate points introduced by constructions S1–S8
from them. Here are some examples.

Example 5.39Let Y be introduced by (SRATIO Y L M N r). By Lemma 5.35, we have

VYBCD = 〈
−−→
BY, [
−−→
BC,
−−→
BD]〉 = VLBCD− r〈[−−→LM,

−−→
LN], [

−−→
BC,
−−→
BD]〉

〈−−→YB,
−−→
CD〉 = 〈−→B,−−→CD〉 − 〈−→Y,−−→CD〉

= 〈−→LB,
−−→
CD〉 − r〈−−→CD, [

−−→
LM,
−−→
LN]〉.

〈−−→YB,
−−→
YC〉 = 〈−→B,−→C〉 + 〈−→Y,−→Y〉 − 〈−→Y,−→B〉 − 〈−→Y,−→C〉

= 〈−→LB,
−−→
LC〉 + r〈−→BL+

−−→
CL, [

−−→
LM,
−−→
LN]〉 + r2[

−−→
LM,
−−→
LN]

2

[
−−→
YB,
−−→
CD] = [

−→
B,
−−→
CD] − [

−→
Y,
−−→
CD]

= [
−→
LB,
−−→
CD] + r[

−−→
CD, [

−−→
LM,
−−→
LN]] .
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Example 5.40Let Y be introduced by (FOOT2PLANE Y P L M N). By Lemma 5.36,

VABCD = VPBCD+ r〈[−−→PM,
−−→
PN], [

−−→
BC,
−−→
BD]〉.

〈−−→AB,
−−→
CD〉 = 〈−−→PB,

−−→
CD〉 − r〈−−→CD, [

−−→
PM,
−−→
PN]〉.

〈−−→AB,
−−→
AC〉 = 〈−−→PB,

−−→
PC〉 + r〈−−→BP+

−−→
CP, [

−−→
PM,
−−→
PN]〉 + r2[

−−→
PM,
−−→
PN]

2

where r= 6VPLMN

[
−−→
LM ,
−−→
LN]2

.

To eliminate points introduced by constructions S4, S5, andS6, we do not need to
break the inner and exterior products into the sum of severalcomponents. In these three
constructions,Y is always on a lineUV. Remember that a geometry quantityG(Y) is called
a linear quantityof pointY if

G(Y) =
UY

UV
G(V) +

YV

UV
G(U).

A geometry quantityG(Y) is called aquadratic geometry quantityof pointY if

G(Y) =
UY

UV
G(V) +

YV

UV
G(U) − UY

UV

YV

UV
UV

2
.

Example 5.41Show that
−−→
YB, [

−−→
YB,
−−→
CD], and〈−−→YB,

−−→
CD〉 are all linear in Y; and〈−−→YB,

−−→
YC〉 is

quadratic in Y.

Proof. By Proposition 5.29,
−→
Y = UY

UV

−→
V + YV

UV

−→
U .

−−→
YB =

−→
B − −→Y = −→B − UY

UV

−→
V − YV

UV

−→
U

=
UY

UV
(
−→
B − −→V) +

YV

UV
(
−→
B − −→U)

=
UY

UV

−−→
VB+

YV

UV

−−→
UB

Now it is clear that [
−−→
YB,
−−→
CD] and〈−−→YB,

−−→
CD〉 are also linear inY. ForG(Y) = 〈−−→YB,

−−→
YC〉, let

r1 =
UY
UV

andr2 =
YV
UV

. Then

G(Y) = 〈r1
−−→
VB+ r2

−−→
UB, r1

−−→
VC+ r2

−−→
UC〉

= r2
1G(V) + r2

2G(U) + r1r2(〈
−−→
VB,
−−→
UC〉 + 〈−−→UB,

−−→
VC〉)

= r1(r1 + r2)G(V) + r2(r1 + r2)G(U) − r1r2〈
−−→
UV,
−−→
UV〉

= r1G(V) + r2G(U) − r1r2〈
−−→
UV,
−−→
UV〉.

Therefore to eliminate pointY from the geometry quantities, we need only to find the
position ratios ofY with UV, which has been done in Lemmas 5.32, 5.33, and 5.34.
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5.3.3 The Algorithm

Algorithm 5.42 (VECTOR)

INPUT: S = (C1,C2, . . . ,Ck, (E, F)) is a constructive geometry statement.

OUTPUT: The algorithm tells whetherS is true or not, and if it is true, produces a proof
for S.

S1. For i = k, · · · , 1, do S2, S3, S4 and finally do S5.

S2. Check whether the nondegenerate conditions ofCi are satisfied. The nondegenerate
conditions of a statement have five forms:A , B, AB2

, 0, PQ ∦ UV, PQ ∦ WUV,
and [
−−→
LM,
−−→
LN]2

, 0. For the first case, we check whether
−→
A =
−→
B. For the second case,

we check whether〈−−→AB,
−−→
AB〉 = 0. For the third case, we check whether [

−−→
PQ,
−−→
UV] = 0.

For the fourth case, we check whetherVPWUV = VQWUV. For the fifth case, we

check whether [
−−→
LM,
−−→
LN]2 = 0. If one of the nondegenerate conditions of a geometry

statement is not satisfied, the statement istrivially true. The algorithm terminates.

S3. Let G1, · · · ,Gs be the geometric quantities occurring inE andF. For j = 1, · · · , s do
S4

S4. Let H j be the result obtained by eliminating the point introduced by constructionCi

from G j using the lemmas in this section, and replaceG j by H j in E andF to obtain
the newE andF.

S5. Now there are only free points left.E andF are rational expressions in indeterminates,
inner and exterior products of free points. Replacing the inner and exterior products
by their coordinate expressions, we obtainE′ and F′. Then if E′ = F′, S is true
under the nondegenerate conditions. OtherwiseS is false.

In the above algorithm, we represent the ratio of lengths andthe ratio of areas as ex-
pressions of inner and exterior products, and then eliminate points from the inner and ex-
terior products. In order to obtain short proofs, we may alsouse the lemmas in Section
4.3 to eliminate points directly from the ratios of lengths or areas. We actually use a hy-
brid method: inner products, exterior products, length ratios, area ratios, volumes, and the
Pythagoras differences are all used in the proof.

Remark 5.43Since the inner product, the exterior product, and the triple scalar product are
proportional with the Pythagoras difference, the area, and the volume, the volume (area)
and the Pythagoras difference method developed in Chapters 3 and 4 are valid for construc-
tive geometry statements in metric geometries associated with any field with characteristic
different from2. Thus our method works not only for Euclidean geometry but also for
non-Euclidean geometries such as the Minkowskian geometry.
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The vector approach has the advantages that it is easy to develop, and more geometry
quantities such as the vector itself can be used. But the proofs produced by the vector
approach generally do not have the clear geometric meaning of those produced by the
volume-Pythagoras difference approach.

Notice that the elimination results (Lemmas 5.30-5.34) forpoints introduced by S1–S6
are exactly the same for all metric geometries. From this, one might wonder is there any
connection among these metric geometries? But at the last step of the algorithm, we need
to replace the inner and exterior products of free points by their coordinate expressions.
This step depends on the specific geometries. Thus in order toobtain some meta theorems
for different geometries, we need to limit the class of geometry statements.

Definition 5.44 A constructive geometry statement is called pure constructive if it can be
described by constructions S1-S7 and its conclusion can be one of the geometry relations
in Proposition 5.27. We further assume that the ratio r in theratio constructions PRATIO
and ARATIO can only be scalars or variables.

In the predicate form for a pure constructive geometry statement, there are only affine in-
variants like the ratio of parallel line segments and geometry predicates like COLL, PRLL,
PERP, etc.

Proposition 5.45Let G1 and G2 be two geometries over the same base fieldE. Then a pure
constructive geometry statement is true in G1 iff it is true in geometry G2.

Proof. By Proposition 5.9, we can assume that the matrices for the inner products ofG1

andG2 are

M1 =


a1

a2

a3

 ,M2 =


b1

b2

b3

 .

Let x, y, z and x′, y′, z′ be vectors inG1 andG2 with the same coordinates respectively.
Any geometry predicate can be represented by the following three quantities.

〈x, y〉 = a1x1y1 + a2x2y2 + a3x3y3 in G1.
[x, y] = α1(a2a3(x2y2 − x3y2), a1a3(x3y1 − x1x3), a1a2(x1y2 − x2x1)) in G1.

whereα1 is the constant in Proposition 5.18 for G1.

(x, y, z) = α1

∣∣∣∣∣∣∣∣

x1 x2 x3

y1 y2 y3

z1 z2 z3

∣∣∣∣∣∣∣∣
. in G1.

〈x′, y′〉 = b1x1y1 + b2x2y2 + b3x3y3 in G2.
[x′, y′] = α2(b2b3(x2y2 − x3y2), b1b3(x3y1 − x1x3), b1b2(x1y2 − x2x1)) in G2.

whereα2 is the constant in Proposition 5.18 for G2.
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(x′, y′, z′) = α2

∣∣∣∣∣∣∣∣

x1 x2 x3

y1 y2 y3

z1 z2 z3

∣∣∣∣∣∣∣∣
. in G2.

Let F be the algebraic closure of fieldE. Consider the following automorphism of the
polynomial ringF [x1, x2, x3, ..., z1, z2, z3]

TR : (x1, x2, x3, ..., z3) −→ (

√
a1

b1
x1,

√
a2

b2
x2,

√
a3

b3
x3, ...,

√
a3

b3
z3).

We have

TR(〈x′, y′〉) = 〈x, y〉,
TR([x′, y′]) = 0 ⇐⇒ [x, y] = 0,
TR(x′, y′, z′) = 0 ⇐⇒ (x, y, z) = 0.

Also note that an affine invariant is not changed underTR. Since each pure constructive
statement can be described by affine invariants and the above geometry quantities, it is clear
that a pure constructive geometric statement is true inG1 iff it is true inG2.

5.4 Machine Proof in Metric Plane Geometries

Since a metric plane can be seen as a subset of a metric space, the method presented in the
preceding section is also valid for plane metric geometries. For an independent study of
this topic, see [73]. But for metric plane geometry, the method can be greatly simplified.
Without loss of generality, we assume that the metric plane consists of all the pointsx =
(x1, x2, x3) such thatx3 = 0. Let

M =


a1 0 0
0 a2 0
0 0 a3



be the matrix defining the inner product. Then for vectorsx = (x1, x2, 0), y = (y1, y2, 0),
andz = (z1, z2, 0) in the plane, we have

〈x, y〉 = a1x1y1 + a2x2y2.

[x, y] = (0, 0, αa1a2(x1y2 − x2y1)). α is a constant.

(x, y, z) = 0.

Since all the exterior products of vectors in the same plane are parallel, we can just
define

[x, y] = αa1a2(x1y2 − x2y1).

It is easy to check that some of the basic properties of the exterior products such as E1 and
E2 are still true. For pointsA, B, andC, the signed area of triangleABC is defined to be
1
2[
−−→
AB,
−−→
AC].
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5.4.1 Vector Approach for Euclidean Plane Geometry

For Euclidean geometry, the matrixM defining the inner product is the unit matrix. Thus
if the conclusion of a geometry statement is a polynomial of inner and exterior products,
the proofs produced according to the vector approach and thearea-Pythagoras difference
approach are actually the same. But in the vector approach, we can use a new geometry
quantity: the vector itself.

Example 5.46 (The Centroid Theorem)Show that the three medians of a triangle are concur-
rent and the medians are divided by their common point in the ratio 2:1.

A B

EF
G

C

Figure 5-4

Constructive description
((POINTSA B C)

(MIDPOINT F A C)

(MIDPOINT E B C)

(INTER G (LINE A E) (LINE B F))

(−→AG = 2
3
−→AE) )

The eliminants

−→AG
G
=

−→AE·SABF
SABEF

SABEF
E
=

1
2(SBCF+2SABF)

SBCF
F
=

1
2(SABC)

SABF
F
=

1
2(SABC)

The machine proof.
−→AG

( 2
3 )·−→AE

G
=
−→AE·SABF

( 2
3 )·−→AE·SABEF

simpli f y
=

(3)·SABF

(2)·SABEF

E
=

(3)·SABF

(2)·( 1
2SBCF+SABF)

F
=

(3)·( 1
2SABC)

3
2SABC

simpli f y
= 1

Example 5.47Let G be the centroid of a triangle ABC. Show that−→G = 1
3(−→A + −→B + −→C ).

Proof. Using our method, we can actually compute this result without knowing it previ-
ously. The centroidG of the triangleABCcan be introduced as follows.

(POINTSA B C)
(MIDPOINT F A C)
(LRATIO G B F 2/3)

By Lemma 5.30,−→G = 2/3−→F + 1/3−→B = 1
3(−→C + −→A + −→B ).

You might think that the above introduction ofG is too tricky. The usual way of intro-
ducingG is as follows.
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Constructive description
((POINTSA B C)

(MIDPOINT F A C)

(MIDPOINT E B C)

(INTER G (LINE A E) (LINE B F))

(−→G ) )

The machine proof.
−→G
G
=
−−→F ·SABE+

−→B ·SAFE

−SABEF

E
=

1
2
−→F ·SABC+

1
2
−→B ·SABF

1
2SBCF+SABF

F
=

1
2
−→C ·SABC+

1
2
−→B ·SABC+

1
2
−→A ·SABC

3
2SABC

simpli f y
= 1

3(−→C +−→B +−→A )

The eliminants

−→G G
=

−→F ·SABE−−→B ·SAFE
SABEF

SABEF
E
=

1
2(SBCF+2SABF)

SAFE
E
= − 1

2(SABF)
SABE

E
=

1
2(SABC)

SBCF
F
=

1
2(SABC)

SABF
F
=

1
2(SABC)

−→F F
=

1
2(−→C +−→A )

Example 5.48The triangle having for its vertices the midpoints of the sides of a given tri-
angle has the same centroid as the given triangle.

A

B CD

E
F

G
K

Figure 5-5

Constructive description
((POINTSA B C X Y)

(MIDPOINT D B C)

(MIDPOINT E A C)

(MIDPOINT F A B)

(CENTROIDG A B C)

(CENTROID K D E F)

(−→G =
−→K ) )

The machine proof.
−→G−→K
K
=
−→G ·(3)
−→F +−→E +−→D

G
=

(3)·(−→C +−→B +−→A )

(−→F +−→E +−→D )·(3)

F
=

−→C +−→B +−→A−→E +−→D + 1
2
−→B + 1

2
−→A

E
=

(2)·(−→C +−→B +−→A )

2−→D +−→C +−→B +2−→A
D
=

(2)·(−→C +−→B +−→A )

2−→C +2−→B +2−→A
simpli f y
= 1

The eliminants
−→K K
=

1
3(−→F +−→E +−→D )

−→G G
=

1
3(−→C +−→B +−→A )

−→F F
=

1
2(−→B +−→A )

−→E E
=

1
2(−→C +−→A )

−→D D
=

1
2(−→C +−→B )

Example 5.49The triangle formed by the three lines passing through the three vertices and
parallel to the opposite sides of a triangle is called the anticomplementary triangle of the
given triangle. Show that a triangle and its anticomplementary triangle have the same
centroid.
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Constructive description
((POINTSA B C)

(PRATIO P A C B 1)

(PRATIO Q A B C 1)

(PRATIO R B A C 1)

(CENTROIDG A B C)

(CENTROID K P Q R)

(−→G =
−→K ) )

The machine proof.
−→G−→K
K
=
−→G ·(3)
−→R +−→Q+−→P

G
=

(3)·(−→C +−→B +−→A )

(−→R +−→Q+−→P )·(3)

R
=

−→C +−→B +−→A−→Q+−→P +−→C +−→B −−→A
Q
=
−→C +−→B +−→A−→P +2−→C

P
=
−→C +−→B +−→A−→C +−→B +−→A

simpli f y
= 1

The eliminants

−→K K
=

1
3(−→R +−→Q+−→P )

−→G G
=

1
3(−→C +−→B +−→A )

−→R R
=
−→C +−→B −−→A

−→Q Q
=
−→C −−→B +−→A

−→P P
= − (−→C −−→B −−→A )

With the help of the vector method, we can prove the followingtheorem aboutn-
polygons. Thecentroidof n pointsP1, · · · ,Pn is defined to be1n(

−→
P1 + · · · +

−→
Pn).

Example 5.50 (Cantor’s First Theorem)For n points on the circle O, perpendiculars from the
centroids of any n− 1 points taken from the n points to the tangent lines of circle Oat the
remaining n-th points are concurrent.

Proof. Let then points beP1, · · · ,Pn and
−→
Pi =

−−→
OPi. Let G1 be the centroid ofP2, · · · ,Pn,

G2 the centroid ofP1,P3, · · · ,Pn, andY the intersection of (PLINEG1 O P1) and (PLINE
G2 O P2). By Example 5.37,

−→
Y =
−→
G1 + r(

−→
P1 −

−→
O) =

−→
G1 + r

−→
P1.

wherer =
SG1OP2−SG2OP2

SOOP1P2
=

SP1OP2
(n−1)SP1OP2

= 1
n−1. Therefore

−→
Y =

1
n− 1

(
−→
P1 + · · · +

−→
Pn)

which is a fixed point.

Example 5.51 (Cantor’s Second Theorem)For n points on the circle O, perpendiculars from
the centroids of any n− 2 points taken from the n points to the lines joining the remaining
two points are occurrent.

Proof. Let then points beP1, · · · ,Pn and
−→
Pi =

−−→
OPi. Let G1 be the centroid ofP3, · · · ,Pn,

G2 the centroid ofP1,P2,P5 · · · ,Pn, M the midpoint ofP1P2, N the midpoint ofP3P4, and
Y the intersection of (PLINEG1 O M) and (PLINEG2 N P2). By Example 5.37,

−→
Y =
−→
G1 + r(

−→
M − −→O) =

−→
G1 +

r
2

(
−−−−−−→
P1 + P2).
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wherer =
SG1ON−SG2ON

SOOMN
=

2SMON

(n−2)SMON
= 2

n−2. Therefore

−→
Y =

1
n− 2

(
−→
P1 + · · · +

−→
Pn)

which is a fixed point.

5.4.2 Machine Proof in Minkowskian Plane Geometry

In Minkowskian plane geometry,M =
(

1 0
0 −1

)
. Then the inner product ofx = (x1, x2)

andy = (y1, y2) is
〈x, y〉 = x1y1 − x2y2.

Thusx⊥y iff
x1y1 − x2y2 = 0.

We define the exterior product ofx andy to be

[x, y] = −x1y2 + x2y1.

For pointsA, B,C, andD in the Minkowskian plane [
−−→
AC,
−−→
BD] is also interpreted as twice

the area for the quadrilateralABCD, i.e.,

SABCD =
1
2

[
−−→
AC,
−−→
BD].

We thus have theHerron-Qin formula in the Minkowskian geometry

16S2
ABCD= P2

ABCD− 4AC2 · BD2.

In the Minkowskian plane, there exist isotropic lines (vectors). Vectorx = (x1, x2) is
isotropic iff

x2
1 − x2

2 = (x1 − x2)(x1 + x2) = 0,

i.e., the isotropic lines are those which are parallel to oneof the following lines

x1 − x2 = 0 or x1 + x2 = 0.

As a consequence of Proposition 5.45, we have

Proposition 5.52A pure constructive geometry statement is true in Euclideangeometry if
and only if it is true in Minkowskian geometry.
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As a consequence, most of the geometry theorems proved in this book are also valid in
Minkowskian geometry. But there are do exist geometry statements in Euclidean geome-
try which are not true or do not have geometric meaning in Minkowskian geometry. For
instance, in Minkowskian geometry there exist no equilateral triangles.

If a geometry statement is in the affine geometry, i.e., the only geometry relations in the
statements are incidence and parallel, then it is obvious that this statement is true in Eu-
clidean geometry iff it is true in Minkowskian geometry. The reason is that both geometries
are developed from the same affine geometry by adding different metric structures. In other
words, the affine part of the two geometries are the same. But for a geometry statement
involving geometry relations like perpendicular or measurement, it is not obvious that its
validities for both geometries are the same.

Example 5.53 (Orthocenter Theorem in Minkowskian Geometry) The same as Example 3.19 on
page 111.

The following proof is essentially the same as the proof of Example 3.19. But it is for a
different geometry theorem. Compare Figure 1-42 (on page 32) andFigure 5-7.

A B

C

D

E

H

Figure 5-7

Constructive description
((POINTSA B C)

(FOOT E B A C)

(FOOT D C A B)

(INTER H (LINE C D) (LINE B E))

(PERPENDICULARB C A H) )

The machine proof.

〈
−−→
AB,
−−→
AH〉

〈
−−→
AC,
−−→
AH〉

H
=
〈
−−→
AB,
−−→
AC〉

〈
−−→
AB,
−−→
AC〉

simpli f y
= 1

The eliminants

〈
−−→
AC,
−−→
AH〉H=〈

−−→
AB,
−−→
AC〉

〈
−−→
AB,
−−→
AH〉H=〈

−−→
AB,
−−→
AC〉

Before giving examples involving circles, let us note that the method presented in Sub-
section 3.6.2 to eliminate co-circle points is still valid in Minkowskian geometry except
that we need to use thehyperbolic trigonometricfunctions instead of the trigonometric
functions. A “circle” in Minkowskian geometry is actually ahyperbola:

x2
1 − x2

2 = r2.

The diameter of the above circle isδ = 2r.
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Lemma 5.54Let A, B, and C be points on a circle with diameterδ in the Minkowskian plane.
Then

SABC =
AB ·CB ·CA

2δ
, PABC =

2AB ·CB · cosh(CA)
δ

, AC = δ sinh(AC).

The proof for the above lemma can be carried out as in Section 3.6.

Example 5.55 (Simson’s Theorem in Minkowskian Geometry)The geometry statement of Sim-
son’s theorem is exactly the same as in Example 3.79 on page 144.

A B

C

O

D

E

F

G

Figure 5-8

Constructive description
((CIRCLE A B C D)

(FOOT E D B C)

(FOOT F D A C)

(FOOTG D A B)

( AG
GB

BE
EC

CF
FA
= −1) )

The machine proof.
CF
AF
· BE
CE
· AG

BG

G
=
〈
−−→
AB,
−−→
AD〉

−〈
−−→
BA,
−−→
BD〉
· CF

AF
· BE
CE

F
=
−〈
−−→
CA,
−−→
CD〉·〈

−−→
AB,
−−→
AD〉

〈
−−→
BA,
−−→
BD〉·(−〈

−−→
AC,
−−→
AD〉)

· BE
CE

E
=

〈
−−→
CA,
−−→
CD〉·〈

−−→
BC,
−−→
BD〉·〈
−−→
AB,
−−→
AD〉

〈
−−→
BA,
−−→
BD〉·〈
−−→
AC,
−−→
AD〉·(−〈

−−→
CB,
−−→
CD〉)

co−cir
=

−(−2CD·AC·cosh(AD))·(2BD·BC·cosh(CD))·(2AD·AB·cosh(BD))
(−2BD·AB·cosh(AD))·(2AD·AC·cosh(CD))·(−2CD·BC·cosh(BD))

simpli f y
= 1

The eliminants

AG
BG

G
=
〈
−−→
AB,
−−→
AD〉

−〈
−−→
BA,
−−→
BD〉

CF
AF

F
=
〈
−−→
CA,
−−→
CD〉

−〈
−−→
AC,
−−→
AD〉

BE
CE

E
=
〈
−−→
BC,
−−→
BD〉

−〈
−−→
CB,
−−→
CD〉

〈
−−→
CB,
−−→
CD〉= − 2CD·BC·cosh(BD)

〈
−−→
AC,
−−→
AD〉=2AD·AC·cosh(CD)

〈
−−→
BA,
−−→
BD〉= − 2BD·AB·cosh(AD)

〈
−−→
AB,
−−→
AD〉=2AD·AB·cosh(BD)

〈
−−→
BC,
−−→
BD〉=2BD·BC·cosh(CD)

〈
−−→
CA,
−−→
CD〉= − 2CD·AC·cosh(AD)

By Menelaus’ theorem,E, F, andG are collinear.

Example 5.56 (Cantor’s Theorem)The same as Example 3.82 on page 147.

Constructive description
((CIRCLE A B C D)

(CIRCUMCENTERO A B C)

(MIDPOINT G A D)

(MIDPOINT F A B)

(MIDPOINT E C D)

(PRATIO N E O F 1)

(PERPENDICULARG N B C) )

The eliminants

〈
−−→
BC,
−−→
BN〉N=〈

−−→
BC,
−−→
BE〉+〈

−−→
BC,
−−→
BF〉−〈

−−→
BC,
−−→
BO〉

〈
−−→
BC,
−−→
BE〉E=1

2(〈
−−→
BC,
−−→
BD〉+〈

−−→
CB,
−−→
CB〉)

〈
−−→
BC,
−−→
BF〉F=1

2(〈
−−→
BA,
−−→
BC〉)

〈
−−→
BC,
−−→
BG〉G=1

2(〈
−−→
BC,
−−→
BD〉+〈

−−→
BA,
−−→
BC〉)

〈
−−→
BC,
−−→
BO〉O=1

2(〈
−−→
CB,
−−→
CB〉)
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A

B C

D

O

G

EF N

Figure 5-9

The machine proof.

〈
−−→
BC,
−−→
BG〉

〈
−−→
BC,
−−→
BN〉

N
=

〈
−−→
BC,
−−→
BG〉

〈
−−→
BC,
−−→
BE〉+〈

−−→
BC,
−−→
BF〉−〈

−−→
BC,
−−→
BO〉

E
=

〈
−−→
BC,
−−→
BG〉

〈
−−→
BC,
−−→
BF〉−〈

−−→
BC,
−−→
BO〉+ 1

2 〈
−−→
BC,
−−→
BD〉+ 1

2〈
−−→
CB,
−−→
CB〉

F
=

(2)·〈
−−→
BC,
−−→
BG〉

−2〈
−−→
BC,
−−→
BO〉+〈

−−→
BC,
−−→
BD〉+〈

−−→
CB,
−−→
CB〉+〈

−−→
BA,
−−→
BC〉

G
=

(−2)·( 1
2 〈
−−→
BC,
−−→
BD〉+ 1

2 〈
−−→
BA,
−−→
BC〉)

2〈
−−→
BC,
−−→
BO〉−〈

−−→
BC,
−−→
BD〉−〈

−−→
CB,
−−→
CB〉−〈

−−→
BA,
−−→
BC〉

O
=
−(〈
−−→
BC,
−−→
BD〉+〈

−−→
BA,
−−→
BC〉)·(2)

−2〈
−−→
BC,
−−→
BD〉−2〈

−−→
BA,
−−→
BC〉

simpli f y
= 1

In the last step, letT be the midpoint ofBC. Then we haveBC⊥TO, and hence

〈−−→BC,
−−→
BO〉 = 〈−−→BC,

−−→
BT〉 = 1

2
(〈−−→CB,

−−→
CB〉).

5.5 Machine Proof Using Complex Numbers

In addition to vectors, complex numbers may be used to generate readable proofs for ge-
ometry theorems. Complex numbers are often used to solve difficult geometry theorems
and to interpret various different geometries. See [11, 38]. They have also been used to
mechanical geometry theorem proving in [151] based on the Gröbner basis computation.
In this section, we will show that it is possible to obtain readable proofs for many geometry
theorems using complex numbers.

Complex numbers may be looked as vectors. But we can also multiply two complex
numbers. We will start our discussion with this special property of complex numbers. Let

x = x1 + x2i andy = y1 + y2i

be two complex numbers, wherei =
√
−1. Theconjugateof y = y1 + y2i is ỹ = y1 − y2i.

Then
x · ỹ = x1y1 + x2y2 − (x1y2 − x2y1)i.

If the complex numberx = x1 + x2i is seen as the same as the vectorx = (x1, x2), then it is
clear that

x · ỹ = 〈x, y〉 − [x, y]i.
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Thus

〈x, y〉 = 1
2

(x · ỹ + x̃ · y); [x, y] =
1
2i

(x̃ · y − x · ỹ).

That is, the inner product and the exterior product can be expressed by the multiplications
of complex numbers.

In geometric language, for each pointP, let
−→
P be the corresponding complex number,

andP̃ the conjugate of
−→
P. Then the above two equations become

PABC = (
−→
B − −→A)(C̃ − Ã) + (B̃− Ã)(

−→
C − −→A)

SABC =
1
4i ((B̃− Ã)(

−→
C − −→A) − (

−→
B − −→A)(C̃ − Ã)).

Therefore, the vector approach for Euclidean geometry can be translated into the lan-
guage of complex numbers. But the proofs thus produced are generally longer than those
produced by the vector approach. The reason is that in the vector approach the area and
Pythagoras difference are treated like one-term variables, while in the complex number ap-
proach they are expressions of several terms. This complex number approach is essentially
the same as the Wu’s method in the case of constructive geometry statements [56, 63].

But in many cases, the complex number approach does give short proofs.

Example 5.57As shown in Figure 5-10, on two sides AC and BC of triangle ABC,two
similar triangles PAC and QCB are drawn. RPCQ is a parallelogram. Show that triangle
RAB is similar with triangle PAC.

For two pointsA andB, let
−−→
AB=

−→
B−−→A. Two trianglesPABandQCBare similar and have

the same orientation iff

(5.1)
−−→
PA
−−→
AC
=

−−→
QC
−−→
CB

or
−−→
PA · −−→CB=

−−→
AC · −−→QC.

We thus can use a new construction

(SIM-TRIANGLE Q C B P A C)

which introduces a pointQ such that (5.1) is true.

Now Example 5.57 can be described constructively as follows.

P

Q

R

C

BA

Figure 5-10

Constructive description

((POINTSA B C P)

(SIM-TRIANGLE Q B C P C A)

(PRATIO R Q C P1)

(−→PA·−→AB = −→RA·−→AC) )
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The machine proof.
−→AP·−→AB−→AR·−→AC

R
=

−→AP·−→AB

(−→AQ+−→AP−−→AC)·−→AC

Q
=

−→AP·−→AB·(−−→AC)

(−→CP·−→BC−−→B ·−→AC−−→AP·−→AC+−→AC
2
+
−→AC·−→A )·−→AC

simpli f y
= −−→AP·−→AB

−→CP·−→BC−−→B ·−→AC−−→AP·−→AC+−→AC
2
+
−→AC·−→A

=
−(−→P −−→A )·(−→B −−→A )

−−→P ·−→B +−→P ·−→A +−→B ·−→A −−→A 2

simpli f y
= 1

The eliminants
−→AR

R
=
−→AQ+−→AP−−→AC

−→AQ
Q
=

−→CP·−→BC−−→B ·−→AC+−→AC·−→A
−−→AC

−→AC=−→C −−→A
−→BC=−→C −−→B
−→CP=−→P −−→C
−→AB=−→B −−→A
−→AP=−→P −−→A

Let ω = e
2iπ
3 . Then the three points corresponding to the three complex numbers 1, ω,

andω2 form an equilateral triangle with positive orientation (Figure 5-11).

w

2w

A

B

1

C

Figure 5-11

ThusABC is anequilateral trianglewith positive orientation (Figure 5-11) iff

−→AB

−→AC
=
ω − 1
ω2 − 1

.

From the above equation, we have

(ω3 − ω2)−→B + (ω − 1)−→C + (ω2 − ω)−→A = 0.

Dividing ω − 1 from both sides of the above equation, we have thatABC is an equilateral
triangle with positive orientation iff

−→C + ω2−→B + ω−→A = 0.

Similarly ABC is an equilateral triangle with negative orientation iff

−→C + ω−→B + ω2−→A = 0.

We thus introduce two new constructions.
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(PE-TRIANGLEC B A) introduces a pointC such thatABC is an equilateral triangle with
positive orientation, i.e.,

−→
C + ω2−→B + ω−→A = 0.

(NE-TRIANGLE C B A) introduces a pointC such thatABC is an equilateral triangle
with negative orientation, i.e,

−→
C + ω

−→
B + ω2−→A = 0.

Example 5.58 (Echols’ First Theorem1) If ABC and PQR are equilateral triangles with the
same orientation, then the triangle formed by the midpointsof AP, BQ, and CR is also an
equilateral triangle.

A

B

P

Q

C R

L

M

N

Figure 5-12

Constructive description
((POINTSA B P Q)

(PE-TRIANGLEC B A)

(PE-TRIANGLER Q P)

(MIDPOINT L A P)

(MIDPOINT M B Q)

(MIDPOINT N C R)

(PE-TRIANGLE N M L) )

The machine proof.
−→N +−→M ·w+−→L ·w2

n
= −→M ·w+−→L ·w2+ 1

2
−→R + 1

2
−→C

n
= ( 1

2 )·(2−→L ·w2+
−→R +−→C +−→Q ·w+−→B ·w)

n
= ( 1

2 )·(−→R +−→C +−→Q ·w+−→P ·w2+
−→B ·w+−→A ·w2)

n
= ( 1

2 )·(−→C +−→B ·w+−→A ·w2)

n
= ( 1

2 )·(0)

simpli f y
= 0

The eliminants
−→N N
=

1
2(−→R +−→C )

−→M M
=

1
2(−→Q+−→B )

−→L L
=

1
2(−→P +−→A )

−→R R
= − ((−→Q+−→P ·w)·w)
−→C C
= − ((−→B +−→A ·w)·w)

Example 5.59 (Echols’ Second Theorem)If ABC, PQR, and XYZ are equilateral triangles
with the same orientation, then the triangle formed by the centroids of triangle APX, BQY,
and CRZ is an equilateral triangle.

1American Mathematical Monthly, 39, 1932, p.46
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Constructive description
((POINTSA B P Q X Y)

(PE-TRIANGLEC B A)

(PE-TRIANGLER Q P)

(PE-TRIANGLEZ Y X)

(CENTROID L A P X)

(CENTROID M B Q Y)

(CENTROID N C R Z)

(PE-TRIANGLE N M L) )

The eliminants

−→N N
=

1
3(−→Z +−→R +−→C )

−→M M
=

1
3(−→Y +−→Q+−→B )

−→L L
=

1
3(−→X +−→P +−→A )

−→Z Z
= − ((−→Y +−→X ·w)·w)
−→R R
= − ((−→Q+−→P ·w)·w)
−→C C
= − ((−→B +−→A ·w)·w)

The machine proof.
−→N +−→M ·w+−→L ·w2

n
= 3−→M ·w+3−→L ·w2+

−→Z +−→R +−→C
n
= 9−→L ·w2+3−→Z +3−→R +3−→C +3−→Y ·w+3−→Q ·w+3−→B ·w
n
= (3)·(3−→Z +3−→R +3−→C +3−→Y ·w+3−→X ·w2+3−→Q ·w+3−→P ·w2+3−→B ·w+3−→A ·w2)

n
= (9)·(−→R +−→C +−→Q ·w+−→P ·w2+

−→B ·w+−→A ·w2)

n
= (9)·(−→C +−→B ·w+−→A ·w2)

simpli f y
= 0

Example 5.60 (Echols’ Theorem in General Form)Let Pi,1...Pi,n, i = 1, ...,m be m regular n-
polygons with the same orientation. Then the centroids of the m-polygons P1, j ...Pm, j, j =
1, ..., n, form a regular n-polygon.

Proof. From the proofs of Examples 5.58 and 5.59, we need only to showthatA1...An is a
regularn-polygon iff pointsA1, ...,An satisfy some linear relationsRk(A1, ...,An) = 0, k =
1, ...s. We leave the details to the reader.

Example 5.61The same as Example 3.45 on page 127. The following proof is much shorter.
(Figure 5-13)
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Constructive description
((POINTSA B C)

(CONSTANT w2+w+1)

(PE-TRIANGLE B1 A C)

(PE-TRIANGLE A1 C B)

(NE-TRIANGLE C1 B A)

(−−→A1C1−−→CB1 = 0) )

The machine proof.
−−→A1C1−−→CB1

n
= −−→A1−−→CB1−−→B ·w2−−→A ·w
n
= −(−→CB1−−→C ·w+−→A ·w)

n
= −(−−→C ·w2−−→C ·w−−→C )

simpli f y
= (w2+w+1)·−→C

n
= 0

simpli f y
= 0

The eliminants
−−→A1C1

C1
= − (−→A1+

−→B ·w2+
−→A ·w)

−→A1
A1
= − ((−→C +−→B ·w)·w)
−→CB1

B1
= − (−→C ·w2+

−→C +−→A ·w)

1B

1A

1C

C

BA

Figure 5-13

A

B
C

D

M

X

N

Y

Figure 5-14

Example 5.62The converse of Example 5.61. (Figure 5-14)

Constructive description
((POINTSA B C)

(CONSTANT w2+w+1)

(PRATIO D A B C 1)

(PE-TRIANGLE X B C)

(PE-TRIANGLEY C D)

(PE-TRIANGLE A Y X) )

The machine proof.
−→Y ·w+−→X ·w2+

−→A
n
= −→X ·w2−−→D ·w3−−→C ·w2+

−→A
n
= −−→D ·w3−−→C ·w4−−→C ·w2−−→B ·w3+

−→A
n
= −(−→C ·w4+

−→C ·w3+
−→C ·w2+

−→A ·w3−−→A )

simpli f y
= −(w2+w+1)·(−→C ·w2+

−→A ·w−−→A )

n
= 0

simpli f y
= 0

The eliminants
−→Y Y
= − ((−→D ·w+−→C )·w)
−→X X
= − ((−→C ·w+−→B )·w)
−→D D
=
−→C −−→B +−→A

Using complex numbers, we can also deal with some theorems involving squares easily.
For two pointsA andB, C is a point introduced by (TRATIOC A B1), or equivalentlyC
satisfiesCA= AB, CA⊥ AB, andSCAB > 0, iff

−−→
AC = i · −−→AB.
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Geometrically, the above equation means that
−−→
AC is obtained by rotating

−−→
AB by 90◦ coun-

terclockwise, orCAB is an isosceles right triangle with positive orientation. Similarly, C is
a point introduced by (TRATIOC A B-1) iff

−−→
AC = −i · −−→AB.

We thus can introduce two new constructions

(PE-SQUAREC B A) introduces a pointC such thatCAB is an isosceles right triangle
with positive orientation, i.e.,

−→
C =
−→
A + i · −−→AB.

(NE-SQUAREC B A) introduces a pointC such thatCAB is an isosceles right triangle
with negative orientation, i.e,

−→
C =
−→
A − i · −−→AB.

Example 5.63On the two sides AB and AC of triangle ABC, two squares ABEF andACGH
are drawn externally. Show that FC⊥BH and FC= BH.

Constructive description:

((POINTSA B C) (CONSTANT i2−1) (PE-SQUAREF A B) (NE-SQUAREH A C) (−→FC−i·−→BH = 0) )

A

C B

G

H

E

F

M

Figure 5-15

The machine proof

−(−→CF+−→BH·i)
n
= −(−→CF−−→AC·i2−−→AB·i)
n
= −(−−→AC·i2−−→AC)

simpli f y
= (i2+1)·−→AC

n
= 0

The eliminants
−→BH

H
= − (−→AC·i+−→AB)
−→CF

F
= − (−→AC−−→AB·i)

Example 5.64On the two sides AB and AC of triangle ABC, two squares ABEF andACGH
are drawn externally. M is the midpoint of BC. Show that FH= 2AM and FH⊥AM.
(Figure 5-15)

Constructive description
((POINTSA B C)

(PE-SQUAREF A B)

(NE-SQUAREH A C)

(MIDPOINT M B C)

(−→HF−2i·−→AM = 0) )

The machine proof

−(−→FH+2−→AM·i)
n
= −(−→FH+−→AC·i+−→AB·i)
n
= −(−−→AF+−→AB·i)
n
= 0

The eliminants
−→AM

M
=

1
2(−→AC+−→AB)

−→FH
H
= − (−→AF+−→AC·i)
−→AF

F
=
−→AB·i
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A
B

C

F

G

D

E

K H

Q

P

Figure 5-16

Example 5.652 Starting with any triangle
ABC, construct the exterior (or interior)
squares BCDE, ACFG, and BAHK; then
construct parallelograms FCDQ and EBKP.
Show that PAQ is an isosceles right triangle.

Constructive description
((POINTSA B C)

(CONSTANT i2 −1)

(NE-SQUAREF C A)

(PE-SQUARED C B)

(PRATIO E D C B 1)

(PE-SQUAREK B A)

(PRATIO Q F C D 1)

(PRATIO P K B E 1)

(−→AQ−i·−→AP = 0) )

The machine proof

−(−→AP·i−−→AQ)

n
= −(−−→AQ+−→AK·i+−→AE·i−−→AB·i)
n
= −−→AK·i−−→AE·i+−→AD+−→AF−−→AC+−→AB·i
n
= −(−→AE·i−−→AD−−→AF+−→AC−−→AB·i2)

n
= −(−→AD·i−−→AD−−→AF−−→AC·i+−→AC−−→AB·i2+−→AB·i)
n
= −(−−→BC·i2+−→BC·i−−→AF−−→AB·i2+−→AB·i)
n
= −→BC·i2−−→BC·i+−→AC·i+−→AC+−→AB·i2−−→AB·i
n
= −−→BC·i−−→BC+−→AC·i+−→AC−−→AB·i−−→AB

simpli f y
= −(i+1)·(−→BC−−→AC+−→AB)

n
= −(i+1)·(0)

simpli f y
= 0

The eliminants
−→AP

P
=
−→AK+−→AE−−→AB

−→AQ
Q
=
−→AD+−→AF−−→AC

−→AK
K
= − ((i−1)·−→AB)
−→AE

E
=
−→AD−−→AC+−→AB

−→AD
D
= − (−→BC·i−−→AC)
−→AF

F
=(i+1)·−→AC
−→AB=−→B −−→A
−→AC=−→C −−→A
−→BC=−→C −−→B

Summary of Chapter 5

• The metric vector space is a vector space with inner and exterior products. The metric
geometry of dimension three associated with fieldE is the nonsingular metric vector
spaceE3.

• Some basic geometry quantities can be described by the innerand exterior products:

1. PABC = 2〈−−→AB,
−−→
CB〉; PABCD = 2〈−−→AC,

−−→
DB〉.

2. If four pointsA, B,C, andD are collinear orAB ‖ CD,

−−→
AB=

AB

CD

−−→
CD,

AB

CD
=
〈−−→AB,

−−→
CD〉

〈−−→CD,
−−→
CD〉
.

2This example is from Amer. Math. Mon. 75(1968), p.899.
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3. VABCD =
1
6〈−→AD, [

−−→
AB,
−−→
AC]〉.

4. If six pointsA, B,C, P, Q, andR are coplanar orABC ‖ PQR,

[
−−→
AB,
−−→
AC] =

SABC

SPQR
[
−−→
PQ,
−−→
PR],

SABC

SPQR
=
〈[−−→AB,

−−→
AC], [

−−→
PQ,
−−→
PR]〉

〈[−−→PQ,
−−→
PR], [

−−→
PQ,
−−→
PR]〉

.

• We have the following criteria for parallel and perpendicularity.

1. AB⊥ CD ⇐⇒ 〈−−→AB,
−−→
CD〉 = 0.

2. AB ‖ CD ⇐⇒ [
−−→
AB,
−−→
CD] = 0.

3. AB⊥ PQR ⇐⇒ [−→AB, [
−−→
PQ,
−−→
PR]] = 0.

4. AB ‖ PQR ⇐⇒ 〈−→AB, [
−−→
PQ,
−−→
PR]〉 = 0.

5. ABC⊥ PQR ⇐⇒ 〈[−−→AB,
−−→
AC], [

−−→
PQ,
−−→
PR]〉 = 0.

6. ABC ‖ PQR ⇐⇒ [[
−−→
AB,
−−→
AC], [

−−→
PQ,
−−→
PR]] = 0.

• A mechanical proving method is presented for constructive geometry statements in
metric geometry of dimensions two and three. This method works similarly to the
area-volume-Pythagoras difference method developed in Chapters 3 and 4. The basis
of the method is to eliminate points from vectors and inner and exterior products of
vectors.

• We have proved the following meta theorem.

A pure constructive geometry statement is true in one metricgeometry iff it is true in
all the metric geometries associated with the same field.
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Chapter 6

A Collection of 400 Mechanically Proved
Theorems

This chapter is a collection of 400 geometry theorems in plane geometry proved auto-
matically by a computer program1 based on the method developed in the first part of this
book, including 205 machine proofs (in LaTeX form) producedentirely automaticallyby
the program. In addition, there are another 78 problems solved by our computer program
in Chapters 2–5.

We include a collection like this for two reasons. First, it would show the power of the
method/program: most theorems involving equalities only in geometry textbooks are in the
collection. Second, many proofs produced by the program arevery beautiful. Following
the spirit of E. W. Dijkstra (p. 174 [19]), we believe that such beautiful proofs deserve
special attention.

Among the work consulted to collect these examples, specialmention must be made
of the following [1, 3, 4, 13, 23, 39]. The figures and inputs for many of the examples in
this collection are from [12] directly. The examples are classified according to the types of
constructions needed to describe them.

6.1 Notation Convention

As an example of how to read the examples in this collection, let us consider Ceva’s the-
orem. As shown, a typical entry in this collection includes adescription of the theorem in
English, a diagram, a constructive description of the theorem as the input to the program,
and a machine proof produced by the program.

1The program is available via ftp at emcity.cs.twsu.edu: pub/geometry.
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A B

C

O

DE

F

Figure 6-0

Example 6.0 (Ceva’s Theorem) (0.01,1,3)The
lines joining the vertices of a triangle to a
given point determine on the sides of the tri-
angle six segments such that the product of
three nonconsecutive segments is equal to the
product of the remaining three segments.

Constructive description
((pointsA B C O)

(inter D (l B C) (l O A))

(inter E (l A C) (l O B))

(inter F (l A B) (l O C))

( AF
FB

BD
DC

CE
EA
= 1) )

The machine proof

−CE
AE
· BD
CD
· AF

BF

F
=
−(−SACO)
−SBCO

· CE
AE
· BD
CD

E
=
−SBCO·SACO

SBCO·(−SABO) · BD
CD

simpli f y
=

SACO

SABO
· BD

CD

D
=

SABO·SACO

SABO·SACO

simpli f y
= 1

The eliminants

AF
BF

F
=

SACO

SBCO

CE
AE

E
=

SBCO

−SABO

BD
CD

D
=

SABO

SACO

Notation Convention.

1. We use a triple(time,maxt,lems)to measure how difficult a machine proof is:time
is the time needed to complete the machine proof in a NexT Turbo workstation (25
MIPS);maxtis the number of terms of the maximal polynomial occurring inthe ma-
chine proof; andlemsis the number of elimination lemmas used to eliminate points
from geometry quantities, i.e., the number of the eliminants. For Ceva’s theorem,
time= 0.01 second, maxterm= 1, andlems= 3.

2. We use some abbreviations in the constructive description of the geometry statements
in order to save printing space. For instance, LINE is represented by l; PLINE is
represented by p; BLINE is represented by b; and ALINE is represented by a.

3. The ndg conditions and the predicate forms of the geometrystatements are not given,
since they can be generated directly from the constructive description. See page 110.

4. For explanation of the machine proof and the eliminants, see page 72.

In Part I of the book, we have introduced 28 constructions forplane geometry, which
are listed here for your convenience.

1. (ARATIO A O U V rO rU rV). Take a pointA such thatrU , rV, andrO are thearea
coordinatesof A with respect toOUV. For the exact definition of this construction,
see page 136.

2. (CENTROIDG A B C). G is the centroid of triangleABC. See page 138.
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3. (CIRCLEY1 · · · Ys), (s≥ 3). PointsY1 · · · Ys are on the same circle. See page 144.

4. (CIRCUMCENTERO A B C). O is the circumcenter of triangleABC. See page 138.

5. (CONSTANTp(r)) wherep(r) is an irreducible polynomial inr. This construction
introduces an algebraic numberr which is a root ofp(r) = 0. See page 123.

6. (HARMONIC D C A B) means thatD is a point such thatA, B,C, and D form a
harmonic consequence. See page 123.

7. (INCENTERC I A B) I is the center of the inscribed circle of triangleABC. This
construction is to construct pointC from pointsA, B, andI . See page 138.

8. (INTERY ln1 ln2). PointY is the intersection of linesln1 andln2. See page 110.

9. (INTERY ln (CIR O P)). PointY is the intersection of lineln and circle (CIRO P)
other than pointP. Line ln could be (LINEP U), (PLINE P U V), and (TLINEP U
V). See page 110.

10. (INTERY (LINE U V) (CIR O r)). PointY is one of the intersections of line (LINE
U V) and circle (CIRO r). See page 148.

11. (INTERY (CIR O1 P) (CIR O2 P)). PointY is the intersection of the circle (CIRO1

P) and the circle (CIRO2 P) other than pointP. See page 110.

12. (INTERY (CIR O1 r1) (CIR O2 r2)). PointY is one of the intersections of the circle
(CIR O1 r1) and the circle (CIRO2 r2). See page 148.

13. (INVERSIONP Q O A) means thatP is the inversion ofQ with regard to circle (CIR
O A). See page 123.

14. (LRATIO Y U V r). Y is a point onUV such thatUY
UV
= r. See page 122.

15. (ONY ln). Take a pointY on a lineln. Line ln could be one of the forms below.

(LINE A B) is the line passing through two pointsA andB.

(PLINE C A B) is the line passing throughC and parallel to (LINEA B).

(TLINE C A B) is the line passing throughC and perpendicular to (LINEA B).

(BLINE A B) is the perpendicular-bisector ofAB.

(ALINE P Q U W V) is the linel passing throughPsuch that∠[PQ, l] = ∠[UW,WV].

See pages 110 and 129.

16. (ONY (CIR O P)). Take a pointY on a circle (CIRO P). See page 110.

17. (MIDPOINTY U V). Y is the midpoint ofUV. See page 122.
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18. (MRATIO Y U V r). Y is a point onUV such thatUY
YV
= r. See page 122.

19. (NE-SQUAREC B A) introduces a pointC such thatCAB is an isosceles right trian-
gle with negative orientation, i.e,

−→
C =
−→
A − i · −−→AB. See page 255.

20. (NE-TRIANGLEC B A) introduces a pointC such thatABC is an equilateral triangle
with negative orientation. See page 251.

21. (ORTHOCENTERH A B C). H is the orthocenter of the triangleABC. See page
138.

22. (PE-SQUAREC B A) introduces a pointC such thatCABis an isosceles right triangle
with positive orientation, i.e.,

−→
C =
−→
A + i · −−→AB. See page 255.

23. (PE-TRIANGLEC B A) introduces a pointC such thatABC is an equilateral triangle
with positive orientation. See page 251.

24. (POINT[S]Y1, · · · ,Yl). Take arbitrary pointsY1, · · · ,Yl in the plane. See page 110.

25. (PRATIOY W U V r). Take a pointY on the line passing throughW and parallel to
line UV such thatWY= rUV. See page 110.

26. (SIM-TRIANGLE Q C B P A C) introduces a pointQ such that triangleQCB and
trianglePACare similar and have the same orientation. See page 250.

27. (SYMMETRY Y U V). Y is the symmetry of pointV with respect to pointU. See
page 122.

28. (TRATIO Y U V r). Take a pointY on line (TLINE U U V) such thatr = 4SUVY

PUVU
(=

UY
UV

). See page 110.

The following are the predicates accepted by the program as conclusions.

1. (COCIRCLEA B C D). PointsA, B,C, andD are co-circle iff ∠[CAD] = ∠[CBD], or
equivalently,SCADPCBD = PCADPCBD. See page 130.

2. (COLLINEAR A B C). PointsA, B, andC are collinear iff SABC = 0. Also see the
comments after Example 2.36 on page 74.

3. (EQANGLE A B C D E F). ∠[ABC] = ∠[DEF] iff SABCPDEF = SDEFPABC. See
page 114.

4. (EQDISTANCEA B C D). ABhas the same length asCD iff PABA = PCDC. See page
114.

5. (EQ-PRODUCTA B C D P Q R S). The product ofAB andCD is equal to the
product ofPQ andRS. See page 114.
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6. (HARMONIC A B C D). A, B andC, D are harmonic points iff AC
CB
= DA

DB
. See page

123.

7. (INVERSIONP Q O A). P is the inversion ofQ with regard to circle (CIRO A). See
page 123.

8. (MIDPOINT O A B). O is the midpoint ofAB iff AO
OB
= 1. See page 114.

9. (NE-TRIANGLEC B A) ABC is an equilateral triangle with negative orientation, i.e,
−→
C + ω

−→
B + ω2−→A = 0. See page 251.

10. (ON-RADICAL P O1 A O2 B). P is on the axis of circlesO1A andO2B iff PPO1P −
PAO1A = PPO2P − PBO2B.

11. (PARALLEL A B C D). AB is parallel toCD iff SACD = SBCD. See page 114.

12. (PE-TRIANGLEC B A). ABC is an equilateral triangle with positive orientation,
i.e.,
−→
C + ω2−→B + ω−→A = 0. See page 251.

13. (PERPENDICULARA B C D). AB is perpendicular toCD iff PACD = PBCD. See
page 114.

14. (PERP-BISECTO P Q). O is on the perpendicular bisector ofPQ iff POPO = POQO.

15. (TANGENTO1 A O2 B). Circle (CIRO1 A) is tangent to circle (CIRO2 B). See page
114.

6.2 Geometry of Incidence

In this section, we include those geometric statements thatcan be formulated and proved
without the measurement or comparison of distances or of angles, i.e., geometric facts
involving incidence only. Such problems include the transversal, properties of cross-ratios,
projective configurations, etc. These problems belong essentially to affine geometry. To
prove statements involving incidence only, we need only to use Algorithm 2.32. Actually,
theco-side theoremwould be enough for the proofs of most of the examples in this section.

6.2.1 Menelaus’ Theorem

For the machine proof of Menelaus’ theorem, see Example 2.35on page 73.
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Example 6.1 (Converse of Menelaus’ Theorem) (0.033, 2, 6)If three points are taken, one on
each side of a triangle, so that these points divide the sidesinto six segments such that the
products of the segments in each of the two sets of nonconsecutive segments are equal in
magnitude and opposite in sign, the three points are collinear.

A B

C

D

E

F
Figure 6-1

Constructive description
((pointsA B C)

(mratioD B C r1)

(mratioE C A r2)

(inter F (l D E) (l A B))

( BF
FA
= −r1·r2) )

The machine proof
BF
AF

r2·r1

F
=

SBDE

r2·r1·SADE

E
=

SABD·r2·(r2+1)
r2·r1·(−SACD)·(r2+1)

simpli f y
=

−SABD
r1·SACD

D
=
−SABC·r1·(r1+1)

r1·(−SABC)·(r1+1)

simpli f y
= 1

The eliminants
BF
AF

F
=

SBDE
SADE

SADE
E
=
−SACD

r2+1

SBDE
E
=

SABD·r2
r2+1

SACD
D
=
−SABC

r1+1

SABD
D
=

SABC·r1
r1+1

Example 6.2 (Menelaus’ Theorem for a Quadrilateral) (0.033, 1, 4) A line XY meets the sides
AB, BC, CD, and DA of a quadrilateral at A1, B1, C1, and D1 respectively. Show that
AA1

BA1
· BB1

CB1
· CC1

DC1
· DD1

AD1
= 1.

1D

1C

1B

1A

D

C

BA

X
Y

Figure 6-2

Constructive description
( (pointsA B C D X Y)

(inter A1 (l A B) (l X Y))

(inter B1 (l B C) (l X Y))

(inter C1 (l C D) (l X Y))

(inter D1 (l A D) (l X Y))

(
AA1
BA1
· BB1
CB1
·CC1

DC1
· DD1

AD1
= 1) )

The machine proof
DD1
AD1
·CC1

DC1
· BB1
CB1
· AA1

BA1

D1
=

SDXY

SAXY
· CC1

DC1
· BB1
CB1
· AA1

BA1

C1
=

SDXY·SCXY

SAXY·SDXY
· BB1

CB1
· AA1

BA1

simpli f y
=

SCXY

SAXY
· BB1

CB1
· AA1

BA1

B1
=

SCXY·SBXY

SAXY·SCXY
· AA1

BA1

simpli f y
=

SBXY
SAXY
· AA1

BA1

A1
=

SBXY·SAXY
SAXY·SBXY

simpli f y
= 1

The eliminants

DD1
AD1

D1
=

SDXY
SAXY

CC1
DC1

C1
=

SCXY

SDXY

BB1
CB1

B1
=

SBXY
SCXY

AA1
BA1

A1
=

SAXY
SBXY

Example 6.3 (0.033, 2, 7)The converse of Example 6.2. The figure of this example is the
same as Example 6.2.
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Constructive description
((pointsA B C D)

(mratioB1 B C r1)

(mratioC1 C D r2)

(inter D1 (l D A) (l B1 C1))

(inter A1 (l A B) (l B1 C1))

(
BA1
A1A
= r1·r2·

DD1
D1A

) )

The machine proof
BA1
AA1

DD1
AD1
·r2·r1

A1
=

SBB1C1
DD1
AD1
·r2·r1·SAB1C1

D1
=

SBB1C1 ·SAB1C1
SDB1C1 ·r2·r1·SAB1C1

simpli f y
=

SBB1C1
SDB1C1 ·r2·r1

C1
=

(−SBDB1 ·r2)·(r2+1)

SCDB1 ·r2·r1·(r2+1)

simpli f y
=

−SBDB1
SCDB1 ·r1

B1
=
−(−SBCD·r1)·(r1+1)

SBCD·r1·(r1+1)

simpli f y
= 1

The eliminants

BA1
AA1

A1
=

SBB1C1
SAB1C1

DD1
AD1

D1
=

SDB1C1
SAB1C1

SDB1C1

C1
=

SCDB1
r2+1

SBB1C1

C1
=
−SBDB1 ·r2

r2+1

SCDB1

B1
=

SBCD

r1+1

SBDB1

B1
=
−SBCD·r1

r1+1

Definition. Two points on a side of a triangle are said to be isotomic to each other, if they
are equidistant from the midpoint of this side.

Example 6.42 (0.083, 2, 9)The isotomic points of three collinear points are collinear.

A B

C

D

E

F

D

E

F

Figure 6-4

1

1

1

Constructive description
( (pointsA B C)

(lratio D B C r1)

(lratio E A C r2)

(inter F (l A B) (l D E))

(pratioD1 B C D −1)

(pratioE1 C A E −1)

(pratioF1 A B F −1)

(
AF1
F1B

BD1
D1C

CE1
E1A
= −1) )

The machine proof
CE1
AE1
· BD1
CD1
· AF1

BF1

F1
= −1

− AB
BF
−1
· CE1

AE1
· BD1
CD1

E1
= −1

( AB
BF
+1)·( AC

AE
−1)
· BD1

CD1

D1
=

−(−1)

( AB
BF
+1)·( AC

AE
−1)·(− BC

CD
−1)

F
=

−SBDE

(SADBE+SBDE)·( AC
AE
−1)·( BC

CD
+1)

E
=

−(−SABD·r2+SABD)·r2

(−SABD·r2+SABC·r2)·(−r2+1)·( BC
CD
+1)

simpli f y
=

SABD

(SABD−SABC)·( BC
CD
+1)

D
=

SABC·r1·(r1−1)
(SABC·r1−SABC)·r1

simpli f y
= 1

The eliminants

AF1
BF1

F1
=

1
AB
BF
+1

CE1
AE1

E1
=
−1

AC
AE
−1

BD1
CD1

D1
=

1
BC
CD
+1

AB
BF

F
=

SADBE

SBDE

AC
AE

E
=

1
r2

SADBE
E
= − (SABD−SABC·r2)

SBDE
E
= − ((r2−1)·SABD)

BC
CD

D
=

1
r1−1

SABD
D
=SABC·r1

2In this chapter, the figure indices are always the same with the indices of the examples
that they belong to.



266 Chapter 6. Topics from Geometry

6.2.2 Ceva’s Theorem

For the machine proof of Ceva’s theorem, see page 72. For the generalizations of Ceva’s
theorem to arbitrary polygons, see Subsection 2.7.3.

Example 6.5 (The Converse of Ceva’s Theorem) (0.066, 2, 8)If three points taken on the sides
of a triangle determine on these sides six segments such thatthe products of the segments
in the two nonconsecutive sets are equal, both in magnitude and in sign, the lines joining
these points to the respectively opposite vertices are concurrent.

A B

DE

O

C

F

Figure 6-5

Constructive description
( (pointsA B C)

(mratioD B C r1)

(mratioE C A r2)

(mratioF B A r1·r2)

(inter O (l B E) (l A D))

(inter Z (l B A) (l O C))

( BZ
AZ
= BF

AF
) )

The machine proof

( BZ
AZ

)/( BF
AF

)
Z
=

−SBCO
BF
AF
·(−SACO)

O
=

(−SBCE·SABD)·SABDE
BF
AF
·SACD·SABE·(−SABDE)

simpli f y
=

SBCE·SABD
BF
AF
·SACD·SABE

F
=

SBCE·SABD·(−1)
r2·r1·SACD·SABE

E
=
−SABC·r2·SABD·(r2+1)
r2·r1·SACD·SABC·(r2+1)

simpli f y
=

−SABD
r1·SACD

D
=
−SABC·r1·(r1+1)

r1·(−SABC)·(r1+1)

simpli f y
= 1

The eliminants

BZ
AZ

Z
=

SBCO

SACO

SACO
O
=

SACD·SABE

SABDE

SBCO
O
=

SBCE·SABD

SABDE

BF
AF

F
= − (r2·r1)

SABE
E
=

SABC

r2+1

SBCE
E
=

SABC·r2
r2+1

SACD
D
=
−SABC

r1+1

SABD
D
=

SABC·r1
r1+1

Definition. If a line is drawn through a vertex of a triangle, the segment included between
the vertex and the opposite side is called a cevian. The triangle DEF in Figure 6-5 is called
the cevian triangle of the point O for the triangle ABC.

Example 6.6 (0.050, 3, 12)If LMN is the cevian triangle of the point S for the triangle ABC,
we have S L/AL+ S M/BM+ S N/CN = 1.
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B C

A

S

L

N

M

Figure 6-6

Constructive description
( (pointsA B C S)

(inter L (l B C) (l A S))

(inter N (l B A) (l C S))

(inter M (l A C) (l B S))

( S L
AL
+S M

BM
+ S N

CN
= 1) )

The machine proof
S M
BM
+ S N

CN
+S L

AL

M
=
− S N

CN
·SABC−S L

AL
·SABC+SACS

−SABC

N
=
−S L

AL
·S2

ABC+SACS·SABC−SABS·SABC

SABC·(−SABC)

simpli f y
=

S L
AL
·SABC−SACS+SABS

SABC

L
=

SBCS·SABC−SACS·SABC+SABS·SABC

(SABC)2

simpli f y
=

SBCS−SACS+SABS

SABC

area−co
=

SABC

SABC

simpli f y
= 1

The eliminants

S M
BM

M
=

SACS

−SABC

S N
CN

N
=

SABS

SABC

S L
AL

L
=

SBCS

SABC

SBCS=SACS−SABS+SABC

Example 6.7If LMN is the cevian triangle of the point S for the triangle ABC (Figure 6-6),
we haveSAMLSBNMSCLN

SANLSBLMSCNM
= 1.

Constructive description:((pointsA B C S) (inter L (l B C) (l S A))

(inter M (l A C) (l S B)) (inter N (l A B) (l S C)) (SAMLSBNMSCLN = SANLSBLMSCNM) )

The machine proof
SCLN·SBMN·SALM

SCMN·SBLM·SALN

N
=

(−SCS L·SABC)·(−SBCS·SABM)·SALM·SACBS·(−SACBS)
(−SCS M·SABC)·SBLM·(−SACS·SABL)·SACBS·(−SACBS)

simpli f y
=

SCS L·SBCS·SABM·SALM

SCS M·SBLM·SACS·SABL

M
=

SCS L·SBCS·SABS·SABC·(−SACL·SABS)·(−SABCS)·SABCS

SBCS·SACS·SBS L·SABC·SACS·SABL·(SABCS)2

simpli f y
=

SCS L·(SABS)2·SACL

(SACS)2·SBS L·SABL

L
=

SBCS·SACS·(SABS)2·(−SACS·SABC)·((−SABSC))2

(SACS)2·SBCS·SABS·(−SABS·SABC)·((−SABSC))2

simpli f y
= 1

The eliminants

SALN
N
=
−SACS·SABL

SACBS

SCMN
N
=

SCS M·SABC

SACBS

SBMN
N
=
−SBCS·SABM

SACBS

SCLN
N
=

SCS L·SABC

SACBS

SBLM
M
=

SBS L·SABC

−SABCS

SCS M
M
=

SBCS·SACS

SABCS

SALM
M
=
−SACL·SABS

SABCS

SABM
M
=

SABS·SABC

SABCS

SABL
L
=

SABS·SABC

SABSC

SBS L
L
=

SBCS·SABS

−SABSC

SACL
L
=

SACS·SABC

SABSC

SCS L
L
=

SBCS·SACS

−SABSC

Example 6.8 (0.033, 3, 4)The lines AP, BQ, CR through the vertices of a triangle ABC
parallel, respectively, to the lines OA1, OB1, OC1 joining any point O to the points A1, B1,
C1 marked in any manner whatever, on the sides of BC, CA, AB meet these sides in the
points P, Q, R. Show that OA1/AP+OB1/BQ+OC1/CR= 1.
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A B

C

O

1A1B

1C

P

Q

R

Figure 6-8

Constructive description
( (pointsA B C O)

(on A1 (l B C))

(on B1 (l C A))

(on C1 (l B A))

(inter P (l B C) (p A A1 O))

(inter Q (l A C) (p B B1 O))

(inter R (l A B) (p C C1 O))

(
OA1
AP
+

OB1
BQ
+

OC1
CR
= 1) )

The machine proof
OC1
CR
+

OB1
BQ
+

OA1
AP

R
=

OB1
BQ
·SABC+

OA1
AP
·SABC+SABO

SABC

Q
=
−OA1

AP
·S2

ABC+SACO·SABC−SABO·SABC

SABC·(−SABC)

simpli f y
=

OA1
AP
·SABC−SACO+SABO

SABC

P
=

SBCO·SABC−SACO·SABC+SABO·SABC

(SABC)2

simpli f y
=

SBCO−SACO+SABO

SABC

area−co
=

SABC

SABC

simpli f y
= 1

The eliminants
OC1
CR

R
=

SABO

SABC
OB1
BQ

Q
=

SACO

−SABC
, OA1

AP

P
=

SBCO

SABC

SBCO=SACO−SABO+SABC

Example 6.9 (0.083, 2, 9)If LMN is the cevian triangle of the point S for the triangle ABC,
we have AS/S L= AM/MC + AN/NB.

M

N

L

S

A

CB

Figure 6-9

Constructive description
( (pointsA B C S)

(inter L (l B C) (l A S))

(inter N (l B A) (l C S))

(inter M (l A C) (l B S))

( AM
MC
+ AN

NB
= AS

S L
) )

The machine proof
−( AM

CM
+ AN

BN
)

AS
S L

M
=
−(− AN

BN
·SBCS+SABS)

AS
S L
·(−SBCS)

N
=
−(SBCS·SACS−SBCS·SABS)

AS
S L
·(SBCS)2

simpli f y
=

−(SACS−SABS)
AS
S L
·SBCS

L
=
−(SACS−SABS)·SBCS

SABSC·SBCS

simpli f y
=

−(SACS−SABS)
SABSC

area−co
=

−(SACS−SABS)
−SACS+SABS

simpli f y
= 1

The eliminants

AM
CM

M
=

SABS

−SBCS

AN
BN

N
=

SACS

SBCS

AS
S L

L
=

SABSC

SBCS

SABSC= − (SACS−SABS)

Example 6.10 (0.083, 1, 5)The Ceva’s theorem for a pentagon.
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A B

C

D

E

O

A
B

C

D

E

Figure 6-10

1
1

1

1

1

Constructive description
( (pointsA B C D E O)

(inter A1 (l O A) (l C D))

(inter B1 (l O B) (l D E))

(inter C1 (l O C) (l E A))

(inter D1 (l O D) (l A B))

(inter E1 (l O E) (l B C))

(
CA1
A1D

DB1
B1E

EC1
C1A

AD1
D1B

BE1
E1C
= 1) )

The machine proof

− EC1
AC1
· DB1

EB1
·CA1
DA1
· BE1
CE1
· AD1

BD1

E1
=
−(−SBEO)
−SCEO

· EC1
AC1
· DB1

EB1
·CA1

DA1
· AD1

BD1

D1
=
−SBEO·(−SADO)
SCEO·(−SBDO) ·

EC1
AC1
· DB1

EB1
·CA1
DA1

C1
=
−SCEO·SBEO·SADO

SCEO·SBDO·(−SACO) ·
DB1
EB1
·CA1
DA1

simpli f y
=

SBEO·SADO

SBDO·SACO
· DB1

EB1
·CA1

DA1

B1
=

SBDO·SBEO·SADO

SBDO·SACO·SBEO
· CA1

DA1

simpli f y
=

SADO

SACO
· CA1

DA1

A1
=

SACO·SADO

SACO·SADO

simpli f y
= 1

The eliminants

BE1
CE1

E1
=

SBEO

SCEO

AD1
BD1

D1
=

SADO

SBDO

EC1
AC1

C1
=

SCEO

−SACO

DB1
EB1

B1
=

SBDO

SBEO

CA1
DA1

A1
=

SACO

SADO

Example 6.11 (0.067, 3, 16)If the three lines joining three points marked on the sides ofa tri-
angle to the respectively opposite vertices are concurrent, the same is true of the isotomics
of the given points.

A B

C

O

D

E

F

1D

1E

1F

H

Figure 6-11

Constructive description
( (pointsA B C O)

(inter D (l A O) (l C B))

(inter E (l B O) (l A C))

(inter F (l C O) (l A B))

(pratioD1 B C D −1)

(pratioE1 C A E −1)

(pratioF1 A B F −1)

(
AF1
F1B

BD1
D1C

CE1
E1A
= 1) )

The machine proof

−CE1
AE1
· BD1
CD1
· AF1

BF1

F1
=
−(−1)

− AB
BF
−1
· CE1

AE1
· BD1
CD1

E1
=

−(−1)

( AB
BF
+1)·( AC

AE
−1)
· BD1

CD1

D1
= −1

( AB
BF
+1)·( AC

AE
−1)·(− BC

CD
−1)

F
=

SBCO

(SACBO+SBCO)·( AC
AE
−1)·( BC

CD
+1)

The eliminants
AF1
BF1

F1
=

1
AB
BF
+1

CE1
AE1

E1
=
−1

AC
AE
−1

BD1
CD1

D1
=

1
BC
CD
+1

AB
BF

F
=

SACBO

SBCO

AC
AE

E
=

SABCO

SABO

BC
CD

D
=

SABOC

SACO
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The machine proof
E
=

SBCO·SABO

(SACBO+SBCO)·(SABCO−SABO)·( BC
CD
+1)

D
=

SBCO·SABO·(−SACO)
(SACBO+SBCO)·(SABCO−SABO)·(−SABOC−SACO)

area−co
=

(SACO−SABO+SABC)·SABO·SACO

SACO·(SACO−SABO+SABC)·SABO

simpli f y
= 1

The eliminants

SABOC= − (SACO−SABO)
SABCO=SACO+SABC

SACBO=SABO−SABC

SBCO=SACO−SABO+SABC

6.2.3 The Cross-ratio and Harmonic Points

Definition Let A, B,C, and D be four collinear points. The cross ratio of them, denoted by
(ABCD), is defined to be

(ABCD) = (
CA

CB
)/(

DA

DB
).

Example 6.12 (0.066, 2, 10)The cross ratio of four points on a line is unchanged under a
projection.

A B

O

C D

1A

1B
1C 1D

Figure 6-12

Constructive description
((pointsO A B C1 D1)

(inter C (l A B) (l O C1))

(inter D (l A B) (l O D1))

(inter A1 (l C1 D1) (l O A))

(inter B1 (l C1 D1) (l O B))

( AC
BC

BD
AD
=

A1C1
A1D1

B1D1
B1C1

) )

The machine proof
BD
AD
· AC

BC
D1B1
C1B1

·C1A1
D1A1

B1
=

SOBC1

SOBD1 ·
C1A1
D1A1

· BD
AD
· AC

BC

A1
=

SOBC1 ·SOAD1
SOBD1 ·SOAC1

· BD
AD
· AC

BC

D
=

(−SOBD1)·SOBC1 ·SOAD1
SOBD1 ·SOAC1 ·(−SOAD1) · AC

BC

simpli f y
=

SOBC1
SOAC1

· AC
BC

C
=

(−SOAC1 )·SOBC1
SOAC1 ·(−SOBC1)

simpli f y
= 1

The eliminants

D1B1
C1B1

B1
=

SOBD1
SOBC1

C1A1
D1A1

A1
=

SOAC1
SOAD1

BD
AD

D
=

SOBD1
SOAD1

AC
BC

C
=

SOAC1
SOBC1
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Definition. For any five different points O,A, B,C, and D, the cross-ratio of any four
collinear points on lines OA,OB,OC, and OD is a constant and is denote by O(ABCD).

Example 6.13 (0.050, 2, 10)Two lines OABC and OA1B1C1 intersect at point O. If(OABC) =
(OA1B1C1) then AA1, BB1, and CC1 are concurrent.

O

A

A

B

C

BC

X

Figure 6-13

1 11

Constructive description
( (pointsO A A1)

(mratioB A O r1)

(mratioC O A r2)

(mratioB1 O A1 r3)

(mratioC1 O A1 r1·r2·r3)

(inter X (l A A1) (l B B1))

(inter Y (l A A1) (l C C1))

( AX
XA1
= AY

YA1
) )

The machine proof

( AX
A1X

)/( AY
A1Y

)

Y
=

SA1CC1
SACC1

· AX
A1X

X
=

SABB1 ·SA1CC1
SACC1 ·SA1BB1

C1
=

SABB1 ·SOA1C·(r3·r2·r1+1)

(−SAA1C·r3·r2·r1)·SA1BB1 ·(r3·r2·r1+1)

simpli f y
=

SABB1 ·SOA1C

−SAA1C·r3·r2·r1·SA1BB1

B1
=

(−SAA1B·r3)·SOA1C·(r3+1)

−SAA1C·r3·r2·r1·SOA1B·(r3+1)

simpli f y
=

SAA1B·SOA1C

SAA1C·r2·r1·SOA1B

C
=

SAA1B·(−SOAA1 ·r2)·(r2+1)

SOAA1 ·r2·r1·SOA1B·(r2+1)

simpli f y
=

−SAA1B

r1·SOA1B

B
=
−SOAA1 ·r1·(r1+1)

r1·(−SOAA1)·(r1+1)

simpli f y
= 1

The eliminants

AY
A1Y

Y
=

SACC1
SA1CC1

AX
A1X

X
=

SABB1
SA1BB1

SACC1

C1
=
−SAA1C·r3·r2·r1

r3·r2·r1+1

SA1CC1

C1
=

SOA1C

r3·r2·r1+1

SA1BB1

B1
=

SOA1B

r3+1

SABB1

B1
=
−SAA1B·r3

r3+1

SAA1C
C
=

SOAA1
r2+1

SOA1C
C
=
−SOAA1 ·r2

r2+1

SOA1B
B
=
−SOAA1

r1+1

SAA1B
B
=

SOAA1 ·r1

r1+1

Definition. If (ABCD) = −1, we call A, B,C,D a harmonic sequence, or C,D divide the
segment AB harmonically. Four lines passing through a pointO is said to form a harmonic
pencil if another line meets them in a harmonic sequence A, B,C,D. Each of the line is
called a ray of the the pencil and O is called the center of the pencil. OA and OB, OC and
OD are said to be a pair of conjugate rays, or OC and OD are harmonically separated by
OA and OB.

Example 6.14 (0.016, 2, 4)Let A, B,C,D be four harmonic points and O be the midpoint of

AB. ThenOC ·OD = OA
2
.
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Constructive description
( (pointsA B)

(mratioC A B r)

(mratioD A B −r)

(midpointO A B)

( OC
OA
= OA

OD
) )

The machine proof

(CO
AO

)/( AO
DO

)

O
=

(− AC
AB
+ 1

2 )·(− AD
AB
+ 1

2 )

(( 1
2 ))2

D
=

(2AC
AB
−1)·(−r−1)

−r+1

C
=

(r−1)·(r+1)
(r−1)·(r+1)

simpli f y
= 1

The eliminants
AO
DO

O
=

1

−(2AD
AB
−1)

CO
AO

O
= − (2AC

AB
−1)

AD
AB

D
=

r
r−1

AC
AB

C
=

r
r+1

Example 6.15 (0.050, 2, 3)The converse theorem. If O is the midpoint of AB, and if C,D are

points of the line AB such thatOC ·OD = OA
2
, then A, B,C,D are harmonic points.

Constructive description
( (pointsA B)

(midpointO A B)

(lratio C O A r)

(lratio D O A 1
r )

(harmonicA B C D) )

The machine proof

(− AC
BC

)/( AD
BD

)

D
=
− BO

AO
·r+1

−r+1 · − AC
BC

C
=
−(r−1)·( BO

AO
·r−1)

(r−1)·(− BO
AO
+r)

simpli f y
=

BO
AO
·r−1

BO
AO
−r

O
=

(− 1
2 r− 1

2)·( 1
2 )

(− 1
2 r− 1

2)·( 1
2 )

simpli f y
= 1

The eliminants
AD
BD

D
=

r−1
BO
AO
·r−1

AC
BC

C
=

r−1

−( BO
AO
−r)

BO
AO

O
= − (1)

Example 6.16 (0.266, 8, 6)The sum of the squares of two harmonic segments is equal to four
times the square of the distance between the midpoints of these segments.

Constructive description
( (pointsA B)

(mratioC A B r)

(mratioD A B −r)

(midpointO A B)

(midpointM C D)

(( AB
MO

)2+( CD
MO

2
) = 4) )

The eliminants

AB
OM

M
=

AB
CD

(− 1
2 )·(2CO

CD
−1)

CD
OM

M
=

1

(− 1
2 )·(2CO

CD
−1)

CO
CD

O
=

(− 1
2)·(2AC

AB
−1)

CD
AB

CD
AB

D
=

AC
AB
·r− AC

AB
−r

−(r−1)
AB
CD

D
=
−(r−1)

AC
AB
·r− AC

AB
−r

AC
AB

C
=

r
r+1



6.2. Geometry of Incidence 273

The machine proof
1
4( CD

OM

2
+ AB

OM

2)

M
=

CO
CD

2
· AB
CD

2
+CO

CD

2
−CO

CD
· AB
CD

2
−CO

CD
+ 1

4
AB
CD

2
+ 1

4

(4)·(−CO
CD
+ 1

2 )4

simpli f y
=

AB
CD

2
+1

(2CO
CD
−1)2

O
=

AB
CD

2
+1

(−CD
AB
−2AC

AB
+1)2
· ( CD

AB
)2

D
=

( AC
AB

2
·r2−2AC

AB

2
·r+ AC

AB

2
−2AC

AB
·r2+2AC

AB
·r+2r2−2r+1)·( AC

AB
·r− AC

AB
−r)2·(−r+1)2

(− AC
AB
·r+ AC

AB
−1)2·(−r+1)2·( AC

AB
·r− AC

AB
−r)2

simpli f y
=

AC
AB

2
·r2−2AC

AB

2
·r+ AC

AB

2
−2AC

AB
·r2+2AC

AB
·r+2r2−2r+1

( AC
AB
·r− AC

AB
+1)2

C
=

(r4+2r2+1)·(r+1)2

(r2+1)2·(r+1)2

simpli f y
= 1

Example 6.17 (0.083, 1, 10)Let A, B,R be three points on a plane, Q and P be points on line
AR and BR respectively. S is the intersection of QB and AP. C isthe intersection of RS
and AB. F is the intersection of QP and AB. Show that(ABCF) = −1.

A B

R

P

Q

S

C F

Figure 6-17

Constructive description
((pointsA B R)

(on P (l B R))

(on Q (l A R))

(inter S (l A P) (l B Q))

(inter C (l R S) (l A B))

(inter F (l P Q) (l A B))

( AC
BC
= − AF

BF
) )

The machine proof
AC
BC

− AF
BF

F
=

SBPQ

−SAPQ
· AC

BC

C
=

SARS·SBPQ

−SAPQ·SBRS

S
=
−SARP·SABQ·SBPQ·(−SABPQ)
SAPQ·(−SBRQ·SABP)·SABPQ

simpli f y
=

−SARP·SABQ·SBPQ

SAPQ·SBRQ·SABP

2lines
=

−RP·AR·β·BR·AQ·β·(−RQ·BP·β)·((2))3

(−RP·AQ·β)·(−RQ·BR·β)·BP·AR·β·((2))3

simpli f y
= 1

The eliminants
AF
BF

F
=

SAPQ

SBPQ

AC
BC

C
=

SARS

SBRS

SBRS
S
=

SBRQ·SABP

SABPQ

SARS
S
=

SARP·SABQ

SABPQ

SABP=
1
2(BP·AR·β)

SBRQ= − 1
2(RQ·BR·β)

SAPQ= − 1
2(RP·AQ·β)

SBPQ= − 1
2(RQ·BP·β)

SABQ=
1
2(BR·AQ·β)

SARP=
1
2(RP·AR·β)

Example 6.18 (0.033, 7, 6)Given (ABCD) = −1 and a point O outside the line AB, if a
parallel through B to OA meets OC, OD in P, Q, we then have PB= BQ.
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Q

P

DC

O

BA

Figure 6-18

Constructive description
( (pointsA B O)

(mratioC A B r)

(mratioD A B −r)

(inter P (l O C) (p B O A))

(inter Q (l O D) (p B O A))

(midpointB P Q) )

The machine proof

− BP
BQ

Q
=
−SBOPD

SBOD

P
=
−(−SOCD·SABO+SBOD·SAOC)

SBOD·SAOC

D
=

(SBOC·SABO·r2−SBOC·SABO·r)·(−r+1)
SABO·SAOC·(−r+1)2

simpli f y
=

−SBOC·r
SAOC

C
=
−SABO·r ·(r+1)

(−SABO·r)·(r+1)

simpli f y
= 1

The eliminants
BP
BQ

Q
=

SBOPD

SBOD

SBOPD
P
=
−(SOCD·SABO−SBOD·SAOC)

SAOC

SBOD
D
=

SABO

−(r−1)

SOCD
D
=

SBOC·r−SAOC

r−1

SAOC
C
=
−SABO·r

r+1

SBOC
C
=

SABO

r+1

Example 6.19 (0.033, 2, 8)The converse theorem of Example 6.18.

Constructive description
( (pointsA B O)

(on C (l A B))

(inter P (l O C) (p B O A))

(lratio Q B P −1)

(inter D (l O Q) (l A B))

(harmonicA B C D) )

The machine proof

(− AC
BC

)/( AD
BD

)
D
=

SBOQ

SAOQ
· − AC

BC

Q
=

−(−SBOP)
−SAOP−2SABO

· AC
BC

P
=
−(−SBOC)·SABO

SABO·SAOC
· AC

BC

simpli f y
=

SBOC

SAOC
· AC

BC

C
=

AC
AB
·(−SABO· AC

AB
+SABO)

(−SABO· AC
AB

)·( AC
AB
−1)

simpli f y
= 1

The eliminants
AD
BD

D
=

SAOQ

SBOQ

SAOQ
Q
= − (SAOP+2SABO)

SBOQ
Q
= − (SBOP)

SAOP
P
= − (SABO)

SBOP
P
=
−SBOC·SABO

SAOC

SAOC
C
= − (SABO· AC

AB
)

SBOC
C
= − (( AC

AB
−1)·SABO)

AC
BC

C
=

AC
AB

AC
AB
−1

6.2.4 Pappus’ Theorem and Desargues’ Theorem

For the background aboutn3 configurations, see Subsection 2.7.2.
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Example 6.20 (Pappus’ Theorem) (0.166, 1, 14)Let ABC and A1B1C1 be two lines, and P=
AB1 ∩ A1B, Q= AC1 ∩ A1C, S = BC1 ∩ B1C. Then P, Q and S are collinear.

For a machine proof of this example, see Example 2.42. The following proof is shorter.

A B

1A
1B

C

1C

P Q S

Figure 6-20

Constructive description
((pointsA A1 B B1)

(on C (l A B))

(on C1 (l A1 B1))

(inter P (l A1 B) (l A B1))

(inter Q (l A C1) (l A1 C))

(inter S (l B1 C) (l B C1))

(inter T (l B1 C) (l P Q))

(
B1S

CS
=

B1T

CT
) )

The machine proof

( B1S

CS
)/( B1T

CT
)

T
=

SQCP

−SB1QP
· B1S

CS

S
=

(−SBB1C1)·SQCP

−SB1QP·(−SBCC1 )

P
=
−SBB1C1 ·(−SBQC·SAA1B1)·SAA1B1B

(−SA1BB1 ·SAB1Q)·SBCC1 ·(−SAA1B1B)

simpli f y
=

SBB1C1 ·SBQC·SAA1B1
SA1BB1·SAB1Q·SBCC1

C1
=

SA1BB1 ·SAB1Q·SBQC·SAA1B1 ·SAA1QB1
SA1BB1·SAB1Q·(−SBQC·SAA1B1)·(−SAA1QB1)

simpli f y
= 1

The eliminants
B1T

CT

T
=
−SB1QP

SQCP

B1S

CS

S
=

SBB1C1
SBCC1

SB1QP
P
=
−SA1BB1 ·SAB1Q

SAA1B1B

SQCP
P
=

SBQC·SAA1B1
SAA1B1B

SBCC1

C1
=
−SBQC·SAA1B1

SAA1QB1

SBB1C1

C1
=

SA1BB1 ·SAB1Q

−SAA1QB1

Line PQ is called thePappus’ lineand is denoted by [123].

Example 6.21 (0.116, 1, 6)The dual of Pappus’ theorem.

I

1C

1B

1A

1O

C

B

AO

Figure 6-21

Constructive description
( (pointsA B C O O1)

(inter A1 (l O1 B) (l O C))

(inter B1 (l O A) (l O1 C))

(inter C1 (l O B) (l O1 A))

(inter I (l B B1) (l A A1))

(inter ZI (l C1 C) (l A A1))

( AI
A1I
=

AZI
A1ZI

) )

The machine proof

( AI
A1I

)/( AZI
A1ZI

)

ZI
=

SCA1C1
−SACC1

· AI
A1I

I
=

SABB1 ·SCA1C1
−SACC1 ·(−SBA1B1)

C1
=

SABB1 ·SBCA1 ·SAOO1 ·SABO1O

SACO1 ·SABO·SBA1B1 ·(−SABO1O)

simpli f y
=

SABB1 ·SBCA1 ·SAOO1
−SACO1 ·SABO·SBA1B1

B1
=

SACO1 ·SABO·SBCA1 ·SAOO1 ·(−SACOO1 )

−SACO1 ·SABO·SBCA1 ·SAOO1 ·SACOO1

simpli f y
= 1

The eliminants
AZI

A1ZI

ZI
=
−SACC1
SCA1C1

AI
A1I

I
=

SABB1
−SBA1B1

SACC1

C1
=

SACO1 ·SABO

SABO1O

SCA1C1

C1
=

SBCA1 ·SAOO1
−SABO1O

SBA1B1

B1
=

SBCA1 ·SAOO1
−SACOO1

SABB1

B1
=

SACO1 ·SABO

SACOO1

Example 6.22 (Pappus Point Theorem) (0.550, 2, 26)The three Pappus lines[123], [312] and
[231] are concurrent. So are the Pappus lines[213], [321] and [132].
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K

J

I

H

G

FE

C

1C

B

A

1B1A

Figure 6-22

Constructive description
( (pointsA A1 B C1)

(on B1 (l A1 C1))

(on C (l A B))

(inter E (l A1 B) (l A B1))

(inter F (l A1 C) (l A C1))

(inter G (l B C1) (l A A1))

(inter H (l B B1) (l C A1))

(inter I (l B B1) (l A C1))

(inter J (l B A1) (l C C1))

(inter K (l G H) (l E F)) (collinearI J K) )

Example 6.23 (Leisening’s Theorem) (1.233, 4, 32)Continuing from Example 6.20, let O=
AB∩A1B1, and L1, L2, and L3 be the intersections of lines OP and CC1, lines OQ and BB1,
and lines OS and AA1 respectively. Show that L1, L2, L3 are collinear.

A

B

A B

C

C

P

Q

S

O

1L

L

L

Figure 6-23

1 1

1

2

3

Constructive description
( (pointsA B A1 B1)

(on C (l A B)), (on C1 (l A1 B1))

(inter P (l A B1) (l B A1))

(inter Q (l A1 C) (l A C1))

(inter S (l B C1) (l B1 C))

(inter O (l A B) (l A1 B1))

(inter L1 (l O P) (l C C1))

(inter L2 (l O Q) (l B B1))

(inter Z1 (l L1 L2) (l A A1))

(inter Z2 (l L1 L2) (l O S))

(
L1Z1
L2Z1

=
L1Z2
L2Z2

) )

Example 6.24 (Desargues’ Theorem) (0.250, 2, 18)Given two triangle ABC, A1B1C1, if the
three lines AA1, BB1, CC1 meet in a point, S , the three points P= BC ∩ B1C1, Q =
CA∩C1A1, R= AB∩ A1B1 lie on a line.

S A

B

C

1A

1B

1CP

Q

R

Figure 6-24

Constructive description
( (pointsA B C S)

(on A1 (l S A))

(on B1 (l S B))

(on C1 (l S C))

(inter P (l B C) (l B1 C1))

(inter Q (l A C) (l A1 C1))

(inter R (l A B) (l A1 B1))

(inter Z2 (l A1 B1) (l P Q))

(inter Z1 (l A B) (l P Q)) (
PZ1
QZ1
·QZ2

PZ2
= 1) )
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The machine proof
PZ1
QZ1
·QZ2

PZ2

Z1
=

SABP

SABQ
· QZ2

PZ2

Z2
=

SABP·SA1B1Q

SABQ·SA1B1P

Q
=

SABP·SA1B1C1 ·SACA1 ·SAA1CC1
SAA1C1 ·SABC·SA1B1P·(−SAA1CC1 )

simpli f y
=

−SABP·SA1B1C1 ·SACA1
SAA1C1 ·SABC·SA1B1P

P
=
−SBB1C1 ·SABC·SA1B1C1 ·SACA1 ·(−SBB1CC1 )

SAA1C1 ·SABC·SA1B1C1 ·SBCB1 ·SBB1CC1

simpli f y
=

SBB1C1 ·SACA1
SAA1C1 ·SBCB1

C1
=

(−SBCB1 ·
SC1
SC

)·SACA1

(−SACA1 ·
SC1
SC

)·SBCB1

simpli f y
= 1

The eliminants

PZ1
QZ1

Z1
=

SABP
SABQ

QZ2
PZ2

Z2
=

SA1B1Q

SA1B1P

SABQ
Q
=

SAA1C1 ·SABC

SAA1CC1

SA1B1Q
Q
=

SA1B1C1 ·SACA1
−SAA1CC1

SA1B1P
P
=

SA1B1C1 ·SBCB1
−SBB1CC1

SABP
P
=

SBB1C1 ·SABC

SBB1CC1

SAA1C1

C1
= − (SACA1 ·

SC1
SC

)

SBB1C1

C1
= − (SBCB1 ·

SC1
SC

)

Example 6.25 (0.216, 2, 12)The converse of Desargues’ theorem.

Constructive description
( (pointsA B C A1) (on P (l B C)) (on Q (l A C)) (inter R (l A B) (l P Q)) (on B1 (l R A1))

(inter C1 (l A1 Q) (l B1 P)) (inter S (l A A1) (l B B1)) (inter Z (l A A1) (l C C1)) ( AS
S A1
= AZ

ZA1
) )

The machine proof

( AS
A1S

)/( AZ
A1Z

)

Z
=
−SCA1C1
SACC1

· AS
A1S

S
=
−SABB1 ·SCA1C1

SACC1 ·(−SBA1B1)

C1
=

SABB1 ·SA1PB1 ·SCA1Q·SA1PQB1
SPQB1 ·SACA1 ·SBA1B1 ·SA1PQB1

simpli f y
=

SABB1 ·SA1PB1 ·SCA1Q

SPQB1 ·SACA1 ·SBA1B1

B1
=

SABA1 ·
RB1
RA1
·(−SA1PR·

RB1
RA1
+SA1PR)·SCA1Q

SA1PQ·
RB1
RA1
·SACA1 ·(−SBA1R·

RB1
RA1
+SBA1R)

simpli f y
=

SABA1 ·SA1PR·SCA1Q

SA1PQ·SACA1 ·SBA1R

R
=

SABA1 ·SA1PQ·SABP·SCA1Q·SAPBQ

SA1PQ·SACA1 ·(−SBPQ·SABA1 )·(−SAPBQ)

simpli f y
=

SABP·SCA1Q

SACA1 ·SBPQ

Q
=

SABP·(−SACA1 ·
AQ
AC
+SACA1 )

SACA1 ·(−SABP· AQ
AC
+SABP)

simpli f y
= 1

The eliminants
AZ

A1Z

Z
=

SACC1
−SCA1C1

AS
A1S

S
=

SABB1
−SBA1B1

SACC1

C1
=

SPQB1 ·SACA1
SA1PQB1

SCA1C1

C1
=

SA1PB1 ·SCA1Q

SA1PQB1

SBA1B1

B1
= − ((

RB1
RA1
−1)·SBA1R)

SPQB1

B1
=SA1PQ·

RB1
RA1

SA1PB1

B1
= − ((

RB1
RA1
−1)·SA1PR)

SABB1

B1
=SABA1 ·

RB1
RA1

SBA1R
R
=
−SBPQ·SABA1

SAPBQ

SA1PR
R
=

SA1PQ·SABP

−SAPBQ

SBPQ
Q
= − (( AQ

AC
−1)·SABP)

SCA1Q
Q
= − (( AQ

AC
−1)·SACA1)
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6.2.5 Miscellaneous

Example 6.26 (0.133, 1, 8)In a hexagon AC1BA1CB1, BB1, C1A, A1C are concurrent and
CC1, A1B, B1A are concurrent. Prove that AA1, B1C, C1B are also concurrent.

A 1C

B

1A

C

O

H

1B

I

Figure 6-26

Constructive description
( (pointsA A1 B C C1)

(inter O (l A C1) (l A1 C))

(inter H (l A1 B) (l C C1))

(inter B1 (l A H) (l B O))

(inter I (l B1 C) (l A A1))

(inter ZI (l C1 B) (l A A1))

( AI
A1I
=

AZI
A1ZI

) )

The machine proof

( AI
A1I

)/( AZI
A1ZI

)

ZI
=
−SA1BC1
−SABC1

· AI
A1I

I
=

(−SACB1 )·SA1BC1
SABC1 ·(−SA1CB1)

B1
=

SACH·SABO·SA1BC1 ·(−SABHO)

SABC1 ·(−SA1BC·SAOH)·SABHO

simpli f y
=

SACH·SABO·SA1BC1
SABC1 ·SA1BC·SAOH

H
=

SA1BC·SACC1 ·SABO·SA1BC1 ·(−SA1CBC1 )

SABC1 ·SA1BC·SA1BC1 ·SACO·(−SA1CBC1 )

simpli f y
=

SACC1 ·SABO

SABC1 ·SACO

O
=

SACC1 ·SABC1 ·SAA1C·(−SAA1C1C)

SABC1 ·(−SACC1 ·SAA1C)·SAA1C1C

simpli f y
= 1

The eliminants
AZI

A1ZI

ZI
=

SABC1
SA1BC1

AI
A1I

I
=

SACB1
SA1CB1

SA1CB1

B1
=

SA1BC·SAOH

SABHO

SACB1

B1
=

SACH·SABO

SABHO

SAOH
H
=

SA1BC1 ·SACO

−SA1CBC1

SACH
H
=

SA1BC·SACC1
−SA1CBC1

SACO
O
=

SACC1 ·SAA1C

SAA1C1C

SABO
O
=

SABC1 ·SAA1C

SAA1C1C

Example 6.27 (Nehring’s Theorem (1942)) (0.533, 2, 14)Let AA1, BB1, CC1 be three con-
current cevian lines for triangle ABC. Let X1 be a point on BC, X2 = X1B1 ∩ BA,
X3 = X2A1 ∩ AC, X4 = X3C1 ∩CB, X5 = X4B1 ∩ BA, X6 = X5A1 ∩ AC, X7 = X6C1 ∩ CB.
Show X7 = X1.

6X

5X

4X

3X

2X

1X

1C
1B

1A

O

A

CB

Figure 6-27

Constructive description
((pointsB C A O)

(inter A1 (l A O) (l B C))

(inter B1 (l B O) (l C A))

(inter C1 (l C O) (l B A))

(on X1 (l B C))

(inter X2 (l B1 X1) (l B A))

(inter X3 (l A1 X2) (l C A))

(inter X4 (l C1 X3) (l B C))

(inter X5 (l B1 X4) (l B A))

(inter X6 (l A1 X5) (l C A))

(inter Z2 (l C A) (l C1 X1))

(inter Z1 (l A1 X5) (l C1 X1))
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(
C1Z1
X1Z1
· X1Z2
C1Z2

= 1) )

The machine proof
C1Z1
X1Z1
· X1Z2
C1Z2

Z1
=
−SA1C1X5

−SA1X1X5
· X1Z2

C1Z2

Z2
=

SA1C1X5 ·SCAX1
SA1X1X5 ·SCAC1

X5
=

(−SB1C1X4 ·SBAA1)·SCAX1 ·SBB1AX4
SAA1X1 ·SBB1X4 ·SCAC1 ·SBB1AX4

simpli f y
=

−SB1C1X4 ·SBAA1 ·SCAX1
SAA1X1 ·SBB1X4 ·SCAC1

X4
=

−SB1C1X3 ·SBCC1 ·SBAA1 ·SCAX1 ·SBC1CX3
SAA1X1 ·(−SBC1X3 ·SBCB1)·SCAC1 ·(−SBC1CX3 )

simpli f y
=

−SB1C1X3 ·SBCC1 ·SBAA1 ·SCAX1
SAA1X1 ·SBC1X3 ·SBCB1 ·SCAC1

X3
=
−SA1B1X2 ·SCAC1 ·SBCC1 ·SBAA1 ·SCAX1 ·SCA1AX2
SAA1X1 ·SAA1X2 ·SBCC1 ·SBCB1 ·SCAC1 ·SCA1AX2

simpli f y
=

−SA1B1X2 ·SBAA1 ·SCAX1
SAA1X1 ·SAA1X2 ·SBCB1

X2
=

−SA1B1X1 ·SBAB1 ·SBAA1 ·SCAX1 ·SBB1AX1
SAA1X1 ·(−SAB1X1 ·SBAA1)·SBCB1 ·(−SBB1AX1 )

simpli f y
=

−SA1B1X1 ·SBAB1 ·SCAX1
SAA1X1 ·SAB1X1 ·SBCB1

X1
=
−(

BA1
BC
·SBCB1−SBCB1 ·

BX1
BC

)·SBAB1 ·(−SBCA·
BX1
BC
+SBCA)

(− BA1
BC
·SBCA+SBCA·

BX1
BC

)·(−SBAB1 ·
BX1
BC
+SBAB1)·SBCB1

simpli f y
= 1

The eliminants
C1Z1
X1Z1

Z1
=

SA1C1X5
SA1X1X5

X1Z2
C1Z2

Z2
=

SCAX1
SCAC1

SA1X1X5

X5
=

SAA1X1 ·SBB1X4
SBB1AX4

SA1C1X5

X5
=
−SB1C1X4 ·SBAA1

SBB1AX4

SBB1X4

X4
=
−SBC1X3 ·SBCB1

SBC1CX3

SB1C1X4

X4
=

SB1C1X3 ·SBCC1
−SBC1CX3

SBC1X3

X3
=

SAA1X2 ·SBCC1
SCA1AX2

SB1C1X3

X3
=

SA1B1X2 ·SCAC1
SCA1AX2

SAA1X2

X2
=
−SAB1X1 ·SBAA1

SBB1AX1

SA1B1X2

X2
=

SA1B1X1 ·SBAB1
−SBB1AX1

SAB1X1

X1
= − ((

BX1
BC
−1)·SBAB1)

SAA1X1

X1
= − ((

BA1
BC
− BX1

BC
)·SBCA)

SCAX1

X1
= − ((

BX1
BC
−1)·SBCA)

SA1B1X1

X1
= (

BA1
BC
− BX1

BC
)·SBCB1

Example 6.28 (0.733, 2, 12)Let three triangles ABC, A1B1C1, A2B2C2 be given such that
lines AB, A1B1, A2B2 intersect in a point P, lines AC, A1C1, A2C2 intersect in a point Q,
lines BC, B1C1, B2C2 intersect in a point R, and P, Q, R are collinear. In view of Desargues’
theorem, the lines in each of the triads AA1, BB1, CC1; AA2, BB2, CC2; A1A2, B1B2, C1C2;
intersect in a point. Prove that these three points are collinear.

A

B

C

1A

1B

2B

P
Q

R

1C

2A

2C

I

J

K

Figure 6-28

Constructive description
( (pointsA A1 B B1 B2 C)

(inter P (l A1 B1) (l A B))

(on Q (l A C))

(inter R (l P Q) (l B C))

(inter C1 (l B1 R) (l A1 Q))

(on A2 (l B2 P))

(inter C2 (l B2 R) (l A2 Q))

(inter I (l B B1) (l A A1))
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(inter J (l B B2) (l A A2))

(inter K (l B1 B2) (l A1 A2))

(inter ZK (l J I) (l B1 B2)) (
B1K

B2K
=

B1ZK
B2ZK

) )

The machine proof

( B1K

B2K
)/( B1ZK

B2ZK
)

ZK
=
−SB2IJ

−SB1IJ
· B1K

B2K

K
=

(−SA1B1A2)·SB2IJ

SB1IJ ·(−SA1B2A2)

J
=

SA1B1A2 ·SBB2I ·SAB2A2 ·(−SABA2B2)

SB1B2I ·SABA2 ·SA1B2A2 ·(−SABA2B2)

simpli f y
=

SA1B1A2 ·SBB2I ·SAB2A2
SB1B2I ·SABA2 ·SA1B2A2

I
=

SA1B1A2 ·(−SBB1B2 ·SAA1B)·SAB2A2 ·(−SABA1B1)

(−SBB1B2 ·SAA1B1)·SABA2 ·SA1B2A2 ·(−SABA1B1)

simpli f y
=

SA1B1A2 ·SAA1B·SAB2A2
SAA1B1·SABA2 ·SA1B2A2

A2
=

(−SA1B1B2 ·
B2A2
B2P
+SA1B1B2)·SAA1B·SAB2P·

B2A2
B2P

SAA1B1 ·(−SABB2 ·
B2A2
B2P
+SABB2)·SA1B2P·

B2A2
B2P

simpli f y
=

SA1B1B2·SAA1B·SAB2P

SAA1B1·SABB2 ·SA1B2P

P
=

SA1B1B2·SAA1B·(−SABB2 ·SAA1B1)·(−SAA1BB1)

SAA1B1 ·SABB2 ·SA1B1B2 ·SAA1B·SAA1BB1

simpli f y
= 1

The eliminants
B1ZK
B2ZK

ZK
=

SB1IJ

SB2IJ

B1K

B2K

K
=

SA1B1A2
SA1B2A2

SB1IJ
J
=

SB1B2I ·SABA2
−SABA2B2

SB2IJ
J
=

SBB2I ·SAB2A2
−SABA2B2

SB1B2I
I
=

SBB1B2 ·SAA1B1
SABA1B1

SBB2I
I
=

SBB1B2 ·SAA1B

SABA1B1

SA1B2A2

A2
=SA1B2P·

B2A2
B2P

SABA2

A2
= − ((

B2A2
B2P
−1)·SABB2)

SAB2A2

A2
=SAB2P·

B2A2
B2P

SA1B1A2

A2
= − ((

B2A2
B2P
−1)·SA1B1B2)

SA1B2P
P
=

SA1B1B2 ·SAA1B

−SAA1BB1

SAB2P
P
=
−SABB2 ·SAA1B1

SAA1BB1

Example 6.29 (0.250, 1, 18)If (Q) is the cevian triangle of a point M for the triangle(P),
show that the triangle formed by the parallels through the vertices of(P) to the correspond-
ing sides of(Q) is perspective to(P).

A B

C

M
1A1B

1C 2C

2A

2B

P

Figure 6-29

Constructive description
( (pointsA B C M)

(inter A1 (l B C) (l A M))

(inter B1 (l A C) (l B M))

(inter C1 (l A B) (l C M))

(inter C2 (p B A1 C1) (p A B1 C1))

(inter A2 (l C2 B) (p C A1 B1))

(inter B2 (l C2 A) (l A2 C))

(inter P (l B B2) (l A A2))

(inter ZP (l C2 C) (l A A2))

( AP
A2P
=

AZP
A2ZP

) )
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The machine proof

( AP
A2P

)/( AZP
A2ZP

)

ZP
=
−SCC2A2
−SACC2

· AP
A2P

P
=

SABB2 ·SCC2A2
SACC2 ·(−SBA2B2)

B2
=
−SACA2 ·SABC2 ·SCC2A2 ·(−SACC2A2)

SACC2 ·SBCA2 ·SAC2A2 ·SACC2A2

simpli f y
=

SACA2 ·SABC2 ·SCC2A2
SACC2 ·SBCA2 ·SAC2A2

A2
=

SBCC2 ·SACA1 ·SABC2 ·SCA1C2B1 ·SBCC2 ·(SBA1C2B1)2

SACC2 ·SBCC2 ·SBCB1 ·(−SCA1C2B1 ·SABC2)·SBA1C2B1 ·(−SBA1C2B1)

simpli f y
=

SACA1 ·SBCC2
SACC2 ·SBCB1

C2
=

SACA1 ·SBCC1 ·SABB1 ·(−SA1B1C1)

(−SACC1 ·SABA1)·SBCB1 ·SA1B1C1

simpli f y
=

SACA1 ·SBCC1 ·SABB1
SACC1 ·SABA1 ·SBCB1

C1
=

SACA1 ·(−SBCM·SABC)·SABB1 ·SACBM

(−SACM·SABC)·SABA1 ·SBCB1 ·SACBM

simpli f y
=

SACA1 ·SBCM·SABB1
SACM·SABA1 ·SBCB1

B1
=

SACA1 ·SBCM·SABM·SABC·SABCM

SACM·SABA1 ·SBCM·SABC·SABCM

simpli f y
=

SACA1 ·SABM

SACM·SABA1

A1
=

(−SACM·SABC)·SABM·(−SABMC)
SACM·(−SABM·SABC)·(−SABMC)

simpli f y
= 1

The eliminants
AZP

A2ZP

ZP
=

SACC2
SCC2A2

AP
A2P

P
=

SABB2
−SBA2B2

SBA2B2

B2
=

SBCA2 ·SAC2A2
−SACC2A2

SABB2

B2
=

SACA2 ·SABC2
SACC2A2

SAC2A2

A2
=
−SCA1C2B1 ·SABC2

SBA1C2B1

SBCA2

A2
=

SBCC2 ·SBCB1
SBA1C2B1

SCC2A2

A2
=

SCA1C2B1 ·SBCC2
SBA1C2B1

SACA2

A2
=

SBCC2 ·SACA1
−SBA1C2B1

SACC2

C2
=

SACC1 ·SABA1
SA1B1C1

SBCC2

C2
=

SBCC1 ·SABB1
SA1B1C1

SACC1

C1
=
−SACM·SABC

SACBM

SBCC1

C1
=
−SBCM·SABC

SACBM

SBCB1

B1
=

SBCM·SABC

SABCM

SABB1

B1
=

SABM·SABC

SABCM

SABA1

A1
=

SABM·SABC

SABMC

SACA1

A1
=

SACM·SABC

SABMC

Example 6.30 (0.066, 2, 7)If a hexagon ABCDEF has two opposite sides BC and EF par-
allel to the diagonal AD and two opposite sides CD and FA parallel to the diagonal BE,
while the remaining sides DE and AB also are parallel, then the third diagonal CF is
parallel to AB.

H
G 2N

1N

F

A
D

E

CB
Figure 6-30

Constructive description
( (pointsB C E)

(on D (p C B E))

(inter A (p B D E) (p D B C))

(inter F (p A C D) (p E B C))

(midpointN1 A C)

(midpointN2 C E)

(inter G (l A N2) (l E N1))

(inter H (l D F) (l G B))
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(parallelC F A B) )

The machine proof
SBCA

−SBAF

F
=

SBCA·(−SBCD)
−SBECA·SBCAD

A
=

(SBCD)2·(−SBECD)
(SBCD−SBCE)·(−SBECD·SBCD+SBED·SBCD)

simpli f y
=

SBCD·SBECD

(SBCD−SBCE)·(SBECD−SBED)

D
=

SBCE·CD
BE
·(SBCE·CD

BE
−SBCE)

(SBCE·CD
BE
−SBCE)·SBCE·CD

BE

simpli f y
= 1

The eliminants

SBAF
F
=

SBECA·SBCAD

−SBCD

SBCAD
A
=

(SBECD−SBED)·SBCD

SBECD

SBECA
A
=SBCD−SBCE

SBCA
A
=SBCD

SBED
D
= − (SBCE)

SBECD
D
=( CD

BE
−1)·SBCE

SBCD
D
=SBCE·CD

BE

Example 6.31 (0.683, 4, 37)Prove that the lines joining the midpoints of three concurrent
cevians to the midpoints of the corresponding sides of the given triangle are concurrent.

I

1C

1B 1A
1F

1E

1D

F

E

D

O

C

BA

Figure 6-31

Constructive description
( (pointsA B C O)

(inter D (l B C) (l A O))

(inter E (l A C) (l B O))

(inter F (l A B) (l C O))

(midpointD1 A D)

(midpointE1 B E)

(midpointF1 C F)

(midpointA1 B C)

(midpointB1 C A)

(midpointC1 A B) (inter I (l B1 E1) (l A1 D1)) (collinearI C1 F1) )

Example 6.32 (1.583, 8, 28)Let O and U be two points in the plane of triangle ABC. Let AO,
BO, CO intersect the opposite sides BC, CA, AB in P, Q, R. Let PU, QU, RU intersect
QR, RP, PQ respectively in X, Y, Z. Show that AX, BY, CZ are concurrent.

A B

C

O

U
Z PQ

R

X Y

I

Figure 6-32

Constructive description
( (pointsA B C O U)

(inter P (l B C) (l A O))

(inter Q (l C A) (l B O))

(inter R (l A B) (l C O))

(inter X (l Q R) (l P U))

(inter Y (l R P) (l Q U))

(inter Z (l P Q) (l R U))

(inter I (l B Y) (l A X))

(collinearC Z I) )
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Example 6.33 (0.667, 4, 27)Let O be a point in the plane of a triangle ABC, and let A1,
B1, C1 be the points of intersection of the lines AO, BO, CO with the sides of the triangle
opposite A, B, C. Prove that if the points A2, B2, C2 on sides B1C1, C1A1, A1B1 of△A1B1C1

are collinear, then the points of intersection of the liens AA2, BB2, CC2 with the opposite
sides of△ABC are collinear.

3C

3B

3A

2C

2B

2A

1C

1B 1A

O

C

BA

Figure 6-33

Constructive description
( (pointsA B C O)

(inter A1 (l B C) (l A O))

(inter B1 (l A C) (l B O))

(inter C1 (l A B) (l C O))

(on A2 (l B1 C1)) (on B2 (l A1 C1))

(inter C2 (l A2 B2) (l A1 B1))

(inter A3 (l B C) (l A A2))

(inter B3 (l A C) (l B B2)) (interC3 (l A B) (l C C2)) (collinearA3 B3 C3) )

Example 6.34 (0.533, 5, 20)The sides BC, CA, AB of a triangle ABC are met by two
transversal PQR, P1Q1R1 in the pairs of points P, P1; Q, Q1; R, R1. Show that the points
X = BC∩ QR1, Y = CA∩ RP1, Z = AB∩ PQ1 are collinear.

Z

Y

X

1R

1Q

1P

R

Q

P

A

C
B

Figure 6-34

Constructive description
( (pointsA B C)

(on P (l B C))

(on Q (l C A))

(inter R (l P Q) (l A B))

(on P1 (l B C))

(on Q1 (l C A))

(inter R1 (l P1 Q1) (l A B))

(inter X (l Q R1) (l B C))

(inter Y (l R P1) (l C A)) (inter Z (l P Q1) (l A B)) (collinearX Y Z) )

Example 6.35 (0.516, 4, 28)Through the vertices of a triangle ABC lines are drawn inter-
secting in O and meeting the opposite sides in D, E, F. Prove that the lines joining A, B, C
to the midpoints of EF, FD, DE are concurrent.

I 1C

1B

1A

F

E

D

O

C

BA

Figure 6-35

Constructive description
( (pointsA B C O)

(inter D (l B C) (l A O))

(inter E (l A C) (l B O))

(inter F (l A B) (l C O))

(midpointA1 E F)

(midpointB1 F D)

(midpointC1 D E)

(inter I (l B B1) (l A A1)) (collinearI C C1) )
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Example 6.36 (0.500, 4, 25)A transversal cuts the sides BC, CA, AB of triangle ABC in D,
E, F. P, Q, R are the midpoints of EF, FD, DE, and AP, BQ, CR intersect BC, CA, AB in
X, Y, Z. Show that X, Y, Z are collinear.

Z

Y

X

R

Q

P

F

E

D

C

BA

Figure 6-36

Constructive description
((pointsA B C)

(on D (l B C))

(on E (l A C))

(inter F (l E D) (l A B))

(midpointP E F)

(midpointQ F D)

(midpointR D E)

(inter X (l A P) (l B C))

(inter Y (l B Q) (l A C)) (inter Z (l C R) (l A B)) (collinearX Y Z) )

Example 6.37 (0.200, 2, 19)The lines AL, BL, CL joining the vertices of a triangle ABC to a
point L meet the respectively opposite sides in A1, B1, C1. The parallels through A1 to BB1

CC1 meet AC, AB in P, Q, and the parallels through A1 to AC, AB meet BB1, CC1 in R, S .
Show that the four points P, Q, R, S are collinear.

B C

A

L

1A

1B

1C P

Q

R

Figure 6-37

Constructive description
( (pointsA B C L)

(inter A1 (l B C) (l A L))

(inter B1 (l A C) (l B L))

(inter C1 (l A B) (l C L))

(inter P (l A C) (p A1 B B1))

(inter Q (l A B) (p A1 C C1))

(inter R (l B B1) (p A1 A C))

(inter ZR (l Q P) (l B1 B)) (
B1R

BR
=

B1ZR
BZR

) )

Example 6.38 (0.533, 3, 18)Starting from five points A, B, C, D and E with A, B, C collinear,
new lines and points of intersection are formed as in Figure 6-38. Show that AB, GJ and
HI are collinear.

O

H
K

G

L

J

I

FC

E

D

BA

Figure 6-38

Constructive description for (1)
( (pointsA B D E) (on C (l A B))

(inter F (l E D) (l A B)) (inter I (l D B) (l A E))

(inter J (l C D) (l A E))

(inter L (l C D) (l B E))

(inter G (l B E) (l A D))

(inter K (l C E) (l D B))

(inter H (l E C) (l A D)) (inter O (l G J) (l A B))

(inter ZO (l H I) (l F C)) ( FO
CO
=

FZO
CZO

) )
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6.3 Triangles

6.3.1 Medians and Centroids

A

B C

M N

Figure 6-39

Example 6.39 (0.001, 1, 2)The line joining the
midpoints of two sides of a triangle is parallel
to the third side and is equal to one-half its
length.

We have to prove two results.

Constructive description
( (pointsA B C)

(midpointM A B)

(midpointN A C)

(parallelM N B C) )

The machine proof
SBCM

SBCN

N
=

SBCM
1
2SABC

M
=

(2)·( 1
2SABC)

SABC

simpli f y
= 1

The eliminants

SBCN
N
=

1
2(SABC)

SBCM
M
=

1
2(SABC)

Constructive description
( (pointsA B C)

(midpointM A B)

(midpointN A C)

( MN
BC
= 1/2) )

The machine proof

2(MN
BC

)
N
=

SACM

( 1
2 )·(−SABC)

M
=

(−2)·(− 1
2SABC)

SABC

simpli f y
= 1

The eliminants
MN
BC

N
=

SACM

−SABC

SACM
M
= − 1

2(SABC)

Definition. The line joining a vertex of a triangle and the midpoint of theopposite side is
called a median of the triangle.

Example 6.40 (Theorem of Centroid) (0.016, 1, 4)The three medians of a triangle meet in a
point, and each median is trisected by this point.

A B

C

EF

D

O

Figure 6-40

Constructive description
( (pointsA B C)

(midpointF A C)

(midpointE B C)

(inter O (l A E) (l B F))

( AO
OE
= 2) )

The machine proof
1
2(− AO

EO
)

O
=
−SABF

(2)·SBFE

E
=

−SABF

(2)·(− 1
2SBCF)

F
=

1
2SABC
1
2SABC

simpli f y
= 1

The eliminants
AO
EO

O
=

SABF
SBFE

SBFE
E
= − 1

2(SBCF)
SBCF

F
=

1
2(SABC)

SABF
F
=

1
2(SABC)
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For other forms of the centroid theorem, see Examples 5.46 and 5.47 on page 243.

A

B C

M
N

K

P
L

Figure 6-41

Example 6.41 (0.083, 2, 9)With the medians of
a triangle a new triangle is constructed. The
medians of the second triangle are equal to
the three-fourth of the respective sides of the
given triangle.

Constructive
description
( (pointsA B C)

(midpointM A B)

(midpointN A C)

(midpointK B C)

(inter P (p A C M)

(p K B N))

(midpointL A K)

( LP
BC
= 3/4) )

The machine proof
1
3((−4)· PL

BC
)

L
=

(−4)·SAKP

(3)·(−SABC)

P
=

(4)·SACKM·SABKN

(3)·SABC·(−SBCNM)

K
=

(−4)·(− 1
2SBCM+SACM)·( 1

2SBCN+SABN)
(3)·SABC·SBCNM

N
=

(SBCM−2SACM)·( 3
2SABC)

(3)·SABC·(SBCM− 1
2SACM)

simpli f y
=

SBCM−2SACM

2SBCM−SACM

M
=

3
2SABC
3
2SABC

simpli f y
= 1

The eliminants
PL
BC

L
=

SAKP
−SABC

SAKP
P
=

SACKM·SABKN

−SBCNM

SABKN
K
=

1
2(SBCN+2SABN)

SACKM
K
= − 1

2(SBCM−2SACM)
SBCNM

N
=

1
2(2SBCM−SACM)

SABN
N
=

1
2(SABC)

SBCN
N
=

1
2(SABC)

SACM
M
= − 1

2(SABC)
SBCM

M
=

1
2(SABC)

Example 6.42 (0.050, 2, 8)The area of the triangle having for sides the medians of a given
triangle is equal to three-fourth of the given triangle (Figure 6-41).

Constructive
description
( (pointsA B C)

(midpointM A B)

(midpointN A C)

(midpointK B C)

(inter P (p A C M)

(p K B N))

(midpointL A K)

(4SAKP = 3SABC) )

The machine proof
(4)·SAKP

(3)·SABC

P
=

(4)·SACKM·SABKN

(3)·SABC·(−SBCNM)

K
=

(−4)·(− 1
2SBCM+SACM)·( 1

2SBCN+SABN)
(3)·SABC·SBCNM

N
=

(SBCM−2SACM)·( 3
2SABC)

(3)·SABC·(SBCM− 1
2SACM)

simpli f y
=

SBCM−2SACM

2SBCM−SACM

M
=

3
2SABC
3
2SABC

simpli f y
= 1

The eliminants

SAKP
P
=

SACKM·SABKN

−SBCNM

SABKN
K
=

1
2(SBCN+2SABN)

SACKM
K
= − 1

2(SBCM−2SACM)
SBCNM

N
=

1
2(2SBCM−SACM)

SABN
N
=

1
2(SABC)

SBCN
N
=

1
2(SABC)

SACM
M
= − 1

2(SABC)
SBCM

M
=

1
2(SABC)
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Example 6.43 (0.016, 1, 4)Show that the line joining the midpoint of a median to a vertexof
the triangle trisects the side opposite the vertex considered.

A

B C

F

N

K

Figure 6-43

Constructive description
( (pointsA B C)

(midpointF A B)

(midpointN C F)

(inter K (l B C) (l A N))

( BK
KC
= 2) )

The machine proof
1
2(− BK

CK
)

K
=
−(−SABN)

(2)·(−SACN)

N
=
−( 1

2SABC)

(2)·( 1
2SACF)

F
=

−SABC

(2)·(− 1
2SABC)

simpli f y
= 1

The eliminants
BK
CK

K
=

SABN

SACN

SACN
N
=

1
2(SACF)

SABN
N
=

1
2(SABC)

SACF
F
= − 1

2(SABC)

Example 6.44 (0.033, 2, 6)Show that a parallel to a side of a triangle through the centroid
divides the area of the triangle into two parts, in the ratio 4:5.

A

B C

G
P Q

Figure 6-44

Constructive description
( (pointsA B C)

(centroidG A B C)

(inter P (l A B) (p G B C))

(inter Q (l A C) (p G B C))

(4SPQCB = 5SAQP) )

The machine proof
(4)·SBCQP

(5)·SAPQ

Q
=

(4)·(SBCP·SABC−SBCG·SACP)·SABC

(5)·(−SABGC·SACP)·SABC

simpli f y
=

(−4)·(SBCP·SABC−SBCG·SACP)
(5)·SABGC·SACP

P
=

(−4)·(SABGC·SBCG·SABC+SBCG·S2
ABC)·SABC

(5)·SABGC·(−SABGC·SABC)·SABC

simpli f y
=

(4)·(SABGC+SABC)·SBCG

(5)·(SABGC)2

G
=

(4)·(5SABC)·SABC·((3))2

(5)·((2SABC))2·((3))2

simpli f y
= 1

The eliminants

SAPQ
Q
=
−SABGC·SACP

SABC

SBCQP
Q
=

SBCP·SABC−SBCG·SACP

SABC

SACP
P
=−SABGC

SBCP
P
=SBCG

SBCG
G
=

1
3(SABC)

SABGC
G
=

2
3(SABC)

Example 6.45 (0.001, 2, 5)If L is the harmonic conjugate of the centroid G of a triangle
ABC with respect to the ends A, D of the median AD, show that LD= AD.
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A

B

C

D

G

L

Figure 6-45

Constructive description
( (pointsA B C)

(midpointD B C)

(centroidG A B C)

(harmonicL G D A)

(midpointD L A) )

The machine proof
DL
AD

L
= 1

−DG
AG
−1
· DG

AG

G
=

−SACD·SABC

(SACD+SABC)·SABC

simpli f y
=

−SACD

SACD+SABC

D
=
−(− 1

2SABC)
1
2SABC

simpli f y
= 1

The eliminants

DL
AD

L
=

DG
AG

−( DG
AG
+1)

DG
AG

G
=

SACD

SABC

SABD
D
=

1
2(SABC)

SACD
D
= − 1

2(SABC)

Example 6.46 (0.033, 1, 6)Show that the distances of a point on a median of triangle from
the sides including the median are inversely proportional to these sides.

JK

N

F

C

BA

Figure 6-46

Constructive description
( (pointsA B C)

(midpointF A B)

(on N (l C F))

(foot K N A C)

(foot J N B C)

(eq-productN K A C N J B C) )

The machine proof
PNKN·PACA

PNJN·PBCB

J
=

PNKN·PACA·PBCB

(16S2
BCN)·PBCB

simpli f y
=

PNKN·PACA

(16)·(SBCN)2

K
=

(16S2
ACN)·PACA

(16)·(SBCN)2·PACA

simpli f y
=

(SACN)2

(SBCN)2

N
=

(SACF·CN
CF

)2

(SBCF·CN
CF

)2

simpli f y
=

(SACF)2

(SBCF)2

F
=

((− 1
2SABC))2

(( 1
2SABC))2

simpli f y
= 1

The eliminants

PNJN
J
=

(16)·(SBCN)2

PBCB

PNKN
K
=

(16)·(SACN)2

PACA

SBCN
N
=SBCF·CN

CF

SACN
N
=SACF·CN

CF

SBCF
F
=

1
2(SABC)

SACF
F
= − 1

2(SABC)

Example 6.47 (0.066, 5, 7)Show that, if a line through the centroid G of the triangle ABC
meets AB in M and AC in N, we have, both in magnitude and in sign,AN·MB+AM ·NC =
AM · AN.



6.3. Triangles 289

B C

A

D

G

M

N

Figure 6-47

Constructive description
((pointsA B C)

(centroidG A B C)

(on M (l A B))

(inter N (l G M) (l A C))

( MB
AM
+NC

AN
= 1) )

The eliminants
CN
AN

N
=

SCGM

SAGM

SCGM
M
=SBCG· AM

AB
−SACG· AM

AB
+SACG

SAGM
M
= − (SABG· AM

AB
)

BM
AM

M
=

AM
AB
−1

AM
AB

SABG
G
=

1
3(SABC)

SACG
G
= − 1

3(SABC)
SBCG

G
=

1
3(SABC)The machine proof

−( CN
AN
+ BM

AM
)

N
=
−( BM

AM
·SAGM+SCGM)

SAGM

M
=
−(SBCG· AM

AB

2
−SACG· AM

AB

2
+SACG· AM

AB
−SABG· AM

AB

2
+SABG· AM

AB
)

(−SABG· AM
AB

)· AM
AB

simpli f y
=

SBCG· AM
AB
−SACG· AM

AB
+SACG−SABG· AM

AB
+SABG

SABG· AM
AB

G
=

(9SABC· AM
AB

)·(3)

SABC· AM
AB
·((3))3

simpli f y
= 1

Example 6.48 (0.033, 1, 8)Two equal segments AE, AF are taken on the sides AB, AC of the
triangle ABC. Show that median issued from A divides EF in theratio of the sides AC, AB.

D

1A

F

E

C

BA

Figure 6-48

Constructive description
((pointsF E)

(on A (b F E))

(on C (l A F))

(on B (l A E))

(midpointA1 B C)

(inter D (l E F) (l A A1))

( ED
FD

ED
FD

PABA = PACA) )

The machine proof
PABA

PACA
· ( ED

FD
)2

D
=

(SEAA1 )2·PABA

PACA·(SFAA1)2

A1
=

(( 1
2SEAC))2·PABA

PACA·(( 1
2SFAB))2

B
=

(SEAC)2·PEAE· AB
AE

2

PACA·((−SFEA· AB
AE

))2

simpli f y
=

(SEAC)2·PEAE

PACA·(SFEA)2

C
=

(SFEA· AC
AF

)2·PEAE

PFAF· AC
AF

2
·(SFEA)2

simpli f y
=

PEAE
PFAF

A
=

PFAF
PFAF

simpli f y
= 1

The eliminants
ED
FD

D
=

SEAA1
SFAA1

SFAA1

A1
=

1
2(SFAB)

SEAA1

A1
=

1
2(SEAC)

SFAB
B
= − (SFEA· AB

AE
)

PABA
B
=PEAE·( AB

AE
)2

PACA
C
=PFAF·( AC

AF
)2

SEAC
C
=SFEA· AC

AF

PEAE
A
=PFAF
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Example 6.49 (0.250, 4, 8)Show that the (algebraic) sum of the distances of the vertices of
a triangle from any line in the plane is equal to the sum of the distances of the midpoints of
the sides of the triangle from this line.

A

B C

X

Y

D

E
F

1A

1B

1C

1D
1E

1F

Figure 6-49

Constructive description
( (pointsA B C X Y)

(midpointD B C)

(midpointE A C)

(midpointF A B)

(foot A1 A X Y) (foot B1 B X Y)

(foot C1 C X Y) (foot D1 D X Y)

(foot E1 E X Y)

(foot F1 F X Y)

(1+
BB1
AA1
+

CC1
AA1
=

DD1
AA1
+

EE1
AA1
+

FF1
AA1

) )

The eliminants
FF1
AA1

F1
=

SXYF
SAXY

EE1
AA1

E1
=

SXYE
SAXY

DD1
AA1

D1
=

SXYD
SAXY

CC1
AA1

C1
=

SCXY

SAXY
BB1
AA1

B1
=

SBXY
SAXY

SXYF
F
=

1
2(SBXY+SAXY)

SXYE
E
=

1
2(SCXY+SAXY)

SXYD
D
=

1
2(SCXY+SBXY)

The machine proof
CC1
AA1
+

BB1
AA1
+1

FF1
AA1
+

EE1
AA1
+

DD1
AA1

F1
=

(
CC1
AA1
+

BB1
AA1
+1)·SAXY

EE1
AA1
·SAXY+

DD1
AA1
·SAXY+SXYF

E1
=

(
CC1
AA1
+

BB1
AA1
+1)·(SAXY)2

DD1
AA1
·S2

AXY+SXYF·SAXY+SXYE·SAXY

simpli f y
=

(
CC1
AA1
+

BB1
AA1
+1)·SAXY

DD1
AA1
·SAXY+SXYF+SXYE

D1
=

(
CC1
AA1
+

BB1
AA1
+1)·(SAXY)2

SXYF·SAXY+SXYE·SAXY+SXYD·SAXY

simpli f y
=

(
CC1
AA1
+

BB1
AA1
+1)·SAXY

SXYF+SXYE+SXYD

C1
=

(
BB1
AA1
·SAXY+SCXY+SAXY)·SAXY

(SXYF+SXYE+SXYD)·SAXY

simpli f y
=

BB1
AA1
·SAXY+SCXY+SAXY

SXYF+SXYE+SXYD

B1
=

SCXY·SAXY+SBXY·SAXY+S2
AXY

(SXYF+SXYE+SXYD)·SAXY

simpli f y
=

SCXY+SBXY+SAXY

SXYF+SXYE+SXYD

F
=

SCXY+SBXY+SAXY

SXYE+SXYD+
1
2SBXY+

1
2SAXY

E
=

(2)·(SCXY+SBXY+SAXY)
2SXYD+SCXY+SBXY+2SAXY

D
=

(2)·(SCXY+SBXY+SAXY)
2SCXY+2SBXY+2SAXY

simpli f y
= 1

Example 6.50 (0.016, 3, 1)Compute the square of the lengths of the medians.

Constructive description
( (pointsA B C)

(midpointM B C)

(MA
2
) )

The machine proof
1
2(PAMA)
M
=
− 1

4 PBCB+
1
2 PACA+

1
2 PABA

2

The eliminants

PAMA
M
= − 1

4(PBCB−2PACA−2PABA)

Example 6.51 (0.066, 2, 14)If K, K1 are two isotomic points on the side BC of the triangle
ABC, and the line AK meets the line NM of in K2, where N and M are the midpoints of AB
and AC. Show that line K1K2 passes through the centroid G of ABC.
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A

B C

N M

G

K

2K

1K
Figure 6-51

Constructive description
( (pointsA B C)

(midpointN A B)

(midpointM A C)

(inter G (l C N) (l B M))

(lratio K B C r)

(lratio K1 C B r)

(inter K2 (l M N) (l A K))

(inter Z (l B C) (l K2 G))

( BZ
ZC
=

BK1
K1C

) )

The machine proof

( BZ
CZ

)/( BK1
CK1

)

Z
=

−SBGK2
BK1
CK1
·(−SCGK2 )

K2
=

(−SBNG·SAMK)·(−SANKM)
BK1
CK1
·SCMG·SANK·(−SANKM)

simpli f y
=

−SBNG·SAMK
BK1
CK1
·SCMG·SANK

K1
=

−SBNG·SAMK ·r
(r−1)·SCMG·SANK

K
=
−SBNG·(SABM·r−SABM)·r

(r−1)·SCMG·(−SACN·r)

simpli f y
=

SBNG·SABM

SCMG·SACN

G
=

(−SBNM·SBCN)·SABM·(−SBCMN)
SCNM·SBCM·SACN·(−SBCMN)

simpli f y
=

−SBNM·SBCN·SABM

SCNM·SBCM·SACN

M
=
−(− 1

2SBCN)·SBCN·( 1
2SABC)

( 1
2SACN)·( 1

2SABC)·SACN

simpli f y
=

(SBCN)2

(SACN)2

N
=

(( 1
2SABC))2

((− 1
2SABC))2

simpli f y
= 1

The eliminants
BZ
CZ

Z
=

SBGK2
SCGK2

SCGK2

K2
=

SCMG·SANK

−SANKM

SBGK2

K2
=

SBNG·SAMK

SANKM
BK1
CK1

K1
=

r−1
r

SANK
K
= − (SACN·r)

SAMK
K
=(r−1)·SABM

SCMG
G
=

SCNM·SBCM

−SBCMN

SBNG
G
=

SBNM·SBCN

SBCMN

SBCM
M
=

1
2(SABC)

SCNM
M
=

1
2(SACN)

SABM
M
=

1
2(SABC)

SBNM
M
= − 1

2(SBCN)
SACN

N
= − 1

2(SABC)
SBCN

N
=

1
2(SABC)

Example 6.52 (0.083, 5, 3)The sum of the squares of the medians of a triangle is equal to
three-fourth the sum of the squares of the sides.

A

B C

EF

D

Figure 6-52

Constructive description
( (pointsA B C)

(midpointE A C)

(midpointF A B)

(midpointD B C)

(4AD
2
+4FC

2
+4BE

2

= 3AC
2
+3AB

2
+3BC

2
) )
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The machine proof
(4)·(PCFC+PBEB+PADA)
(3)·(PBCB+PACA+PABA)

D
=

(4)·(PCFC+PBEB− 1
4 PBCB+

1
2 PACA+

1
2 PABA)

(3)·(PBCB+PACA+PABA)

F
=

4PBEB+PBCB+4PACA+PABA

(3)·(PBCB+PACA+PABA)

E
=

3PBCB+3PACA+3PABA

(3)·(PBCB+PACA+PABA)

simpli f y
= 1

The eliminants

PADA
D
= − 1

4(PBCB−2PACA−2PABA)
PCFC

F
=

1
4(2PBCB+2PACA−PABA)

PBEB
E
=

1
4(2PBCB−PACA+2PABA)

Example 6.53 (0.050, 4, 6)If two points are equidistant from the centroid of a triangle, show
that the sums of the squares of their distances from the vertices of a triangle are equal.

F

A

B C

G

N

M

Figure 6-53

Constructive description
((pointsA B N M)

(on G (b N M))

(midpointF A B)

(lratio C F G 3)

(AN
2
+NB

2
+NC

2
= AM

2
+MB

2
+MC

2
) )

The machine proof.
PNCN+PBNB+PANA

PMCM+PBMB+PAMA

C
=

6PGFG−2PNFN+3PNGN+PBNB+PANA

6PGFG−2PMFM+3PMGM+PBMB+PAMA

F
=

3PNGN+3PBGB+3PAGA−PABA

3PMGM+3PBGB+3PAGA−PABA

G
=

3PNGN+3PBGB+3PAGA−PABA

3PNGN+3PBGB+3PAGA−PABA

simpli f y
= 1

The eliminants

PMCM
C
=6PGFG−2PMFM+3PMGM

PNCN
C
=6PGFG−2PNFN+3PNGN

PMFM
F
=

1
4(2PBMB+2PAMA−PABA)

PNFN
F
=

1
4(2PBNB+2PANA−PABA)

PGFG
F
=

1
4(2PBGB+2PAGA−PABA)

PMGM
G
=PNGN

Definition. The triangle having for its vertices the midpoints of the sides of a given triangle
is called the medial triangle of the given triangle. The triangle formed by the parallels to
the sides of a given triangle through the opposite vertices is called the anticomplementary
triangle of the given triangle.

Example 6.54 (0.050, 2, 6)The median AA1 of the triangle ABC meets the side B1C1 of the
medial triangle A1B1C1 in P, and CP meets AB in Q. Show that AB= 3AQ.
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B C

A

1A

1C
P

Q

Figure 6-54

Constructive description
( (pointsA B C)

(midpointA1 B C)

(midpointC1 A B)

(inter P (l A A1) (p C1 B C))

(inter Q (l A B) (l P C))

( QA
AB
= −1/3) )

The machine proof

(3)· AQ
AB

Q
=

(3)·(−SACP)
−SACBP

P
=

(3)·(−SACC1 ·SACA1 )·SABC

(−SACC1 ·SABA1−S2
ABC)·SABC

simpli f y
=

(3)·SACC1 ·SACA1

SACC1 ·SABA1+S2
ABC

C1
=

(3)·(− 1
2SABC)·SACA1

− 1
2SABA1 ·SABC+S2

ABC

simpli f y
=

(3)·SACA1
SABA1−2SABC

A1
=

(3)·(− 1
2SABC)

− 3
2SABC

simpli f y
= 1

The eliminants
AQ
AB

Q
=

SACP

SACBP

SACBP
P
=
−(SACC1 ·SABA1+S2

ABC)

SABC

SACP
P
=
−SACC1 ·SACA1

SABC

SACC1

C1
= − 1

2(SABC)
SABA1

A1
=

1
2(SABC)

SACA1

A1
= − 1

2(SABC)

Example 6.55 (0.066, 4, 5)The sum of the squares of the distances of the centroid of a trian-
gle from the vertices is equal to one-third the sum of the squares of the sides.

A

B C

E
F

D

G

Figure 6-55

Constructive description
((pointsA B C)

(midpointE A C)

(lratio G B E 2/3)

(3AG
2
+3GC

2
+3BG

2
= AC

2
+AB

2
+BC

2
) )

The machine proof
(3)·(PCGC+PBGB+PAGA)

PBCB+PACA+PABA

G
=

(3)·( 2
3 PCEC+

1
3 PBCB+

2
3 PAEA+

1
3 PABA)

PBCB+PACA+PABA

E
=

PBCB+PACA+PABA

PBCB+PACA+PABA

simpli f y
= 1

The eliminants

PAGA
G
= − 1

9(2PBEB−6PAEA−3PABA)
PBGB

G
=

4
9(PBEB)

PCGC
G
=

1
9(6PCEC−2PBEB+3PBCB)

PAEA
E
=

1
4(PACA), PCEC

E
=

1
4(PACA)

Example 6.56 (0.050, 7, 8)If M is any point in the plane of the triangle ABC, and G is the

centroid of ABC, we haveMA
2
+ MB

2
+ MC

2
= GA

2
+GB

2
+GC

2
+ 3MG

2
.

A B

CM

E

F

D

G

Figure 6-56

Constructive description
((pointsA B C M)

(midpointE A C)

(lratio G B E 2/3)
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(3MG
2
+AG

2
+GC

2
+BG

2
= AM

2
+MB

2
+MC

2
) )

The machine proof
3PMGM+PCGC+PBGB+PAGA

PCMC+PBMB+PAMA

G
=

2PMEM+
2
3 PCEC− 2

3 PBEB+PBMB+
1
3 PBCB+

2
3 PAEA+

1
3 PABA

PCMC+PBMB+PAMA

E
=

3PCMC+3PBMB+3PAMA

(3)·(PCMC+PBMB+PAMA)

simpli f y
= 1

The eliminants

PAGA
G
= − 1

9(2PBEB−6PAEA−3PABA)
PBGB

G
=

4
9(PBEB)

PCGC
G
=

1
9(6PCEC−2PBEB+3PBCB)

PMGM
G
=

1
9(6PMEM−2PBEB+3PBMB)

PAEA
E
=

1
4(PACA)

PBEB
E
=

1
4(2PBCB−PACA+2PABA)

PCEC
E
=

1
4(PACA)

PMEM
E
=

1
4(2PCMC+2PAMA−PACA)

Example 6.57 (0.067, 7, 10)If the pairs of points D, D1; E, E1; F, F1 are isotomic on the
sides BC, CA, AB of the triangle ABC, the areas of two triangles DEF, D1E1F1 are the
same.

A
B

C

D

E

F

1M2M

3M

1D

1E

1F

Figure 6-57

Constructive description
((pointsA B C)

(lratio D B C r1)

(lratio E C A r2)

(lratio F A B r3)

(lratio D1 C B r1)

(lratio E1 A C r2)

(lratio F1 B A r3)

(SD1E1F1 = SDEF) )

The eliminants

SD1E1F1

F1
= − (SBD1E1 ·r3−SBD1E1−SAD1E1 ·r3)

SAD1E1

E1
= − (SACD1 ·r2)

SBD1E1

E1
= − ((r2−1)·SABD1)

SABD1

D1
= − ((r1−1)·SABC)

SACD1

D1
= − (SABC·r1)

SDEF
F
=SBDE·r3−SADE·r3+SADE

SADE
E
=(r2−1)·SACD

SBDE
E
=SABD·r2

SABD
D
=SABC·r1

SACD
D
=(r1−1)·SABC

The machine proof
SD1E1F1

SDEF

F1
=
−SBD1E1 ·r3+SBD1E1+SAD1E1 ·r3

SDEF

E1
=
−(SACD1 ·r3·r2−SABD1 ·r3·r2+SABD1 ·r3+SABD1 ·r2−SABD1)

SDEF

D1
=
−(−SABC·r3·r2−SABC·r3·r1+SABC·r3−SABC·r2·r1+SABC·r2+SABC·r1−SABC)

SDEF

simpli f y
=

(r3·r2+r3·r1−r3+r2·r1−r2−r1+1)·SABC

SDEF

F
=

(r3·r2+r3·r1−r3+r2·r1−r2−r1+1)·SABC

SBDE·r3−SADE·r3+SADE

E
=

(r3·r2+r3·r1−r3+r2·r1−r2−r1+1)·SABC

−SACD·r3·r2+SACD·r3+SACD·r2−SACD+SABD·r3·r2

D
=

−(r3·r2+r3·r1−r3+r2·r1−r2−r1+1)·SABC

−SABC·r3·r2−SABC·r3·r1+SABC·r3−SABC·r2·r1+SABC·r2+SABC·r1−SABC

simpli f y
= 1
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Example 6.58 (0.200, 3, 11)Show that the parallels through the vertices A, B, C of the trian-
gle ABC to the medians of this triangle issued from the vertices B, C, A, respectively, form
a triangle whose area is three times the area of the given triangle.

Constructive description
((pointsA B C)

(midpointA1 C B)

(midpointB1 A C)

(midpointC1 B A)

(inter C2 (p B C C1) (p A B B1))

(inter B2 (p A B B1) (p C A A1))

(inter A2 (p C A A1) (p B C C1))

(SA2B2C2 = 3SABC) )

The eliminants

SC2B2A2

A2
=

SBCB2C1 ·SACA1C2
−SACA1C1

SBCB2C1

B2
=
−(SACA1C1 ·SABC−SABA1B1 ·SBCC1 )

SABA1B1

SACA1C2

C2
=

SBCB1C1 ·SACA1−SABA1B1 ·SABC

SBCB1C1

SBCB1C1

C1
=

1
2(2SBCB1+SABB1)

SBCC1

C1
=

1
2(SABC)

SACA1C1

C1
=

1
2(2SACA1−SABA1)

SABB1

B1
=

1
2(SABC)

SBCB1

B1
=

1
2(SABC)

SABA1B1

B1
= − 1

2(SACA1−2SABA1)
SABA1

A1
=

1
2(SABC)

SACA1

A1
= − 1

2(SABC)
2A

2B

2C

1C

1B 1A

C

BA

Figure 6-58

The machine proof
−SC2B2A2
(3)·SABC

A2
=
−SBCB2C1 ·SACA1C2

(3)·SABC·(−SACA1C1)

B2
=

(−SACA1C1 ·SABC+SABA1B1 ·SBCC1 )·SACA1C2
(3)·SABC·SACA1C1 ·SABA1B1

C2
=
−(SACA1C1 ·SABC−SABA1B1 ·SBCC1 )·(SBCB1C1 ·SACA1−SABA1B1 ·SABC)

(3)·SABC·SACA1C1 ·SABA1B1 ·SBCB1C1

C1
=
−(− 1

2 SABA1B1
·SABC+SACA1

·SABC− 1
2 SABA1

·SABC)·(−SABA1B1
·SABC+SBCB1

·SACA1
+ 1

2 SACA1
·SABB1

)

(3)·SABC·(SACA1
− 1

2 SABA1
)·SABA1B1

·(SBCB1
+ 1

2 SABB1
)

simpli f y
=

−(SABA1B1−2SACA1+SABA1 )·(2SABA1B1 ·SABC−2SBCB1 ·SACA1−SACA1 ·SABB1)

(3)·(2SACA1−SABA1)·SABA1B1 ·(2SBCB1+SABB1)

B1
=
−(− 5

2SACA1+2SABA1 )·(− 5
2SACA1 ·SABC+2SABA1 ·SABC)

(3)·(2SACA1−SABA1)·(− 1
2SACA1+SABA1 )·( 3

2SABC)

simpli f y
=

(5SACA1−4SABA1 )2

(9)·(2SACA1−SABA1 )·(SACA1−2SABA1 )

A1
=

((− 9
2SABC))2

(9)·((− 3
2SABC))2

simpli f y
= 1
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Definition. If the corresponding sides of two similar polygons are parallel, the two polygons
are said to be homothetic. The lines joining the corresponding vertices of two homothetic
polygons are concurrent at the homothetic center.

Example 6.59 (0.500, 5, 29)Let L, L1 and M, M1 be two pairs of isotomic points on the two
sides AC, AB of the triangle ABC, and L2, M2 the traces of the lines BL, CM on the sides
A1C1, A1B1 of the medial triangle A1B1C1 of ABC. Show that the triangles AL1M1, A1L2M2

are homothetic.

A B

C

1B 1A

1CM

L

1L

1M

2L

2M

O

Figure 6-59

Constructive description
( (pointsA B C) (midpointB1 A C)

(inter A1 (l B C) (p B1 A B))

(midpointC1 A B)

(on M (l A B)) (on L (l A C))

(lratio L1 B1 L −1)

(lratio M1 C1 M −1)

(inter L2 (l A1 C1) (l B L))

(inter M2 (l A1 B1) (l C M))

(inter O (l L1 L2) (l A A1)) (collinearO M1 M2) )

Example 6.60 (0.283, 6, 16)A parallel to the median AA1 of the triangle ABC meets BC, CA,
AB in the points H, N, D. Prove that the symmetries of H with respect to the midpoints of
NC, BD are symmetrical with respect to the vertex A. 2H

1H
L

K

D

N

1A H

A

CB

Figure 6-60

Constructive description
( (pointsA B C) (on H (l B C)) (midpointA1 B C)

(inter N (l C A) (p H A A1))

(inter D (l H N) (l A B))

(midpointK N C)

(midpointL B D) (lratio H1 K H −1)

(lratio H2 L H −1) (midpointA H1 H2) )

Example 6.61 (0.366, 4, 16)The parallels to the sides of a triangle ABC through the same
point, M, meet the respective medians in the points P, Q, R. Prove that we have, both in
magnitude and in sign,(GP/GA) + (GQ/GB) + (GR/GC) = 0.

R

Q

P

G

F

E
D

M

C

BA

Figure 6-61

Constructive description
( (pointsA B C M)

(midpointD B C)

(midpointE C A) (midpointF A B)

(inter P (l A D) (p M B C))
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(inter Q (l B E) (p M A C))

(inter R (l C F) (p M A B))

(inter G (l A D) (l C F))

(collinearG B E) ( GQ
GB
+GR

GC
= GP

AG
) )

6.3.2 Altitudes and Orthocenters

For machine proofs of the orthocenter theorem, see Example 3.36 on page 120 and Example
5.53 on page 247.

Example 6.62 (0.033, 1, 6)The dual of the orthocenter theorem.

FE

D

O
C

BA

Figure 6-62

Constructive description
( (pointsA B C O)

(inter D (l B C) (t O O A))

(inter E (l C A) (t O O B))

(inter F (l A B) (t O O C))

(inter ZF (l E D) (l A B))

( AF
BF
=

AZF
BZF

) )

The machine proof

( AF
BF

)/( AZF
BZF

)

ZF
=
−SBDE

−SADE
· AF

BF

F
=

PAOC·SBDE

SADE·PBOC

E
=

PAOC·PBOC·SABD·(−PCBAO)
PAOB·SACD·PBOC·(−PCBAO)

simpli f y
=

PAOC·SABD

PAOB·SACD

D
=

PAOC·PAOB·SABC·PCABO

PAOB·PAOC·SABC·PCABO

simpli f y
= 1

The eliminants
AZF
BZF

ZF
=

SADE
SBDE

AF
BF

F
=

PAOC

PBOC

SADE
E
=

PAOB·SACD

−PCBAO

SBDE
E
=

PBOC·SABD

−PCBAO

SACD
D
=

PAOC·SABC

PCABO

SABD
D
=

PAOB·SABC

PCABO

Example 6.63 (0.050, 1, 8)In a given triangle the three products of the segments into which
the orthocenter divides the altitudes are equal.

A B

C

D

E H

Figure 6-63

Constructive description
( (pointsA B C)

(foot D C A B)

(foot E B A C)

(inter H (l C D) (l B E))

(eq-productC H H D B H H E) )
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The machine proof
−PCHD

−PBHE

H
=

(−PCDC·SBDE·SBCE)·S2
BCED

(−PBEB·SCDE·SBCD)·S2
BCED

simpli f y
=

PCDC·SBDE·SBCE

PBEB·SCDE·SBCD

E
=

PCDC·(−PBAC·SBCD)·PACB·SABC·(PACA)2

(16S2
ABC)·PACB·SACD·SBCD·(PACA)2

simpli f y
=

−PCDC·PBAC

(16)·SABC·SACD

D
=

−(16S2
ABC)·PBAC·PABA

(16)·SABC·(−PBAC·SABC)·PABA

simpli f y
= 1

The eliminants

PBHE
H
=

PBEB·SCDE·SBCD

(SBCED)2

PCHD
H
=

PCDC·SBDE·SBCE

(SBCED)2

SCDE
E
=

PACB·SACD

PACA

PBEB
E
=

(16)·(SABC)2

PACA

SBCE
E
=

PACB·SABC

PACA

SBDE
E
=
−PBAC·SBCD

PACA

SACD
D
=
−PBAC·SABC

PABA

PCDC
D
=

(16)·(SABC)2

PABA

Example 6.64 (0.066, 2, 8)The product of the segments into which a side of a triangle is
divided by the foot of the altitude is equal to this altitude multiplied by the distance of the
side from the orthocenter.

A B

C

F

E H

Figure 6-64

Constructive description
( (pointsA B C)

(foot F C A B)

(foot E B A C)

(inter H (l C F) (l B E))

(eq-productA F F B C F H F) )

The eliminants

PCFH
H
=

PCFE·SBCF

SBCEF

PCFE
E
=

PCFC·PBAC

PACA

SBCEF
E
=
−(PACB·SACF−PACA·SBCF)

PACA

PCFC
F
=

(16)·(SABC)2

PABA

SBCF
F
=

PABC·SABC

PABA

SACF
F
=
−PBAC·SABC

PABA

PAFB
F
=
−PBAC·PABC

PABA

16S2
ABC=PBAC·PACB+PACA·PABC

The machine proof
−PAFB
PCFH

H
=

(−PAFB)·SBCEF

PCFE·SBCF

E
=
−PAFB·(−PACB·SACF+PACA·SBCF)·PACA

PCFC·PBAC·SBCF·PACA

simpli f y
=

PAFB·(PACB·SACF−PACA·SBCF)
PCFC·PBAC·SBCF

F
=

(−PBAC·PABC)·(−PBAC·PACB·PABA·SABC−PACA·PABC·PABA·SABC)·(PABA)2

(16S2
ABC)·PBAC·PABC·SABC·(PABA)3
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simpli f y
=

PBAC·PACB+PACA·PABC

(16)·(SABC)2

herron
=

(PBAC·PACB+PACA·PABC)·(16)
16PBAC·PACB+16PACA·PABC

(This step uses Herron-Qin’s formula.)

simpli f y
= 1

Example 6.65 (0.050, 3, 4)If p, q, r are the distances of a point inside a triangle ABC from
the sides of the triangle, show that(p/ha) + (q/hb) + (r/hc) = 1.

A B

C

O

D

E

F

1D1E

1F

Figure 6-65

Constructive description
( (pointsA B C O)

(foot D A B C)

(foot E B A C)

(foot F C A B) (foot D1 O B C)

(foot E1 O A C) (foot F1 O A B)

(
OD1
AD
+

OE1
BE
+

OF1
CF
= 1) )

The machine proof
OF1
CF
+

OE1
BE
+

OD1
AD

F1
=

OE1
BE
·SABC+

OD1
AD
·SABC+SABO

SABC

E1
=
−OD1

AD
·S2

ABC+SACO·SABC−SABO·SABC

SABC·(−SABC)

simpli f y
=

OD1
AD
·SABC−SACO+SABO

SABC

D1
=

SBCO·SABC−SACO·SABC+SABO·SABC

(SABC)2

simpli f y
=

SBCO−SACO+SABO

SABC

area−co
=

SABC

SABC

simpli f y
= 1

The eliminants

OF1
CF

F1
=

SABO

SABC

OE1
BE

E1
=

SACO

−SABC

OD1
AD

D1
=

SBCO

SABC

SBCO=SACO−SABO+SABC

Example 6.66 (0.050, 2, 3)Show that the sum of distances of a point on the base of an
isosceles triangle to its two sides is equal to the altitudeson the sides.

The eliminants:DK
AH

K
=

SBCD

−SBAC
, DF

BG

F
=

SACD

SBAC
, SACD−SBCD=SBAC.
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G

F

K H

D

A

CB

Figure 6-66

Constructive description
((pointsB A)

(on C (b A B))

(on D (l A B))

(foot G B A C)

(foot F D A C)

(foot H A B C)

(foot K D B C)

( DK
AH
+DF

BG
= 1) )

The machine proof
DK
AH
+DF

BG

K
=
−DF

BG
·SBAC+SBCD

−SBAC

F
=

SACD·SBAC−SBCD·SBAC

(SBAC)2

simpli f y
=

SACD−SBCD

SBAC

G
=

SBAC

SBAC

simpli f y
= 1

Definition. The triangle having for its vertices the feet of the altitudes of a given triangle is
called the orthic triangle of the given triangle.

A

B C

F

E

Figure 6-67

Example 6.67 (0.016, 1, 2)The three triangles
cut off from a given triangle by the sides of its
orthic triangles are similar to the given trian-
gle.

Constructive description
( (pointsA B C)

(foot F C A B)

(foot E B A C)

(eq-productA F A B A E A C) )

The machine proof
PBAF

PCAE

E
=

PBAF

PBAC

F
=

PBAC

PBAC

simpli f y
= 1

The eliminants

PCAE
E
=PBAC

PBAF
F
=PBAC

Example 6.68 (0.083, 1, 12)The sides of the orthic triangle meet the sides of the given trian-
gle in three collinear points.
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Constructive description
( (pointsA B C)

(foot D A B C)

(foot E B A C)

(foot F C A B)

(inter A1 (l B C) (l E F))

(inter B1 (l A C) (l D F))

(inter C1 (l A B) (l D E))

(inter ZC1 (l B1 A1) (l D E))

(
DC1
EC1
=

DZC1
EZC1

) )

The machine proof

( DC1
EC1

)/( DZC1
EZC1

)

ZC1
=
−SEA1B1
−SDA1B1

· DC1
EC1

C1
=

SABD·SEA1B1
SDA1B1 ·SABE

B1
=

SABD·SDEF·SACA1 ·(−SADCF)

(−SDFA1 ·SACD)·SABE·SADCF

simpli f y
=

SABD·SDEF·SACA1
SDFA1 ·SACD·SABE

A1
=

SABD·SDEF·SCEF·SABC·SBECF

(−SDEF·SBCF)·SACD·SABE·SBECF

simpli f y
=

SABD·SCEF·SABC

−SBCF·SACD·SABE

F
=

SABD·PBAC·SBCE·SABC·PABA

−PABC·SABC·SACD·SABE·PABA

simpli f y
=

SABD·PBAC·SBCE

−PABC·SACD·SABE

E
=

SABD·PBAC·PACB·SABC·PACA

−PABC·SACD·PBAC·SABC·PACA

simpli f y
=

SABD·PACB

−PABC·SACD

D
=

PABC·SABC·PACB·PBCB

−PABC·(−PACB·SABC)·PBCB

simpli f y
= 1

The eliminants
DZC1
EZC1

ZC1
=

SDA1B1
SEA1B1

DC1
EC1

C1
=

SABD

SABE

SDA1B1

B1
=

SDFA1 ·SACD

SADCF

SEA1B1

B1
=

SDEF·SACA1
SADCF

SDFA1

A1
=
−SDEF ·SBCF

SBECF

SACA1

A1
=

SCEF·SABC

SBECF

SBCF
F
=

PABC·SABC

PABA

SCEF
F
=

PBAC·SBCE

PABA

SABE
E
=

PBAC·SABC

PACA

SBCE
E
=

PACB·SABC

PACA

SACD
D
=
−PACB·SABC

PBCB

SABD
D
=

PABC·SABC

PBCB

Example 6.69 (0.067, 4, 11)The altitudes of a triangle bisect the internal angles of itsorthic
triangle.

A

B C

F

E

D

Figure 6-69

Constructive description
((pointsA B C)

(foot F C A B)

(foot E B A C)

(foot D A B C)

(eqangleE D C B D F) )
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The machine proof.
SCED·PBDF

(−SBFD)·PCDE

D
=

PACB·SBCE·(PBCF·PABC−PACB·PABC)·(PBCB)2

PABC·SBCF·(PCBE·PACB−PACB·PABC)·(PBCB)2

simpli f y
=

SBCE·(PBCF−PACB)
SBCF·(PCBE−PABC)

E
=

PACB·SABC·(PBCF−PACB)·PACA

SBCF·(PBCB·PBAC+PACB·PABC−PACA·PABC)·PACA

simpli f y
=

PACB·SABC·(PBCF−PACB)
SBCF·(PBCB·PBAC+PACB·PABC−PACA·PABC)

F
=

PACB·SABC·(PBCB·PBAC+PACB·PABC−PACB·PABA)·PABA

PABC·SABC·(PBCB·PBAC+PACB·PABC−PACA·PABC)·PABA

simpli f y
=

PACB·(PBCB·PBAC+PACB·PABC−PACB·PABA)
PABC·(PBCB·PBAC+PACB·PABC−PACA·PABC)

py
=

(PBCB+PACA−PABA)·(−2P2
BCB+4PBCB·PACA−2P2

ACA+2P2
ABA)·((2))4

(PBCB−PACA+PABA)·(−2P2
BCB+4PBCB·PABA+2P2

ACA−2P2
ABA)·((2))4

simpli f y
= 1

The eliminants

PCDE
D
=

(PCBE−PABC)·PACB

PBCB

SBFD
D
=
−PABC·SBCF

PBCB

PBDF
D
=

(PBCF−PACB)·PABC

PBCB

SCED
D
=

PACB·SBCE

PBCB

PCBE
E
=

PBCB·PBAC+PACB·PABC

PACA

SBCE
E
=

PACB·SABC

PACA

SBCF
F
=

PABC·SABC

PABA

PBCF
F
=

PBCB·PBAC+PACB·PABC

PABA

PABC=
1
2(PBCB−PACA+PABA)

PBAC= − 1
2(PBCB−PACA−PABA)

PACB=
1
2(PBCB+PACA−PABA)

Definition. Let H be the orthocenter of triangle ABC. Then the four pointsA, B,C,H are
such that each is the orthocenter of the triangle formed by the remaining three. Four such
points will be revered to as an orthocentric group of points,or an orthocentric quadrilat-
eral.

Example 6.70 (0.067 4 10)Let H be the orthocenter of triangle ABC. Then the circumcenters
of the four triangles ABC, ABH, ACH, and HBC form a triangle congruent to ABC; the
sides of the two triangles are parallel.

O

cO bO

aO

H

A

CB

Figure 6-70

Constructive description
((pointsA B C)

(orthocenterH A B C)

(circumcenterOa B C H)

(circumcenterOb A C H)

(circumcenterOc A B H)

(circumcenterO A B C)

(
ObOc

CB
= 1) )

The eliminants
ObOc

BC

Oc
=

PBAOb−
1
2 PABA

PABC

PBAOb

Ob
=

PBAH·PAHC·PACA+PBAC·PAHA·PACH

(32)·(SACH)2

SACH
H
=

PBAC·PACB

(−16)·SABC

PACH
H
=PACB

PAHA
H
=

PBCB·(PBAC)2

(16)·(SABC)2

PAHC
H
=

PBAC·PACB·PABC

(−16)·(SABC)2

PBAH
H
=PBAC

PABC=
1
2(PBCB−PACA+PABA)

PACB=
1
2(PBCB+PACA−PABA)

PBAC= − 1
2(PBCB−PACA−PABA)



6.3. Triangles 303

The machine proof

−ObOc
BC

Oc
=
−(PBAOb−

1
2 PABA)

PABC

Ob
=
−(PBAH·PAHC·PACA+PBAC·PAHA·PACH−16PABA·S2

ACH)

PABC·(32S2
ACH)

H
= (- (−4096PBCB·P3

BAC·PACB·S6
ABC+4096P2

BAC·P
2
ACB·PABA·S6

ABC+4096P2
BAC·PACB·PACA·PABC·S6

ABC) · ( (16S2
ABC) )2) / ( (32)

· PABC · ( (−PBAC·PACB·SABC) )2· ( (16S2
ABC) )3· (−16S2

ABC) )
simpli f y
=

−(PBCB·PBAC−PACB·PABA−PACA·PABC)
(2)·PABC·PACB

py
=
−(−4P2

BCB+4P2
ACA−8PACA·PABA+4P2

ABA)·((2))2

((2))4·(PBCB−PACA+PABA)·(PBCB+PACA−PABA)

simpli f y
= 1

Example 6.71 (0.067, 1, 6)Continuing from Example 6.70, show that the point H is the
circumcenter of the triangle OaObOc.

Constructive description
((pointsA B C)

(orthocenterH A B C)

(circumcenterOa B C H)

(circumcenterOb A C H)

(circumcenterOc A B H)

(circumcenterO A B C)

(eqdistanceH Oa H Ob) )

The machine proof
PHOaH

PHObH

Ob
=

PHOaH ·(64S2
ACH)

PCHC·PAHA·PACA

Oa
=

(64)·PCHC·PBHB·PBCB·(SACH)2

PCHC·PAHA·PACA·(64S2
BCH)

simpli f y
=

PBHB·PBCB·(SACH)2

PAHA·PACA·(SBCH)2

H
=

PACA·P2
ABC·PBCB·((−PBAC·PACB·SABC))2·((16S2

ABC))3

PBCB·P2
BAC·PACA·(PACB·PABC·SABC)2·((16S2

ABC))3

simpli f y
= 1

The eliminants

PHObH
Ob
=

PCHC·PAHA·PACA

(64)·(SACH)2

PHOaH
Oa
=

PCHC·PBHB·PBCB

(64)·(SBCH)2

SBCH
H
=

PACB·PABC

(16)·SABC

PAHA
H
=

PBCB·(PBAC)2

(16)·(SABC)2

SACH
H
=

PBAC·PACB

(−16)·SABC

PBHB
H
=

PACA·(PABC)2

(16)·(SABC)2

Example 6.72 (0.350, 10, 17)Show that the three perpendiculars to the sides of a triangleat
the points isotomic to the feet of the respective altitudes are concurrent.

I

1F

1E

1D

F

E

D

C

BA

Figure 6-72

Constructive description
( (pointsA B C) (foot D A B C)

(foot E B A C) (foot F C A B)

(pratioD1 B C D −1)

(pratioE1 A C E −1)

(pratioF1 A B F −1)

(inter I (t E1 A C) (t D1 B C))

(perpendicularI F1 A B) )

Example 6.73 (0.100, 4, 15)Show that the symmetries of the foot of the altitude to the base
of a triangle with respect to the other two sides lie on the side of the orthic triangle relative
to the base.
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J

P

F

E

D

A

CB

Figure 6-73

Constructive description
( (pointsA B C)

(foot D A B C)

(foot E B A C)

(foot F C A B)

(foot P D B A)

(inter J (l E F) (l D P))

(midpointP D J) )

Example 6.74 (0.183, 3, 11)Show that the product of the segments into which a side of a
triangle is divided by the corresponding vertex of the orthic triangle is equal to the product
of the sides of the orthic triangle passing through the vertex considered.

D

E

F

A

CB

Figure 6-74

Constructive description
( (pointsA B C)

(foot F C A B)

(foot E B A C)

(foot D A B C)

(eq-productB D D C E D F D) )

Example 6.75 (0.100, 3, 14)If P, Q are the feet of the perpendiculars from the vertices B,C
of the triangle ABC upon the sides DF, DE, respectively, of the orthic triangle DEF, show
that EQ= FP.

P

Q

D

E

F

A

CB

Figure 6-75

Constructive description
( (pointsA B C)

(foot F C A B)

(foot E B A C)

(foot D A B C)

(foot Q C D E) (foot P B D F)

(eqdistanceE Q F P) )

Example 6.76 (0.167, 6, 22)The four projections of the foot of the altitude on a side of a
triangle upon the other two sides and the other two altitudesare collinear.

FA B

C

H
P

T

Q

Figure 6-76

Constructive description
( (pointsA B C)

(orthocenterH A B C)

(foot F C A B)

(foot P F A C)

(foot T F B C)

(foot Q F A H)

(collinearP Q T) )
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Example 6.77 (0.083, 4, 9)DP, DQ are the perpendiculars from the foot D of the altitude
AD of the triangle ABC upon the sides AC, AB. Prove that the points B, C, P, Q are cyclic.

P
Q

D

A

CB

Figure 6-77

Constructive description
( (pointsA B C)

(foot D A B C)

(foot Q D A B)

(foot P D A C)

(cocircleB C P Q) )

The machine proof
(−SBCP)·PBQC

(−SBCQ)·PBPC

P
=

(−PACD·SABC)·PBQC·PACA

(−SBCQ)·(−PCAD·PACD+PBAC·PACD)·PACA

simpli f y
=

−SABC·PBQC

SBCQ·(PCAD−PBAC)

Q
=
−SABC·(−PBAD·PABD+PBAC·PABD)·PABA

PABD·SABC·(PCAD−PBAC)·PABA

simpli f y
=

PBAD−PBAC

PCAD−PBAC

D
=

(−PBCB·PBAC+PBAC·PABC+PACB·PABA)·PBCB

(−PBCB·PBAC+PBAC·PACB+PACA·PABC)·PBCB

simpli f y
=

PBCB·PBAC−PBAC·PABC−PACB·PABA

PBCB·PBAC−PBAC·PACB−PACA·PABC

py
=

(−2P2
BCB+2P2

ACA−4PACA·PABA+2P2
ABA)·((2))3

(−2P2
BCB+2P2

ACA−4PACA·PABA+2P2
ABA)·((2))3

simpli f y
= 1

The eliminants

PBPC
P
=
−(PCAD−PBAC)·PACD

PACA

SBCP
P
=

PACD·SABC

PACA

SBCQ
Q
=

PABD·SABC

PABA

PBQC
Q
=
−(PBAD−PBAC)·PABD

PABA

PCAD
D
=

PBAC·PACB+PACA·PABC

PBCB

PBAD
D
=

PBAC·PABC+PACB·PABA

PBCB

PACB=
1
2(PBCB+PACA−PABA)

PABC=
1
2(PBCB−PACA+PABA)

PBAC= − 1
2(PBCB−PACA−PABA)

Example 6.78 (0.450, 6, 29)The perpendiculars DP, DQ dropped from the foot D of the
altitude AD of the triangle ABC upon the sides AB, AC meet the perpendiculars BP, CQ
erected to BC at B, C in the points P, Q respectively. Prove that the line PQ passes through
the orthocenter H of ABC.

Q

P

H

D

A

CB

Figure 6-78

Constructive description
( (pointsA B C)

(foot D A B C)

(inter H (l A D) (t B A C))

(inter P (t D A B) (t B B C))

(inter Q (t D A C) (t C B C))

(collinearH Q P) )

Example 6.79 (2.067, 68, 61)The algebraic sum of the distances of the points of an ortho-
centric group from any line passing through the nine-point center of the group is equal to
zero.
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1H
1C

1B

1A

X

N

3M
2M

1M

H

A

CB

Figure 6-79

Constructive description
( (pointsA B C)

(orthocenterH A B C) (midpointM1 B C)

(midpointM2 C A) (midpointM3 A B)

(midpointN1 M1 M2) (midpointN2 M1 M3)

(inter N (t N1 N1 M1) (t N2 N2 M1))

(on X (l B C))

(foot H1 H X N)

(inter A1 (l X N) (p A H H1))

(inter B1 (l X N) (p B H H1)) (interC1 (l X N) (p C H H1)) (
AA1
HH1
+

BB1
HH1

=
C1C

HH1
−1) )

Example 6.80 (0.350, 6, 10)If through the midpoints of the sides of a triangle having its
vertices on the altitudes of a given triangle, perpendiculars are dropped to the respective
sides of the given triangle, show that the three perpendiculars are concurrent.

I
1P1Q

1R Q
P

R

F

E

D

A

CB

Figure 6-80

Constructive description
((pointsA B C) (orthocenterH A B C)

(on R (l A H)) (on P (l B H))

(on Q (l C H)) (midpointR1 P Q)

(midpointQ1 R P)

(midpointP1 Q R)

(inter I (p R1 A H) (p Q1 C H))

(perpendicularI P1 A C) )

Example 6.81 (2.833, 7, 43)Show that the perpendiculars dropped from the orthocenter of a
triangle upon the lines joining the vertices to a given points meet the respectively opposite
sides of the triangle in three collinear points.

1C

1B

1A

HO

A

CB

Figure 6-81

Constructive description
( (pointsA B C O)

(orthocenterH A B C)

(inter A1 (l B C) (t H O A))

(inter B1 (l A C) (t H O B))

(inter C1 (l A B) (t H O C))

(inter C2 (l A B) (l A1 B1))

(
AC1
BC1
=

AC2
BC2

) )

Definition. Two lines passing through the vertex of a given angle and marking equal angles
with the bisector of the given angle are said to be isogoal or isogonal conjugates.

Example 6.82 (0.133, 5, 22)Show that the line joining a given point to the vertex of a given
angle has for its isogonal line the mediator of the segment determined by the symmetries of
the given point with respect to the sides of the angle.
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A B

C

M

P

Q

1P

1Q

N

Figure 6-82

Constructive description
( (pointsA B C M)

(foot P M A C)

(foot Q M A B)

(lratio P1 P M −1)

(lratio Q1 Q M −1)

(midpointN P1 Q1)

(perpendicularA N P1 Q1) )

Example 6.83 (1.550, 5, 25)If circles are constructed on two cevians as diameters, their
radical axis passes through the orthocenter H of the triangle.

NM

E

D

H

P

C

BA

Figure 6-83

Constructive description
( (pointsA B C P)

(orthocenterH A B C)

(inter D (l B C) (l A P))

(inter E (l A C) (l B P))

(midpointM A D)

(midpointN B E)

(on-radicalH M A N B) )

Example 6.84 (0.183, 3, 12)In triangle ABC, let F the midpoint of the side BC, D and E the
feet of the altitudes on AB and AC, respectively. FG is perpendicular to DE at G. Show
that G is the midpoint of DE.

G

F

E

D

A

CB
Figure 6-84

Constructive description
((pointsA B C)

(foot D C A B)

(foot E B A C)

(midpointF B C)

(midpointG D E)

(perpendicularG F D E) )

The eliminants

PEDG
G
=

1
2(PDED) PEDF

F
=

1
2(PCDE+PBDE)

PBDE
E
=

PADB·PACB

PACA
PCDE

E
=

PCDC·PBAC

PACA

PDED
E
=

PCDC·PBAC−PBAC·PACB+PADA·PACB

PACA

PADB
D
=
−PBAC·PABC

PABA
PADA

D
=

(PBAC)2

PABA

PCDC
D
=

(16)·(SABC)2

PABA

16S2
ABC=PBAC·PACB+PACA·PABC

PABC=
1
2(PBCB−PACA+PABA)

PACB=
1
2(PBCB+PACA−PABA)

PBAC= − 1
2(PBCB−PACA−PABA)

The machine proof
PEDG

PEDF

G
=

1
2 PDED

PEDF

F
=

PDED

(2)·( 1
2 PCDE+

1
2 PBDE)

E
=

(PCDC·PBAC−PBAC·PACB+PADA·PACB)·(PACA)2

(PCDC·PBAC·PACA+PADB·PACB·PACA)·PACA
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simpli f y
=

PCDC·PBAC−PBAC·PACB+PADA·PACB

PCDC·PBAC+PADB·PACB

D
=

(P2
BAC·PACB·PABA−PBAC·PACB·P2

ABA+16PBAC·PABA·S2
ABC)·(PABA)2

(−PBAC·PACB·PABC·PABA+16PBAC·PABA·S2
ABC)·(PABA)2

simpli f y
=

PBAC·PACB−PACB·PABA+16S2
ABC

−(PACB·PABC−16S2
ABC)

herron
=

(32PBAC·PACB−16PACB·PABA+16PACA·PABC)·(16)
(16PBAC·PACB−16PACB·PABC+16PACA·PABC)·(16)

py
=

((2))4·(−2P2
BCB+2PBCB·PACA+2PBCB·PABA)

(−4P2
BCB+4PBCB·PACA+4PBCB·PABA)·((2))3

simpli f y
= 1

Example 6.85 (0.083, 3, 10)Let B1 and C1 be the midpoints of AC and AB, D the foot from
A to BC. Show that the triangle DB1C1 is congruent to the Euler triangle of triangle ABC.

B C

A

D

H

P

Q

1C

Figure 6-85

Constructive description
( (pointsA B C)

(foot D A B C)

(foot FH B A C)

(inter H (l A D) (l B FH ))

(midpointP A H)

(midpointQ B H)

(midpointC1 B A)

(eqdistanceC1 D P Q) )

The machine proof
PDC1D

PPQP

C1
=

1
2 PBDB+

1
2 PADA− 1

4 PABA

PPQP

Q
=

2PBDB+2PADA−PABA

(4)·( 1
2 PHPH+

1
2 PBPB− 1

4 PBHB)

P
=

2PBDB+2PADA−PABA
PABA

D
=
−P2

BCB·PABA+2PBCB·P2
ABC+32PBCB·S2

ABC

PABA·(PBCB)2

simpli f y
=

−(PBCB·PABA−2P2
ABC−32S2

ABC)

PABA·PBCB

herron
=

−16PBCB·PABA+32PBAC·PACB+32PACA·PABC+32P2
ABC

PBCB·PABA·(16)
py
=
−(−16PBCB·PABA)
PBCB·PABA·((2))4

simpli f y
= 1

The eliminants

PDC1D
C1
=

1
4(2PBDB+2PADA−PABA)

PPQP
Q
=

1
4(2PHPH+2PBPB−PBHB)

PBPB
P
=

1
4(2PBHB−PAHA+2PABA)

PHPH
P
=

1
4(PAHA)

PADA
D
=

(16)·(SABC)2

PBCB
, PBDB

D
=

(PABC)2

PBCB

16S2
ABC=PBAC·PACB+PACA·PABC

PABC=
1
2(PBCB−PACA+PABA)

PACB=
1
2(PBCB+PACA−PABA)

PBAC= − 1
2(PBCB−PACA−PABA)

6.3.3 The Circumcircle

Definition The circle passing through the three vertices of a triangle is called the circum-
circle of the triangle. The center of the circumcircle is called the circumcenter of the given
triangle.
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Example 6.86 (0.033, 6, 8)The angle between the circumdiameter and the altitude issued
from the same vertex of a triangle is bisected by the bisectorof the angle of the triangle at
the vertex considered.

A

B C

O

D

Figure 6-86

Constructive description
( (pointsA B C)

(circumcenterO A B C)

(foot D A B C)

(eqangleB A D O A C) )

The machine proof
(−SABD)·PCAO

SACO·PBAD

D
=

(−PABC·SABC)·PCAO·PBCB

SACO·(PBAC·PABC+PACB·PABA)·PBCB

simpli f y
=

−PABC·SABC·PCAO

SACO·(PBAC·PABC+PACB·PABA)

O
=

−PABC·SABC·PACA·(−32SABC)
PACA·PABC·(PBAC·PABC+PACB·PABA)·(2)

simpli f y
=

(16)·(SABC)2

PBAC·PABC+PACB·PABA

herron
=

16PBAC·PACB+16PACA·PABC

(PBAC·PABC+PACB·PABA)·(16)

py
=

(−2P2
BCB+4PBCB·PACA+4PBCB·PABA−2P2

ACA+4PACA·PABA−2P2
ABA)·((2))3

(−2P2
BCB+4PBCB·PACA+4PBCB·PABA−2P2

ACA+4PACA·PABA−2P2
ABA)·((2))3

simpli f y
= 1

The eliminants

PBAD
D
=

PBAC·PABC+PACB·PABA

PBCB

SABD
D
=

PABC·SABC

PBCB

SACO
O
=

PACA·PABC

(−32)·SABC

PCAO
O
=

1
2(PACA)

16S2
ABC=PBAC·PACB+PACA·PABC

PABC=
1
2(PBCB−PACA+PABA)

PACB=
1
2(PBCB+PACA−PABA)

PBAC= − 1
2(PBCB−PACA−PABA)

Example 6.87 (0.001, 1, 2)The product of two sides of a triangle is equal to the altitudeto
the third side multiplied by the circumdiameter.

Constructive description
( (pointsA B C)

(circumcenterO A B C)

(foot F C A B)

(AC
2
BC

2
= 4OA

2·CF
2
) )

The eliminants

PCFC
F
=

(16)·(SABC)2

PABA

PAOA
O
=

PBCB·PACA·PABA

(64)·(SABC)2

A B

C

O

F

Figure 6-87

The machine proof
( 1

4 )·PBCB·PACA

PCFC·PAOA
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F
=

( 1
4 )·PBCB·PACA·PABA

(16S2
ABC)·PAOA

O
=

PBCB·PACA·PABA·(64S2
ABC)

(64)·(SABC)2·PBCB·PACA·PABA

simpli f y
= 1

Example 6.88 (0.050, 5, 14)Prove that the circumcenter of a triangle is the orthocenterof
its medial triangle.

A B

C

O

1A1B

1C

Figure 6-88

Constructive description
( (pointsA B C)

(circumcenterO A B C)

(midpointA1 B C)

(midpointB1 A C)

(midpointC1 A B)

(perpendicularO A1 B1 C1) )

The machine proof
POB1C1
PA1B1C1

C1
=

1
2 PBB1O+

1
2 PAB1O

1
2 PBB1A1+

1
2 PAB1A1

B1
=

1
2 PBCO+

1
2 PBAO+

1
2 PACO− 1

2 PACA
1
2 PBCA1+

1
2 PBAA1+

1
2 PACA1−

1
2 PACA

A1
=

PBCO+PBAO+PACO−PACA
1
2 PBCB+

1
2 PBAC+

1
2 PACB−PACA+

1
2 PABA

O
=

(2)·(4PBCB−4PACA+4PABA)
(PBCB+PBAC+PACB−2PACA+PABA)·((2))3

py
=

(PBCB−PACA+PABA)·((2))2

4PBCB−4PACA+4PABA

simpli f y
= 1

The eliminants

PA1B1C1

C1
=

1
2(PBB1A1+PAB1A1)

POB1C1

C1
=

1
2(PBB1O+PAB1O)

PAB1A1

B1
=

1
4(2PACA1−PACA)

PBB1A1

B1
=

1
4(2PBCA1+2PBAA1−PACA)

PAB1O
B1
=

1
4(2PACO−PACA)

PBB1O
B1
=

1
4(2PBCO+2PBAO−PACA)

PACA1

A1
=

1
2(PACB) PBAA1

A1
=

1
2(PBAC+PABA)

PBCA1

A1
=

1
2(PBCB), PACO

O
=

1
2(PACA)

PBAO
O
=

1
2(PABA), PBCO

O
=

1
2(PBCB)

PACB=
1
2(PBCB+PACA−PABA)

PBAC= − 1
2(PBCB−PACA−PABA)

Example 6.89 (0.150, 4, 11)The area of a triangle is equal to the product of its three sides
divided by the double circumdiameter of the triangle.

Constructive description
((pointsA B C) (midpointN A C) (midpointL A B)

(midpointM B C) (inter O (t L L B) (t M M B)) (AB
2
AC

2
CB

2
= 16S2

ABC·OA
2
) )

Example 6.90 (0.016, 1, 4)The radii of the circumcircle passing through the vertices of a
triangle are perpendicular to the corresponding sides of the orthic triangle.

Constructive description:
( (pointsA B C) (circumcenterO A B C)

(foot F C A B) (foot E B A C) (perpendicularE F A O) )
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O

E

F

C

BA

Figure 6-90

The machine proof
POAE

POAF

E
=

PCAO·PBAC

POAF·PACA

F
=

PCAO·PBAC·PABA

PBAO·PBAC·PACA

simpli f y
=

PCAO·PABA

PBAO·PACA

O
=

PACA·PABA·(2)
PABA·PACA·(2)

simpli f y
= 1

The eliminants

POAE
E
=

PCAO·PBAC

PACA

POAF
F
=

PBAO·PBAC

PABA

PBAO
O
=

1
2(PABA)

PCAO
O
=

1
2(PACA)

Example 6.91 (0.016, 1, 3)Let ABC be a triangle with AC= AB. D is a point on BC. Line
AD meets the circumcircle of ABC at E. Show that AB2 = AD · AE.

The eliminants:PDAE
E
=(2)·POAD. POAD

D
=PBAO. PBAO

O
=

1
2(PBAB).

D

E

O

C

B

M

A

Figure 6-91

Constructive description
( (pointsB M)

(on A (t M M B))

(inter O (l A M) (b A B))

(lratio C M B −1)

(on D (l B M))

(inter E (l A D) (cir O A))

(eq-productA B A B A D A E) )

The machine proof
PBAB

PDAE

E
=

PBAB·PADA

2POAD·PADA

simpli f y
=

PBAB
(2)·POAD

D
=

PBAB

(2)·PBAO

O
=

PBAB·(2)
(2)·PBAB

simpli f y
= 1

Example 6.92 (0.001, 1, 3)Let C be the midpoint of the arc AB of circle(O). D is a point on
the circle. E= AB∩CD. Show that CA2 = CE ·CD.

The eliminants:PECD
D
=(2)·POCE. POCE

E
=PACO. PACO

O
=

1
2(PACA).

A B

O

M

C

D

E

Figure 6-92

Constructive description
( (pointsA M)

(on C (t M M A))

(inter O (l C M) (b A C))

(on E (l A M))

(inter D (l C E) (cir O C))

(eq-productC A C A C E C D) )

The machine proof
PACA

PECD

D
=

PACA·PCEC

2POCE·PCEC

simpli f y
=

PACA

(2)·POCE

E
=

PACA

(2)·PACO

O
=

PACA·(2)
(2)·PACA

simpli f y
= 1

Example 6.93 (0.050, 3, 7)The distance of a side of a triangle from the circumcenter is equal
to half the distance of the opposite vertex from the orthocenter.
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1A

O
H

D

A

CB

Figure 6-93

Constructive description
( (pointsA B C)

(circumcenterO A B C)

(orthocenterH A B C)

(foot D A B C)

(inter A1 (l B C)

(p O A D))

( AH
OA1
= 2) )

The machine proof
1
2( AH

OA1
)

A1
=

SABHC

(2)·SBCO

H
=
−PACB·PABC·SABC+16S3

ABC

(2)·SBCO·(16S2
ABC)

simpli f y
=

−(PACB·PABC−16S2
ABC)

(32)·SBCO·SABC

O
=
−(PACB·PABC−16S2

ABC)·(32SABC)
(32)·PBCB·PBAC·SABC

simpli f y
=

−(PACB·PABC−16S2
ABC)

PBCB·PBAC

herron
=

16PBAC·PACB−16PACB·PABC+16PACA·PABC

PBCB·PBAC·(16)

py
=

(−4P2
BCB+4PBCB·PACA+4PBCB·PABA)·(2)

PBCB·(−PBCB+PACA+PABA)·((2))3

simpli f y
= 1

The eliminants
AH

OA1

A1
=

SABHC

SBCO

SABHC
H
=

PACB·PABC−16S2
ABC

(−16)·SABC

SBCO
O
=

PBCB·PBAC

(32)·SABC

16S2
ABC=PBAC·PACB+PACA·PABC

PABC=
1
2(PBCB−PACA+PABA)

PACB=
1
2(PBCB+PACA−PABA)

PBAC= − 1
2(PBCB−PACA−PABA)

Example 6.94 (0.067, 3, 9)The ratio of a side of a triangle to the corresponding side of the
orthic triangle is equal to the ratio of the circumradius to the distance of the side considered
from the circumcenter.

A B

C

E

DO

Q

Figure 6-94

Constructive description
( (pointsA B C)

(circumcenterO A B C)

(foot Q O A B)

(foot E B A C)

(foot D A B C)

(eq-productA B O Q O A E D) )

The eliminants

PEDE
D
=

PCEC·PABC+PBEB·PACB−PACB·PABC

PBCB

PBEB
E
=

(16)·(SABC)2

PACA

PCEC
E
=

(PACB)2

PACA

POQO
Q
=

(16)·(SABO)2

PABA

PAOA
O
=

PBCB·PACA·PABA

(64)·(SABC)2

SABO
O
=

PACB·PABA

(32)·SABC

16S2
ABC=PBAC·PACB+PACA·PABC

PABC=
1
2(PBCB−PACA+PABA)

PBAC= − 1
2(PBCB−PACA−PABA)



6.3. Triangles 313

The machine proof
PABA·POQO

PAOA·PEDE

D
=

PABA·POQO·PBCB

PAOA·(PCEC·PABC+PBEB·PACB−PACB·PABC)

E
=

PABA·POQO·PBCB·(PACA)2

PAOA·(P2
ACB·PACA·PABC−PACB·P2

ACA·PABC+16PACB·PACA·S2
ABC)

simpli f y
=

PABA·POQO·PBCB·PACA

PAOA·(PACB·PABC−PACA·PABC+16S2
ABC)·PACB

Q
=

PABA·(16S2
ABO)·PBCB·PACA

PAOA·(PACB·PABC−PACA·PABC+16S2
ABC)·PACB·PABA

simpli f y
=

(16)·(SABO)2·PBCB·PACA

PAOA·(PACB·PABC−PACA·PABC+16S2
ABC)·PACB

O
=

(16)·(PACB·PABA)2·PBCB·PACA·(64S2
ABC)

PBCB·PACA·PABA·(PACB·PABC−PACA·PABC+16S2
ABC)·PACB·((32SABC))2

simpli f y
=

PACB·PABA

PACB·PABC−PACA·PABC+16S2
ABC

herron
=

PACB·PABA·(16)
16PBAC·PACB+16PACB·PABC

simpli f y
=

PABA
PBAC+PABC

py
=

PABA·((2))2

4PABA

simpli f y
= 1

Example 6.95 (0.083, 2, 6)AH
2
+ BC

2
= 4OA

2
.

A B

C

O

H

Figure 6-95

Constructive description
( (pointsA B C)

(orthocenterH A B C)

(circumcenterO A B C)

(AH
2
+BC

2
= 4AO

2
) )

The machine proof
PBCB+PAHA

(4)·PAOA

O
=

(PBCB+PAHA)·(64S2
ABC)

(4)·PBCB·PACA·PABA

H
=

(16)·(PBCB·P2
BAC+16PBCB·S2

ABC)·(SABC)2

PBCB·PACA·PABA·(16S2
ABC)

simpli f y
=

P2
BAC+16S2

ABC

PACA·PABA

herron
=

16P2
BAC+16PBAC·PACB+16PACA·PABC

PACA·PABA·(16)

py
=

16PACA·PABA

PACA·PABA·((2))4

simpli f y
= 1

The eliminants

PAOA
O
=

PBCB·PACA·PABA

(64)·(SABC)2

PAHA
H
=

PBCB·(PBAC)2

(16)·(SABC)2

16S2
ABC=PBAC·PACB+PACA·PABC

PABC=
1
2(PBCB−PACA+PABA)

PACB=
1
2(PBCB+PACA−PABA)

PBAC= − 1
2(PBCB−PACA−PABA)
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Example 6.96 (0.116, 4, 7)The circumdiameters AP, BQ, CR of a triangle ABC meet the
sides BC, CA, AB in the points K, L, M. Show that(KP/AK) + (LQ/BL) + (MR/CM) = 1.

A B

C

O

PQ

R

K
L

M

Figure 6-96

Constructive description
( (pointsA B C) (circumcenterO A B C) (lratio P O A −1) (lratio Q O B −1) (lratio R O C −1)

(inter K (l B C) (l A O)) (inter L (l C A) (l B O)) (inter M (l A B) (l C O)) ( KP
AK
+

LQ
BL
+ MR

CM
= 1) )

The machine proof

−( RM
CM
+

QL
BL
+ PK

AK
)

M
=
−( QL

BL
·SABC+

PK
AK
·SABC+SABR)

SABC

L
=
−( PK

AK
·S2

ABC−SACQ·SABC+SABR·SABC)

(SABC)2

simpli f y
=

−( PK
AK
·SABC−SACQ+SABR)

SABC

K
=
−(SBCP·SABC−SACQ·SABC+SABR·SABC)

(SABC)2

simpli f y
=

−(SBCP−SACQ+SABR)
SABC

R
=
−(SBCP−SACQ+2SABO−SABC)

SABC

Q
=
−(SBCP−2SACO+2SABO−2SABC)

SABC

P
=
−(2SBCO−2SACO+2SABO−3SABC)

SABC

O
=

(−2)·(− 1
2SABC)

SABC

simpli f y
= 1

The eliminants
RM
CM

M
=

SABR

SABC

QL
BL

L
=
−SACQ

SABC

PK
AK

K
=

SBCP

SABC

SABR
R
=2SABO−SABC

SACQ
Q
=2SACO+SABC

SBCP
P
=2SBCO−SABC

SBCO−SACO+SABO− 3
2SABC=− 1

2SABC

Example 6.97 (0.066, 2, 8)The mediators of the sides AC, AB of the triangle ABC meet the
sides AB, AC in P and Q. Prove that the points B, C, P, Q lie on a circle.

Constructive description
( (pointsA B C)

(inter P (l A C) (b A B))

(inter Q (l A B) (b A C))

(cocircleB C P Q) )

The machine proof
(−SBPQ)·PPCQ

(−SCPQ)·PPBQ

Q
=

(PBAC·SABP− 1
2 PACA·SABP)·PACP·((−PBAC))2

( 1
2 PACA·SBCP)·(−PBAC·PABP+

1
2 PACA·PABP)·(2)·(−PBAC)

simpli f y
=

SABP·PACP·PBAC

PACA·SBCP·PABP

P
=

(− 1
2 PABA·SABC)·(−PBAC·PACA+

1
2 PACA·PABA)·PBAC·(2)·(−PBAC)

PACA·(−PBAC·SABC+
1
2 PABA·SABC)·PABA·((−PBAC))2

simpli f y
= 1
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B C

A

P

Q O

Figure 6-97

The eliminants

PPBQ
Q
=

(2PBAC−PACA)·PABP

(2)·PBAC

SCPQ
Q
=

PACA·SBCP

(2)·PBAC

PPCQ
Q
=

1
2(PACP)

SBPQ
Q
=

(2PBAC−PACA)·SABP

(2)·PBAC

PABP
P
=

1
2(PABA), SBCP

P
=

(2PBAC−PABA)·SABC

(2)·PBAC

PACP
P
=

(2PBAC−PABA)·PACA

(2)·PBAC
, SABP

P
=

PABA·SABC

(2)·PBAC

Example 6.98 (0.083, 4, 13)The two tangents to the circumcircle of ABC at A and C meet at
E. The mediator of BC meet AB at D. Show that DE‖ BC.

A B

C

O

H

D

E

Figure 6-98

Constructive description
( (pointsA B C)

(circumcenterO A B C)

(midpointH B C)

(inter D (l A B) (l O H))

(inter E (t C C O) (t A A O))

(parallelD E B C) )

The machine proof
SBCD

SBCE

E
=

SBCD·(−4SACO)
1
4 PCAO·PBCO

D
=

(−16)·(−SBOH·SABC)·SACO

PCAO·PBCO·SAOBH

H
=

(16)·(− 1
2SBCO)·SABC·SACO

PCAO·PBCO·(−SABO+
1
2SABC)

O
=

(16)·PBCB·PBAC·SABC·PACA·PABC·(32SABC)·((2))2

PACA·PBCB·(2PACB·PABA−32S2
ABC)·(−32SABC)·(32SABC)

simpli f y
=

−PBAC·PABC

PACB·PABA−16S2
ABC

herron
=

(−PBAC·PABC)·(16)
−16PBAC·PACB+16PACB·PABA−16PACA·PABC

py
=

(−PBCB+PACA+PABA)·(PBCB−PACA+PABA)·((2))3

(−2P2
BCB+4PBCB·PACA−2P2

ACA+2P2
ABA)·((2))2

simpli f y
= 1

The eliminants

SBCE
E
=

PCAO·PBCO

(−16)·SACO

SBCD
D
=
−SBOH·SABC

SAOBH

SAOBH
H
= − 1

2(2SABO−SABC)
SBOH

H
= − 1

2(SBCO)
SABO

O
=

PACB·PABA

(32)·SABC

PBCO
O
=

1
2(PBCB)

PCAO
O
=

1
2(PACA)

SACO
O
=

PACA·PABC

(−32)·SABC

SBCO
O
=

PBCB·PBAC

(32)·SABC

16S2
ABC=PBAC·PACB+PACA·PABC

PACB=
1
2(PBCB+PACA−PABA)

PABC=
1
2(PBCB−PACA+PABA)

PBAC= − 1
2(PBCB−PACA−PABA)

Example 6.99 (0.016, 1, 12)The lines tangent to the circumcircle of a triangle at the vertices
meet opposite sides in three collinear points. (The Lemoineaxis of the given triangle.)
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A B

C

O

1A

1B

1C

Figure 6-99

Constructive description
( (pointsA B C)

(circumcenterO A B C)

(inter A1 (l B C) (t A A O))

(inter B1 (l A C) (t B B O))

(inter C1 (l A B) (t C C O))

(inter ZC1 (l B1 A1) (l A B))

(
AC1
BC1
=

AZC1
BZC1

) )

The machine proof

( AC1
BC1

)/( AZC1
BZC1

)

ZC1
=
−SBA1B1
−SAA1B1

· AC1
BC1

C1
=

PACO·SBA1B1
SAA1B1 ·PBCO

B1
=

PACO·(−PCBO·SABA1 )·(−PCBAO)

(−PABO·SACA1 )·PBCO·(−PCBAO)

simpli f y
=

PACO·PCBO·SABA1
PABO·SACA1 ·PBCO

A1
=

PACO·PCBO·PBAO·SABC·(−PCABO)
PABO·PCAO·SABC·PBCO·(−PCABO)

simpli f y
=

PACO·PCBO·PBAO

PABO·PCAO·PBCO

O
=

PACA·PBCB·PABA·((2))3

PABA·PACA·PBCB·((2))3

simpli f y
= 1

The eliminants
AZC1
BZC1

ZC1
=

SAA1B1
SBA1B1

AC1
BC1

C1
=

PACO

PBCO

SAA1B1

B1
=

PABO·SACA1
PCBAO

SBA1B1

B1
=

PCBO·SABA1
PCBAO

SACA1

A1
=

PCAO·SABC

−PCABO

SABA1

A1
=

PBAO·SABC

−PCABO

PBCO
O
=

1
2(PBCB)

PCAO
O
=

1
2(PACA)

PABO
O
=

1
2(PABA)

PBAO
O
=

1
2(PABA)

PCBO
O
=

1
2(PBCB)

PACO
O
=

1
2(PACA)

Definition. The symmetric of a median of a triangle with respect to the internal bisector
issued from the same vertex is called a symmedian.

Y

X
aT1A

O

A

C

B

Figure 6-100

Example 6.100 (0.050, 1, 6)The distances from
a point on a symmedian of a triangle to the
two including sides are proportional to these
sides.

Constructive description
( (pointsA B C)

(circumcenterO A B C)

(midpointA1 B C)

(inter Ta (l B C) (t A A O))

(foot X Ta A C)

(foot Y Ta A B)

(eq-productTa Y A C Ta X A B) )

The machine proof
PTaYTa·PACA

PTaXTa ·PABA

Y
=

(16S2
ABTa

)·PACA

PTaXTa ·(PABA)2

X
=

(16)·(SABTa)2·(PACA)2

(16S2
ACTa

)·(PABA)2

Ta
=

(PBAO·SABC)2·(PACA)2·((−PCABO))2

(PCAO·SABC)2·(PABA)2·((−PCABO))2

simpli f y
=

(PBAO)2·(PACA)2

(PCAO)2·(PABA)2

O
=

(PABA)2·(PACA)2·((2))2

(PACA)2·(PABA)2·((2))2
simpli f y
= 1

The eliminants

PTaYTa
Y
=

(16)·(SABTa)2

PABA

PTaXTa
X
=

(16)·(SACTa )2

PACA

SACTa
Ta
=

PCAO·SABC

−PCABO

SABTa
Ta
=

PBAO·SABC

−PCABO

PCAO
O
=

1
2(PACA)

PBAO
O
=

1
2(PABA)
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Example 6.101 (0.033, 1, 8)Show that the distances of the vertices of a triangle from the
Lemoine axis are proportional to the squares of the respective altitudes.

J

K

D

E

1C

1B

OC

B
A

Figure 6-101

Constructive description
( (pointsA B C) (circumcenterO A B C)

(foot E B A C) (foot D A B C)

(inter B1 (l A C) (t B B O)) (inter C1 (l A B) (t C C O))

(foot K A B1 C1) (foot J B B1 C1)

(AK
2
BE

2
BE

2
= BJ

2
AD

2
AD

2
) )

The machine proof
(PBEB)2·PAKA

PBJB·(PADA)2

J
=

(PBEB)2·PAKA·PB1C1B1

(16S2
BB1C1

)·(PADA)2

K
=

(PBEB)2·(16S2
AB1C1

)·PB1C1B1

(16)·(SBB1C1)2·(PADA)2·PB1C1B1

simpli f y
=

(PBEB)2·(SAB1C1)2

(SBB1C1)2·(PADA)2

C1
=

(PBEB)2·((−PACO·SABB1))2·((−PBCAO))2

((−PBCO·SABB1))2·(PADA)2·((−PBCAO))2

simpli f y
=

(PBEB)2·(PACO)2

(PBCO)2·(PADA)2

D
=

(PBEB)2·(PACO)2·(PBCB)2

(PBCO)2·((16S2
ABC))2

E
=

((16S2
ABC))2·(PACO)2·(PBCB)2

(256)·(PBCO)2·(SABC)4·(PACA)2

simpli f y
=

(PACO)2·(PBCB)2

(PBCO)2·(PACA)2

O
=

(PACA)2·(PBCB)2·((2))2

(PBCB)2·(PACA)2·((2))2

simpli f y
= 1

The eliminants

PBJB
J
=

(16)·(SBB1C1 )2

PB1C1B1

PAKA
K
=

(16)·(SAB1C1)2

PB1C1B1

SBB1C1

C1
=

PBCO·SABB1
PBCAO

SAB1C1

C1
=

PACO·SABB1
PBCAO

PADA
D
=

(16)·(SABC)2

PBCB

PBEB
E
=

(16)·(SABC)2

PACA

PBCO
O
=

1
2(PBCB)

PACO
O
=

1
2(PACA)

Definition The tangents to the circumcircle at the vertices of a given triangle form a triangle
called the tangential triangle of the given triangle.

Example 6.102 (0.067, 3, 10)Show that the vertices of the tangential triangle of ABC are the
isogonal conjugates of the vertices of the anticomplementary triangle of ABC.
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2A

1A

O

C

B

A

Figure 6-102

Constructive description
( (pointsA B C)

(circumcenterO A B C)

(pratioA1 B A C 1)

(inter A2 (t B B O) (t C C O))

(eqangleB A A2 A1 A C) )

The eliminants

PBAA2

A2
=

PBCO·SABO+PABA·SBCO

SBCO

SABA2

A2
=

PBCO·PABO

(16)·SBCO

SACA1

A1
= − (SABC)

PCAA1

A1
=PBAC+PACA

SBCO
O
=

PBCB·PBAC

(32)·SABC

SABO
O
=

PACB·PABA

(32)·SABC

PABO
O
=

1
2(PABA)

PBCO
O
=

1
2(PBCB)

PACB=
1
2(PBCB+PACA−PABA)

PBAC= − 1
2(PBCB−PACA−PABA)

The machine proof
(−SABA2 )·PCAA1

SACA1 ·PBAA2

A2
=

(− 1
4 PBCO·PABO)·PCAA1 ·(4SBCO)

SACA1 ·(4PBCO·SABO+4PABA·SBCO)·(4SBCO)

simpli f y
=

−PBCO·PABO·PCAA1
(16)·SACA1 ·(PBCO·SABO+PABA·SBCO)

A1
=

−PBCO·PABO·(PBAC+PACA)
(16)·(−SABC)·(PBCO·SABO+PABA·SBCO)

O
=

PBCB·PABA·(PBAC+PACA)·((32SABC))2·(2)
(16)·SABC·(64PBCB·PBAC·PABA·SABC+32PBCB·PACB·PABA·SABC)·((2))2

simpli f y
=

PBAC+PACA

2PBAC+PACB

py
=

(−PBCB+3PACA+PABA)·((2))2

(−2PBCB+6PACA+2PABA)·(2)

simpli f y
= 1

Example 6.103 (1.300 3 38)If two lines are antiparallel with respect to an angle, the per-
pendiculars dropped upon them from the vertex are isogonal in the angle considered.

B C

A

R

O

S

M

N

Figure 6-103

Constructive description
( (circle B C R S)

(circumcenterO B C R)

(inter A (l B R) (l C S))

(foot N A B C)

(foot M A R S)

(eqangleB A M N A C) )
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Example 6.104 (3.083, 9, 60)Show that the four perpendiculars to the sides of an angle at
four cyclic points form a parallelogram whose opposite vertices lie on isogonal conjugate
lines with respect to the given angle.

A B

C

O

D

E

F

I

Figure 6-104

Constructive description
( (circle A B C D)

(circumcenterO A B C)

(inter I (l A B) (l C D))

(midpointX C D)

(midpointY A B)

(inter E (p D O X) (p A O Y)) (inter F (p C O X) (p B O Y)) (eqangleA I E F I C) )

Example 6.105 (0.001, 1, 3)The perpendicular at the orthocenter H to the altitude HC of the
triangle ABC meets the circumcircle of HBC in P. Show that ABPH is a parallelogram.

B C

A

H

O

P

Figure 6-105

Constructive description
((pointsA B C)

(orthocenterH A B C)

(circumcenterO B C H)

(pratioPP H A B 1)

(inter P (l H PP) (cir O H)) ( AH
BP
= 1) )

The machine proof:AH
BP

P
=

SAHPP
SBHPP

PP
=
−SABH
−SABH

simpli f y
= 1.

The eliminants:AH
BP

P
=

SAHPP
SBHPP

. SBHPP

PP
= − (SABH). SAHPP

PP
= − (SABH).

Example 6.106 (1.533, 10, 38)The tangential and the orthic triangles of a given triangle are
homothetic. (also see Example 6.90)

I

1B

1A

1C

F

E

DO

C

BA

Figure 6-106

Constructive description
( (pointsA B C)

(circumcenterO A B C)

(foot D A B C)

(foot E B A C)

(foot F C A B)

(inter C1 (t B O B) (t A O A))

(inter A1 (l C1 B) (t C O C))

(inter B1 (l C A1) (l A C1))

(inter I (l B1 E) (l A1 D))

(inter J (l A1 D) (l C1 F))

(
A1I

DI
=

A1J

DJ
) )
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Example 6.107 (0.083, 4, 11)Let P be the midpoint AH. Show that the segment OP is bi-
sected by the median AA1.

B C

A

O

1A

H

P

I

Figure 6-107

Constructive description
( (pointsA B C)

(circumcenterO A B C)

(midpointA1 B C)

(orthocenterH A B C)

(midpointP A H)

(inter I (l O P) (l A A1))

(midpoint I O P) )

The machine proof

−OI
PI

I
=

SAOA1
SAA1P

P
=

SAOA1
1
2SAA1H

H
=

(2)·SAOA1 ·(16S2
ABC)

−PBAC·PACB·SABA1−PBAC·PABC·SACA1

simpli f y
=

(−32)·SAOA1 ·(SABC)2

(PACB·SABA1+PABC·SACA1 )·PBAC

A1
=

(−32)·(− 1
2SACO− 1

2SABO)·(SABC)2

( 1
2 PACB·SABC− 1

2 PABC·SABC)·PBAC

simpli f y
=

(32)·(SACO+SABO)·SABC

(PACB−PABC)·PBAC

O
=

(32)·(−32PACB·PABA·SABC+32PACA·PABC·SABC)·SABC

(PACB−PABC)·PBAC·(32SABC)·(−32SABC)

simpli f y
=

PACB·PABA−PACA·PABC

(PACB−PABC)·PBAC

py
=

(−2PBCB·PACA+2PBCB·PABA+2P2
ACA−2P2

ABA)·((2))3

(4PACA−4PABA)·(−PBCB+PACA+PABA)·((2))2

simpli f y
= 1

The eliminants
OI
PI

I
=
−SAOA1
SAA1P

SAA1P
P
=

1
2(SAA1H)

SAA1H
H
=

(PACB·SABA1+PABC·SACA1 )·PBAC

(−16)·(SABC)2

SACA1

A1
= − 1

2(SABC)

SABA1

A1
=

1
2(SABC)

SAOA1

A1
= − 1

2(SACO+SABO)

SABO
O
=

PACB·PABA

(32)·SABC

SACO
O
=

PACA·PABC

(−32)·SABC

PBAC= − 1
2(PBCB−PACA−PABA)

PABC=
1
2(PBCB−PACA+PABA)

PACB=
1
2(PBCB+PACA−PABA)

Example 6.108 (4.866, 12, 15)Prove that HA1 passes through the diametric opposite of A on
the circumcircle.

I

H

1A

O

A

CB

Figure 6-108

Constructive description
( (pointsA B C)

(circumcenterO A B C)

(midpointA1 B C)

(orthocenterH A B C)

(inter I (l A O) (l H A1))

(perp-biesctO B I) )
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Example 6.109 (0.250, 2, 31)Show that the product of the distances of a point of the circum-
circle of a triangle from the sides of the triangle is equal tothe product of the distances of
the same point from the sides of the tangential triangle of the given triangle.

A O

B

C
D

E

F

G

1E

1F

1G

Figure 6-109

Constructive description
( (circle A B C D)

(circumcenterO A B C)

(foot E D B C)

(foot F D A C)

(foot G D A B)

(inter E1 (p D O A) (t A O A))

(inter F1 (p D O B) (t B O B))

(inter G1 (p D O C) (t C O C))

(DE
2
DF

2
DG

2
= DE1

2
DF1

2
DG1

2
) )

Example 6.110 (0.200, 12, 16)If O is the circumcenter the triangle ABC, and G is the cen-
troid of ABC, we have

3OA
2
= GA

2
+GB

2
+GC

2
+ 3OG

2
.

A B

C

O

E

F

D
G

Figure 6-110

Constructive description
( (pointsA B C)

(circumcenterO A B C)

(midpointE A C)

(midpointF A B)

(midpointD B C)

(inter G (l A D) (l C F))

(3OG
2
+AG

2
+GC

2
+BG

2
= 3OA

2
) )

Example 6.111 (1.033, 28, 24)The internal and external bisectors of an angle of a triangle
pass through the ends of the circumdiameters which is perpendicular to the side opposite
the vertex considered.

L

O

A

CB E

P

Figure 6-111

Constructive description
( (pointsB E P)

(on L (t E E B))

(lratio C E B −1)

(inter O (l L E) (b B L))

(inter A (l B P) (cir O B))

(eqangleB A L L A C) )
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Example 6.112 (0.866, 12, 15)The segment of the altitude extended between the orthocenter
and the second point of intersection with the circumcircle is bisected by the corresponding
side of the triangle.

A B

C

O

D

E

H

K

Figure 6-112

Constructive description
( (pointsA B C)

(circumcenterO A B C)

(foot D C A B)

(foot E B A C)

(inter H (l C D) (l B E))

(inter K (l C D) (cir O C))

(midpointD H K) )

Example 6.113 (1.650, 5, 18)The circumcircle of the triangle formed by two vertices and the
orthocenter of a given triangle is equal to the circumcircleof the given triangle.

A B

C

O

D

E H

1O

Figure 6-113

Constructive description
( (pointsA B C)

(circumcenterO A B C)

(foot D C A B)

(foot E B A C)

(inter H (l C D) (l B E))

(circumcenterO1 A B H)

(eqdistanceO A O1 H) )

Example 6.114 (0.933, 17, 18)A vertex of a triangle is the midpoint of the arc determined on
its circumcircle by the two altitudes, produced, issued from the other two vertices.

1A

1C

O

H

A

CB

Figure 6-114

Constructive description
( (pointsA B C)

(circumcenterO A B C)

(orthocenterH A B C)

(inter C1 (l C H) (cir O C))

(inter A1 (l A H) (cir O A))

(perp-biesctB C1 A1) )

Example 6.115 (0.833, 17, 27)If O is the circumcenter and H the orthocenter of a triangle
ABC, and AH, BH, CH meet the circumcircle in D1, E1, F1, prove that parallels through
D1, E1, F1 to OA, OB, OC, respectively, meet in a point.
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I

1B

1A

1C

O
H

A

CB

Figure 6-115

Constructive description
( (pointsA B C)

(orthocenterH A B C)

(circumcenterO A B C)

(inter C1 (l C H) (cir O C))

(inter A1 (l A H) (cir O A))

(inter B1 (l B H) (cir O B))

(inter I (p A1 O A) (p B1 O B))

(parallelI C1 O C) )

Example 6.116 (0.133, 7, 15)Show that the foot of the altitude to the base of a triangle
and the projections of the ends of the base upon the circumdiameter passing through the
opposite vertex of the triangle determine a circle having for center the midpoint the base.

E

DM

O

C

BA

Figure 6-116

Constructive description
((pointsA B C)

(circumcenterO A B C)

(midpointM A B)

(foot D C A B)

(foot E A O C)

(perp-biesctM E D) )

Example 6.117 (0.333, 12, 16)Show that the symmetric of the orthocenter of a triangle with
respect to a vertex, and the symmetric of that vertex with respect to the midpoint of the
opposite side, are collinear with the circumcenter of the triangle.

B C

A

H

O

1A

S

L

Figure 6-117

Constructive description
( (pointsA B C)

(orthocenterH A B C)

(circumcenterO A B C)

(midpointA1 B C)

(lratio S A H −1)

(lratio L A1 A −1)

(collinearO L S) )

Example 6.118 (0.817, 26, 25)If D1 is the second point of intersection of the altitude ADD1

of the triangle ABC with the circumcircle, center O, and P is the trace on BC of the per-
pendicular from D1 to AC, show that the lines AP, AO make equal angles with the bisector
of the angle DAC.
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P

1D

O

D

A

C
B

Figure 6-118

Constructive description
( (pointsA B C)

(circumcenterO A B C)

(foot D A B C)

(inter D1 (l A D) (cir O A))

(inter P (l B C) (t D1 A C))

(eqangleO A D C A P) )

Example 6.119 (3.900, 14, 40)Show that the triangle formed by the foot of the altitude to the
base of a triangle and the midpoints of the altitudes to the lateral sides is similar to the
given triangle; its circumcircle passes through the orthocenter of the given triangle and
through the midpoint of its base.

Q
P

H

F

E

D1A

A

CB

Figure 6-119

Constructive description
( (pointsA B C)

(midpointA1 B C)

(foot D A B C)

(foot E B A C)

(foot F C A B)

(inter H (l B E) (l A D))

(midpointP B E)

(midpointQ C F)

(cocircleH P Q D) )

Example 6.120 (0.717, 44, 38)The sides of the anticomplementary triangle of the triangle
ABC meet the circumcircle of ABC in the points P, Q, R. Show that the area of the triangle
PQR is equal to four times the area of the orthic triangle of ABC.

R

Q

P

O

F

E

D

A

CB

Figure 6-120

Constructive description
( (pointsA B C)

(circumcenterO A B C)

(foot D A B C)

(foot E B A C)

(foot F C A B)

(inter P (p A B C) (cir O A))

(inter Q (p B A C) (cir O B))

(inter R (p C A B) (cir O C))

(4SDEF = SPQR) )

Example 6.121 (0.450, 5, 17)Through the orthocenter of the triangle ABC parallels are
drawn to the sides AB, AC, meeting BC in D, E. The perpendiculars to BC at D, E meet
AB, AC in two points D1, E1 which are collinear with the diametric opposites of B, C on
the circumcircle of ABC.
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Q P1D

D

O
H

A

CB

Figure 6-121

Constructive description
( (pointsA B C)

(circumcenterO A B C)

(orthocenterH A B C)

(inter D (l B C) (p H A B))

(inter D1 (l A B) (p D A H))

(inter P (l B O) (cir O B))

(inter Q (l C O) (cir O C))

(collinearP Q D1) )

Example 6.122 (0.150, 6, 19)If the altitudes AD, BE, CF of the triangle ABC meet the
circumcircle of ABC again in P, Q, R, show that we have(AP/AD)+(BQ/BE)+(CR/CF) =
4.

A B

C

O

D
E

F

H

P
Q

R

Figure 6-122

Constructive description
( (pointsA B C)

(circumcenterO A B C)

(foot D A B C)

(foot E B A C)

(foot F C A B)

(inter H (l A D) (l C F))

(inter P (l A D) (cir O A))

(inter Q (l B E) (cir O B))

(inter R (l C F) (cir O C))

( AP
AD
+

BQ
BE
+CR

CF
= 4) )

Example 6.123 (0.433, 9, 21)Through the point of intersection of the tangents DB, DC to
the circumcircle(O) of the triangle ABC a parallel is drawn to the line touching(O) at A.
If this parallel meets AB, AC in E, F, show that D bisects EF.

B C

A

O

D

F

E
Figure 6-123

Constructive description
( (pointsA B C)

(circumcenterO A B C)

(inter D (t C O C) (t B O B))

(inter F (l A B) (t D O A))

(inter E (l A C) (l F D))

(midpointD E F) )

Example 6.124 (0.466, 13, 28)In a triangle ABC, let p and q be the radii of two circles
through A, touching side BC at B and C, respectively. Then pq= R2.
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P

Q

O

A

CB M

Figure 6-124

Constructive description
( (pointsA B C)

(circumcenterO A B C)

(midpointM B C)

(inter Q (p B O M) (b A B))

(inter P (p C O M) (b A C))

(eq-productQ B P C O B O B) )

Example 6.125 (0.400, 7, 18)The parallel to the side AC through the vertex B of the triangle
ABC meets the tangent to the circumcircle(O) of ABC at C in B1, and the parallel through
C to AB meets the tangent to(O) at B in C1. Prove that BC2 = BC1 · B1C.

B C

A

O

1B

1C

Figure 6-125

Constructive description
( (pointsA B C)

(circumcenterO A B C)

(inter B1 (p B A C) (t C O C))

(inter C1 (p C A B) (t B O B))

(eq-productB C B C B C1 B1 C) )

Example 6.126 (5.733, 22, 23)Show that the foot of the perpendicular from the orthocenter
of a triangle upon the line joining a vertex to the point of intersection of the opposite side
with the corresponding side of the orthic triangle lies on the circumcircle of the triangle.

O

S

X

H E

D

A

CB

Figure 6-126

Constructive description
( (pointsA B C)

(circumcenterO A B C)

(foot D A B C) (foot E B A C)

(inter H (l A D) (l B E))

(inter X (l E D) (l A B))

(foot S H C X)

(perp-biesctO S A) )

6.3.4 The Euler Line

Definition. The circumcenter O, orthocenter H, and the centroid G of a given triangle are
collinear and this line is called the Euler line of the triangle.

For the machine proof of Euler’s theorem, see Example 3.71 onpage 141.

Example 6.127 (0.033, 4, 2)Let O and H be the circumcenter and the orthocenter of a trian-
gle ABC. Show that OH2 = 9R2 − a2 − b2 − c2.
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B C

A

O H

Figure 6-127

Constructive description
( (pointsA B C)

(circumcenterO A B C)

(orthocenterH A B C)

(OH
2
= 9OB

2−AB
2−AC

2−BC
2
) )

Example 6.128 (0.167, 6, 9)With the usual notations for the triangle ABC, we have4AO
2
=

4AB
2
+ 4AC

2
+ 4BC

2
+GH

2
.

G

2M

1M

O
H

C

BA

Figure 6-128

Constructive description
( (pointsA B C)

(circumcenterO A B C)

(centroidG A B C)

(orthocenterH A B C)

(4AO
2
= 4AB

2
+4AC

2
+4BC

2
+GH

2
) )

Example 6.129 (0.816, 9, 9)With the usual notations for the triangle ABC, we have9AO
2
=

AB
2
+ AC

2
+ BC

2
+OH

2
.

O

H

C

BA

Figure 6-129

Constructive description
( (pointsA B C)

(orthocenterH A B C)

(circumcenterO A B C)

(9AO
2
= AB

2
+AC

2
+BC

2
+OH

2
) )

Example 6.130 (0.250, 6, 8)With the usual notations for the triangle ABC, we have12AO
2
=

AB
2
+ AC

2
+ BC

2
+ AH

2
+ BH

2
+CH

2
.

O

H

C

BA

Figure 6-130

Constructive description
( (pointsA B C)

(orthocenterH A B C)

(circumcenterO A B C)

(12AO
2
= AB

2
+AC

2
+BC

2
+AH

2
+BH

2
+CH

2
) )

Example 6.131 (5.050, 8, 40)The homothetic center of the orthic and the tangential triangles
of a given triangle lies on the Euler line of the given triangle.
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I

1A

1C

1B

F

E

D
O H

C

BA

Figure 6-131

Constructive description
( (pointsA B C)

(orthocenterH A B C)

(circumcenterO A B C)

(inter D (l B C) (l A H))

(inter E (l A C) (l B H))

(inter F (l A B) (l C H))

(inter B1 (t C O C) (t A O A))

(inter C1 (l A B1) (t B B O))

(inter A1 (l C1 B) (l B1 C))

(inter I (l F C1) (l B1 E)) (collinearO H I) )

Example 6.132 (0.833, 12, 27)The Euler lines of the four triangles of an orthocentric group
are concurrent.

A B

C

HO

1A

1B

I

Figure 6-132

Constructive description
( (pointsA B C)

(orthocenterH A B C)

(circumcenterO A B C)

(circumcenterA1 B C H)

(circumcenterB1 A C H)

(inter I (l B B1) (l A A1))

(collinearO H I) )

Example 6.133 (0.950, 4, 40)Show that the perpendiculars from the vertices of a triangleto
the lines joining the midpoints of the respectively opposite sides to the orthocenter of the
triangle meet these sides in three points of a straight line perpendicular to the Euler line of
the triangle.

2C

1C

2B

1B

2A
1A

H
O

A

CB

Figure 6-133

Constructive description
( (pointsA B C) (circumcenterO A B C)

(orthocenterH A B C) (midpointA1 B C)

(inter A2 (l B C) (t A A1 H))

(midpointB1 C A)

(inter B2 (l A C) (t B H B1))

(midpointC1 A B)

(inter C2 (l A B) (t C C1 H))

(inter C3 (l A B) (l A2 B2))

(
AC2
BC2
=

AC3
BC3

) )

6.3.5 The Nine-Point Circle

Definition. The midpoints of the segments joining the orthocenter of a triangle to its vertices
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are called the Euler points of the triangle. The three Euler points determine the Euler
triangle.

A

B CMD

EF

N

I

J

Figure 6-134

Example 6.134 (The Nine-Point Circle Theorem)
(0.050, 2, 5)In a triangle the midpoints of the sides,
the feet of altitudes, and the Euler points lie on the
same circle.

This circle is called thenine point circleof the given
triangle.
Constructive description
( (pointsA B C)

(foot M A B C)

(midpointD B C)

(midpointE A C)

(midpointF A B)

(midpoint I E F)

(midpointJ M D)

(parallelI J A M) )

The machine proof
SAMI

SAMJ

J
=

SAMI
1
2SAMD

I
=

(2)·( 1
2SAMF+

1
2SAME)

SAMD

F
=

SAME− 1
2SABM

SAMD

E
=
−SACM−SABM

(2)·SAMD

D
=

−(SACM+SABM)
(2)·(− 1

2SACM− 1
2SABM)

simpli f y
= 1

The eliminants

SAMJ
J
=

1
2(SAMD)

SAMI
I
=

1
2(SAMF+SAME)

SAMF
F
= − 1

2(SABM)
SAME

E
= − 1

2(SACM)
SAMD

D
= − 1

2(SACM+SABM)

Since the orthocenter and the three feet of the triangle forman orthocentric group, we
conclude from the above machine proof that the circle also passes the three Euler points.

Example 6.135 (Feuerbach’s Theorem) (55.500 102 46)The nine-point circle of a triangle touches
each of the four tritangent circles of the triangle.

I

A B

C

1M

2M 3M
N

D

Figure 6-135

Constructive description
( (pointsI A B) (incenterC I A B)

(midpointM1 A B) (midpointM2 A C)

(midpointM3 B C)

(midpointP M1 M3)

(midpointQ M1 M2)

(inter N (t P P M1) (t Q Q M1))

(foot D I A B)

(cc-tangentI D N M1) )

Example 6.136 (0.683, 3, 19)The radius of the nine-point circle is equal to half the circum-
radius of the triangle.
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N

F

E D

O

C

BA

Figure 6-136

Constructive description
( (pointsA B C)

(circumcenterO A B C)

(foot D A B C)

(foot E B A C)

(foot F C A B)

(circumcenterN D E F)

(4NF
2
= OA

2
) )

Example 6.137 (0.067, 5, 18)The nine-point center lies on the Euler line, midway between
the circumcenter and the orthocenter.

N

O

C

H

BA

1M

2M

3M

Figure 6-137

Constructive description
( (pointsA B C)

(circumcenterO A B C)

(orthocenterH A B C)

(midpointM1 B C)

(midpointM2 A B)

(midpointM3 A C)

(circumcenterN M1 M2 M3)

(midpointN H O) )

The machine proof

−HN
ON

N
=

1
2 PM1M2M1−PHM1M2

− 1
2 PM1M2M1+POM1M2

M2
=
−(−PBM1H+

1
2 PBM1B−PAM1H+

1
2 PAM1A− 1

4 PABA)

−PBM1O+
1
2 PBM1B−PAM1O+

1
2 PAM1A− 1

4 PABA

M1
=
−(2PBCH−2PBCB+2PACH−PACA+2PABH)

2PBCO−2PBCB+2PACO−PACA+2PABO

H
=

−(−2PBCB+4PACB−PACA+2PABC)
2PBCO−2PBCB+2PACO−PACA+2PABO

O
=

(2PBCB−4PACB+PACA−2PABC)·((2))3

−8PBCB+8PABA

py
=
−(−4PBCB+4PABA)
(PBCB−PABA)·((2))2

simpli f y
= 1

The eliminants
HN
ON

N
=

PM1M2M1−2PHM1M2
PM1M2M1−2POM1M2

POM1M2

M2
=

1
2(PBM1O+PAM1O)

PHM1M2

M2
=

1
2(PBM1H+PAM1H)

PM1M2M1

M2
=

1
4(2PBM1B+2PAM1A−PABA)

PAM1O
M1
= − 1

4(PBCB−2PACO−2PABO)
PBM1O

M1
=

1
4(2PBCO−PBCB)

PAM1A
M1
= − 1

4(PBCB−2PACA−2PABA)
PAM1H

M1
= − 1

4(PBCB−2PACH−2PABH)
PBM1B

M1
=

1
4(PBCB)

PBM1H
M1
=

1
4(2PBCH−PBCB)

PABH
H
=PABC PACH

H
=PACB PBCH

H
=PACB

PABO
O
=

1
2(PABA)

PACO
O
=

1
2(PACA)

PBCO
O
=

1
2(PBCB)

PABC=
1
2(PBCB−PACA+PABA)

PACB=
1
2(PBCB+PACA−PABA)
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Example 6.138 (4.383, 51, 42)Show that the foot of the altitude of a triangle on a side, the
midpoint of the segment of the circumdiameter between this side and the opposite vertex,
and the nine-point center are collinear.

N

1C 1B

1A

M

E

O

D

A

CB

Figure 6-138

Constructive description
( (pointsA B C)

(foot D A B C)

(circumcenterO A B C)

(inter E (l B C) (l A O))

(midpointM A E) (midpointA1 C B)

(midpointB1 A C)

(midpointC1 B A)

(circumcenterN A1 B1 C1)

(collinearM D N) )

Example 6.139 (1.667, 44, 38)The center of the nine-point circle is the midpoint of a Euler
point and the midpoint of the opposite side.

A B

C

1M2M

3M

H

1H

N

Figure 6-139

Constructive description
( (pointsA B C)

(orthocenterH A B C)

(midpointM1 B C)

(midpointM2 A C)

(midpointM3 A B)

(circumcenterN M1 M2 M3)

(inter H1 (l C H) (l M3 N))

(midpointH1 C H) )

Example 6.140 (1.183, 24, 49)The two pairs of points O and N, G and H separate each other
harmonically.

A B

H

C

2M

3M

GO

D

E

F

N

Figure 6-140

Constructive description
( (pointsA B C)

(orthocenterH A B C)

(circumcenterO A B C)

(midpointM2 A C)

(midpointM3 A B)

(midpointM1 B C)

(circumcenterN M1 M2 M3)

(inter G (l B M2) (l C M3))

(harmonicO N G H) )
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Example 6.141 (0.850, 23, 38)If P is the symmetric of the vertex A with respect to the oppo-
site side BC, show that HP is equal to four times the distance of the nine-point center from
BC.

B C

A

1A

1B1C

H

D

N

P

K

Figure 6-141

Constructive description
( (pointsA B C)

(orthocenterH A B C)

(foot D A B C)

(lratio P D A −1)

(midpointA1 B C)

(midpointB1 A C)

(midpointC1 B A)

(circumcenterN A1 B1 C1)

(foot K N B C)

(PH
2
= 16NK

2
) )

Example 6.142 (2.450, 56, 42)Show that the square of the tangent from a vertex of a triangle
to the nine-point circle is equal to the altitude issued fromthat vertex multiplied by the
distance of the opposite side from the circumcenter.

B C

A

O

1A

1B1C

D

N

T

Figure 6-142

Constructive description
( (pointsA B C)

(circumcenterO A B C)

(midpointA1 B C)

(midpointB1 A C)

(midpointC1 B A)

(midpointM1 A1 B1)

(midpointM2 A1 C1)

(inter N (t M1 M1 A1) (t M2 M2 A1))

(foot D A B C)

(PANA−PA1NA1 = PA1AD−POAD) )

Example 6.143 (0.950, 50, 37)Show that the symmetric of the circumcenter of a triangle with
respect to a side coincides with the symmetric of the vertex opposite the side considered
with respect to the nine-point center of the triangle.

A B

C

O

1C

1B 1A

N

1O

Figure 6-143

Constructive description
( (pointsA B C)

(circumcenterO A B C)

(midpointC1 A B)

(midpointB1 A C)

(midpointA1 B C)

(circumcenterN A1 B1 C1)

(inter O1 (l O C1) (l C N))

(midpointN O1 C) )
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6.3.6 Incircles and the Excircles

Example 6.144 (Theorem of Incenter) (0.750, 14, 29)The three internal bisectors of the angels
of a triangle meet in a point, the incenter I of the triangle.

A B

I

A

A

B

B

C

Figure 6-144

1

2

1

2

Constructive description
( (pointsA B I)

(foot A1 B I A)

(lratio A2 A1 B −1)

(foot B1 A I B)

(lratio B2 B1 A −1)

(inter C (l A A2) (l B B2))

(eqangleA C I I C B) )

Similarly the internal bisector at vertexA (B,C) and the two external bisectors at vertices
B (C,A) andC (A, B) meet in a pointIa (Ib, Ic).

Definition. Each ofI , Ia, Ib, Ic is the center of a circle tangent to the three sides of the
triangle. The four circles withI , Ia, Ib, Ic as centers are called theinscribed circleand the
exscribed circlesor the fourtritangent circlesof the given triangle.

Example 6.145 (0.067, 3, 10)Two tritangent centers of a triangle are the ends of a diameter
of a circle passing through the two vertices of the triangle which are not collinear with the
centers considered.

B C

I

A

aI

O

Figure 145

Constructive description
( (pointsI B C)

(incenterA I C B)

(inter Ia (l A I) (t B B I))

(midpointO I Ia)

(eqdistanceO B O I) )

The eliminants

PIOI
O
=

1
4(PI IaI)

PBOB
O
=

1
4(2PBIaB−PI IaI+2PIBI)

PI IaI
Ia
=

PIAI ·(PIBI )2

(PBIA)2

PBIaB
Ia
=
−(P2

BIA−PBIA·PIAI−PIAI ·PIBA)·PIBI

(PBIA)2

PIBA
A
=
−PICB·PIBC·PIBI

PBCB·PBIC

PBIA
A
=

(16)·PIBI ·(SIBC)2

PBCB·PBIC

16S2
IBC=PBIC·PICB+PICI ·PIBC

PIBC=
1
2(PBCB−PICI+PIBI)

PICB=
1
2(PBCB+PICI−PIBI)

PBIC= − 1
2(PBCB−PICI−PIBI)

The machine proof
PBOB

PIOI

O
=

1
2 PBIaB− 1

4 PI IaI+
1
2 PIBI

1
4 PI IaI
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Ia
=

(2P3
BIA·PIAI ·PIBI+2P2

BIA·PIAI ·PIBA·PIBI−P2
BIA·PIAI ·P2

IBI )·P
2
BIA

PIAI ·P2
IBI ·(P

2
BIA)2

simpli f y
=

2PBIA+2PIBA−PIBI
PIBI

A
=
−P2

BCB·P
2
BIC·PIBI−2PBCB·PBIC·PICB·PIBC·PIBI+32PBCB·PBIC·PIBI ·S2

IBC

PIBI ·(PBCB·PBIC)2

simpli f y
=

−(PBCB·PBIC+2PICB·PIBC−32S2
IBC)

PBCB·PBIC

herron
=

−16PBCB·PBIC+32PBIC·PICB−32PICB·PIBC+32PICI ·PIBC

PBCB·PBIC·(16)

py
=
−(4P2

BCB−4PBCB·PICI−4PBCB·PIBI )·(2)

PBCB·(−PBCB+PICI+PIBI )·((2))3

simpli f y
= 1

Example 6.146 (0.300, 8, 9)The four tritangent centers of a triangle lie on six circles which
pass through the pairs of vertices of the triangle and have for their centers the midpoints
of the arcs subtended by the respective sides of the triangleon its circumcircle.

B C

I

A

aI

K

Figure 6-146

Constructive description
( (pointsB C I)

(incenterA I C B)

(inter Ia (t B B I) (l A I))

(inter K (l A I) (b C B))

(midpointK I Ia) )

Example 6.147 (0.067, 4, 11)Let incircle (with center I) of△ABC touch the side BC at X
and let A1 be the midpoint of this side. Then the line A1I (extended) bisectors AX.

Constructive description
( (pointsB C I)

(incenterA I C B)

(midpointA1 B C)

(foot X I B C)

(inter O (l A X) (l A1 I))

(midpointO A X) )

The eliminants
AO
XO

O
=

SIAA1
−SIA1X

SIA1X
X
=

PBA1I ·SBIA1
PBA1B

SBIA1

A1
= − 1

2(SBCI)
PBA1I

A1
=

1
4(2PBCI−PBCB)

PBA1B
A1
=

1
4(PBCB)

SIAA1

A1
=

1
2(SCIA+SBIA)

SBIA
A
=
−PBIB·PBCI·SBCI

PBIC·PBCB

SCIA
A
=

PCIC·PCBI·SBCI

PBIC·PBCB

PBIC=
1
2(PCIC+PBIB−PBCB)

PBCI=
1
2(PCIC−PBIB+PBCB)

PCBI= − 1
2(PCIC−PBIB−PBCB)
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B C

I

A

1A X

O

Figure 6-147

The machine proof

− AO
XO

O
=
−SIAA1
−SIA1X

X
=

SIAA1 ·PBA1B

PBA1I ·SBIA1

A1
=

( 1
2SCIA+

1
2SBIA)·( 1

4 PBCB)

( 1
2 PBCI− 1

4 PBCB)·(− 1
2SBCI)

A
=
−(PCIC·PCBI·PBIC·PBCB·SBCI−PBIC·PBIB·PBCI·PBCB·SBCI)·PBCB

(2PBCI−PBCB)·SBCI ·(PBIC·PBCB)2

simpli f y
=

−(PCIC·PCBI−PBIB·PBCI)
(2PBCI−PBCB)·PBIC

py
=
−(−2P2

CIC+2PCIC·PBCB+2P2
BIB−2PBIB·PBCB)·((2))2

(2PCIC−2PBIB)·(PCIC+PBIB−PBCB)·((2))2

simpli f y
= 1

Example 6.148 (0.033, 1, 6)The product of the distances of two tritangent centers of a tri-
angle from the vertex of the triangle collinear with them is equal to the product of the two
sides of the triangle passing through the vertex considered.

B C

I

A

aI

Figure 6-148

Constructive description

( (pointsB C I)

(incenterA I C B)

(inter Ia (t B B I) (l A I))

(eq-productA I A Ia A B A C) )

Example 6.149 (0.550, 8, 17)Show that an external bisector of an angle of a triangle is
parallel to the line joining the points where the circumcircle is met by the external (internal)
bisectors of the other two angles of the triangle.

B C

I

A

M

1L

Figure 6-149

Constructive description
( (pointsB C I)

(incenterA I C B)

(inter M (l I C) (b B A))

(inter L1 (t B B I) (b C A))

(parallelM L1 A I) )

Example 6.150 (3.933, 4, 20)The product of the four tritangent radii of a triangle is equal to
the square of its area.
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B C

I

A

aI

cI

bI

XaX bXcX

Figure 6-150

Constructive description
( (pointsB C I) (incenterA I B C)

(inter Ia (l A I) (t B B I))

(inter Ic (l C I) (l B Ia))

(inter Ib (l B I) (l A Ic))

(foot X I B C) (foot Xa Ia B C)

(foot Xb Ib B C) (foot Xc Ic B C)

(IX
2
IaXa

2
IbXb

2
IcXc

2
= SABCSABCSABCSABC) )

I

B A

C

O
L

M

K

N

Figure 6-151

Example 6.1513 (0.717, 17, 28)In triangle ABC, the
bisector of angle A meets BC at L and the circumcir-
cle of triangle ABC at N. The feet of the perpendic-
ulars from L to AB and AC are K and M. Show that
SABC = SAKNM.

Constructive description:( (pointsI B A) (incenterC I B A)

(circumcenterO A B C) (inter L (l B C) (l A I)) (foot M L A C)

(foot K L A B) (inter N (l A I) (cir O A)) (SABC = SAKNM) )

Example 6.152 (0.333, 6, 10)The points of contact of a side of a triangle with the incircle
and the excircle relative to this side are two isotomic points.

aXX

aI

A

I

CB

Figure 6-152

Constructive description
( (pointsB C I)

(incenterA I C B)

(inter Ia (t B B I) (l A I))

(foot X I B C)

(foot Xa Ia B C)

(eqdistanceB X C Xa) )

Example 6.153 (0.683, 6, 11)In Figure 6-153, ZZa = a.

aZ

Z

aI

A

I

CB

Figure 6-153

Constructive description
( (pointsB C I)

(incenterA I C B)

(inter Ia (t B B I) (l A I))

(foot Z I A B)

(foot Za Ia A B)

(eqdistanceZ Za B C) )

3This is a problem from the 1987 International Mathematical Olympiad.
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Example 6.154 (0.583, 3, 20)In Figure 6-154, YbYc = a.

B C

I

A

cI

bI

cY

bY

Figure 6-154

Constructive description
( (pointsB C I)

(incenterA I C B)

(inter Ic (t A A I) (l I C))

(inter Ib (l A Ic) (l I B))

(foot Yc Ic A C)

(foot Yb Ib A C)

(eqdistanceYc Yb B C) )

Example 6.155 (0.266, 2, 14)The ratio of the area of a triangle to the area of the triangle
determined by the points of contact of the sides with the incircle is equal to the ratio of the
circumdiameter of the given triangle to its inradius.

O

Z

Y

X

A

I

CB

Figure 6-155

Constructive description
( (pointsB C I)

(incenterA I C B)

(circumcenterO A B C)

(foot X I B C)

(foot Y I A C)

(foot Z I A B)

(4S2
XYZ·OB

2
= SABCSABCIX

2
) )

Example 6.156 (0.033, 1, 6)Show that a parallel through a tritangent center to a side of a
triangle is equal to the sum, or difference, of the two segments on the other two sides of the
triangle between the two parallel lines considered.

N

M

A

I

CB

Figure 6-156

Constructive description
( (pointsB C I)

(incenterA I C B)

(inter M (l A C) (p I A B))

(inter N (l I M) (l B C))

(eqdistanceM A M I) )

The eliminants

PIMI
M
=

PBAB·(SCIA)2

(SBCA)2

PAMA
M
=

PCAC·(SBIA)2

(SBCA)2

SCIA
A
=

PCIC·PCBI·SBCI

PBIC·PBCB

PBAB
A
=

(PBIB)2·(PBCI)2

(PBIC)2·PBCB

SBIA
A
=
−PBIB·PBCI·SBCI

PBIC·PBCB

PCAC
A
=

(PCIC)2·(PCBI)2

(PBIC)2·PBCB

The machine proof
PAMA
PIMI

M
=

PCAC·S2
BIA·S

2
BCA

PBAB·S2
CIA·S

2
BCA

simpli f y
=

PCAC·(SBIA)2

PBAB·(SCIA)2

A
=

P2
CIC·P

2
CBI·((−PBIB·PBCI·SBCI))2·(PBIC·PBCB)2·P2

BIC·PBCB

P2
BIB·P

2
BCI·(PCIC·PCBI·SBCI)2·(PBIC·PBCB)2·P2

BIC·PBCB

simpli f y
= 1
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Example 6.157 (0.100, 1, 9)Prove the formula: AZ· BX ·CY = r ▽ ABC.

Z

Y

X

A

I

CB

Figure 6-157

Constructive description
( (pointsB C I)

(incenterA I B C)

(foot X I B C)

(foot Y I A C)

(foot Z I A B)

(AZ
2
BX

2
CY

2
= XI

2
SABCSABC) )

Example 6.158 (0.666, 10, 18)The projection of the vertex B of the triangle ABC upon the
internal bisector of the angle A lies on the line joining the points of contact of the incircle
with the sides BC and AC.

B C

I

A

X

Y

L

Figure 6-158

Constructive description
( (pointsB C I)

(incenterA I B C)

(foot X I B C)

(foot Y I A C)

(foot L B A I)

(inter J (l A I) (l X Y))

( AL
IL
= AJ

IJ
) )

Example 6.159 (8.250, 21, 34)The midpoint of a side of a triangle, the foot of the altitude
on this side, and the projections of the ends of this side uponthe internal bisector of the
opposite angle are four cyclic points.

B C

I

A

X

Y

1AD

Figure 6-159

Constructive description
( (pointsB C I)

(incenterA I B C)

(foot X B A I)

(foot Y C A I)

(midpointA1 B C)

(foot D A B C)

(cocircleX Y A1 D) )

Example 6.160 (0.466, 8, 17)Show that the midpoint of an altitude of a triangle, the pointof
contact of the corresponding side with the excircle relative to that side, and the incenter of
the triangle are collinear.
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M

aX

aI

D

A

I

CB

Figure 6-160

Constructive description
( (pointsB C I)

(incenterA I B C)

(foot D A B C)

(inter Ia (t B B I) (l I A))

(foot Xa Ia B C)

(inter M (l A D) (l I Xa))

(midpointM A D) )

Example 6.161 (1.633, 10, 18)The internal bisectors of the angles B, C of the triangle ABC
meet the line AXa joining A to the point of contact of BC with the excircle relative to this
side in the points L, M. Prove that AL/AM = AB/AC.

B C

I

A

aI

aX

L
M

Figure 6-161

Constructive description
( (pointsB C I)

(incenterA I B C)

(inter Ia (t B B I) (l I A))

(foot Xa Ia B C)

(inter L (l B I) (l A Xa))

(inter M (l C I) (l A Xa))

(eq-productA M A B A L A C) )

Example 6.162 (0.050, 1, 6)Show that the product of the distances of the incenter of a trian-
gle from the three vertices of the triangle is equal to4Rr2.

B C

I

A

O

X

Figure 6-162

Constructive description
( (pointsB C I)

(incenterA I B C)

(circumcenterO A B C)

(foot X I B C)

(16OB
2·IX4

= IA
2
IB

2
IC

2
) )

The eliminants

PIXI
X
=

(16)·(SBCI)2

PBCB

PBOB
O
=

PCAC·PBAB·PBCB

(64)·(SBCA)2

SBCA
A
=

(−2)·PCBI·PBCI·SBCI

PBIC·PBCB

PIAI
A
=

(16)·PCIC·PBIB·(SBCI)2

(PBIC)2·PBCB

PBAB
A
=

(PBIB)2·(PBCI)2

(PBIC)2·PBCB

PCAC
A
=

(PCIC)2·(PCBI)2

(PBIC)2·PBCB

The machine proof
(16)·(PIXI )2·PBOB

PIAI ·PCIC·PBIB

X
=

(16)·((16S2
BCI))

2·PBOB

PIAI ·PCIC·PBIB·(PBCB)2

O
=

(4096)·(SBCI)4·PCAC·PBAB·PBCB

PIAI ·PCIC·PBIB·(PBCB)2·(64S2
BCA)
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simpli f y
=

(64)·(SBCI)4·PCAC·PBAB

PIAI ·PCIC·PBIB·PBCB·(SBCA)2

A
=

(64)·(SBCI)4·P2
CIC·P

2
CBI·P

2
BIB·P

2
BCI·(PBIC·PBCB)2·P2

BIC·PBCB

(16PCIC·PBIB·S2
BCI)·PCIC·PBIB·PBCB·((−2PCBI·PBCI·SBCI))2·(P2

BIC·PBCB)2

simpli f y
= 1

Example 6.163 (0.433, 6, 10)If the lines AX, BY, CZ joining the vertices of a triangle ABC
to the points of contact X, Y, Z of the sides BC, CA, AB with the incircle meet that circle
again in the points X1, Y1, Z1, show that: AX· XX1 · BC = 4rS , where r, S are the inradius
and the area of ABC.

B C

I

A

X

Y
Z

1X

1Y
1Z

Figure 6-163

Constructive description
( (pointsB C I)

(incenterA I B C)

(foot X I B C)

(foot Y I A C)

(foot Z I A B)

(inter X1 (l A X) (cir I X))

(inter Y1 (l B Y) (cir I Y))

(inter Z1 (l C Z) (cir I Z))

(16IX
2·S2

ABC = XA
2
XX1

2
BC

2
) )

Example 6.164 (2.783, 16, 13)If h, m, t are the altitude, the median, and the internal bisector
issued from the same vertex of a triangle whose circumradiusis R, show that4R2h2(t2 −
h2) = t4(m2 − h2).

T

O

1A D

A

I

CB

Figure 6-164

Constructive description
( (pointsB C I)

(incenterA I B C)

(circumcenterO A B C)

(foot D A B C)

(midpointA1 B C)

(inter T (l I A) (l B C))

(4T A
2·OB

2·AD
2−4AD

2·OB
2·AD

2
= AA1

2·T A
4−AD

2·T A
4
) )

Example 6.165 (0.050, 1, 10)The external bisectors of the angles of a triangle meet the
opposite sides in three collinear points.

1C

1B

1A

A

I

CB

Figure 6-165

Constructive description
( (pointsB C I)

(incenterA I B C)
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(inter A1 (l B C) (t A A I))

(inter B1 (l A C) (t B B I))

(inter C1 (l A B) (t C C I))

(inter C2 (l A1 B1) (l A B))

(
AC1
BC1
=

AC2
BC2

) )

The machine proof

( AC1
BC1

)/( AC2
BC2

)

C2
=

SBA1B1
SAA1B1

· AC1
BC1

C1
=

PICA·SBA1B1
SAA1B1 ·PBCI

B1
=

PICA·PCBI·SBAA1 ·PICBA

PIBA·SCAA1 ·PBCI·PICBA

simpli f y
=

PICA·PCBI·SBAA1
PIBA·SCAA1 ·PBCI

A1
=

PICA·PCBI·(−PBAI·SBCA)·PCIBA

PIBA·(−PCAI ·SBCA)·PBCI·PCIBA

simpli f y
=

PICA·PCBI·PBAI

PIBA·PCAI·PBCI

A
=

(−PCIC·PCBI·PBCI)·PCBI·(16PBIB·PBCI·S2
BCI)·P

2
BIC·PBCB·PBIC·PBCB

(−PCBI·PBIB·PBCI)·(16PCIC·PCBI·S2
BCI)·PBCI·P2

BIC·PBCB·PBIC·PBCB

simpli f y
= 1

The eliminants
AC2
BC2

C2
=

SAA1B1
SBA1B1

AC1
BC1

C1
=

PICA

PBCI

SAA1B1

B1
=

PIBA·SCAA1
PICBA

SBA1B1

B1
=

PCBI·SBAA1
PICBA

SCAA1

A1
=
−PCAI ·SBCA

PCIBA

SBAA1

A1
=
−PBAI·SBCA

PCIBA

PCAI
A
=

(16)·PCIC·PCBI·(SBCI)2

(PBIC)2·PBCB

PIBA
A
=
−PCBI·PBIB·PBCI

PBIC·PBCB

PBAI
A
=

(16)·PBIB·PBCI·(SBCI)2

(PBIC)2·PBCB

PICA
A
=
−PCIC·PCBI·PBCI

PBIC·PBCB

Example 6.166 (1.850, 14, 28)Prove that the triangle formed by the points of contact of
the sides of a given triangle with the excircles corresponding to these sides has the same
area with the triangle formed by the points of contact of the sides of the triangle with the
inscribed circle.

cZ

bY

cI

bI

aX

Z

Y

X

aI

A

I

CB

Figure 6-166

Constructive description
( (pointsB C I)

(incenterA I C B)

(inter Ia (t B B I) (l A I))

(foot X I B C) (foot Y I A C)

(foot Z I A B) (foot Xa Ia B C)

(inter Ib (t C C I) (l B I))

(inter Ic (t B B I) (l C I))

(foot Yb Ib A C) (foot Zc Ic B A)

(SXYZ = SXaYbZc) )

Example 6.167 (Gergonne Point) (0.050, 1, 7)The lines joining the vertices of a triangle to
the points of contact of the opposite sides with the inscribed circle are concurrent (The
Gergonne point).
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JZ

Y

X

A

I

CB

Figure 6-167

Constructive description
( (pointsB C I)

(incenterA I C B)

(foot X I B C)

(foot Y I A C)

(foot Z I A B)

( BX
XC

CY
YA

AZ
ZB
= 1) )

The eliminants
AZ
BZ

Z
=

PBAI
−PIBA

CY
AY

Y
=

PICA

−PCAI

BX
CX

X
=

PCBI

−PBCI

PCAI
A
=

(16)·PCIC·PCBI·(SBCI)2

(PBIC)2·PBCB

PIBA
A
=
−PCBI·PBIB·PBCI

PBIC·PBCB

PICA
A
=
−PCIC·PCBI·PBCI

PBIC·PBCB

PBAI
A
=

(16)·PBIB·PBCI·(SBCI)2

(PBIC)2·PBCB

The machine proof

− AZ
BZ
·CY

AY
· BX
CX

Z
=
−PBAI
−PIBA

· CY
AY
· BX
CX

Y
=

PBAI·PICA

PIBA·(−PCAI)
· BX

CX

X
=
−PBAI·PICA·PCBI

PIBA·PCAI·(−PBCI)

A
=

(16PBIB·PBCI·S2
BCI)·(−PCIC·PCBI·PBCI)·PCBI·P2

BIC·PBCB·PBIC·PBCB

(−PCBI·PBIB·PBCI)·(16PCIC·PCBI·S2
BCI)·PBCI·PBIC·PBCB·P2

BIC·PBCB

simpli f y
= 1

Example 6.168 (Nagel Point) (0.650, 3, 31)The lines joining the vertices of a triangle to the
points of contact of the opposite sides with the excircles relative to those sides are concur-
rent (The Nagel point).

J
cZ

bY

aX

cI

bI

aI

A

I

CB

Figure 6-168

Constructive description
( (pointsB C I)

(incenterA I C B)

(inter Ia (t B I B) (l A I))

(inter Ib (l B I) (l Ia C))

(inter Ic (l Ia B) (l C I))

(foot Xa Ia B C) (foot Yb Ib A C)

(foot Zc Ic A B)

(inter J (l A Xa) (l B Yb))

(inter K (l C Zc) (l B Yb)) ( BJ
YbJ
= BK

YbK
) )

Example 6.169 (3.583, 12, 30)Show that the line joining the incenter of the triangle ABC to
the midpoint of the segment joining A to the Nagel point of ABCis bisected by the median
issued from A.

B C

I

A

aI

bI

aX

bYN

1A

S
P

Figure 6-169

Constructive description
( (pointsB C I) (incenterA I B C)

(inter Ia (l A I) (t B B I))

(inter Ib (l C Ia) (l B I))

(foot Xa Ia B C) (foot Yb Ib A C)

(inter N (l B Yb) (l A Xa))
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(midpointA1 B C) (midpointS N A)

(inter P (l I S) (l A1 A))

(midpointP I S) )

Example 6.170 (0.816, 12, 13)The sides AB, AC intercept the segments DE, FG on the
parallels to the side BC through the tritangent centers I andIa. Show that: 2/BC =
1/DE + 1/FG.

B
C

I

A

aI

D E

F G

Figure 6-170

Constructive description
( (pointsB C I)

(incenterA I B C)

(inter Ia (t B B I) (l A I))

(inter D (p I B C) (l A B))

(inter E (l D I) (l A C))

(inter F (p Ia B C) (l A B))

(inter G (l F Ia) (l A C))

( BC
DE
+ BC

FG
= 2) )

Example 6.171 (1.817, 27, 20)Show that the perpendiculars to the internal bisectors of a tri-
angle at the incenter meet the respective sides in three points lying on a line perpendicular
to the line joining the incenter to the circumcenter of the triangle.

B C

I

A

O

X

Y

Z

Figure 6-171

Constructive description
( (pointsB C I)

(incenterA I B C)

(circumcenterO A B C)

(inter X (t I I A) (l B C))

(inter Y (t I I B) (l A C))

(inter Z (t I I C) (l A B))

(perpendicularO I X Z) )

Example 6.172 (0.416, 4, 19)The side BC of the triangle ABC touches the incircle(I ) in
X and the excircle(Ia) relative to BC in Xa. Show that the line AXa passes through the
diametric opposite X1 of X on(I ).

1X

aX X

aI

A

I

CB

Figure 6-172

Constructive description
( (pointsB C I)

(incenterA I C B)

(inter Ia (t B I B) (l A I))

(foot X I B C)

(foot Xa Ia B C)

(inter X1 (l I X) (l A Xa))

(midpoint I X X1) )
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Example 6.173 (0.816, 6, 15)With the notations of Example 6.172, show that if the line A1I
meets the altitude AD of ABC in P, then AP is equal to the inradius of ABC.

B C

I

A

X D
1A

P

Figure 6-173

Constructive description
( (pointsB C I)

(incenterA I C B)

(foot X I B C)

(foot D A B C)

(midpointA1 B C)

(inter P (l I A1) (l A D))

(eqdistanceA P I X) )

Example 6.174 (0.267, 10, 16)With the notations of Example 6.172, if the parallels to AXa

through B, C meet the bisectors CI, BI in L, M show that the lineLM is parallel to BC.

M

L

aX X

aI

A

I

CB

Figure 6-174

Constructive description
( (pointsB C I)

(incenterA I C B)

(inter Ia (t B I B) (l A I))

(foot X I B C)

(foot Xa Ia B C)

(inter L (p B A Xa) (l C I))

(inter M (p C A Xa) (l B I))

(parallelL M B C) )

Example 6.175 (0.150, 2, 10)Show that the trilinear polar (see Example 6.203) of the incen-
ter of a triangle passes through the feet of the external bisectors, and this line is perpen-
dicular to the line joining the incenter to the circumcenter, and this lines is perpendicular
to the line joining the incenter to circumcenter.

O

Z

X D

F E

A

I
CB

Figure 6-175

Constructive description
( (pointsB C I)

(incenterA I B C)

(circumcenterO A B C)

(inter E (l B I) (l A C))

(inter F (l C I) (l B A))

(inter D (l A I) (l B C))

(inter X (l E F) (l B C))

(inter Z (l D E) (l A B))

(perpendicularX A A I) )
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The machine proof

PIAX

n
= PCAI ·SBEF−PBAI·SCEF

simpli f y
= PCAI ·SBEF−PBAI·SCEF

n
= SBCAI·PCAI ·SBAE·SBCI−SBCAI·PBAI·SCIE·SBCA

simpli f y
= PCAI ·SBAE·SBCI−PBAI·SCIE·SBCA

n
= −SBCIA·PCAI·SBIA·SBCA·SBCI−SBCIA·PBAI·SCIA·SBCA·SBCI

simpli f y
= −(PCAI ·SBIA+PBAI·SCIA)·SBCA·SBCI

n
= −(0)·(−2PCBI ·PBCI·SBCI)·SBCI

simpli f y
= 0

The eliminants

PIAX
X
=

PCAI ·SBEF−PBAI·SCEF

SBECF

SCEF
F
=

SCIE·SBCA

−SBCAI

SBEF
F
=
−SBAE·SBCI

SBCAI

SCIE
E
=

SCIA·SBCI

SBCIA

SBAE
E
=
−SBIA·SBCA

SBCIA

SBCA
A
=

(−2)·PCBI·PBCI·SBCI

PBIC·PBCB

SCIA
A
=

PCIC·PCBI·SBCI

PBIC·PBCB

PBAI
A
=

(16)·PBIB·PBCI·(SBCI)2

(PBIC)2·PBCB

SBIA
A
=
−PBIB·PBCI·SBCI

PBIC·PBCB

PCAI
A
=

(16)·PCIC·PCBI·(SBCI)2

(PBIC)2·PBCB

The second result has also been proved by the program.

Example 6.176 (0.633, 3, 27)Show that the mediators of the internal bisectors of the angles
of a triangle meet the respective sides of the triangle in three collinear points.

S

Q

P

W

V

U

A

I

CB

Figure 6-176

Constructive description
( (pointsB C I)

(incenterA I B C)

(inter U (l A I) (l B C))

(inter V (l B I) (l A C))

(inter W (l C I) (l A B))

(inter P (b A U) (l B C))

(inter Q (b B V) (l A C))

(inter S (b C W) (l A B))

(inter S1 (l A B) (l P Q))

( AS
BS
=

AS1
BS1

) )

Example 6.177 (0.450, 6, 25)Show that the lines joining the vertices of a triangle to the
projections of the incenter upon the mediators of the respectively opposite sides meet in a
point - the isotomic conjugate of the Gergonne point of the triangle.

B C

I

A

X 1A

1B1C D

E
F

J
Y

Figure 6-177

Constructive description
( (pointsB C I) (incenterA I B C)

(foot X I B C) (midpointA1 B C)

(midpointB1 C A) (midpointC1 A B)

(inter D (t A1 A1 C) (p I B C))

(inter E (t B1 B2 C) (p I A C))

(inter F (t C1 C1 B) (p I A B))

(inter J (l A D) (l B E))

(inter Y (l A D) (l B C)) (midpointA1 X Y) )
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Example 6.178 (0.516, 3, 19)Show that the line AI meets the sides XY, XZ in two points P,
Q inverse with respect to the incircle(I ) = XYZ, and the perpendiculars to AI at P, Q pass
through the vertices B, C of the given triangle ABC.

M

Q

P

Z
Y

X

A

I

CB

Figure 6-178

Constructive description
( (pointsB C I)

(incenterA I B C)

(foot X I B C)

(foot Y I A C)

(foot Z I A B)

(inter P (l I A) (l X Y))

(inter Q (l I A) (l X Z))

(inversionI X P Q) )

Definition The symmetric of a median of a triangle with respect to the internal bisector
issued from the same vertex is a symmedian of the triangle

Example 6.179 (1.250, 6,18)The three symmedians of a triangle are concurrent (The Lemoine
Point or the symmedian point).

I

3M

2M 1M

C

BA

Figure 6-179

Constructive description
( (pointsA B C)

(midpointM1 B C)

(midpointM2 A C)

(midpointM3 A B)

(on B1 (a B C M2 B A))

(on C1 (a C A M3 C B))

(inter I (l C C1) (l B B1))

(eqangleB A I M1 A C) )

Example 6.180 (0.566, 5, 19)The three symmetrics of the three lines joining a point and
the three vertices of a triangle with respect to the internalbisectors issued from the same
vertices are concurrent. (The isogonal conjugate point).

A B

C

M

N

Figure 6-180

Constructive description
( (pointsA B C M)

(on A1 (a A C M A B))

(on B1 (a B A M B C))

(inter N (l A A1) (l B B1))

(eqangleA C M N C B) )
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6.3.7 Intercept Triangles

Definition. Let L,M,N be three points on the sides BC,CA,AB of triangle ABC. Then
triangle LMN and the triangle determined by lines AL, BM, and CN are called the intercept
triangles of triangle ABC for points L,M,N.

Example 6.181 (0.033, 2, 5)Let A1, B1, C1 be points on the sides BC, CA, AB of a triangle
ABC such that BA1/BC = CB1/CA = AC1/AB = 1/3. Show that the area of the triangle
determined by lines AA1, BB1 and CC1 is one seventh of the area of triangle ABC.

We only need to show
SABA2
SABC
= 2/7.

Constructive description:( (pointsA B C) (lratio A1 B C 1/3) (lratio B1 C A 1/3)

(inter A2 (l A A1) (l B B1)) (2SABC = 7SABA2 ) ).

2C

2B

2A

1C

1B

1A

C

BA

Figure 6-181

The machine proof
(2)·SABC

(7)·SABA2

A2
=

(2)·SABC·SABA1B1
(7)·SABB1 ·SABA1

B1
=

(2)·SABC·(− 2
3SACA1+SABA1)

(7)·( 2
3SABC)·SABA1

simpli f y
=

−(2SACA1−3SABA1)

(7)·SABA1

A1
=
−(− 7

3SABC)

(7)·( 1
3SABC)

simpli f y
= 1

The eliminants

SABA2

A2
=

SABB1 ·SABA1
SABA1B1

SABB1

B1
=

2
3(SABC)

SABA1B1

B1
= − 1

3(2SACA1−3SABA1)

SABA1

A1
=

1
3(SABC)

SACA1

A1
= − 2

3(SABC)

Example 6.182 (0.017, 3, 5)Let A1, B1, C1 be points on the sides BC, CA, AB of a triangle
ABC such that BA1/BC = CB1/CA = AC1/AB = r. The intercept triangle determined by
lines AA1, BB1 and CC1 is A2B2C2 (Figure 6-181). Show that

SA2B2C2
SABC

=
(2r−1)2

r2−r+1 .

Constructive description:( (pointsA B C) (lratio A1 B C r) (lratio B1 C A r)

(inter A2 (l A A1) (l B B1)) ((r2−r+1)·SA2AB = (−r2+r)·SABC) ).
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The machine proof
(r2−r+1)·SABA2
−(r−1)·r ·SABC

A2
=

(r2−r+1)·SABB1 ·SABA1
−(r−1)·r ·SABC·SABA1B1

B1
=

−(r2−r+1)·(−SABC·r+SABC)·SABA1
(r−1)·r ·SABC·(SACA1 ·r−SACA1+SABA1)

simpli f y
=

(r2−r+1)·SABA1
r ·(SACA1 ·r−SACA1+SABA1 )

A1
=

(r2−r+1)·SABC·r
r ·(SABC·r2−SABC·r+SABC)

simpli f y
= 1

The eliminants

SABA2

A2
=

SABB1 ·SABA1
SABA1B1

SABA1B1

B1
=SACA1 ·r−SACA1+SABA1

SABB1

B1
= − ((r−1)·SABC)

SACA1

A1
= (r−1)·SABC

SABA1

A1
=SABC·r

Example 6.183 (0.466, 5, 16)Use the same notations as 6.182. If BA1/A1C = r1, CB1/B1A =
r2, AC1/C1B = r3 then

SA2B2C2
SABC

=
(r3r2r1−1)2

(r2r1+r1+1)(r3r1+r3+1)(r3r2+r2+1).

Constructive description: (Formula derivation)
( (pointsA B C) (mratioA1 B C r1) (mratioB1 C A r2) (mratioC1 A B r3)

(inter A2 (l A A1) (l B B1)) (inter B2 (l B B1) (l C C1)) (interC2 (l C C1) (l A A1)) (
SA2B2C2

SABC
) )

Example 6.184 (0.033, 2, 4)Let A1, B1, C1 be points on the sides BC, CA, AB of a triangle
ABC such that BA1/A1C = CB1/B1A = AC1/C1B = k. Furthermore, let A2, B2, C2

be points on the sides B1C1, C1A1, A1C1 of a triangle A1B1C1 such that C1A2/A2B1 =

A1B2/B2C1 = B1C2/C2A1 = k. Show that triangles ABC and A2B2C2 are homothetic.

D

O

2C

2B
2A

1B

1A

1C

C

BA

Figure 6-184

Constructive description
((pointsA B C)

(lratio C1 A B YT)

(lratio A1 B C YT )

(lratio B1 C A YT )

(lratio A2 C1 B1 YT )

(lratio B2 A1 C1 YT )

(lratio C2 B1 A1 YT )

(inter O (l A A2) (l B B2))

(inter D (l C C2) (l A B))

(parallelA2 B2 A B) )

The machine proof
SABA2
SABB2

B2
=

SABA2
−SABA1 ·YT+SABA1

simpli f y
=

−SABA2
(YT−1)·SABA1

A2
=

−SABB1 ·YT

(YT−1)·SABA1

B1
=
−(−SABC·YT+SABC)·YT

(YT−1)·SABA1

simpli f y
=

SABC·YT

SABA1

A1
=

SABC·YT

SABC·YT

simpli f y
= 1

The eliminants

SABB2

B2
= − ((YT−1)·SABA1)

SABA2

A2
=SABB1 ·YT

SABB1

B1
= − ((YT−1)·SABC)

SABA1

A1
=SABC·YT

Example 6.185 (0.083, 4, 11)Let M, N, and P be three points on the sides AB, BC and AC of
a triangle ABC such that AM/MB = BN/NC = CP/PA. Show that the point of intersection
of the medians of△MNP coincides with the point of intersection of the medians of △ABC.
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L

G

F

E

P

N

M

C

BA

Figure 6-185

Constructive description
((pointsA B C)

(lratio M A B YT)

(lratio N B C YT )

(lratio P C A YT )

(centroidG A B C)

(inter L (l N P) (l M G))

( PL
NL
= −1) )

The machine proof

−( PL
NL

)
L
=

−SMPG

−(−SMNG)

G
=
−(SCMP+SBMP+SAMP)·(3)
(SCMN+SBMN+SAMN)·(3)

P
=
−(SBCM·YT−SBCM+2SACM·YT−SACM)

SCMN+SBMN+SAMN

N
=
−(SBCM·YT−SBCM+2SACM·YT−SACM)
−2SBCM·YT+SBCM−SACM·YT

M
=
−3SABC·Y2

T+3SABC·YT−SABC

−3SABC·Y2
T+3SABC·YT−SABC

simpli f y
= 1

The eliminants
PL
NL

L
=

SMPG

SMNG

SMNG
G
=

1
3(SCMN+SBMN+SAMN)

SMPG
G
=

1
3(SCMP+SBMP+SAMP)

SAMP
P
=(YT−1)·SACM

SBMP
P
=(YT−1)·SBCM

SCMP
P
=SACM·YT

SAMN
N
= − (SACM·YT)

SBMN
N
= − (SBCM·YT)

SCMN
N
= − ((YT−1)·SBCM)

SACM
M
= − (SABC·YT)

SBCM
M
= − ((YT−1)·SABC)

Example 6.186 (0.266, 3, 13)Let M, N, and P be the same as in Example 6.185. Show that
the point of intersection of the medians of the triangle formed by lines AN, BP and CM
coincides with the point of intersection of the medians of△ABC.

A B

C

M

N

P

E

F

G
X

Y

Z

L

Figure 6-186

Constructive description
((pointsA B C)

(lratio M A B YT) (lratio N B C YT )

(lratio P C A YT ) (centroidG A B C)

(inter X (l B P) (l A N))

(inter Y (l B P) (l C M))

(inter Z (l A N) (l C M))

(inter L (l Y Z) (l X G))

( YL
ZL
= −1) )
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The machine proof

−(YL
ZL

)
L
=

−SGXY

−(−SGXZ)

Z
=
−SGXY·SACNM

SCMX·SANG

Y
=
−SCMX·SBPG·SACNM

SCMX·SANG·SBCPM

simpli f y
=

−SBPG·SACNM

SANG·SBCPM

G
=
−(−SBCP+SABP)·SACNM·(3)
(−SACN−SABN)·SBCPM·(3)

P
=

−(2SABC·YT−SABC)·SACNM

(SACN+SABN)·(SBCM−SACM·YT)

simpli f y
=

−(2YT−1)·SABC·SACNM

(SACN+SABN)·(SBCM−SACM·YT)

N
=
−(2YT−1)·SABC·(SBCM·YT−SBCM+SACM)

(2SABC·YT−SABC)·(SBCM−SACM·YT )

simpli f y
=

−(SBCM·YT−SBCM+SACM)
SBCM−SACM·YT

M
=
−(−SABC·Y2

T+SABC·YT−SABC)

SABC·Y2
T−SABC·YT+SABC

simpli f y
= 1

The eliminants
YL
ZL

L
=

SGXY

SGXZ

SGXZ
Z
=

SCMX·SANG

SACNM

SGXY
Y
=

SCMX·SBPG

SBCPM

SANG
G
= − 1

3(SACN+SABN)
SBPG

G
= − 1

3(SBCP−SABP)
SBCPM

P
=SBCM−SACM·YT

SABP
P
= − ((YT−1)·SABC)

SBCP
P
=SABC·YT

SABN
N
=SABC·YT

SACN
N
=(YT−1)·SABC

SACNM
N
=SBCM·YT−SBCM+SACM

SACM
M
= − (SABC·YT)

SBCM
M
= − ((YT−1)·SABC)

Example 6.187 (0.533, 2, 32)Through each of the vertices of a triangle ABC we draw two
lines dividing the opposite side into three equal parts. These six lines determine a hexagon.
Prove that the diagonals joining opposite vertices of this hexagon meet in a point.

A B

C

1A

2A1B

2B

1C 2C

X

Y Z

U

VW
O

Figure 6-187

Constructive description
( (pointsA B C) (lratio A1 B C 1/3)

(lratio A2 B C 2/3) (lratio B1 C A 1/3)

(lratio B2 C A 2/3) (lratio C1 A B 1/3)

(lratio C2 A B 2/3) (inter X (l A A1) (l B B2))

(inter Y (l C C1) (l A A2)) (inter Z (l B B1) (l C C2))

(inter U (l A A2) (l B B1)) (inter V (l C C2) (l A A1))

(inter W (l B B2) (l C C1)) (inter O (l Y V) (l U X))

(inter ZO (l W Z) (l U X)) ( UO
XO
=

UZO
XZO

) )

Example 6.188 (0.216, 4, 11)Let M, N, P be points on the sides AB, BC and AC of a triangle
ABC. Show that if M1, N1 and P1 are points on sides AC, BA, and BC of a triangle ABC
such that MM1 ‖ BC, NN1 ‖ CA and PP1 ‖ AB, then triangles MNP and M1N1P1 have
equal areas.
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Constructive description
( (pointsA B C)

(on M (l A B)) (on N (l B C))

(on P (l A C))

(inter M1 (l A C) (p M B C))

(inter N1 (l A B) (p N A C))

(inter P1 (l B C) (p P A B))

(SMNP = SM1N1P1) )

The eliminants

SM1N1P1

P1
=

SCM1N1 ·SABP+SBM1N1 ·SBCP

SABC

SBM1N1

N1
=

SABM1 ·SABN

SABC
SCM1N1

N1
= − (SCNM1)

SABM1

M1
= −SACM SCNM1

M1
= − (SCMN)

SBCP
P
= − (( AP

AC
−1)·SABC)

SABP
P
=SABC· AP

AC

SMNP
P
=SCMN· AP

AC
−SAMN· AP

AC
+SAMN

SABN
N
=SABC· BN

BC

SAMN
N
= − (SACM· BN

BC
)

SCMN
N
= − (( BN

BC
−1)·SBCM)

The machine proof
SMNP

SM1N1P1

P1
=

SMNP·(−SABC)
−SCM1N1 ·SABP−SBM1N1 ·SBCP

N1
=

SMNP·(SABC)2

−SCNM1 ·SABP·SABC+SBCP·SABM1 ·SABN

M1
=

SMNP·(SABC)3

−(−SCMN ·SABP·S2
ABC+SBCP·SACM·SABN·SABC)

simpli f y
=

SMNP·(SABC)2

SCMN·SABP·SABC−SBCP·SACM·SABN

P
=

(SCMN · AP
AC
−SAMN· AP

AC
+SAMN)·(SABC)2

SCMN·S2
ABC·

AP
AC
+SACM·SABN·SABC· AP

AC
−SACM·SABN·SABC

simpli f y
=

(SCMN · AP
AC
−SAMN· AP

AC
+SAMN)·SABC

SCMN·SABC· AP
AC
+SACM·SABN· AP

AC
−SACM·SABN

N
=

(−SBCM· BN
BC
· AP
AC
+SBCM· AP

AC
+SACM· BN

BC
· AP

AC
−SACM· BN

BC
)·SABC

−SBCM·SABC· BN
BC
· AP
AC
+SBCM·SABC· AP

AC
+SACM·SABC· BN

BC
· AP
AC
−SACM·SABC· BN

BC

simpli f y
= 1

Example 6.189 (0.050, 2, 3)Three parallel lines drawn through the vertices of a triangle
ABC meet the respectively opposite sides in the points X, Y, Z. Show that area XYZ/ area
ABC= 2 / 1.

Z

Y

X

C

BA

Figure 6-189

Constructive description
( (pointsA B C)

(on X (l B C))

(inter Y (l A C) (p B A X))

(inter Z (l A B) (p C A X))

(2SBAC = SXYZ) )

The machine proof:(−2)·SABC

SXYZ

Z
=

(−2)·SABC·SABX

SBXY·SACX+SAXY·SABC

Y
=

(−2)·SABC·SABX·SACX

−2SACX·SABX·SABC

simpli f y
= 1.

The eliminants:SXYZ
Z
=

SBXY·SACX+SAXY·SABC

SABX
. SAXY

Y
= − (SABX). SBXY

Y
=
−SABX·SABC

SACX
.
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Example 6.190 (0.066, 1, 6)Two doubly perspective triangles are in fact triply perspective.

O A

B
C

1O

1A

1B 1C

2O

Figure 6-190

Constructive description
( (pointsA B C O O1)

(inter A1 (l C O1) (l A O))

(inter B1 (l A O1) (l B O))

(inter C1 (l B O1) (l C O))

(inter O2 (l B A1) (l A C1))

(inter ZO2 (l B1 C) (l B A1))

(
BO2

A1O2
=

BZO2
A1ZO2

) )

The machine proof

( BO2
A1O2

)/( BZO2
A1ZO2

)

ZO2
=

SCA1B1
−SBCB1

· BO2
A1O2

O2
=

(−SABC1 )·SCA1B1
−SBCB1 ·(−SAA1C1)

C1
=
−SBCO·SABO1 ·SCA1B1 ·(−SBCO1O)

SBCB1 ·(−SBOO1·SACA1 )·SBCO1O

simpli f y
=

−SBCO·SABO1 ·SCA1B1
SBCB1 ·SBOO1·SACA1

B1
=
−SBCO·SABO1 ·(−SBOO1 ·SACA1 )·(−SABO1O)

(−SBCO·SABO1)·SBOO1·SACA1 ·SABO1O

simpli f y
= 1

The eliminants
BZO2

A1ZO2

ZO2
=
−SBCB1
SCA1B1

BO2
A1O2

O2
=

SABC1
SAA1C1

SAA1C1

C1
=

SBOO1 ·SACA1
SBCO1O

SABC1

C1
=

SBCO·SABO1
SBCO1O

SBCB1

B1
=

SBCO·SABO1
SABO1O

SCA1B1

B1
=
−SBOO1 ·SACA1

SABO1O

6.3.8 Equilateral Triangles

Example 6.191 (The Napoleon triangle) (0.433, 8, 22)If equilateral triangles are erected exter-
nally (or internally) on the sides of any triangle, their centers form an equilateral triangle.

The machine proof
PO2O1O2
PO2O3O2

O3
=

PO2O1O2

PO2GO2+
1
9 PBGB·r2− 8

3SBO2G·r

G
=

(9)·PO2O1O2
9
2 PBO2B+

9
2 PAO2A+

1
4 PABA·r2− 9

4 PABA−12SABO2 ·r

O1
=

(36)·(PO2FO2+
1
9 PCFC·r2− 8

3SCO2F ·r)

18PBO2B+18PAO2A+PABA·r2−9PABA−48SABO2 ·r

F
=

(4)·( 9
2 PCO2C+

9
2 PBO2B+

1
4 PBCB·r2− 9

4 PBCB−12SBCO2 ·r)

18PBO2B+18PAO2A+PABA·r2−9PABA−48SABO2 ·r

O2
=

4PCABE·r2+18PCEC+18PBEB+PBCB·r2−9PBCB+4PAEA·r2−48SBCE·r−48SABE·r
18PBEB+4PBAE·r2+4PAEA·r2+18PAEA+PABA·r2−9PABA−96SABE·r

E
=

3PBCB·r2+PACA·r2−2PABC·r2+9PABA−48SABC·r
9PBCB+2PBAC·r2+PACA·r2+PABA·r2−48SABC·r

cons
=

9PBCB+3PACA−6PABC+9PABA−48SABC·r
9PBCB+6PBAC+3PACA+3PABA−48SABC·r

py
=

(4PBCB+4PACA+4PABA−32SABC·r)·(2)
(4PBCB+4PACA+4PABA−32SABC·r)·(2)

simpli f y
= 1
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Constructive description
( (pointsA B C) (constantr2−3),
(midpointE A C) (tratio O2 E A 1

3 r)

(midpointF B C) (tratio O1 F C 1
3 r)

(midpointG A B) (tratio O3 G B 1
3 r)

(eqdistanceO1 O2 O2 O3) )

The eliminants

PO2O3O2

O3
=

1
9(9PO2GO2+PBGB·r2−24SBO2G·r)

SBO2G
G
=

1
2(SABO2), PBGB

G
=

1
4(PABA)

PO2GO2
G
=

1
4(2PBO2B+2PAO2A−PABA)

PO2O1O2

O1
=

1
9(9PO2FO2+PCFC·r2−24SCO2F ·r)

SCO2F
F
=

1
2(SBCO2), PCFC

F
=

1
4(PBCB)

PO2FO2
F
=

1
4(2PCO2C+2PBO2B−PBCB)

SABO2

O2
= − 1

12(PBAE·r−12SABE)
PAO2A

O2
=

1
9((r2+9)·PAEA)

SBCO2

O2
= − 1

12(PCABE·r−12SBCE)
PBO2B

O2
=

1
9(9PBEB+PAEA·r2−24SABE·r)

PCO2C
O2
=

1
9(9PCEC+PAEA·r2)

PBAE
E
=

1
2(PBAC), SABE

E
=

1
2(SABC),

SBCE
E
=

1
2(SABC), PAEA

E
=

1
4(PACA)

PBEB
E
=

1
4(2PBCB−PACA+2PABA)

PCEC
E
=

1
4(PACA), PCABE

E
=

1
2(PBCB−PABC)

PBAC= − 1
2(PBCB−PACA−PABA)

PABC=
1
2(PBCB−PACA+PABA)

Example 6.192 (0.883, 15, 31)Continuing from the above example, the lines AO1, BO2, CO3

are concurrent.

A B

C

1C

1A

1B

1O

2O

3O

O

Figure 6-192

Constructive description
( (constantr2−3)

(pointsA B C)

(midpointE A C) (tratio O2 E A 1
3 r)

(midpointF B C) (tratio O1 F C 1
3 r)

(midpointG A B) (tratio O3 G B 1
3 r)

(inter N (l O2 B) (l O1 A))

(inter M (l O2 B) (l O3 C))

( BN
O2N

= BM
O2M

) )

Example 6.193 (0.900, 18, 31)In Example 6.192, if the three equilateral triangles become
similar isosceles triangles, the conclusion is still true.

Constructive description
( (pointsA B C) (midpointE A C) (tratio O2 E A r) (midpointF B C)

(tratio O1 F C r) (midpointG A B) (tratio O3 G B r) (inter N (l O2 B) (l O1 A))

(inter M (l O2 B) (l O3 C)) ( BN
O2N

= BM
O2M

) )

Example 6.194 (0.367 26 54)Let the circumcenters of the equilateral triangles erectedexter-
nally (or internally) on the sides of any triangle be O1,O2 and O3 (X1, X2, and X3). Show
that SO1O2O3 + SX1X2X3 = SABC.
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Constructive description
( (pointsA B C) (constantr2−3) (midpointE A C) (tratio O2 E A 1

3 r)

(lratio X2 E O2 −1) (midpointF B C) (tratio O1 F C 1
3 r) (lratio X1 F O1 −1)

(midpointG A B) (tratio O3 G B 1
3 r) (lratio X3 G O3 −1) (SO1O2O3+SX1X2X3 = SABC) )

Example 6.195 (0.050, 5, 8)Let equilaterals BCD, ABF, and ACE are erected externally on
the sides of triangle ABC. Show that AD= CF = BE.

A

B
C

F

D

E

Figure 6-195

Constructive description
( (pointsA B C)

(constantr2−3)

(midpointM A C)

(tratio E M A r)

(midpointN B C)

(tratio D N C r)

(eqdistanceB E A D) )

The machine proof
PBEB
PADA

D
=

PBEB

PCNC·r2+PANA+8SACN·r
N
=

PBEB
1
4 PBCB·r2− 1

4 PBCB+
1
2 PACA+

1
2 PABA−4SABC·r

E
=

(4)·(PBMB+PAMA·r2−8SABM·r)
PBCB·r2−PBCB+2PACA+2PABA−16SABC·r

M
=

(4)·( 1
2 PBCB+

1
4 PACA·r2− 1

4 PACA+
1
2 PABA−4SABC·r)

PBCB·r2−PBCB+2PACA+2PABA−16SABC·r
cons
=

2PBCB+2PACA+2PABA−16SABC·r
2PBCB+2PACA+2PABA−16SABC·r

simpli f y
= 1

The eliminants

PADA
D
=PCNC·r2+PANA+8SACN·r

SACN
N
= − 1

2(SABC)
PANA

N
= − 1

4(PBCB−2PACA−2PABA)
PCNC

N
=

1
4(PBCB)

PBEB
E
=PBMB+PAMA·r2−8SABM·r SABM

M
=

1
2(SABC)

PAMA
M
=

1
4(PACA)

PBMB
M
=

1
4(2PBCB−PACA+2PABA)

6.3.9 Pedal Triangles

Definition. From a point P three perpendicular lines are drawn to the three sides of a
triangle. The triangle whose vertices are the three feet of the three perpendicular lines is
called the pedal triangle of point P with respect to the giventriangle.

Example 6.196 (0.783, 6, 23)The orthogonal projections from point D to BC, AC, and AB
are E, F, and G respectively. Let O be the circumcenter of triangle ABC. Show that

DO
2
= AO

2
(1− 4SEFG

SABC
).

A

B

C

D O

E
F

G

Figure 6-196

Constructive description
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( (pointsA B C D)

(circumcenterO A B C)

(foot E D B C)

(foot F D A C)

(foot G D A B)

(−DO
2·SABC = −OA

2·SABC+4OA
2·SEFG) )

Example 6.197 (0.083, 2, 5)Let K be the area of the pedal triangle of the orthocenter of
triangle ABC with respect to triangle ABC. Show thatK

SABC
=

PABCPACBPBAC

4AB
2
BC

2
AC

2 .

A B

C

E

F

G
Figure 6-197

Constructive description
((pointsA B C)

(foot E A B C)

(foot F B A C)

(foot G C A B)

(PABC·PBAC·PACB·SABC = 4AB
2·BC

2·AC
2·SEFG) )

The machine proof
PBAC·PACB·PABC·SABC

( 1
2 )·PBCB·PACA·PABA·SEFG

G
=

PBAC·PACB·PABC·SABC·PABA

( 1
2 )·PBCB·PACA·PABA·(PBAC·SBEF+PABC·SAEF)

simpli f y
=

PBAC·PACB·PABC·SABC

( 1
2 )·PBCB·PACA·(PBAC·SBEF+PABC·SAEF)

F
=

PBAC·PACB·PABC·SABC·(PACA)2

( 1
2 )·PBCB·PACA·(PBAC·PACB·PACA·SABE−PBAC·PACA·PABC·SACE)

simpli f y
=

PACB·PABC·SABC

( 1
2 )·PBCB·(PACB·SABE−PABC·SACE)

E
=

PACB·PABC·SABC·(PBCB)2

( 1
2 )·PBCB·(2PBCB·PACB·PABC·SABC)

simpli f y
= 1

The eliminants

SEFG
G
=

PBAC·SBEF+PABC·SAEF

PABA

SAEF
F
=
−PBAC·SACE

PACA

SBEF
F
=

PACB·SABE

PACA

SACE
E
=
−PACB·SABC

PBCB

SABE
E
=

PABC·SABC

PBCB

Example 6.198 (0.233, 14, 16)Let K be the area of the pedal triangle of the centroid of

triangle ABC with respect to triangle ABC. Show thatK
SABC
= AB

2
+BC

2
+AC

2

36R2 .

A B

C

O
G

E
F

G

Figure 6-198

Constructive description
((pointsA B C)

(circumcenterO A B C)

(centroidG A B C)

(foot E G B C)

(foot F G A C)

(foot G G A B)

(AB
2·SABC+BC

2·SABC+AC
2·SABC = 36OA

2·SEFG) )
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Example 6.199 (0.083, 2, 11)Let K be the area of the pedal triangle of the circumcenter of
triangle ABC with respect to triangle ABC. Show that SABC = 4K.

A
B

C

O

EF

G

Figure 6-199

Constructive description
((pointsA B C)

(circumcenterO A B C)

(foot E O B C)

(foot F O A C)

(foot G O A B)

(SABC = 4SEFG) )

The machine proof
SABC

(4)·SEFG

G
=

SABC·PABA

(4)·(PBAO·SBEF+PABO·SAEF)

F
=

SABC·PABA·(PACA)2

(4)·(−PCAO·PACA·PABO·SACE+PBAO·PACO·PACA·SABE)

simpli f y
=

SABC·PABA·PACA

(−4)·(PCAO·PABO·SACE−PBAO·PACO·SABE)

E
=

SABC·PABA·PACA·(PBCB)2

(−4)·(−PCBO·PBCB·PBAO·PACO·SABC−PCAO·PBCO·PBCB·PABO·SABC)

simpli f y
=

PABA·PACA·PBCB

(4)·(PCBO·PBAO·PACO+PCAO·PBCO·PABO)

O
=

PABA·PACA·PBCB·((2))6

(4)·(16PBCB·PACA·PABA)

simpli f y
= 1

The eliminants

SEFG
G
=

PBAO·SBEF+PABO·SAEF

PABA

SAEF
F
=
−PCAO·SACE

PACA

SBEF
F
=

PACO·SABE

PACA

SABE
E
=

PCBO·SABC

PBCB

SACE
E
=
−PBCO·SABC

PBCB

PABO
O
=

1
2(PABA)

PBCO
O
=

1
2(PBCB)

PCAO
O
=

1
2(PACA)

PACO
O
=

1
2(PACA)

PBAO
O
=

1
2(PABA)

PCBO
O
=

1
2(PBCB)

Example 6.200 (0.300, 2, 14)Let K be the area of the pedal triangle of the incenter of triangle
ABC with respect to triangle ABC. Show thatK

SABC
= r

2R.

A B

I

C

O E

F

G

Figure 6-200

Constructive description
((pointsA B I)

(incenterC I A B)

(circumcenterO A B C)

(foot E I B C)

(foot F I A C)

(foot G I A B)

(IE
2·S2

ABC = 4OA
2·S2

EFG) )

6.3.10 Miscellaneous

Example 6.201 (0.016, 1, 4)AD,AA1 are the altitude and the median of the triangle ABC;
the parallels through A1 to AB, AC meet AD in P,Q; show that (ADPQ)= -1.
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A

B

C

D

1A

P
Q

Figure 6-201

Constructive description
( (pointsA B C)

(foot D A B C)

(midpointA1 B C)

(inter P (l A D) (p A1 A B))

(inter Q (l A D) (p A1 A C))

(harmonicA D P Q) )

The machine proof

(− AP
DP

)/( AQ
DQ

)

Q
=
−SADA1
−SACA1

· − AP
DP

P
=
−(−SABA1 )·SADA1
SACA1 ·(−SADA1 )

simpli f y
=

−SABA1
SACA1

A1
=
−( 1

2SABC)

− 1
2SABC

simpli f y
= 1

The eliminants
AQ
DQ

Q
=

SACA1
SADA1

AP
DP

P
=

SABA1
SADA1

SACA1

A1
= − 1

2(SABC)
SABA1

A1
=

1
2(SABC)

Example 6.202 (0.067, 3, 13)If A1, B1, C1 are the midpoint of the sides of the triangle ABC,
prove that A1A is the harmonic conjugate of A1C with respect to A1B1, A1C1.

D
G

1C 1B

1A

A

CB

Figure 6-202

Constructive description
((pointsA B C)

(midpointA1 C B)

(midpointB1 A C)

(midpointC1 B A)

(centroidG A B C)

(inter D (l C1 C) (l A1 B1))

(harmonicC1 D G C) )

The machine proof

(C1G

GD
)/(CC1

CD
)

D
=

(−SA1C1B1G)·SCA1B1
SCA1C1B1 ·SA1B1G

G
=
−(−3SA1B1C1+SCA1B1+SBA1B1+SAA1B1)·SCA1B1·(3)

SCA1C1B1 ·(SCA1B1+SBA1B1+SAA1B1)·(3)

C1
=

(−SCA1B1+
1
2SBA1B1+

1
2SAA1B1)·SCA1B1

(SCA1B1−
1
2SBA1B1−

1
2SAA1B1)·(SCA1B1+SBA1B1+SAA1B1)

simpli f y
=

−SCA1B1
SCA1B1+SBA1B1+SAA1B1

B1
=
−( 1

2SACA1 )
1
2SABA1

A1
=
−(− 1

2SABC)
1
2SABC

simpli f y
= 1

The eliminants
CC1
CD

D
=

SCA1C1B1
SCA1B1

C1G

GD

D
=
−SA1C1B1G

SA1B1G

SA1B1G
G
=

1
3(SCA1B1+SBA1B1+SAA1B1)

SA1C1B1G
G
=− 1

3(3SA1B1C1−SCA1B1−SBA1B1−SAA1B1)
SCA1C1B1

C1
=

1
2(2SCA1B1−SBA1B1−SAA1B1)

SA1B1C1

C1
=

1
2(SBA1B1+SAA1B1)

SAA1B1

B1
= − 1

2(SACA1)
SBA1B1

B1
=

1
2(SABA1)

SCA1B1

B1
=

1
2(SACA1)

SABA1

A1
=

1
2(SABC)

SACA1

A1
= − 1

2(SABC)
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Example 6.203 (0.250, 1, 12)Let P be a point in the plane of the triangle ABC. Let A1 =

BC∩AP, B1 = AC∩BP,C1 = AB∩CP, A2 = BC∩B1C1, B2 = AC∩A1C1,C2 = AB∩A1B1.
Show that A2, B2,C2 are collinear, and is called the trilinear polar of P for triangle ABC.

A B

C

P

1A
1B

1C

2A
2B

2C

Figure 6-203

Constructive description
( (pointsA B C P)

(inter A1 (l B C) (l A P))

(inter B1 (l A C) (l B P))

(inter C1 (l A B) (l C P))

(inter A2 (l B C) (l B1 C1))

(inter B2 (l A C) (l A1 C1))

(inter C2 (l A B) (l A1 B1))

(inter ZC2 (l B2 A2) (l A1 B1))

(
A1C2
B1C2

=
A1ZC2
B1ZC2

) )

The machine proof

( A1C2
B1C2

)/( A1ZC2
B1ZC2

)

ZC2
=
−SB1A2B2
−SA1A2B2

· A1C2
B1C2

C2
=

SABA1 ·SB1A2B2
SA1A2B2·SABB1

B2
=

SABA1 ·SA1B1C1 ·SACA2 ·(−SAA1CC1 )

(−SA1C1A2 ·SACA1 )·SABB1 ·SAA1CC1

simpli f y
=

SABA1 ·SA1B1C1 ·SACA2
SA1C1A2 ·SACA1 ·SABB1

A2
=

SABA1 ·SA1B1C1 ·SCB1C1 ·SABC·SBB1CC1
(−SA1B1C1 ·SBCC1 )·SACA1 ·SABB1 ·SBB1CC1

simpli f y
=

SABA1 ·SCB1C1 ·SABC

−SBCC1 ·SACA1 ·SABB1

C1
=

SABA1 ·(−SCPB1 ·SABC)·SABC·SACBP

−(−SBCP·SABC)·SACA1 ·SABB1 ·(−SACBP)

simpli f y
=

SABA1 ·SCPB1 ·SABC

SBCP·SACA1 ·SABB1

B1
=

SABA1 ·SBCP·SACP·SABC·SABCP

SBCP·SACA1 ·SABP·SABC·SABCP

simpli f y
=

SABA1 ·SACP

SACA1 ·SABP

A1
=

(−SABP·SABC)·SACP·(−SABPC)
(−SACP·SABC)·SABP·(−SABPC)

simpli f y
= 1

The eliminants
A1ZC2
B1ZC2

ZC2
=

SA1A2B2
SB1A2B2

A1C2
B1C2

C2
=

SABA1
SABB1

SA1A2B2

B2
=

SA1C1A2 ·SACA1
SAA1CC1

SB1A2B2

B2
=

SA1B1C1 ·SACA2
SAA1CC1

SA1C1A2

A2
=
−SA1B1C1 ·SBCC1

SBB1CC1

SACA2

A2
=

SCB1C1 ·SABC

SBB1CC1

SBCC1

C1
=
−SBCP·SABC

SACBP

SCB1C1

C1
=

SCPB1 ·SABC

SACBP

SABB1

B1
=

SABP·SABC

SABCP

SCPB1

B1
=

SBCP·SACP

SABCP

SACA1

A1
=

SACP·SABC

SABPC

SABA1

A1
=

SABP·SABC

SABPC

Example 6.204 (0.083, 1, 6)Let P be a point in the plane of the triangle ABC. Let A1 =

BC∩ AP, B1 = AC∩ BP,C1 = AB∩ CP, A2 = BC∩ B1C1. Show that A1,A2, B,C form a
harmonic sequence.
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A B

C

P
1A1B

1C

2A

Figure 6-204

Constructive description
( (pointsA B C P)

(inter A1 (l B C) (l A P))

(inter B1 (l A C) (l B P))

(inter C1 (l A B) (l C P))

(inter A2 (l B C) (l B1 C1))

(harmonicB C A1 A2) )

The machine proof

(− BA1
CA1

)/( BA2
CA2

)

A2
=

SCB1C1
SBB1C1

· − BA1
CA1

C1
=
−(−SCPB1 )·SABC·SACBP

(−SBCP·SABB1)·(−SACBP) ·
BA1
CA1

simpli f y
=

SCPB1 ·SABC

SBCP·SABB1
· BA1

CA1

B1
=

SBCP·SACP·SABC·SABCP

SBCP·SABP·SABC·SABCP
· BA1

CA1

simpli f y
=

SACP

SABP
· BA1

CA1

A1
=

(−SABP)·SACP

SABP·(−SACP)

simpli f y
= 1

The eliminants
BA2
CA2

A2
=

SBB1C1
SCB1C1

SBB1C1

C1
=
−SBCP·SABB1

SACBP

SCB1C1

C1
=

SCPB1 ·SABC

SACBP

SABB1

B1
=

SABP·SABC

SABCP

SCPB1

B1
=

SBCP·SACP

SABCP
BA1
CA1

A1
=

SABP

SACP

Example 6.205 (0.033, 1, 6)With the usual notations for the triangle ABC, if EF meets BC
in M, show that(BCDM) = −1.

M

K

H

F

E

D

C

BA

Figure 6-205

Constructive description
( (pointsA B C)

(foot D A B C)

(foot E B A C)

(foot F C A B)

(inter H (l A D) (l C F))

(inter K (l D F) (l B E))

(inter M (l B C) (l E F))

(harmonicB C D M) )

The machine proof

(− BD
CD

)/( BM
CM

)
M
=

SCEF

SBEF
· − BD

CD

F
=
−PBAC·SBCE·PABA

PABC·SABE·PABA
· BD

CD

simpli f y
=

−PBAC·SBCE

PABC·SABE
· BD

CD

E
=
−PBAC·PACB·SABC·PACA

PABC·PBAC·SABC·PACA
· BD

CD

simpli f y
=

−PACB

PABC
· BD

CD

D
=
−PABC·PACB

PABC·(−PACB)

simpli f y
= 1

The eliminants
BM
CM

M
=

SBEF
SCEF

, SBEF
F
=

PABC·SABE

PABA

SCEF
F
=

PBAC·SBCE

PABA

SABE
E
=

PBAC·SABC

PACA

SBCE
E
=

PACB·SABC

PACA
, BD

CD

D
=

PABC

−PACB

Example 6.206 (0.467, 13, 34)The circle having for diameter the median AA1 of the triangle
ABC meets the circumcircle in L: show that A(LDBC) = −1, where AD is the altitude.
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B C

A

1A D

O

M
L

K

Figure 6-206

Constructive description
( (pointsA B C)

(circumcenterO A B C)

(foot D A B C)

(midpointA1 B C)

(midpointM A1 A)

(inter L (cir M A) (cir O A))

(inter K (l B C) (l A L))

(harmonicK D B C) )

Example 6.207 (0.883, 10, 38)If L, M, N are the traces of the lines AP, BP, CP on the sides
BC, CA, AB of the triangle ABC, and L1, M1, N1 the traces, on the same sides, of the
trilinear polar of P for ABC, show that the midpoints of the segments LL1, MM1, NN1 are
collinear.

B C

A

P

L

M

N

1L

1M1N

2L

2M

2N

Figure 6-207

Constructive description
( (pointsA B C P) (inter L (l A P) (l B C))

(inter M (l B P) (l A C))

(inter N (l C P) (l A B))

(inter L1 (l B C) (l M N))

(inter M1 (l A C) (l L N))

(inter N1 (l A B) (l L M))

(midpointL2 L L1) (midpointM2 M M1)

(midpointN2 N N1) (collinearL2 M2 N2) )

Example 6.208 (0.550, 2, 25)Let L, M, N be the feet of the cevians AP, BP, CP of the
triangle ABC and let P1 be a point on the trilinear polar of P for ABC. If the lines AP1

BP1, CP1 meet MN, NL, LM in X, Y, Z, show that the triangle XYZ is circumscribed about
the triangle ABC.

Z

Y

1P
1N

1L

N

M

L

P

A

CB

Figure 6-208

Constructive description
( (pointsA B C P) (inter L (l A P) (l B C))

(inter M (l B P) (l A C)) (inter N (l C P) (l A B))

(inter L1 (l B C) (l M N)) (inter N1 (l A B) (l L M))

(on P1 (l N1 L1)) (inter Y (l N L) (l B P1))

(inter Z (l L M) (l C P1)) (inter ZZ (l Y A) (l N1 L))

(
N1Z

LZ
=

N1ZZ
LZZ

) )

Example 6.209 (0.466, 4, 26)If A1 is the point of intersection of the side BC of the triangle
ABC with the trilinear polar p of a point P on the circumcircleof ABC, show that the circle
APA1 passes through the midpoint of BC.
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B C

A

O

P

M

N

1AG

Figure 6-209

Constructive description
( (circle A B C P)

(circumcenterO A B C)

(inter M (l B P) (l A C))

(inter N (l C P) (l A B))

(inter A1 (l B C) (l M N))

(midpointG B C)

(cocircleA P A1 G) )

Example 6.210 (0.050, 1, 8)Let ABC be a triangle with∠B = 2∠C, D the foot of the altitude
on CB and M the midpoint of B and C. Show that AB= 2DM.

M D

A

BC
Figure 6-210

Constructive description
( (pointsB C)

(midpointM B C)

(tratio X M B H)

(foot Y C B X)

(lratio Z Y C −1)

(inter A (l B Z) (l C X))

(inter D (l B C) (p A M X))

( BA
BZ
= 2MD

CB
) )

The eliminants

MD
BC

D
=
−SMXA

SBCX

SMXA
A
=

SCMX·SBXZ

−SBCZX

BA
BZ

A
=

SBCX

SBCZX

SBXZ
Z
=SBCX

SCMX
X
= − 1

4(PBMC·H)

SBCX
X
= − 1

4(PCBM·H)

PBMC
M
= − 1

4(PBCB) PCBM
M
=

1
2(PBCB)

The machine proof:
BA
BZ

(−2)·MD
BC

D
=

SBCX

(−2)·(−SMXA) · BA
BZ

A
=

(SBCX)2·(−SBCZX)
(2)·SCMX·SBXZ·SBCZX

simpli f y
=

−(SBCX)2

(2)·SCMX·SBXZ

Z
=

−(SBCX)2

(2)·SCMX·SBCX

simpli f y
=

−SBCX

(2)·SCMX

X
=
−(− 1

4 PCBM·H)

(2)·(− 1
4 PBMC·H)

simpli f y
=

−PCBM

(2)·PBMC

M
=

−( 1
2 PBCB)

(2)·(− 1
4 PBCB)

simpli f y
= 1.

Example 6.211 (1.117, 33, 38) The three adjoint circles of the direct group have a point in
common.

B
C

A

1A

1B

1C

N

Figure 6-211

Constructive description
( (pointsA B C)

(inter A1 (t C C A) (b B C))

(inter B1 (t A A B) (b A C))

(inter C1 (t B B C) (b A B))

(inter N (cir C1 B) (cir A1 B))

(perp-biesctB1 C N) )
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Example 6.212 (2.383, 68, 47)The three adjoint circles of the indirect group have a point in
common.

B C

A

1A

1B
1C

M

Figure 6-212

Constructive description
( (pointsA B C)

(inter A1 (t B B A) (b C B))

(inter B1 (t C C B) (b A C))

(inter C1 (t A A C) (b B A))

(inter M (cir C1 B) (cir A1 B))

(perp-biesctB1 C M) )

Definition. The points N, M in Examples 6.211 and 6.212 are called the Brocard points of
the triangle.

Example 6.213 (1.000, 12, 50)The Brocard points are a pair of isogonal points of the trian-
gle.

N

M

2B

2A

1C

1A

A

C

B

Figure 6-213

Constructive description
( (pointsA B C)

(inter A1 (t C C A) (b B C))

(inter C1 (t B B C) (b A B))

(inter A2 (t B B A) (b C B))

(inter B2 (t C C B) (b A C))

(inter M (cir C1 B) (cir A1 B))

(inter N (cir B2 C) (cir A2 C))

(eqangleA B M N B C) )

Example 6.214 (1.600, 27, 52)The two Brocard points of a triangle are equidistant from the
circumcenter of the triangle.

O

N

M 2B

2A

1C

1A

A

CB

Figure 6-214

Constructive description
( (pointsA B C)

(circumcenterO A B C)

(inter A1 (t C C A) (b B C))

(inter C1 (t B B C) (b A B))

(inter A2 (t B B A) (b C B))

(inter B2 (t C C B) (b A C))

(inter M (cir C1 B) (cir A1 B))

(inter N (cir B2 C) (cir A2 C))

(perp-biesctO N M) )

Example 6.215 (0.683, 12, 34)For the Brocard point in Example 6.211 we have∠NAB =
∠NBC= ∠NCA. Similar for the Brocard point in Example 6.212.
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N

1C

1A

A

CB

Figure 6-215

Constructive description
( (pointsA B C)

(inter A1 (t C C A) (b B C))

(inter C1 (t B B C) (b A B))

(inter N (cir C1 B) (cir A1 B))

(eqangleN A B N B C) )

Example 6.216 (0.016, 1, 6)Let D and E be two points on two sides AC and BC of triangle
ABC such that AD= BE, F = DE ∩ AB. Show that FD· AC = EF · BC.

A B

C

D

E

F

Figure 6-216

Constructive description
( (pointsA B C)

(on D (l A C))

(inter E (l C B) (cir B AD
2
))

(inter F (l E D) (l A B))

(eq-productF D A C E F B C) )

The machine proof
PDFD·PACA

PEFE·PBCB

F
=

PDED·S2
ABD·PACA·S2

ADBE

PDED·S2
ABE·PBCB·S2

ADBE

simpli f y
=

(SABD)2·PACA

(SABE)2·PBCB

E
=

(SABD)2·PACA·PBCB

PADA·S2
ABC·PBCB

simpli f y
=

(SABD)2·PACA

PADA·(SABC)2

D
=

(SABC· AD
AC

)2·PACA

PACA· AD
AC

2
·(SABC)2

simpli f y
= 1

The eliminants

PEFE
F
=

PDED·(SABE)2

(SADBE)2

PDFD
F
=

PDED·(SABD)2

(SADBE)2

SABE
E
= − ( BE

BC
·SABC)

BE
BC

2
=

PADA
PBCB

PADA
D
=PACA·( AD

AC
)2

SABD
D
=SABC· AD

AC
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6.4 Quadrilaterals

6.4.1 General Quadrilaterals

Example 6.217 (0.050, 2, 4)The figure formed when the midpoints of the sides of a quadri-
lateral are joined in order is a parallelogram.

A B

C
D

E

F

G

H

Figure 6-217

Constructive description
((pointsA B C D)

(midpointE A B) (midpointF B C)

(midpointG C D) (midpointH D A)

( HE
GF
= 1) )

The machine proof

EH
FG

H
=
−SADE
SAFDG

G
=

−SADE

−SADF− 1
2SACD

F
=

(2)·SADE

−SABD

E
=

(−2)·(− 1
2SABD)

SABD

simpli f y
= 1

The eliminants
EH
FG

H
=
−SADE
SAFDG

SAFDG
G
= − 1

2(2SADF+SACD)
SADF

F
= − 1

2(SACD+SABD)
SADE

E
= − 1

2(SABD)

Example 6.218 (0.083, 5, 13)The area of the parallelogram whose vertices are the midpoints
of the sides of a quadrilateral is equal to half the area of thegiven quadrilateral (Figure
6-217).

Constructive descrip-
tion
( (pointsA B C D)

(midpointE A B)

(midpointF B C)

(midpointG C D)

(midpointH D A)

(2SEFGH = SABCD) )

The machine proof
(2)·SEFGH

SABCD

H
=

(2)·(SEFG+
1
2SDEG+

1
2SAEG)

SABCD

G
=

SDEF+SCEF+
1
2SCDE− 1

2SADE− 1
2SACE

SABCD

F
=

2SCDE+SBDE+SBCE−SADE−SACE

(2)·SABCD

E
=

SBCD+SACD+SABD+SABC

(2)·SABCD

area−co
=

2SACD+2SABC

(2)·(SACD+SABC)

simpli f y
= 1

The eliminants

SEFGH
H
= 1

2 (2SEFG+SDEG+SAEG)

SAEG
G
=− 1

2 (SADE+SACE)

SDEG
G
= 1

2(SCDE)

SEFG
G
= 1

2 (SDEF+SCEF)

SCEF
F
= 1

2 (SBCE)

SDEF
F
= 1

2 (SCDE+SBDE)

SACE
E
=− 1

2 (SABC)

SADE
E
=− 1

2(SABD)

SBCE
E
= 1

2 (SABC)

SBDE
E
= 1

2 (SABD)

SCDE
E
= 1

2 (SBCD+SACD)

SABCD=SACD+SABC

SBCD=SACD−SABD+SABC

Example 6.219 (0.067, 3, 13)The lines joining the midpoints of the two pairs of opposite
sides of a quadrilateral and the line joining the midpoints of the diagonals are concurrent
and are bisected by their common point.
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B C

D

A

E

Q

G

S

M

N

O

Figure 6-219

Constructive description
( (pointsA B C D)

(midpointE A B)

(midpointG C D)

(midpointN A C)

(midpointM B D)

(inter O (l E G) (l N M))

(midpointO N M) )

The machine proof

− NO
MO

O
=
−SEGN

SEGM

M
=

−SEGN
1
2SDEG+

1
2SBEG

N
=

(−2)·( 1
2SCEG+

1
2SAEG)

SDEG+SBEG

G
=
−(− 1

2SCDE− 1
2SADE− 1

2SACE)
1
2SCDE− 1

2SBDE− 1
2SBCE

E
=

1
2SBCD+

1
2SACD− 1

2SABD− 1
2SABC

1
2SBCD+

1
2SACD− 1

2SABD− 1
2SABC

simpli f y
= 1

The eliminants
NO
MO

O
=

SEGN
SEGM

SEGM
M
= 1

2 (SDEG+SBEG)

SEGN
N
= 1

2 (SCEG+SAEG)

SBEG
G
=− 1

2 (SBDE+SBCE)

SDEG
G
= 1

2 (SCDE)

SAEG
G
=− 1

2 (SADE+SACE)

SCEG
G
=− 1

2 (SCDE)

SBCE
E
= 1

2 (SABC)

SBDE
E
= 1

2 (SABD)

SACE
E
=− 1

2 (SABC)

SADE
E
=− 1

2(SABD)

SCDE
E
= 1

2 (SBCD+SACD)

Definition. The intersection of the lines joining the midpoints of two pairs of opposite sides
of a quadrilateral is called the centroid of the quadrilateral.

Example 6.220 (0.050, 2, 6)The four lines obtained by joining each vertex of a quadrilateral
to the centroid of the triangle determined by the remaining three vertices are concurrent at
the centroid of the given quadrilateral.

A B

C

D
AN

M

J

Figure 6-220

1

Constructive description
( (pointsA B C D)

(centroidA1 B C D)

(midpointN A C) (midpointM B D)

(inter J (l A A1) (l N M))

(midpointJ N M) )

The machine proof

− NJ
MJ

J
=
−SAA1N

SAA1M

M
=

−SAA1N

− 1
2SADA1−

1
2SABA1

N
=

(2)·(− 1
2SACA1 )

SADA1+SABA1

A1
=
−(SACD−SABC)·(3)2

(−3SACD+3SABC)·(3)

simpli f y
= 1

The eliminants
NJ
MJ

J
=

SAA1N

SAA1M

SAA1M
M
= − 1

2(SADA1+SABA1)
SAA1N

N
= − 1

2(SACA1)

SABA1

A1
=

1
3(SABD+SABC)

SADA1

A1
= − 1

3(SACD+SABD)

SACA1

A1
=

1
3(SACD−SABC)

Example 6.221 (0.083, 4, 3)The sum of the squares of the sides of a quadrilateral is equalto
the sum of the squares of the diagonals increased by four times the square of the segment
joining the midpoints of the diagonals.
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Constructive
description
( (pointsA B C D)

(midpointE A C)

(midpointF B D)

(AB
2
+CB

2
+CD

2
+DA

2
=

AC
2
+BD

2
+4EF

2
) )

The machine proof
PCDC+PBCB+PADA+PABA

4PEFE+PBDB+PACA

F
=

PCDC+PBCB+PADA+PABA

2PDED+2PBEB+PACA

E
=

PCDC+PBCB+PADA+PABA

PCDC+PBCB+PADA+PABA

simpli f y
= 1

The eliminants

PEFE
F
= 1

4 (2PDED+2PBEB−PBDB)

PBEB
E
= 1

4 (2PBCB−PACA+2PABA)

PDED
E
= 1

4 (2PCDC+2PADA−PACA)

Example 6.222 (0.033, 7, 6)The sum of the squares of the diagonals of a quadrilateral is
equal to twice the sum of the squares of the two lines joining the midpoints of the two pairs
of opposite sides of the quadrilateral.

B C

D

A

P

Q

S

R

Figure 6-222

Constructive description
( (pointsA B C D)

(midpointP A B)

(midpointQ B C)

(midpointS D A)

(midpointR C D)

(AC
2
+BD

2
= 2QS

2
+2PR

2
) )

The machine proof
( 1

2 )·(PBDB+PACA)
PQS Q+PPRP

R
=

( 1
2)·(PBDB+PACA)

PQS Q+
1
2 PDPD+

1
2 PCPC− 1

4 PCDC

S
=

(2)·(PBDB+PACA)
2PDQD+2PDPD+2PCPC−PCDC+2PAQA−PADA

Q
=

(2)·(PBDB+PACA)
2PDPD+2PCPC+PBDB−PBCB−PADA+PACA+PABA

P
=

(2)·(PBDB+PACA)
2PBDB+2PACA

simpli f y
= 1

The eliminants

PPRP
R
= 1

4 (2PDPD+2PCPC−PCDC)

PQS Q
S
= 1

4 (2PDQD+2PAQA−PADA)

PAQA
Q
=− 1

4 (PBCB−2PACA−2PABA)

PDQD
Q
= 1

4 (2PCDC+2PBDB−PBCB)

PCPC
P
= 1

4 (2PBCB+2PACA−PABA)

PDPD
P
= 1

4(2PBDB+2PADA−PABA)

Example 6.223 (0.050, 4, 10)If a quadrilateral ABCD has its opposite sides AD and BC
(extended) meeting at W, while X and Y are the midpoints of thediagonals AC and BD,
then4SWXY= SABCD.

B C

D

A

X

Y

W

Figure 6-223

Constructive description
( (pointsB C D A)

(midpointX C A)

(midpointY B D)

(inter W (l B C) (l D A))

(SBCDA = 4SXYW) )
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The machine proof
SBCDA

(4)·SXYW

W
=

SBCDA·SBDCA

(4)·(SCXY·SBDA−SCDA·SBXY)

Y
=

SBCDA·SBDCA

(4)·(− 1
2SCDX·SBDA+

1
2SCDA·SBDX+

1
2SBDA·SBCX)

X
=

−SBCDA·SBDCA

(2)·( 1
2SCDA·SBCD− 1

2SBDA·SBCA)

area−co
=

−(SBDA+SBCD)·(SBCA−SBCD)
−SBDA·SBCA+SBDA·SBCD−SBCA·SBCD+S2

BCD

simpli f y
= 1

The eliminants

SXYW
W
=

SCXY·SBDA−SCDA·SBXY

SBDCA

SBXY
Y
= − 1

2(SBDX)
SCXY

Y
= − 1

2(SCDX−SBCX)
SBCX

X
=

1
2(SBCA)

SBDX
X
=

1
2(SBDA−SBCD)

SCDX
X
=

1
2(SCDA)

SCDA=SBDA−SBCA+SBCD

SBDCA=SBCA−SBCD

SBCDA=SBDA+SBCD

Example 6.224 (0.216, 6, 12)Let P be a point on the line joining the midpoints of the diago-
nals of the quadrilateral ABCD. Show that SPAB+ SPCD = SPDA+ SPBC.

A B

CD

N
M P

Figure 6-224

Constructive description
( (pointsA B C D)

(midpointN A C)

(midpointM B D)

(lratio P N M r)

(SPAB+SPCD = SPDA+SPBC) )

The machine proof
SCDP+SABP

SBCP−SADP

P
=

SCDM ·r−SCDN·r+SCDN+SABM·r−SABN·r+SABN

SBCM·r−SBCN·r+SBCN−SADM ·r+SADN·r−SADN

M
=
−SCDN·r+SCDN+

1
2SBCD·r−SABN·r+SABN+

1
2SABD·r

−SBCN·r+SBCN+
1
2SBCD·r+SADN·r−SADN+

1
2SABD·r

N
=
−SBCD·r+SACD·r−SACD−SABD·r+SABC·r−SABC

−SBCD·r+SACD·r−SACD−SABD·r+SABC·r−SABC

simpli f y
= 1

The eliminants

SADP
P
=SADM·r−SADN·r+SADN

SBCP
P
=SBCM·r−SBCN·r+SBCN

SABP
P
=SABM·r−SABN·r+SABN

SCDP
P
=SCDM ·r−SCDN·r+SCDN

SADM
M
= − 1

2(SABD), SBCM
M
=

1
2(SBCD)

SABM
M
=

1
2(SABD), SCDM

M
=

1
2(SBCD)

SADN
N
= − 1

2(SACD), SBCN
N
=

1
2(SABC)

SABN
N
=

1
2(SABC), SCDN

N
=

1
2(SACD)

Example 6.225 (0.083, 2, 10)Let ABCD be a quadrilateral, F and E be the midpoints of AD
and BC respectively. M= BA∩ EF, N = CD∩ EF. Show thatAM

BM
= DN

CN
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B C

A D

E

F

M
N

Figure 6-225

Constructive description
( (pointsA B C D)

(midpointE B C)

(midpointF A D)

(inter M (l A B) (l E F))

(inter N (l C D) (l E F))

( AM
BM
= DN

CN
) )

The machine proof

( AM
BM

)/( DN
CN

)
N
=

SCEF

SDEF
· AM

BM

M
=

SAEF·SCEF

SDEF·SBEF

F
=

(− 1
2SADE)·(− 1

2SCDE+
1
2SACE)

( 1
2SADE)·(− 1

2SBDE+
1
2SABE)

simpli f y
=

−(SCDE−SACE)
SBDE−SABE

E
=
−( 1

2SBCD+
1
2SABC)

− 1
2SBCD− 1

2SABC

simpli f y
= 1

The eliminants
DN
CN

N
=

SDEF
SCEF

AM
BM

M
=

SAEF

SBEF

SBEF
F
= − 1

2(SBDE−SABE)
SDEF

F
=

1
2(SADE)

SCEF
F
= − 1

2(SCDE−SACE)
SAEF

F
= − 1

2(SADE)
SABE

E
=

1
2(SABC)

SBDE
E
= − 1

2(SBCD)
SACE

E
= − 1

2(SABC)
SCDE

E
=

1
2(SBCD)

Example 6.226 (1.333, 20, 37)Let ABCD be a quadrilateral with AB= CD, F and E be
the midpoints of AD and BC respectively. M= BA∩ EF, N = CD ∩ EF. Show that
∠BME = ∠ENC (Figure 6-225).

Constructive description
( (pointsA B C X) (inter D (l C X) (cir C AB

2
)) (midpointF A D) (midpointE B C)

(inter M (l A B) (l E F)) (inter N (l C D) (l E F)) (eqangleB M E E N C) )

Example 6.227 (0.300, 3, 18)Let ABCD be a quadrilateral such that AB= CD. F and E
are the midpoints of AD and BC respectively. M= BA∩ EF, N = CD ∩ EF. Show that
AM = DN.
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B C

A
D

E

F

M

N

Figure 6-227

Constructive description
( (pointsA B C X)

(inter D (l C X) (cir C AB
2
))

(midpointF A D)

(midpointE B C)

(inter M (l A B) (l E F))

(inter N (l C D) (l E F))

(eqdistanceA M D N) )

The eliminants

PDND
N
=

PCDC·S2
DFE

S2
CFDE

, PAMA
M
=

PABA·S2
AFE

S2
AFBE

SAFBE
E
= − 1

2(2SABF−SABC)
SDFE

E
=

1
2(SCDF+SBDF)

SCFDE
E
= − 1

2(2SCDF−SBCD)
SAFE

E
= − 1

2(SACF+SABF)
SBDF

F
=

1
2(SABD), SCDF

F
=

1
2(SACD)

SABF
F
=

1
2(SABD), SACF

F
=

1
2(SACD)

SABD
D
= − ( XD

CX
·SABC−CD

CX
·SABX)

PCDC
D
=CD

CX

2
·PCXC

SACD
D
= − (CD

CX
·SACX), SBCD

D
= − (CD

CX
·SBCX)

CD
CX

2
=

PABA
PCXC

, CD
CX

2
=

PABA
PCXC

SABC=SABC, SBCX=SACX−SABX+SABC

The machine proof
PAMA
PDND

N
=

PAMA·S2
CFDE

PCDC·S2
DFE

M
=

PABA·S2
AFE·S

2
CFDE

PCDC·S2
DFE·S

2
AFBE

E
=

PABA·(− 1
2SACF− 1

2SABF)2·(−SCDF+
1
2SBCD)2

PCDC·( 1
2SCDF+

1
2SBDF)2·(−SABF+

1
2SABC)2

F
=

PABA·( 1
2SACD+

1
2SABD)2·(−SBCD+SACD)2

PCDC·( 1
2SACD+

1
2SABD)2·(SABD−SABC)2

simpli f y
=

PABA·(SBCD−SACD)2

PCDC·(SABD−SABC)2

D
=

(PABA·S2
BCX−2PABA·SBCX·SACX+PABA·S2

ACX)·PABA·P2
CXC

(PCXC·P2
ABA·S

2
ABX−2PCXC·P2

ABA·SABX·SABC+PCXC·P2
ABA·S

2
ABC)·PCXC

simpli f y
=

(SBCX−SACX)2

(SABX−SABC)2

area−co
=

(−SABX+SABC)2

(SABX−SABC)2

simpli f y
= 1

Example 6.228 (0.416, 12, 36)Let ABCD be a quadrilateral such that AB= CD. P and Q
are the midpoints of AD and BC; N and M are the midpoints of AC and BD. Show that
PQ⊥NM.

A

B C

DP

Q

NM

Figure 6-228

Constructive description
( (pointsA B C X)

(inter D (l C X) (cir C AB
2
))

(midpointP A D)

(midpointQ B C)

(midpointN A C)

(midpointM B D)

(perpendicularN M P Q) )
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Example 6.229 (0.866, 10, 20)The sides BA, CD of the quadrilateral ABCD meet in O, and
the sides DA, CB meet O1. Along OA, OC, O1A, O1C are measured off, respectively, OE,
OF, O1E1, O1F1 equal to AB, DC, AD, BC. Prove that EF is parallel to E1F1.

A B

CD

O

1O

E

F

1E
1F

Figure 6-229

Constructive description
( (pointsA B C D)

(inter O (l A B) (l C D))

(inter O1 (l A D) (l B C))

(lratio E O B − AB
BO

)

(lratio F O C −DC
CO

)

(lratio E1 O1 A − AD
AO1

)

(lratio F1 O1 B − BC
BO1

)

(SEFE1 = SEFF1) )

Example 6.230 (0.617, 13, 70)ABCD is a quadrilateral, P, Q, R, S the midpoints of its sides
taken in order, U, V, the midpoints of the diagonals, O any point; OP, OQ, OR, OS , OU,
OV are divided in the same ratio in P1, Q1, R1, S1, U1, V1. Prove that P1R1, Q1S1, U1V1,
are concurrent.

B C

D

A

O

P

Q

R

S

V

U

1P

1Q

1R

1S

1V

1UJ

Figure 6-230

Constructive description
( (pointsA B C D O)

(midpointP A B) (midpointQ B C)

(midpointR C D) (midpointS D A)

(midpointU A C) (midpointV D B)

(lratio P1 O P YT) (lratio Q1 O Q YT)

(lratio R1 O R YT ) (lratio S1 O S YT)

(lratio U1 O U YT ) (lratio V1 O V YT )

(inter J (l P1 R1) (l Q1 S1)) (inter Z1 (l P1 R1) (l U1 V1))

(inter Z2 (l U1 V1) (l Q1 S1)) (
U1Z1
V1Z1

=
U1Z2
V1Z2

) )

Example 6.231 (Theorem of Pratt-Wu) (5.133, 72, 123)Given a quadrilateral ABDC, let HE,
EF, FG, GH be the tangents of circles CAB, ABD, BDC, DCA at A, B,D and C, respec-
tively. Then HA· EB · FD ·GC = AE · BF · DG ·CH.

A
1D

D

B

C

1A
1C

E

1B

H

F

G

Figure 6-231

Constructive description
( (pointsA B C D)

(midpointL A B) (midpointM B D)

(midpointN C D) (midpointP C A)

(inter X (t L L A) (t P P A))

(inter Y (t L L B) (t M M B))

(inter Z (t M M D) (t N N D))
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(inter W (t N N C) (t P P C))

(tratio O A X I) (inter H (t C C W) (l O A))

(tratio U D Z J) (inter F (t B B Y) (l U D))

(inter E (l B F) (l A O))

(inter G (l D U) (l C H)) ( HA
AE
· BE

FB
= DG

FD
· HC

CG
) )

Example 6.232 (0.00, 1, 3)Let P,Q be the midpoints of the diagonals of a trapezoid ABCD.
Then PQ is parallel to the two parallel sides of ABCD.

C

B A

D

P Q

Figure 6-232

Constructive description
((pointsA B C)

(on D (p C A B))

(midpointQ A C)

(midpointP B D)

(parallelP Q A B) )

The machine proof
SABP

SABQ

P
=

1
2SABD

SABQ

Q
=

SABD

(2)·( 1
2SABC)

D
=

SABC

SABC

simpli f y
= 1

The eliminants

SABP
P
=

1
2(SABD)

SABQ
Q
=

1
2(SABC)

SABD
D
=SABC

Example 6.233 (0.050, 2, 3)Let P,Q be the midpoints of the diagonals of a trapezoid ABCD.
Then PQ is half of the difference of the two parallel sides of ABCD.

A

B C

D

P Q

Figure 6-233

Constructive description
( (pointsA B C)

(on D (p A B C))

(midpointP B D)

(midpointQ A C)

( BC
PQ
− AD

PQ
= 2) )

The machine proof
1
2( BC

PQ
− AD

PQ
)

Q
=

SACP·SACD−SACP·SABC

(2)·S2
ACP

simpli f y
=

SACD−SABC

(2)·SACP

P
=

SACD−SABC

(2)·( 1
2SACD− 1

2SABC)

simpli f y
= 1

The eliminants
AD
PQ

Q
=
−SACD

SACP

BC
PQ

Q
=
−SABC

SACP

SACP
P
=

1
2(SACD−SABC)

Example 6.234 (0.050, 3, 7)Let ABCD be a trapezoid and O be the intersection of its diag-
onals AC and BD. The line passing through O and parallel to AB meet AD and BC at F
and E. Show that O is the midpoint of EF.

Constructive description
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((pointsA B C)

(on D (p C A B))

(inter O (l A C) (l B D))

(inter E (l B C) (p O A B))

(inter F (l A D) (p O A B))

(midpointO E F) )

The machine proof

−OE
OF

F
=

SAODE

SADO

E
=

SBCO·SABD+SADO·SABC+SACD·SABO

SADO·(−SABC)

O
=
−S2

ABCD·SBCD·SABD·SABC·SABCD

(−SACD·SABD)·SABC·(SABCD)3

simpli f y
=

SBCD

SACD

D
=
−SABC·CD

AB

−SABC·CD
AB

simpli f y
= 1

The eliminants
OE
OF

F
=
−SAODE

SADO

SAODE
E
=

SBCO·SABD+SADO·SABC+SACD·SABO

−SABC

SABO
O
=

SABD·SABC

SABCD

SADO
O
=
−SACD·SABD

SABCD

SBCO
O
=

SBCD·SABC

SABCD

SACD
D
= − (SABC·CD

AB
)

SBCD
D
= − (SABC·CD

AB
)

Other properties of the general quadrilateral can be found in Examples 2.62, 6.2, 6.3,
and 6.17.

6.4.2 Complete Quadrilaterals

Definition. By a complete quadrilateral, we mean the figure consisting offour points (any
three of them are not collinear) and the six lines joining anytwo of them. As in Figure
6-235, A, B,C,D are the vertices of the complete quadrilateral. AB and CD, AC and BD,
AD and BC are called opposite sides of the complete quadrilateral respectively.

P Q

B

A
C

D

R S

Figure 6-235

Example 6.235 (0.083, 1, 10)The line joining the intersections of two pairs of opposite sides
of a complete quadrilateral is divided harmonically by the remaining pair of opposite sides
of the complete quadrilateral. In Figure 6-235, this means(PQRS) = −1.

For a machine proof of this example, see Example 6.17 on page 273.

Example 6.235 can be used to define the concept of harmonic sequence: four collinear
pointsP,Q,R,S are said to be aharmonic sequenceif there exists a complete quadrilateral
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ABCDsuch thatP = BC∩ AD,Q = AB∩CD,R = BD∩ PQ, andS = AC∩ PQ. By the
following example, the above definition is independent of the choices ofABCD.

Example 6.236 (0.466, 1, 14)Let ABCD and EFGH be two complete quadrilaterals such
that P= AB∩CD = EF∩HG, Q= AD∩BC = EH∩FG, and S= AC∩PQ= EG∩PQ
are collinear. Then BD, FH, PQ are concurrent.

A

B

C

D

E

P

Q

S

G

F

H

R

Figure 6-236

Constructive description
( (pointsA B C D E)

(inter P (l A B) (l C D))

(inter Q (l B C) (l A D))

(inter S (l A C) (l P Q))

(on G (l E S))

(inter F (l P E) (l Q G))

(inter H (l E Q) (l P G))

(inter R (l B D) (l P Q))

(inter O (l F H) (l P Q))

( PR
QR
= PO

QO
) )

The machine proof

( PR
QR

)/( PO
QO

)
O
=

SQFH

SPFH
· PR

QR

R
=

SBDP·SQFH

SPFH·SBDQ

H
=

SBDP·SPQG·SEQF·(−SEPQG)
SPGF·SEPQ·SBDQ·SEPQG

simpli f y
=

−SBDP·SPQG·SEQF

SPGF·SEPQ·SBDQ

F
=
−SBDP·SPQG·(−SEQG·SEPQ)·SEQPG

(−SPQG·SEPG)·SEPQ·SBDQ·SEQPG

simpli f y
=

−SBDP·SEQG

SEPG·SBDQ

G
=
−SBDP·SEQS· EG

ES

SEPS· EG
ES
·SBDQ

simpli f y
=

−SBDP·SEQS

SEPS·SBDQ

S
=
−SBDP·SEPQ·SACQ·(−SAPCQ)
SEPQ·SACP·SBDQ·(−SAPCQ)

simpli f y
=

−SBDP·SACQ

SACP·SBDQ

Q
=
−SBDP·(−SACD·SABC)·(−SABDC)

SACP·SBCD·SABD·(−SABDC)

simpli f y
=

SBDP·SACD·SABC

SACP·SBCD·SABD

P
=

(−SBCD·SABD)·SACD·SABC·SACBD

(−SACD·SABC)·SBCD·SABD·SACBD

simpli f y
= 1

The eliminants

PO
QO

O
=

SPFH
SQFH

PR
QR

R
=

SBDP

SBDQ

SPFH
H
=

SPGF·SEPQ

−SEPQG

SQFH
H
=

SPQG·SEQF

SEPQG

SPGF
F
=
−SPQG·SEPG

SEQPG

SEQF
F
=
−SEQG·SEPQ

SEQPG

SEPG
G
=SEPS· EG

ES

SEQG
G
=SEQS· EG

ES

SEPS
S
=

SEPQ·SACP

−SAPCQ

SEQS
S
=

SEPQ·SACQ

−SAPCQ

SBDQ
Q
=

SBCD·SABD

−SABDC

SACQ
Q
=

SACD·SABC

SABDC

SACP
P
=
−SACD·SABC

SACBD

SBDP
P
=
−SBCD·SABD

SACBD

Example 6.237 (0.216, 2, 24)If the intersections of five corresponding sides of two complete
quadrilaterals are on the same line l. Then the remaining sides also meet in l.

A

B

C

D

P

U
V

I
J

K
S

Q

R

L

Figure 6-237

Constructive description
( (pointsA B C D P)

(lratio U A D r1) (lratio V B C r2)
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(inter I (l D B) (l U V))

(inter J (l C D) (l U V))

(inter K (l A B) (l U V))

(lratio S U P r3)

(inter Q (l I S) (l K P))

(inter R (l V Q) (l S J))

(inter L (l P R) (l U V))

(inter N (l A C) (l U V)) ( UL
VL
= UN

VN
) )

The machine proof

(UL
VL

)/(UN
VN

)
N
=

SACV

SACU
· UL

VL

L
=

(−SPUR)·SACV

SACU·(−SPVR)

R
=

SVS Q·SPUJ·SACV·SVJQS

SACU·SVJS·SPVQ·(−SVJQS)

simpli f y
=

SVS Q·SPUJ·SACV

−SACU·SVJS·SPVQ

Q
=

SVIS·SPKS·SPUJ·SACV·SPIKS

−SACU·SVJS·SPIS·SPVK·(−SPIKS)

simpli f y
=

SVIS·SPKS·SPUJ·SACV

SACU·SVJS·SPIS·SPVK

S
=

SPVI ·r3·(SPUK ·r3−SPUK )·SPUJ·SACV

SACU·SPVJ·r3·(SPUI ·r3−SPUI )·SPVK

simpli f y
=

SPVI ·SPUK ·SPUJ·SACV

SACU·SPVJ·SPUI ·SPVK

K
=

SPVI ·SPUV·SABU·SPUJ·SACV·(−SAUBV)
SACU·SPVJ·SPUI ·SPUV·SABV·(−SAUBV)

simpli f y
=

SPVI ·SABU·SPUJ·SACV

SACU·SPVJ·SPUI ·SABV

J
=

SPVI ·SABU·SPUV·SCDU ·SACV·(−SCUDV)
SACU·SPUV·SCDV·SPUI ·SABV·(−SCUDV)

simpli f y
=

SPVI ·SABU·SCDU ·SACV

SACU·SCDV·SPUI ·SABV

I
=

SPUV·SBDV·SABU·SCDU ·SACV·(−SBUDV)
SACU·SCDV·SPUV·SBDU·SABV·(−SBUDV)

simpli f y
=

SBDV·SABU·SCDU ·SACV

SACU·SCDV·SBDU·SABV

V
=

(−SBCD·r2)·SABU·SCDU ·(SABC·r2−SABC)
SACU·(−SBCD·r2+SBCD)·SBDU·SABC·r2

simpli f y
=

SABU·SCDU

SACU·SBDU

U
=

SABD·r1·(−SACD·r1+SACD)
SACD·r1·(−SABD·r1+SABD)

simpli f y
= 1

The eliminants
UN
VN

N
=

SACU

SACV

UL
VL

L
=

SPUR

SPVR

SPVR
R
=

SVJS·SPVQ

SVJQS

SPUR
R
=

SVS Q·SPUJ

−SVJQS

SPVQ
Q
=

SPIS·SPVK

SPIKS

SVS Q
Q
=

SVIS·SPKS

−SPIKS

SPIS
S
=(r3−1)·SPUI

SVJS
S
=SPVJ·r3

SPKS
S
=(r3−1)·SPUK

SVIS
S
=SPVI ·r3

SPVK
K
=

SPUV·SABV

−SAUBV

SPUK
K
=

SPUV·SABU

−SAUBV

SPVJ
J
=

SPUV·SCDV

−SCUDV

SPUJ
J
=

SPUV·SCDU

−SCUDV

SPUI
I
=

SPUV·SBDU

−SBUDV

SPVI
I
=

SPUV·SBDV

−SBUDV

SABV
V
=SABC·r2

SCDV
V
= − ((r2−1)·SBCD)

SACV
V
=(r2−1)·SABC

SBDV
V
= − (SBCD·r2)

SBDU
U
= − ((r1−1)·SABD)

SACU
U
=SACD·r1

SCDU
U
= − ((r1−1)·SACD)

SABU
U
=SABD·r1

Definition. The line joining the midpoints of a pair of opposite sides of acomplete quadri-
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lateral bisects the segment between the intersections of the other two pairs of opposite sides
of the quadrilateral. For a machine proof of this theorem seeExample 2.36 on page 74. Let
us call this line the Gauss line for the given complete quadrilateral.

Example 6.238 (Gauss Point Theorem) (0.933, 26, 56)Given five points, we have five Gauss’
lines. These five Gauss’ lines are concurrent. Let us call this point of concurrency the
Gauss point for the given five points.

I

6M
5M

4M
3M

2M

1M

Z

Y

X

2A
4A

3A

0A1A

Figure 6-238

Constructive description
( (pointsA0 A1 A2 A3 A4)

(inter X (l A3 A4) (l A1 A0))

(inter Y (l A2 A3) (l A0 A4))

(inter Z (l A4 A3) (l A1 A2))

(midpointM1 A1 A3) (midpointM2 X A2)

(midpointM3 A0 A2) (midpointM4 Y A1)

(midpointM5 A1 A4) (midpointM6 A0 Z)

(inter I (l M3 M4) (l M1 M2))

(inter ZI (l M6 M5) (l M1 M2))

(
M1I

M2I
=

M1ZI
M2ZI

) )

Example 6.239 (0.033, 3, 6)The centroids of the four triangles determined by the vertices of
a quadrilateral taken three at a time form a quadrilateral homothetic to the given quadri-
lateral in the ratio1/3.
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Constructive description
( (pointsA B C D)

(midpointQ B C)

(midpointP B A)

(midpointR C D)

(inter A1 (l D Q) (l B R))

(inter D1 (l A Q) (l C P))

(inter J (l A A1) (l D D1))

( AJ
A1J
= −3) )

The machine proof

−1
3( AJ

A1J
)

J
=

SADD1
(−3)·(−SDA1D1)

D1
=

SADQ·SACP·SACQP

(3)·SCQP·SADA1 ·SACQP

simpli f y
=

SADQ·SACP

(3)·SCQP·SADA1

A1
=

SADQ·SACP·(−SBDRQ)
(3)·SCQP·(−SBDR·SADQ)

simpli f y
=

SACP·SBDRQ

(3)·SCQP·SBDR

R
=

SACP·(− 1
2SCDQ+SBDQ)

(3)·SCQP·(− 1
2SBCD)

P
=

(− 1
2SABC)·(SCDQ−2SBDQ)

(3)·( 1
2SACQ)·SBCD

Q
=

−SABC·( 3
2SBCD)

(3)·(− 1
2SABC)·SBCD

simpli f y
= 1

The eliminants
AJ

A1J

J
=

SADD1
−SDA1D1

SDA1D1

D1
=

SCQP·SADA1
SACQP

SADD1

D1
=

SADQ·SACP

SACQP

SADA1

A1
=

SBDR·SADQ

SBDRQ

SBDR
R
= − 1

2(SBCD)
SBDRQ

R
= − 1

2(SCDQ−2SBDQ)
SCQP

P
=

1
2(SACQ)

SACP
P
= − 1

2(SABC)
SACQ

Q
= − 1

2(SABC)
SBDQ

Q
= − 1

2(SBCD)
SCDQ

Q
=

1
2(SBCD)

Example 6.240 (5.866, 51, 69)The orthocenters of the four triangles formed by four lines
taken three at a time are collinear.

A B

C

D

E

F

1G

1H

2G

2H

3G

3H

Figure 6-240

Constructive description
( (pointsA B C)

(on D (l A B)) (on E (l A C))

(inter F (l E D) (l C B))

(foot G1 C A B) (foot FH1 A B C)

(inter H1 (l C G1) (l A FH1 ))

(foot G2 E A B) (foot FH2 A E D)

(inter H2 (l E G2) (l A FH2))

(foot G3 F A B) (foot FH3 B E D)

(inter H3 (l F G3) (l B FH3))

(inter H4 (l F G3) (l H1 H2)) (
FH3

G3H3
=

FH4
G3H4

) )

6.4.3 Parallelograms

The parallelogram has a special position in the area method.The reason is that when elim-
inating points from length ratios, we need to add auxiliary parallelograms. Thus some
properties (2.11, 2.12, 3.6, 3.7, 3.11) of parallelograms are often used in the proofs pro-
duced by the area method.
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Example 6.241 (0.016, 1, 3)Let O be the intersection of the two diagonals AC and BD of a
parallelogram ABCD. Show that O is the midpoint of AC.

Constructive description
( (pointsA B C) (pratioD A B C 1) (inter O (l B D) (l A C)) (midpointO A C) )

O

D C

BA

Figure 6-241

The machine proof

− AO
CO

O
=
−SABD
−SBCD

D
=

SABC

SABC

simpli f y
= 1

The eliminants
AO
CO

O
=

SABD
−SBCD

SBCD
D
=SABC

SABD
D
=SABC

Example 6.242 (0.066, 3, 10)Let l be a line passing through the vertex of M of a paral-
lelogram MNPQ and intersecting the lines NP, PQ, NQ in pointsR, S , T. Show that
MT
MR
= S T

S M
(or 1/MR+ 1/MS = 1/MT).

M N

PQ

R

S

T

Figure 6-242

Constructive description
( (pointsM N P)

(pratioQ M N P 1) (lratio R N P r)

(inter S (l M R) (l P Q))

(inter T (l M R) (l N Q))

( MT
MR
= S T

S M
) )

The machine proof
MT
MR

− S T
MS

T
=

SMNQ·SMNS Q

−SNQS·SMNRQ

S
=

SMNQ·(−SMPRQ·SMNQ+SNPQ·SMQR)·(−SMPRQ)
−(−SNPQ·SMQR)·SMNRQ·(−SMPRQ)

simpli f y
=

−SMNQ·(SMPRQ·SMNQ−SNPQ·SMQR)
SNPQ·SMQR·SMNRQ

R
=

−SMNQ·(SNPQ·SMPQ·r+SMPQ·SMNQ)
SNPQ·(−SMPQ·r+SMNQ·r−SMNQ)·(SNPQ·r+SMNQ)

simpli f y
=

SMNQ·SMPQ

SNPQ·(SMPQ·r−SMNQ·r+SMNQ)

Q
=

S2
MNP

S2
MNP

simpli f y
= 1

The eliminants
S T
MS

T
=

SNQS

SMNS Q

MT
MR

T
=

SMNQ

SMNRQ

SNQS
S
=

SNPQ·SMQR

SMPRQ

SMNS Q
S
=

SMPRQ·SMNQ−SNPQ·SMQR

SMPRQ

SMNRQ
R
=SNPQ·r+SMNQ

SMQR
R
= − (SMPQ·r−SMNQ·r+SMNQ)

SMPRQ
R
=SNPQ·r−SNPQ+SMPQ

SNPQ
Q
=SMNP

SMPQ
Q
=SMNP

SMNQ
Q
=SMNP



378 Chapter 6. Topics from Geometry

Example 6.243 (0.066, 2, 9)In the parallelogram ABCD, AE is drawn parallel to BD; show
that A(ECBD) = −1.

A B

CDE

F
G

Figure 6-243

Constructive description
( (pointsA B C)

(pratioD A B C 1)

(pratioE A B D 1)

(inter F (l B E) (l A D))

(inter G (l E B) (l A C))

(harmonicE G F B) )

The machine proof

( EF
FG

)/( BE
BG

)
G
=

(−SAECF)·(−SABC)
(−SABCE)·SACF

F
=
−(−SABDE·SACE+SACD·SABE)·SABC·SABDE

SABCE·SACD·SABE·SABDE

simpli f y
=

(SABDE·SACE−SACD·SABE)·SABC

SABCE·SACD·SABE

E
=

(SACD·SABD+2SABD·SABC)·SABC

(SACD+2SABC)·SACD·SABD

simpli f y
=

SABC

SACD

D
=

SABC

SABC

simpli f y
= 1

The eliminants
BE
BG

G
=

SABCE

SABC

EF
FG

G
=
−SAECF

SACF

SACF
F
=

SACD·SABE

SABDE

SAECF
F
=
−(SABDE·SACE−SACD·SABE)

SABDE

SABCE
E
=SACD+2SABC

SABE
E
=SABD

SACE
E
=SACD+SABC

SABDE
E
=(2SABD)

SACD
D
=SABC

Example 6.244 (0.116, 2, 12)The diagonals of a parallelogram and those of its inscribed
parallelogram are concurrent.
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Constructive description
( (pointsA B C E)

(pratioD C B A 1)

(inter F (l A E) (p D B E))

(inter G (l B E) (p C A E))

(inter H (l D F) (l C G))

(inter O (l A C) (l B D))

(inter Z2 (l B D) (l E H))

(inter Z1 (l A C) (l E H))

(
EZ1
HZ1
· HZ2

EZ2
= 1) )

The machine proof
EZ1
HZ1
· HZ2

EZ2

Z1
=

SACE

SACH
· HZ2

EZ2

Z2
=

SACE·SBDH

SACH·(−SBED)

H
=
−SACE·(−SCDG·SBDF)·SCDGF

SCDF ·SACG·SBED·(−SCDGF)

simpli f y
=

−SACE·SCDG·SBDF

SCDF ·SACG·SBED

G
=
−SACE·SACED·SBCE·SBDF·SABE

SCDF ·(−SBCE·SACE)·SBED·SABE

simpli f y
=

SACED·SBDF

SCDF ·SBED

F
=

SACED·(−SBED·SAED)·(−SABE)
(−SBCED·SAED)·SBED·(−SABE)

simpli f y
=

SACED

SBCED

D
=

SABE

SABE

simpli f y
= 1

The eliminants

EZ1
HZ1

Z1
=

SACE

SACH

HZ2
EZ2

Z2
=

SBDH
−SBED

SACH
H
=

SCDF ·SACG

SCDGF

SBDH
H
=

SCDG·SBDF

SCDGF

SACG
G
=
−SBCE·SACE

SABE

SCDG
G
=

SACED·SBCE

SABE

SCDF
F
=

SBCED·SAED

SABE

SBDF
F
=

SBED·SAED
SABE

SBCED
D
=SABE

SACED
D
=SABE

Example 6.245 (0.066, 2, 8)Let ABCD be a parallelogram. Then the feet from A, B,C,D to
the diagonals of the parallelogram form a parallelogram.

A

B
C

D

F

E H

G

Figure 6-245

Constructive descrip-
tion
( (pointsA B C)

(pratioD A B C 1)

(foot F A B D)

(foot E B A C)

(foot H C B D)

(foot G D A C)

( EH
FG
= 1) )

The machine proof
EH
FG

G
=
−SACH

SACF

H
=
−(PCBD·SACD−PBDC·SABC)

SACF·PBDB

F
=
−(PCBD·SACD−PBDC·SABC)·PBDB

(−PADB·SABC+PABD·SACD)·PBDB

simpli f y
=

PCBD·SACD−PBDC·SABC

PADB·SABC−PABD·SACD

D
=

PBCB·SABC−PABA·SABC

PBCB·SABC−PABA·SABC

simpli f y
= 1

The eliminants
EH
FG

G
=
−SACH

SACF

SACH
H
=

PCBD·SACD−PBDC·SABC

PBDB

SACF
F
=
−(PADB·SABC−PABD·SACD)

PBDB

PABD
D
=PABC+PABA

PADB
D
=PBCB+PABC

PBDC
D
=PABC+PABA

SACD
D
=SABC

PCBD
D
=PBCB+PABC
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Example 6.246 (0.083, 10, 8)If squares are erected externally (or internally) on the sides of
any parallelogram, their centers form a square.

L

N

T
M

A

B C

D

O

S

Q

P

R

Figure 6-246

Constructive description
((pointsA B C)

(pratioD A B C 1)

(constanti2 −1)

(midpointL A D) (pe-squareS L D)

(midpointN B C) (pe-squareQ N B)

(midpointT A B) (pe-squareP T A)

(
−−→
PS−i·

−−→
PQ = 0) )

The machine proof
−→QP·i−−→S P

n
= −−→T ·i2+2−→T ·i−−→T −−→Q ·i+−→S +−→A ·i2−−→A ·i
n
= −(−→Q ·i−−→S + 1

2
−→B ·i2−−→B ·i+ 1

2
−→B − 1

2
−→A ·i2+ 1

2
−→A )

n
= (− 1

2 )·(−2−→N ·i2+2−→N ·i−2−→S +3−→B ·i2−2−→B ·i+−→B −−→A ·i2+−→A )

n
= ( 1

2 )·(2−→S +−→C ·i2−−→C ·i−2−→B ·i2+−→B ·i−−→B +−→A ·i2−−→A )

n
= ( 1

2 )·(−2
−→L ·i+2
−→L +2
−→D ·i+−→C ·i2−−→C ·i−2

−→B ·i2+−→B ·i−−→B +−→A ·i2−−→A )

n
= −−→L ·i+−→L +−→D ·i− 1

2
−→C ·i− 1

2
−→C + 1

2
−→B ·i+ 1

2
−→B −−→A

n
= (− 1

2 )·(−−→D ·i−−→D +−→C ·i+−→C −−→B ·i−−→B +−→A ·i+−→A )

simpli f y
= ( 1

2 )·(i+1)·(−→D −−→C +−→B −−→A )
simpli f y
= 0

The eliminants
−→S P

P
= − (−→T ·i−−→T +−→S −−→A ·i)
−→QP

P
= − (−→T ·i−−→T +−→Q−−→A ·i)
−→T T
=

1
2(−→B +−→A )

−→Q Q
= − (−→N ·i−−→N −−→B ·i)
−→N N
=

1
2(−→C +−→B )

−→S S
= − (−→L ·i−−→L −−→D ·i)
−→L L
=

1
2(−→D +−→A )

−→D D
=
−→C −−→B +−→A

Example 6.247 (0.250, 7, 8)If squares are erected externally on two opposite sides and in-
ternally on the other two sides of any parallelogram, their centers form a parallelogram.

A

B C

D

O

S

Q

P
R

Figure 6-247

Constructive description:
((pointsA B C)

(pratioD A B C 1)

(midpointL A D)

(constanti2 −1)

(pe-squareS L D)

(midpointN B C) (pe-squareQ N B)

(midpointT A B) (ne-squareP T A)

(midpointM C D) (ne-squareR M C)

(
−−→
PS =

−−→
QR) )
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The machine proof
−−→S P−→QR

R
= −−→S P−→M ·i+−→M −−→Q−−→C ·i

M
= −−→S P

−−→Q+ 1
2
−→D ·i+ 1

2
−→D − 1

2
−→C ·i+ 1

2
−→C

P
=

(2)·(−→T ·i+−→T −−→S −−→A ·i)
2−→Q−−→D ·i−−→D +−→C ·i−−→C

T
=

(2)·(−−→S + 1
2
−→B ·i+ 1

2
−→B − 1

2
−→A ·i+ 1

2
−→A )

2−→Q−−→D ·i−−→D +−→C ·i−−→C
Q
=

−(2−→S −−→B ·i−−→B +−→A ·i−−→A )

−2−→N ·i+2−→N −−→D ·i−−→D +−→C ·i−−→C +2−→B ·i
N
= 2−→S −−→B ·i−−→B +−→A ·i−−→A−→D ·i+−→D −−→B ·i−−→B

simpli f y
= 2−→S −−→B ·i−−→B +−→A ·i−−→A

(i+1)·(−→D −−→B )

S
= −2−→L ·i+2−→L +2−→D ·i−−→B ·i−−→B +−→A ·i−−→A

(i+1)·(−→D −−→B )

L
=
−(−−→D ·i−−→D +−→B ·i+−→B )

(i+1)·(−→D −−→B )

simpli f y
= 1

The eliminants

−→QR
R
=
−→M ·i+−→M −−→Q−−→C ·i

−→M M
=

1
2(−→D +−→C )

−→S P
P
=
−→T ·i+−→T −−→S −−→A ·i

−→T T
=

1
2(−→B +−→A )

−→Q Q
= − (−→N ·i−−→N −−→B ·i)
−→N N
=

1
2(−→C +−→B )

−→S S
= − (−→L ·i−−→L −−→D ·i)
−→L L
=

1
2(−→D +−→A )

Example 6.248 (0.450, 5, 26)The diagonals of the square in Example 6.246 pass through the
center of the parallelogram (Figure 6-246).

Constructive description((pointsA B C) (pratioD A B C 1) (midpointL A D)

(constanti2 −1) (pe-squareS L D) (midpointN B C) (pe-squareQ N B)

(midpointO Q S) (−→AO−−→OC = 0) )

The machine proof.
−→CO+−→AO

n
= 1

2
−→CQ+ 1

2
−→CS+ 1

2
−→AQ+ 1

2
−→AS

n
= ( 1

2 )·(−2−→N ·i+2−→N +−→CS−−→C +2−→B ·i+−→AS−−→A )
n
= (− 1

2 )·(−−→CS+−→C ·i−−→B ·i−−→B −−→AS+−→A )
n
= ( 1

2 )·(−2−→L ·i+2−→L +2−→D ·i−−→C ·i−−→C +−→B ·i+−→B −2−→A )
n
= (− 1

2 )·(−−→D ·i−−→D +−→C ·i+−→C −−→B ·i−−→B +−→A ·i+−→A )

simpli f y
= ( 1

2 )·(i+1)·(−→D −−→C +−→B −−→A )

simpli f y
= 0

The eliminants
−→AO

O
=

1
2(−→AQ+−→AS)

−→CO
O
=

1
2(−→CQ+−→CS)

−→AQ
Q
= − (−→N ·i−−→N −−→B ·i+−→A )
−→CQ

Q
= − (−→N ·i−−→N +−→C −−→B ·i)
−→N N
=

1
2(−→C +−→B )

−→AS
S
= − (−→L ·i−−→L −−→D ·i+−→A )
−→CS

S
= − (−→L ·i−−→L −−→D ·i+−→C )
−→L L
=

1
2(−→D +−→A )

−→D D
=
−→C −−→B +−→A

Example 6.249 (0.250, 4, 15)If similar rectangles are erected externally on two opposite and
internally on the other two sides of any parallelogram, their centers form a parallelogram.
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A

B C

D

1A 1D

S

N

Q

2A

1B

P
M R

Figure 6-249

Constructive description
((pointsA B C)

(pratioD A B C 1)

(tratio A1 A D r1)

(pratioD1 A1 A D 1)

(inter S (l A D1) (l D A1))

(midpointN B C)

(pratioQ N A1 A 1/2)

(tratio A2 A B r2)

(pratioB1 A2 A B 1)

(inter P (l A B1) (l B A2))

(midpointM C D)

(pratioR M A2 A 1/2)

( PS
QR
= 1) )

The machine proof.

− S P
QR

R
=
−SAS A2P

SAQA2M

M
=

−SAS A2P

SAQA2−
1
2SADA2−

1
2SACA2

P
=

(−2)·(−SABB1A2 ·SAS A2−SAA2B1 ·SABA2)

(2SAQA2−SADA2−SACA2 )·(−SABB1A2)

B1
=

(−2)·(2SAS A2 ·SABA2−S2
ABA2

)

(2SAQA2−SADA2−SACA2 )·(2SABA2)

simpli f y
=

−(2SAS A2−SABA2 )

2SAQA2−SADA2−SACA2

A2
=

−( 1
2 PBAS·r2− 1

4 PABA·r2)
1
2 PBAQ·r2− 1

4 PBAD·r2− 1
4 PBAC·r2

simpli f y
=

−(2PBAS−PABA)
2PBAQ−PBAD−PBAC

Q
=

−(2PBAS−PABA)
2PBAN−PBAA1−PBAD−PBAC

N
=

−(2PBAS−PABA)
−PBAA1−PBAD+PABA

S
=
−SADD1A1 ·PABA+2PBAD1 ·SADA1
(PBAA1+PBAD−PABA)·SADD1A1

D1
=
−(−2PBAA1 ·SADA1−2PBAD·SADA1+2PABA·SADA1)

(PBAA1+PBAD−PABA)·(2SADA1 )

simpli f y
= 1

The eliminants
S P
QR

R
=

SAS A2P

SAQA2M

SAQA2M
M
=

1
2(2SAQA2−SADA2−SACA2)

SAS A2P
P
=

SABB1A2 ·SAS A2+SAA2B1 ·SABA2
SABB1A2

SAA2B1

B1
= − (SABA2)

SABB1A2

B1
=2(SABA2)

SACA2

A2
=

1
4(PBAC·r2)

SADA2

A2
=

1
4(PBAD·r2)

SAQA2

A2
=

1
4(PBAQ·r2)

SABA2

A2
=

1
4(PABA·r2)

SAS A2

A2
=

1
4(PBAS·r2)

PBAQ
Q
=

1
2(2PBAN−PBAA1)

PBAN
N
=

1
2(PBAC+PABA)

PBAS
S
=

PBAD1 ·SADA1
SADD1A1

PBAD1

D1
= PBAA1+PBAD

SADD1A1

D1
=2(SADA1)

Example 6.250 (0.083, 3, 8)Let A1, B1, C1, D1 be points on the sides CD, DA, AB, BC of a
parallelogram ABCD such that CA1/CD = DB1/DA = AC1/AB= BD1/BC = 1/3. Show
that the area of the quadrilateral formed by the lines AA1 BB1, CC1, DD1 is one thirteenth
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of the area of parallelogram ABCD.

Note that we only need to show 3SABCD = 13SABA2.

2D

2C

2B

2A
1D

1C

1B

1AD C

BA

Figure 6-250

Constructive description
( (pointsA B C)

(pratioD A B C 1)

(lratio A1 C D 1/3)

(lratio B1 D A 1/3)

(inter A2 (l A A1) (l B B1))

(3SABCD = 13SABA2) )

The machine proof
(3)·SABCD

(13)·SABA2

A2
=

(3)·SABCD·SABA1B1
(13)·SABB1 ·SABA1

B1
=

(3)·SABCD·(− 2
3SADA1+SABA1)

(13)·( 2
3SABD)·SABA1

A1
=

(−3)·SABCD·(− 4
3SACD−SABD−2SABC)

(26)·SABD·( 1
3SABD+

2
3SABC)

D
=

(3)·(2SABC)·(13SABC)
(26)·SABC·(3SABC)

simpli f y
= 1

The eliminants

SABA2

A2
=

SABB1 ·SABA1
SABA1B1

SABB1

B1
=

2
3(SABD)

SABA1B1

B1
=

(2SADA1−3SABA1 )

−3

SABA1

A1
=

1
3(SABD+2SABC)

SADA1

A1
= − 2

3(SACD)
SABD

D
=SABC

SACD
D
=SABC

SABCD
D
=2(SABC)

Example 6.251 (0.466, 7, 8)Use the same notations as Example 6.250. If CA1/CD =
AC1/AB= r1,DB1/DA = BD1/BC = r2 then

SA2B2C2D2
SABCD

=
r1·r2

r2·r1−r2−r1+2.

We only need to show that
SA2AB

SABCD
=

1−r2
2·(r2·r1−r2−r1+2).

Constructive description (Formula derivation)
((pointsA B C) (pratioD A B C 1) (lratio A1 C D r1)

(lratio B1 D A r2) (lratio C1 A B r1) (lratio D1 B C r2)

(inter A2 (l B B1) (l A A1)) (inter B2 (l C C1) (l B B1))

(inter C2 (l D D1) (l C C1)) (inter D2 (l A A1) (l D D1)) (SA2AB = SABCD) )

Example 6.252 (0.066, 2, 11)Let P and Q be two points on side BC and AD of a parallelo-
gram such that PQ‖ AB; M = AP∩ BQ, N= DP∩ QC. Show that MN= 1

2AD.

N

M

Q
P

D C

BA

Figure 6-252

Constructive description
( (pointsA B C)

(pratioD C B A 1)

(on P (l B C))

(inter Q (l A D) (p P A B))

(inter M (l A P) (l B Q))

(inter N (l D P) (l C Q))

(2SAMN = −SADN) )
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The machine proof
(−2)·SAMN

SADN

N
=

(−2)·(−SCPQ·SADM)·(−SCDQP)
(−SCDQ·SADP)·(−SCDQP)

simpli f y
=

(−2)·SCPQ·SADM

SCDQ·SADP

M
=

(−2)·SCPQ·SADP·SABQ

SCDQ·SADP·SABPQ

simpli f y
=

(−2)·SCPQ·SABQ

SCDQ·SABPQ

Q
=

(−2)·SACP·SABP·(−SABD)
SCDP·(SADP·SABP−SABP·SABD)

simpli f y
=

(2)·SACP·SABD

SCDP·(SADP−SABD)

P
=

(2)·(SABC· BP
BC
−SABC)·SABD

(−SBCD· BP
BC
+SBCD)·(−SACD· BP

BC
+SABD· BP

BC
−2SABD)

simpli f y
=

(2)·SABC·SABD

SBCD·(SACD· BP
BC
−SABD· BP

BC
+2SABD)

D
=

(2)·S2
ABC

SABC·(2SABC)

simpli f y
= 1

The eliminants

SADN
N
=

SCDQ·SADP

SCDQP

SAMN
N
=

SCPQ·SADM

SCDQP

SADM
M
=

SADP·SABQ

SABPQ

SABPQ
Q
=

(SADP−SABD)·SABP

−SABD

SCDQ
Q
=SCDP

SABQ
Q
=SABP

SCPQ
Q
=SACP

SADP
P
= − (SACD· BP

BC
−SABD· BP

BC
+SABD)

SCDP
P
= − (( BP

BC
−1)·SBCD)

SACP
P
=( BP

BC
−1)·SABC

SACD
D
=SABC

SBCD
D
=SABC

SABD
D
=SABC

Example 6.253 (0.033, 2, 4)Let ABCD be a rectangular, and EFGH a parallelogram in-
scribed in ABCD such that the sides of EFGH are parallel to thediagonals of ABCD.
Show that the perimeter of EFGH is fixed.

A

B C

D

E

F

H

G

Figure 6-253

Constructive description
( (pointsA B)

(tratioC B A r)

(pratioD A B C 1)

(on E (l A B))

(inter F (l B C) (p E A C))

(inter H (l A D) (p E B D))

( EF
AC
+ EH

BD
= 1) )

The machine proof
EH
BD
+ EF

AC

H
=
− EF

AC
·SABD+SADE

−SABD

F
=

SBCE·SABD−SADE·SABC

SABD·SABC

E
=

SABD·SABC

SABD·SABC

simpli f y
= 1

The eliminants
EH
BD

H
=

SADE

−SABD

EF
AC

F
=

SBCE

SABC

SADE
E
= − (SABD· AE

AB
)

SBCE
E
= − (( AE

AB
−1)·SABC)

Example 6.254 (0.116, 3, 15)Three parallel lines are cut by three parallel transversalsin the
points A, B, C; A1, B1, C1; A2, B2, C2. Show that B2C, C1A2, AB1 are concurrent.

Constructive description( (pointsA B A1) (on C (l A B)) (pratioB1 B A A1 1)

(inter C1 (l A1 B1) (p C A A1)) (on A2 (l A A1)) (inter B2 (l B B1) (p A2 A B))

(inter C2 (l C C1) (l A2 B2)) (inter I (l C B2) (l C1 A2)) (inter Z2 (l C1 A2) (l A B1))
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(inter Z1 (l C B2) (l A B1)) (
AZ1

B1Z1
· B1Z2

AZ2
= 1) )

A B

1A

C

1B 1C

2A 2B 2C

I

Figure 6-254

The machine proof
AZ1
B1Z1
· B1Z2

AZ2

Z1
=

SACB2
−SCB1B2

· B1Z2
AZ2

Z2
=
−SACB2 ·SB1C1A2
SCB1B2 ·SAC1A2

B2
=
−SACA2 ·SB1C1A2 ·(−SABB1)

SAB1BA2 ·SBCB1 ·SAC1A2

A2
=

(−SAA1C·
AA2
AA1

)·(−SAB1C1 ·
AA2
AA1
+SAB1C1 )·SABB1

(−SABB1+SABA1 ·
AA2
AA1

)·SBCB1 ·(−SAA1C1 ·
AA2
AA1

)

simpli f y
=

SAA1C·(
AA2
AA1
−1)·SAB1C1 ·SABB1

(SABB1−SABA1 ·
AA2
AA1

)·SBCB1 ·SAA1C1

C1
=

SAA1C·(
AA2
AA1
−1)·SACA1B1 ·SAA1B1 ·SABB1

(SABB1−SABA1 ·
AA2
AA1

)·SBCB1 ·SAA1C·(−SAA1B1)

simpli f y
=

−(
AA2
AA1
−1)·SACA1B1 ·SABB1

(SABB1−SABA1 ·
AA2
AA1

)·SBCB1

B1
=
−(

AA2
AA1
−1)·(−SAA1C−SABA1 )·SABA1

(−SABA1 ·
AA2
AA1
+SABA1 )·(−SBA1C)

simpli f y
=

SAA1C+SABA1
SBA1C

C
=
−SABA1 ·

AC
AB
+SABA1

−SABA1 ·
AC
AB
+SABA1

simpli f y
= 1

The eliminants
AZ1
B1Z1

Z1
=

SACB2
−SCB1B2

B1Z2
AZ2

Z2
=

SB1C1A2
SAC1A2

SCB1B2

B2
=

SAB1BA2 ·SBCB1
−SABB1

SACB2

B2
=SACA2

SAC1A2

A2
= − (SAA1C1 ·

AA2
AA1

)

SAB1BA2

A2
= − (SABB1−SABA1 ·

AA2
AA1

)

SB1C1A2

A2
= − ((

AA2
AA1
−1)·SAB1C1)

SACA2

A2
= − (SAA1C·

AA2
AA1

)

SAA1C1

C1
=SAA1C

SAB1C1

C1
= − (SACA1B1)

SBCB1

B1
= − (SBA1C)

SABB1

B1
=SABA1

SACA1B1

B1
= − (SAA1C+SABA1)

SBA1C
C
= − (( AC

AB
−1)·SABA1)

SAA1C
C
= − (SABA1 ·

AC
AB

)

Example 6.255 (0.233, 5, 11)A line passing through the intersection O of the diagonals of
parallelogram ABCD meets the four sides at E, F, G, H. Show that EF = GH.

H

E

F

G

O

D C

BA

Figure 6-255

Constructive description
( (pointsA B C) (pratioD C B A 1)

(inter O (l A C) (l B D))

(on G (l A B))

(inter F (l C D) (l O G))

(inter E (l A D) (l O G))

(inter H (l B C) (l O G))

( FE
GH
= −1) )
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Example 6.256 (0.050, 5, 5)Let ABCD be a parallelogram and P,Q,R,S be points on
AB, BC,CD,DA such that AP= CR and BQ= DS . Show that PQRS is also a paral-
lelogram

Constructive description:( (pointsA B C) (pratioD A B C 1) (lratio S D A r2)

(lratio P A B r1) (lratio R C D r1) (lratio Q B C r2) ( QR
PS
= 1) )

A

B C

DS

P
R

Q

Figure 6-256

The machine proof
RQ
S P

Q
=

SBCR

−SBSCP

R
=
−SBCD·r1

SBSCP

P
=

−SBCD·r1
−SBCS−SABC·r1+SABC

S
=

SBCD·r1
−SBCD·r2+SBCD+SABC·r2+SABC·r1−SABC

D
=
−SABC·r1
−SABC·r1

simpli f y
= 1

The eliminants
RQ
S P

Q
=

SBCR

−SBSCP
SBCR

R
=SBCD·r1

SBSCP
P
= − (SBCS+SABC·r1−SABC)

SBCS
S
= − (SBCD·r2−SBCD−SABC·r2)

SBCD
D
=SABC

Example 6.257 (0.400, 20, 16)Let ABCD be a parallelogram and P,Q,R,S are points in
AB, BC,CD,DA such that r1 = AP

AB
= CR

CD
and r2 =

BQ
BC
= DS

DA
. Show thatSPQRS

SABCD
= 2r2r1 − r2 −

r1 + 1. (Figure 6-256)

Constructive description
( (pointsA B C) (pratioD A B C 1) (lratio S D A r2) (lratio P A B r1)

(lratio R C D r1) (lratio Q B C r2) (SPQRS = (2r2·r1−r2−r1+1)·SABCD) )

Example 6.258 (0.266, 6, 24)Let C and F be any points on the respective sides AE and BD
of a parallelogram AEBD. Let M and N denote the points of intersection of CD and FA
and of EF and BC. Let the line MN meet DA at P and EB at Q. Then AP= QB.

A E

BD

C

F

M

N

P

Q

Figure 6-258

Constructive description
( (pointsA E B)

(pratioD B E A 1)

(on C (l A E))

(on F (l B D))

(inter M (l D C) (l A F))

(inter N (l E F) (l B C))

(inter P (l M N) (l A D))

(inter Q (l M N) (l E B))

( AP
DP
=

BQ
EQ

) )
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Example 6.259 (0.400, 10, 22)Let ABC be any triangle and ABDE, ACFG any parallelo-
grams described on AB and AC. Let DE and FG meet in H and draw BL and CM equal
and parallel to HA. Then area(BCML) = area(ABDE) + area(ACFG).

ML S

R

H

GE

FD

A

CB

Figure 6-259

Constructive description
( (pointsA B C D F)

(pratioE A B D 1)

(pratioG A C F 1)

(inter H (l D E) (l F G))

(inter R (l B C) (l H A))

(pratioL B H A 1)

(SACF+SBAD = SCBL) )

Example 6.260 (0.467, 46, 18)The circle through the vertices A, B, C of a parallelogram
ABCD meets DA, DC in the points A1, C1. Prove that A1D/A1C1 = A1C/A1B.

A B

CD

O

1A

1C

Figure 6-260

Constructive description
( (pointsA B C)

(circumcenterO A B C)

(pratioD A B C 1)

(inter A1 (l A D) (cir O A))

(inter C1 (l C D) (cir O C))

(eq-productA1 D A1 B A1 C1 A1 C) )

Example 6.261 (0.383, 8, 16)Given the parallelogram MDOM1, the vertex O is joined to the
midpoint C of MM1. If the internal and external bisectors of the angle COD meetMD in
A and B, show that MD2 = MA · MB.

B A

I
C

D

E

M

1MO

Figure 6-261

Constructive description
( (pointsI O C)

(incenterD I O C)

(midpointE O D)

(pratioM D E C 1)

(pratioM1 O E C 1)

(inter A (l O I) (l D M))

(inter B (l D M) (t O O I))

( MD
MA
= MB

MD
) )

Example 6.262 (0.633, 46, 34)ABCD is a parallelogram with center O. E is the midpoint
of OA. F is the midpoint of OB. G is the midpoint of OC. H is the midpoint of OD.
P = DE ∩ CF; Q = AF ∩ DG; R = AH ∩ BG; S = BE ∩ CH. Prove that PQRS is a
parallelogram.
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A

B C

O

D

E
F G

H
P

Q

R

S

Figure 262

Constructive description
( (pointsA B C O)

(pratioD A B C 1)

(midpointE O A)

(midpointF O B)

(midpointG O C)

(midpointH O D)

(inter P (l D E) (l C F))

(inter Q (l A F) (l D G))

(inter R (l A H) (l B G))

(inter S (l B E) (l C H))

( PQ
S R
= 1) )

Example 6.263 (0.200, 5, 11)ABCD is a parallelogram. O= AC∩ BD. Two perpendicular
lines passing through O cut the sides AB, BC,CD,DA in points E,H, F,G. Prove that
EHCG is a rhombus.

A

B C

D

O

E

F

G

H

Figure 6-263

Constructive description
( (pointsA B C)

(pratioD A B C 1)

(inter O (l A C) (l B D))

(on E (l A B))

(inter F (l C D) (l E O))

(inter G (l A D) (t O O E))

(inter H (l B C) (l O G))

( EH
GF
= 1) )

6.4.4 Squares

Example 6.264 (0.016, 1, 2)On the two sides AB and AC of triangle ABC, two squares
ABEF and ACGH are drawn externally. Show that SABC = SAHF.

Constructive description
( (pointsA B C) (tratio F A B 1) (tratio H A C −1) (SABC = SAHF) )

A

C B

G

H

E

F

M

N

Figure 6-264

The machine proof
SABC

−SAFH

H
=

SABC

−(− 1
4 PCAF)

F
=

(4)·SABC

4SABC

simpli f y
= 1

The eliminants

SAFH
H
= − 1

4(PCAF)

PCAF
F
=4(SABC)
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Example 6.265 (0.050, 3, 5)On the two sides AB and AC of triangle ABC, two squares
ABEF and ACGH are drawn externally. M is the midpoint of BC. Show that FH= 2AM
(Figure 6-264).

Constructive description
( (pointsA B C)

(midpointM B C)

(tratio F A B 1)

(tratio H A C −1)

(PHFH = 4PMAM) )

The machine proof
PFHF

(4)·PAMA

H
=

PAFA+PACA+8SACF

(4)·PAMA

F
=

2PBAC+PACA+PABA

(4)·PAMA

M
=

2PBAC+PACA+PABA

(4)·(− 1
4 PBCB+

1
2 PACA+

1
2 PABA)

py
=
−(−2PBCB+4PACA+4PABA)
(PBCB−2PACA−2PABA)·(2)

simpli f y
= 1

The eliminants

PFHF
H
=PAFA+PACA+8SACF

SACF
F
=

1
4(PBAC)

PAFA
F
=PABA

PAMA
M
= − 1

4(PBCB−2PACA−2PABA)
PBAC= − 1

2(PBCB−PACA−PABA)

Example 6.266 (0.016, 3, 3)On the two sides AB and AC of triangle ABC, two squares
ABEF and ACGH are drawn externally. Passing through A a perpendicular to BC is
drawn which cuts FH in N. Show that N is the midpoint of FH. (Figure 6-264)

Constructive description
( (pointsA B C)

(tratio F A B 1)

(tratio H A C −1)

(midpointN F H)

(perpendicularN A B C) )

The machine proof
PCBN

PABC

N
=

1
2 PCBH+

1
2 PCBF

PABC

H
=

PCBF+PABC−4SABC

(2)·PABC

F
=

2PABC

(2)·PABC

simpli f y
= 1

The eliminants

PCBN
N
=

1
2(PCBH+PCBF)

PCBH
H
=PABC−4SABC

PCBF
F
=PABC+4SABC

Example 6.267 (0.033, 3, 2)On the two sides AB and AC of triangle ABC, two squares
ABEF and ACGH are drawn externally. Show that FC= BH. (Figure 6-264)

Constructive description
( (pointsA B C)

(tratio F A B 1)

(tratio H A C −1)

(eqdistanceF C B H) )

The machine proof
PCFC

PBHB

H
=

PCFC

PACA+PABA−8SABC

F
=

PACA+PABA−8SABC

PACA+PABA−8SABC

simpli f y
= 1

The eliminants

PBHB
H
=PACA+PABA−8SABC

PCFC
F
=PACA+PABA−8SABC
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Example 6.268 (0.066, 4, 6)On the two sides AB and AC of triangle ABC, two squares
ABEF and ACGH are drawn externally. Show that FC⊥BH. (Figure 6-264)

Constructive description
((pointsA B C)

(tratio F A B 1)

(tratio H A C −1)

(perpendicularF C B H) )

The machine proof
PFBH
PCBH

H
=
−4SABCF+PABF

PABC−4SABC

F
=
−(PBAC−PABA+4SABC)

PABC−4SABC

py
=
−(−PBCB+PACA−PABA+8SABC)·(2)

(PBCB−PACA+PABA−8SABC)·(2)

simpli f y
= 1

The eliminants

PCBH
H
=PABC−4SABC

PFBH
H
= − (4SABCF−PABF)

PABF
F
=PABA

SABCF
F
=

1
4(PBAC+4SABC)

PABC=
(PBCB−PACA+PABA)

2

PBAC=
(PBCB−PACA−PABA)

−2

Example 6.269 (0.033, 2, 8)On the two sides AB and AC of triangle ABC, two squares
ABDM and ACEN are drawn externally. F and G are the feet of the perpendiculars drawn
from points D and E to BC. Show that SABC = SDFB + SCGE.

A

B C

D

M

F

E

N

G

Figure 6-269

Constructive description
( (pointsA B C)

(tratio D B A 1)

(foot F D B C)

(tratio E C A −1)

(foot G E B C)

(SABC = SBDF+SCGE) )

The machine proof
SABC

−(SCEG−SBDF)

G
=

SABC·PBCB

−(PBCE·SBCE−PBCB·SBDF)

E
=

SABC·PBCB

−(−PBCB·SBDF−PACB·SABC)

F
=

SABC·(PBCB)2

−PCBD·PBCB·SBCD+PBCB·PACB·SABC

simpli f y
=

SABC·PBCB

−(PCBD·SBCD−PACB·SABC)

D
=

SABC·PBCB

−(−PACB·SABC−PABC·SABC)

simpli f y
=

PBCB

PACB+PABC

py
=

PBCB·((2))2

4PBCB

simpli f y
= 1

The eliminants

SCEG
G
=

PBCE·SBCE

PBCB

SBCE
E
=

1
4(PACB)

PBCE
E
= − 4(SABC)

SBDF
F
=
−PCBD·SBCD

PBCB

SBCD
D
=

1
4(PABC)

PCBD
D
= − 4(SABC)

PABC=
(PBCB−PACA+PABA)

2

PACB=
(PBCB+PACA−PABA)

2

Example 6.270 (0.050, 6, 8)On the two sides AB and AC of triangle ABC, two squares
ABEF and ACGH are drawn externally. P is the midpoint of EG. Show that BP= CP.

A

B C

E

F

G

H

P

Figure 6-270

Constructive description
( (pointsA B C)

(tratio E B A 1)



6.4. Quadrilaterals 391

(tratioG C A −1)

(midpointP E G)

(eqdistanceB P C P) )

The machine proof
PBPB
PCPC

P
=
− 1

4 PEGE+
1
2 PBGB+

1
2 PBEB

− 1
4 PEGE+

1
2 PCGC+

1
2 PCEC

G
=

PCEC−2PBEB−2PBCB−PACA−8SACE−16SABC

−PCEC−PACA−8SACE

E
=
−(−PBCB+2PBAC−PACA−PABA)

PBCB−2PBAC+PACA+PABA

simpli f y
= 1

The eliminants

PCPC
P
= − 1

4(PEGE−2PCGC−2PCEC)
PBPB

P
= − 1

4(PEGE−2PBGB−2PBEB)
PCGC

G
=PACA

PBGB
G
=PBCB+PACA+8SABC

PEGE
G
=PCEC+PACA−8SACE

SACE
E
= − 1

4(PBAC+4SABC)
PBEB

E
=PABA

PCEC
E
=PBCB+PABA+8SABC

Example 6.271 (0.033, 3, 6)Let ABCD be a square and G a point on CD. A square GCEF
is erected externally. Show that DE⊥BG and DE= BG.

D

CB

A

G

E

F

Figure 6-271

Constructive description
( (pointsD C)

(tratio B C D 1)

(lratio G C D r)

(lratio E C B −r)

(perpendicularD E B G) )

The machine proof
PDBG

PGBE

E
=

PDBG

PCBG·r+PCBG

simpli f y
=

PDBG

(r+1)·PCBG

G
=
−PDBC·r+PDBC+PDBD·r

(r+1)·PCBC

B
=
−(−PDCD·r−PDCD)

(r+1)·PDCD

simpli f y
= 1

The eliminants

PGBE
E
=(r+1)·PCBG

PCBG
G
=PCBC

PDBG
G
= − (PDBC·r−PDBC−PDBD·r)

PCBC
B
=PDCD

PDBD
B
=2(PDCD)

PDBC
B
=PDCD

Example 6.272 (0.183, 6, 17)On the two sides AB and AC of triangle ABC, two squares
ABDE and ACFG are drawn externally. Let P and Q be the centers of squares ABDE and
ACFG, M and L the midpoints of BC and EG. Show that PMQL is a square.

A

B CM

E

D
P

G

F
Q

L

Figure 6-272

Constructive description
( (pointsA B C)

(midpointM B C)

(tratio E A B 1)

(midpointP B E)

(tratioG A C −1)

(midpointQ C G)

(midpointL E G)
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( PM
LQ
= 1) )

The machine proof
MP
QL

L
=

SMEPG

SEGQ

Q
=

SMEPG
1
2SCEG

G
=

(2)·(− 1
4 PCMAP+SMEP+SAMP)

1
4 PACE+SACE

P
=

(−2)·( 1
2 PCAE−PCAM+

1
2 PBAC−2SBME−2SAME+2SABM)

PACE+4SACE

E
=
−(−2PCAM−PBAM+PBAC+PABM+4SABC)

PBAC+PACA−4SABC

M
=

1
2 PBAC+PACA− 1

2 PABC+
1
2 PABA−4SABC

PBAC+PACA−4SABC

py
=

(−4PBCB+12PACA+4PABA−32SABC)·(2)
((2))3·(−PBCB+3PACA+PABA−8SABC)

simpli f y
= 1

The eliminants
MP
QL

L
=

SMEPG

SEGQ

SEGQ
Q
=

1
2(SCEG)

SCEG
G
=

1
4(PACE+4SACE)

SMEPG
G
= − 1

4(PCMAP−4SMEP−4SAMP)
SAMP

P
=

1
2(SAME−SABM)

SMEP
P
=

1
2(SBME)

PCMAP
P
=

1
2(PCAE−2PCAM+PBAC)

SACE
E
=

1
4(PBAC)

PACE
E
=PACA−4SABC

SAME
E
=

1
4(PBAM)

SBME
E
= − 1

4(PABM−4SABM)
PCAE

E
=4(SABC)

PABM
M
=

1
2(PABC)

PBAM
M
=

1
2(PBAC+PABA)

PCAM
M
=

1
2(PBAC+PACA)

PABC=
1
2(PBCB−PACA+PABA)

PBAC= − 1
2(PBCB−PACA−PABA)

Example 6.273 (0.016, 1, 3)Let ABCD be a square and l be a line passing through B. From
A and C perpendiculars are drawn to l and the feet are A1 and C1 respectively. Show that
AA1 = BC1.

B C

X
A D

A

C

Figure 6-273

1

1

Constructive description
( (pointsB C X)

(tratio A B C 1)

(foot A1 A B X)

(foot C1 C B X)

(eqdistanceA A1 B C1) )

The machine proof
PAA1A

PBC1B

C1
=

PAA1A·PBXB

P2
CBX

A1
=

(16S2
BXA)·PBXB

(PCBX)2·PBXB

simpli f y
=

(16)·(SBXA)2

(PCBX)2

A
=

(16)·(( 1
4 PCBX))2

(PCBX)2

simpli f y
= 1

The eliminants

PBC1B
C1
=

(PCBX)2

PBXB

PAA1A
A1
=

(16)·(SBXA)2

PBXB

SBXA
A
=

1
4(PCBX)

Example 6.2744 (0.067, 5, 13)Starting with any triangle ABC, construct the exterior (or
interior) squares BCDE, ACFG, and BAHK; then construct parallelograms FCDQ and
EBKP. Show that PAQ is an isosceles.
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A
B

C

F

G

D

E

K H

Q

P

Figure 6-274

Constructive description
( (pointsA B C)

(tratio F C A 1)

(tratio D C B −1)

(pratioE D C B 1)

(tratio K B A −1)

(pratioQ F C D 1)

(pratioP K B E 1)

(eqdistanceA Q A P) )

The machine proof
PAQA

PAPA

P
=

PAQA

2PEBK+PAKA+PAEA−PABA

Q
=

2PFCD+PADA+PAFA−PACA

2PEBK+PAKA+PAEA−PABA

K
=

2PFCD+PADA+PAFA−PACA

PAEA+PABA+8SABE

E
=

2PFCD+PADA+PAFA−PACA

PADA−PACA+2PABA+8SABD−8SABC

D
=

PBCB+PAFA+8SBCF−8SABC

PBCB−2PABC+2PABA−8SABC

F
=

PBCB−2PACB+2PACA−8SABC

PBCB−2PABC+2PABA−8SABC

py
=

(2PACA+2PABA−16SABC)·(2)
(2PACA+2PABA−16SABC)·(2)

simpli f y
= 1

The eliminants

PAPA
P
=2PEBK+PAKA+PAEA−PABA

PAQA
Q
=2PFCD+PADA+PAFA−PACA

PAKA
K
=2(PABA)

PEBK
K
=4(SABE)

SABE
E
=SABD−SABC

PAEA
E
=PADA−PACA+PABA

SABD
D
= − 1

4(PABC−4SABC)
PADA

D
=PBCB+PACA−8SABC

PFCD
D
=4(SBCF)

SBCF
F
= − 1

4(PACB)
PAFA

F
=2(PACA)

PABC=
1
2(PBCB−PACA+PABA)

PACB=
1
2(PBCB+PACA−PABA)

Example 6.275 (0.516, 9, 32)On the four sides of a quadrilateral ABCD, four squares are
drawn externally. Show that the two segments joining the twocenters of the squares on two
opposite sides are perpendicular and have the same length.

A

B

CD

L

P

N

M

Figure 6-275

Constructive description
( (pointsA B C D)

(tratio E A B 1)

(midpointL B E)

(tratioG A D −1)

(midpointP D G)

(tratio F C B −1)

(midpointM B F)

(tratio H C D 1)

(midpointN D H)

(eqdistanceM P L N) )

4This example is from Amer. Math. Mon. 75(1968), p.899.
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Example 6.276 (0.067 2 14)On the hypotenuse AB of right triangle ABC a square ABFE
is erected. Let P be the intersection of the diagonals AF and BE of ABFE. Show that
∠ACP= ∠PCB.

C B

A

E

F

P

Figure 6-276

Constructive description
((pointsB C)

(tratio A C B r)

(tratio F B A −1)

(tratio E A B 1)

(inter P (l B E) (l A F))

(eqangleA C P P C B) )

The machine proof
(−SCAP)·PBCP

(−SBCP)·PACP

P
=

SCAF·SBAE·(−PBCF·SBAE)·(SBAEF)2

(−SBAF·SBCE)·PACE·SBAF·((−SBAEF))2

simpli f y
=

SCAF·(SBAE)2·PBCF

(SBAF)2·SBCE·PACE

E
=

SCAF·((− 1
4 PBAB))2·PBCF

(SBAF)2·(− 1
4 PCBA+SBCA)·(PCAC−4SBCA)

F
=

−(− 1
4 PBAC+SBCA)·(PBAB)2·(PBCB−4SBCA)

(4)·((− 1
4 PBAB))2·(PCBA−4SBCA)·(PCAC−4SBCA)

simpli f y
=

(PBAC−4SBCA)·(PBCB−4SBCA)
(PCBA−4SBCA)·(PCAC−4SBCA)

A
=

(PBCB·r2+PBCB·r)·(PBCB·r+PBCB)
(PBCB·r+PBCB)·(PBCB·r2+PBCB·r)

simpli f y
= 1

The eliminants

PACP
P
=

PACE·SBAF

SBAEF

SBCP
P
=

SBAF·SBCE

SBAEF

PBCP
P
=

PBCF·SBAE

SBAEF

SCAP
P
=

SCAF·SBAE

SBAEF

PACE
E
=PCAC−4SBCA

SBCE
E
= − 1

4(PCBA−4SBCA)
SBAE

E
= − 1

4(PBAB)
SBAF

F
= − 1

4(PBAB)
PBCF

F
=PBCB−4SBCA

SCAF
F
= − 1

4(PBAC−4SBCA)
PCAC

A
=PBCB·(r)2

PCBA
A
=PBCB

SBCA
A
= − 1

4(PBCB·r)
PBAC

A
=PBCB·(r)2

Example 6.277 (0.617, 65, 21)ABCD is a square. G is a point on AD such that AG= AD.
E, F are points on AB, BC such that EF‖ AC. H = EG∩ FD. Show that AH= BC.

B C

A
D

G

F

E

H

Figure 6-277

Constructive description
( (pointsB C)

(tratio A B C 1)

(pratioD A B C 1)

(lratio G A D −1)

(lratio F B C r)

(inter E (l A B) (p F A C))

(inter H (l G E) (l F D))

(eqdistanceA H B C) )
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6.4.5 Cyclic Quadrilaterals

Definition A quadrilateral whose vertices lie on the same circle is saidto be cyclic.

To prove theorems about cyclic quadrilaterals, we use the techniques developed in Sec-
tion 3.6.

Example 6.278 (Ptolemy’s Theorem) (0.050, 2, 12)Let A, B,C,D be four cyclic points. Then
ÃB · C̃D+ ÃD · B̃C = ÃC · B̃D.

Constructive description
( (circle A B C D) (ÃB·C̃D+ÃD·B̃C = ÃC·B̃D) )

The machine proof
C̃D·ÃB+B̃C·ÃD

B̃D·ÃC

chord
=

sin(CD)·sin(AB)·d2+sin(BC)·sin(AD)·d2

sin(BD)·d·sin(AC)·d
simpli f y
=

sin(CD)·sin(AB)+sin(BC)·sin(AD)
sin(BD)·sin(AC)

co−cir
=

SD·SC·CB−SC·SB·CD

(SD·CB−SB·CD)·SC

simpli f y
= 1

The eliminants

ÃC=sin(AC)·d B̃D=sin(BD)·d

ÃD=sin(AD)·d B̃C=sin(BC)·d

ÃB=sin(AB)·d C̃D=sin(CD)·d

sin(AC)=SC

sin(BD)=SD·CB−SB·CD

sin(AD)=SD

sin(BC)=SC·CB−SB·CC

sin(AB)=SB

sin(CD)=SD ·CC−SC·CD

Example 6.279 (Brahmagupta’s Formula) (0.267, 5, 16)Let ABCD be a cyclic quadrilateral.
Then

S2 = (p− ÃB)(p− B̃C)(p− C̃D)(p− ÃD) =
1
16

(4AC
2
BD

2 − P2
ABCD)

where p= 1
2(ÃB+ B̃C+ C̃D+ ÃD).

Constructive description
( (circle A B C D) (16S2

ABCD = 4ÃC
2·B̃D

2−P2
CBAD) )

Example 6.280 (0.033, 1, 10)Show that in a cyclic quadrilateral the distances of the point of
intersection of the diagonals from two opposite sides are proportional to these sides.

B C

A

O

D

I

Q

S

Figure 6-280

Constructive description
( (circle A B C D)

(inter I (l B D) (l A C))

(foot Q I B C)

(foot S I A D)

(eq-productI S B C I Q A D) )



396 Chapter 6. Topics from Geometry

The machine proof
PIS I·PBCB

PIQI ·PADA

S
=

(16S2
ADI )·PBCB

PIQI ·P2
ADA

Q
=

(16)·S2
ADI ·P

2
BCB

(16S2
BCI)·P

2
ADA

I
=

(−SACD·SABD)2·P2
BCB·S

2
ABCD

SBCD·S2
ABC·P

2
ADA·S

2
ABCD

simpli f y
=

SACD·SABD·SACD·SABD·P2
BCB

SBCD·SABC·SBCD·SABC·P2
ADA

co−cir
=

(−C̃D·ÃD·ÃC)·(−B̃D·ÃD·ÃB)·(−C̃D·ÃD·ÃC)·(−B̃D·ÃD·ÃB)·(2B̃C
2
)2·(2d)4

(−C̃D·B̃D·B̃C)·(−B̃C·ÃC·ÃB)·(−C̃D·B̃D·B̃C)·(−B̃C·ÃC·ÃB)·(2ÃD
2
)2·(2d)4

simpli f y
= 1

The eliminants

PIS I
S
=

(16)·S2
ADI

PADA

PIQI
Q
=

(16)·S2
BCI

PBCB

SBCI
I
=

SBCD·SABC

SABCD

SADI
I
=
−SACD·SABD

SABCD

PADA=2(ÃD
2)

SABC=
B̃C·ÃC·ÃB

(−2)·d

SBCD=
C̃D·B̃D·B̃C

(−2)·d
PBCB=2(B̃C

2)
SABD=

B̃D·ÃD·ÃB
(−2)·d

SACD=
C̃D·ÃD·ÃC

(−2)·d

Example 6.281 (0.016, 1, 6)In the cyclic quadrilateral ABCD the perpendicular to AB at
A meets CD in A1, and the perpendicular to CD at C meets AB in C1. Show that the line
A1C1 is parallel to the diagonal BD.

1C

1A
D

O

C

BA

Figure 6-281

Constructive description
( (circle A B C D)

(inter A1 (l C D) (t A A B))

(inter C1 (l A B) (t C C D))

(parallelA1 C1 B D) )

The machine proof
SBDA1
SBDC1

C1
=

SBDA1 ·(−PBCAD)

−PBCD·SABD

A1
=

PBAD·SBCD·PBCAD

PBCD·SABD·(−PBCAD)

simpli f y
=

−PBAD·SBCD

PBCD·SABD

co−cir
=

−(2ÃD·ÃB·cos(BD))·(−C̃D·B̃D·B̃C)·(2d)
(−2C̃D·B̃C·cos(BD))·(−B̃D·ÃD·ÃB)·(2d)

simpli f y
= 1

The eliminants

SBDC1

C1
=

PBCD·SABD

PBCAD

SBDA1

A1
=

PBAD·SBCD

−PBCAD

SABD=
B̃D·ÃD·ÃB

(−2)·d
PBCD= − 2(C̃D·B̃C·cos(BD))
SBCD=

C̃D·B̃D·B̃C
(−2)·d

PBAD=2(ÃD·ÃB·cos(BD))

Definition. The symmetric of the circumcenter of a cyclic quadrilateralwith respect to the
centroid is called the anticenter of the cyclic quadrilateral.

Example 6.282 (0.083, 3, 9)The perpendicular from the midpoint of each diagonal upon the
other diagonal also passes through the anticenter of a cyclic quadrilateral.
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M
I R

Q

P
D

O

A

E

CB

Figure 6-282

Constructive description
((circle A B C D)

(circumcenterO A B C)

(midpointT A D)

(midpointP A B)

(midpointQ B C)

(midpointR C D)

(inter M (p P O R) (p Q O T))

(inter I (l P R) (l O M))

(midpoint I P R) )

The machine proof

− PI
RI

I
=

SOPM

−SORM

M
=
−(−SOPT Q·SOPR)
(−SOPR)·(−SOTR)

simpli f y
=

SOPT Q

SOTR

R
=

SOPT Q
1
2SDOT+

1
2SCOT

Q
=

(2)·(−SOT P+
1
2SCOT+

1
2SBOT)

SDOT+SCOT

P
=
−(−SCOT+SAOT)

SDOT+SCOT

T
=
− 1

2SCDO+
1
2SADO+

1
2SACO

− 1
2SCDO+

1
2SADO+

1
2SACO

simpli f y
= 1

The eliminants
PI
RI

I
=

SOPM

SORM

SORM
M
= − (SOPR)

SOPM
M
=

SOPT Q·SOPR

SOTR

SOTR
R
=

1
2(SDOT+SCOT)

SOPT Q
Q
=

(2SOT P−SCOT−SBOT)
−2

SOT P
P
=

1
2(SBOT+SAOT)

SDOT
T
=

1
2(SADO)

SAOT
T
= − 1

2(SADO)
SCOT

T
= − 1

2(SCDO−SACO)

Example 6.283 (0.066, 4, 5)Show that the anticenter of a cyclic quadrilateral is the ortho-
center of the triangle having for vertices the midpoints of the diagonals and the point of
intersection of those two lines.

B C

A

O
D

IQ

S

J

M

Figure 6-283

Constructive description
( (circle A B C D)

(circumcenterO A B C)

(inter I (l A D) (l B C))

(midpointQ B C)

(midpointS A D)

(midpointJ S Q)

(lratio M J O −1)

(perpendicularM S B C) )

The machine proof
PCBM

PCBS

M
=

2PCBJ−PCBO

PCBS

J
=

(2)·( 1
2 PCBS+

1
2 PCBQ− 1

2 PCBO)
PCBS

S
=

PCBQ−PCBO+
1
2 PCBD+

1
2 PABC

1
2 PCBD+

1
2 PABC

Q
=

(2)·(−PCBO+
1
2 PCBD+

1
2 PBCB+

1
2 PABC)

PCBD+PABC

O
=

(−2)·(−PCBD−PABC)
(PCBD+PABC)·(2)

simpli f y
= 1

The eliminants

PCBM
M
=2(PCBJ− 1

2 PCBO)
PCBJ

J
=

1
2(PCBS+PCBQ)

PCBS
S
=

1
2(PCBD+PABC)

PCBQ
Q
=

1
2(PBCB), PCBO

O
=

1
2(PBCB)

Example 6.284 (0.050, 2, 5)Show that the anticenter of a cyclic quadrilateral is collinear
with the two symmetrics of the circumcenter of the quadrilateral with respect to a pair of
opposite sides.

Constructive description
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( (circle A B C D) (circumcenterO A B C)

(midpointQ B C) (midpointS A D) (midpointJ S Q)

(lratio Q1 Q O −1) (lratio S1 S O−1) (inter M (l O J) (l Q1 S1)) (midpointJ O M) )

B C

A

O
D

Q

S

J
M

1Q

1S

Figure 6-284

The machine proof
OJ
JM

M
=

SOQ1JS1
SJQ1S1

S1
=
−SOJQ1−2SOS J

2SS JQ1−SOJQ1

Q1
=
−(2SOS J−2SOQJ)
−2SOS J+2SOQJ

simpli f y
= 1

The eliminants
OJ
JM

M
=

SOQ1JS1
SJQ1S1

SJQ1S1

S1
=2SS JQ1−SOJQ1

SOQ1JS1

S1
= − (SOJQ1+2SOS J)

SS JQ1

Q1
= − (SOS J)

SOJQ1

Q1
= − 2(SOQJ)

Example 6.285 (0.050, 1, 12)Show that the product of the distances of two opposite sides
of a cyclic quadrilateral from a point on the circumcircles is equal to the product of the
distances of the other two sides from the same point.

B
C

A

O

D

E

P

Q

R

S

Figure 6-285

Constructive description
( (circle A B C D E)

(foot P E A B)

(foot Q E B C)

(foot R E C D)

(foot S E A D)

(eq-productE S E Q E P E R) )

The machine proof
PES E·PEQE

PEPE·PERE

S
=

(16S2
ADE)·PEQE

PEPE·PERE·PADA

R
=

(16)·S2
ADE·PEQE·PCDC

PEPE·(16S2
CDE)·PADA

Q
=

S2
ADE·(16S2

BCE)·PCDC

PEPE·S2
CDE·PADA·PBCB

P
=

(16)·S2
ADE·S

2
BCE·PCDC·PABA

(16S2
ABE)·S2

CDE·PADA·PBCB

co−cir
=

(−D̃E·ÃE·ÃD)2·(−C̃E·B̃E·B̃C)2·(2C̃D
2
)·(2ÃB

2
)·(2d)4

(−B̃E·ÃE·ÃB)2·(−D̃E·C̃E·C̃D)2·(2ÃD
2
)·(2B̃C

2
)·(2d)4

simpli f y
= 1

The eliminants

PES E
S
=

(16)·S2
ADE

PADA
, PERE

R
=

(16)·S2
CDE

PCDC

PEQE
Q
=

(16)·S2
BCE

PBCB
, PEPE

P
=

(16)·S2
ABE

PABA

PBCB=2(B̃C
2), PADA=2(ÃD

2)
SCDE=

D̃E·C̃E·C̃D
(−2)·d

SABE=
B̃E·ÃE·ÃB

(−2)·d
PABA=2(ÃB

2)
PCDC=2(C̃D

2)
SBCE=

C̃E·B̃E·B̃C
(−2)·d

SADE=
D̃E·ÃE·ÃD

(−2)·d
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Example 6.286 (0.050, 1, 12)Show that the projections of a point of the circumcircle of
a cyclic quadrilateral upon the sides divide the sides into eight segments such that the
product of four nonconsecutive segments is equal to the product of the remaining four.

B C

A

O

D

P
1A

1B

1C

1D

Figure 6-286

Constructive description
( (circle A B C D P)

(circumcenterO A B C)

(foot A1 P A B) (foot B1 P B C)

(foot C1 P C D) (foot D1 P D A)

(
AA1
A1B

BB1
B1C

CC1
C1D

DD1
D1A

= 1) )

The machine proof
DD1
AD1
·CC1

DC1
· BB1
CB1
· AA1

BA1

D1
=

PADP
−PDAP

· CC1
DC1
· BB1
CB1
· AA1

BA1

C1
=
−PADP·PDCP

PDAP·(−PCDP) ·
BB1
CB1
· AA1

BA1

B1
=

PADP·PDCP·PCBP

PDAP·PCDP·(−PBCP) ·
AA1
BA1

A1
=
−PADP·PDCP·PCBP·PBAP

PDAP·PCDP·PBCP·(−PABP)

co−cir
=

(−2D̃P·ÃD·cos(AP))·(2C̃P·C̃D·cos(DP))
(2ÃP·ÃD·cos(DP))·(−2D̃P·C̃D·cos(CP))

·
(2B̃P·B̃C·cos(CP))·(2ÃP·ÃB·cos(BP))

(−2C̃P·B̃C·cos(BP))·(−2B̃P·ÃB·cos(AP))

simpli f y
= 1

The eliminants
DD1
AD1

D1
=

PADP
−PDAP

, CC1
DC1

C1
=

PDCP

−PCDP
BB1
CB1

B1
=

PCBP

−PBCP
AA1
BA1

A1
=

PBAP
−PABP

PABP= − 2(B̃P·ÃB·cos(AP))
PBCP= − 2(C̃P·B̃C·cos(BP))
PCDP= − 2(D̃P·C̃D·cos(CP))
PDAP=2(ÃP·ÃD·cos(DP))
PBAP=2(ÃP·ÃB·cos(BP))
PCBP=2(B̃P·B̃C·cos(CP))
PDCP=2(C̃P·C̃D·cos(DP))
PADP= − 2(D̃P·ÃD·cos(AP))

Example 6.287 (0.866, 4, 29)The four lines obtained by joining each vertex of a cyclic
quadrilateral to the orthocenter of the triangle formed by the remaining three vertices
bisect each other.

V

U

D

O

C

BA

Figure 6-288

M

1A

1D D

O

A

CB

Figure 6-287

Constructive description( (circle A B C D) (orthocenterD1 A B C)

(orthocenterA1 B C D) (inter M (l D D1) (l A A1)) (midpointM A A1) )

Example 6.288 (1.750, 11, 35)A line AD through the vertex A meets the circumcircle of the
triangle ABC in D. If U, V are the orthocenters of the triangleABD, ACD, respectively,
prove that UV is equal and parallel to BC.
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Constructive description
( (circle A B C D) (orthocenterU A B D) (orthocenterV A C D) (eqdistanceV U B C) )

Example 6.289 (1.633, 12, 35)The sum of the squares of the distances of the anticenter of a
cyclic quadrilateral from the four vertices is equal to the square of the circumdiameter of
the quadrilateral.

B C

A

O D

1A

M

Figure 6-289

Constructive description
( (circle A B C D)

(circumcenterO A B C)

(orthocenterA1 B C D)

(midpointM A A1)

(MA
2
+MB

2
+MC

2
+MD

2
= 4OB

2
) )

Example 6.290 (0.750, 6, 41)The line joining the centroid of a triangle to a point P on the
circumcircle bisects the line joining the diametric opposite of P to the orthocenter.

A B

C

3M

2M
G H

O

P

Q

I

Figure 6-290

Constructive description
( (circle A B C P)

(circumcenterO A B C)

(orthocenterH A B C)

(centroidG A B C)

(lratio Q O P −1)

(inter I (l H Q) (l P G))

(midpoint I Q H) )

Example 6.291 (0.616, 9, 48)Show that the perpendicular from the point of intersection of
two opposite sides, produced, of a cyclic quadrilateral upon the line joining the midpoints
of the two sides considered passes through the anticenter ofthe quadrilateral.

B C

A

O

D

IQ

S

J M

Figure 6-291

Constructive description
( (circle A B C D)

(circumcenterO A B C)

(inter I (l A D) (l B C))

(midpointQ B C)

(midpointS A D)

(midpointJ S Q)

(lratio M J O −1)

(perpendicularI M S Q) )

Example 6.292 (0.450, 3, 31)If Ha, Hb, Hc, Hd are the orthocenters of the four triangles
determined by the vertices of the cyclic quadrilateral ABCD, show that the vertices of
ABCD are the orthocenters of the four triangles determined by the points Ha, Hb, Hc, Hd.
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cH

aH

dH

D
O

A

C
B

Figure 6-292

Constructive description
( (circle A B C D)

(orthocenterHD A B C)

(orthocenterHA B C D)

(orthocenterHC A B D)

(perpendicularHC HA B HD) )

6.4.6 Orthodiagonal Quadrilaterals

Definition A quadrilateral is said to be orthodiagonal if its diagonalsare perpendicular to
each other.

Example 6.293 (Theorem of Brahmagupta) (0.133, 4, 15)In a quadrilateral which is both or-
thodiagonal and cyclic the perpendicular from the point of intersection of the diagonals to
a side bisects the side opposite.

FF

F

E

D

O

B

CA

Figure 6-293

Constructive description
( (pointsA B C)

(circumcenterO A B C)

(foot E B A C)

(inter D (l B E) (cir O B))

(foot FF E C D)

(inter F (l A B) (l E FF ))

(midpointF A B) )

The eliminants
AF
BF

F
=

SAEFF
SBEFF

SBEFF

FF
=
−PCDE·SBCE

PCDC

SAEFF

FF
=

PECD·SAED

PCDC

PCDE
D
=
−(2POBE−PCBE)·(POEO−PBOB)

PBEB

SAED
D
=
−(POEO−PBOB)·SABE

PBEB

PECD
D
=PBCE

SBCE
E
=

PACB·SABC

PACA

PCBE
E
=

PBCB·PBAC+PACB·PABC

PACA

POBE
E
=

PCBO·PBAC+PACB·PABO

PACA

SABE
E
=

PBAC·SABC

PACA
PBCE

E
=

P2
ACB

PACA

PABO
O
=

1
2(PABA) PCBO

O
=

1
2(PBCB)

PABC=
1
2(PBCB−PACA+PABA)

PBAC= − 1
2(PBCB−PACA−PABA)

The machine proof

− AF
BF

F
=
−SAEFF
SBEFF

FF
=
−PECD·SAED·PCDC

(−PCDE·SBCE)·PCDC

simpli f y
=

PECD·SAED

PCDE·SBCE

D
=

PBCE·(−POEO·SABE+PBOB·SABE)·PBEB

(−2POEO·POBE+POEO·PCBE+2POBE·PBOB−PCBE·PBOB)·SBCE·PBEB
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simpli f y
=

PBCE·SABE

(2POBE−PCBE)·SBCE

E
=

P2
ACB·PBAC·SABC·P3

ACA

(2PCBO·PBAC·PACA−PBCB·PBAC·PACA+2PACB·PACA·PABO−PACB·PACA·PABC)·PACB·SABC·P2
ACA

simpli f y
=

PACB·PBAC

2PCBO·PBAC−PBCB·PBAC+2PACB·PABO−PACB·PABC

O
=

PACB·PBAC·(2)2

−4PACB·PABC+4PACB·PABA

simpli f y
=

−PBAC

PABC−PABA

py
=
−(−PBCB+PACA+PABA)·(2)

(PBCB−PACA−PABA)·(2)

simpli f y
= 1

Example 6.294 (0.333, 4, 34)Let E be the intersection of the two diagonals AC and BD of
cyclic quadrilateral ABCD. Let I be the center of circumcircle of ABE. Show the IE⊥ DC.

I

E

D
C

B

O
A

Figure 6-294

Constructive description
( (circle A B C D)

(inter E (l B D) (l A C))

(circumcenterI A B E)

(perpendicularI E C D) )

Example 6.295 (0.600, 7, 16)In an orthodiagonal quadrilateral the two lines joining the
midpoints of the pairs of opposite sides are equal.

S R

QP

D

B

CA

Figure 6-295

Constructive description
( (pointsA B C)

(foot FD B A C) (on D (l B FD))

(midpointP A B)

(midpointQ B C)

(midpointR C D)

(midpointS D A)

(eqdistanceS Q P R) )

Example 6.296 (0.850, 7, 30)In an orthodiagonal quadrilateral the midpoints of the sides lie
on a circle having for center the centroid of the quadrilateral.

O

S R

QP

D

B

CA

Figure 6-296

Constructive description
( (pointsA B C)

(foot FD B A C)

(on D (l B FD))

(midpointP A B)

(midpointQ B C)
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(midpointR C D)

(midpointS D A)

(inter O (l Q S) (l P R))

(perp-biesctO S R) )

Example 6.297 (3.300, 36, 29)If an orthodiagonal quadrilateral is cyclic, the anticenter
coincides with the point of intersection of its diagonals.

M
A C

B

O

D

P

R

J

Figure 6-297

Constructive description
( (pointsA B C)

(circumcenterO A B C)

(foot M B A C)

(inter D (l B M) (cir O B))

(midpointJ O M)

(midpointR C D)

(inter P (l A B) (l J R))

(midpointP A B) )

Example 6.298 (0.967, 14, 15)In a cyclic orthodiagonal quadrilateral the distance of a side
from the circumcenter of the quadrilateral is equal to half the opposite side.

A C

B

O

D

P

Figure 6-298

Constructive description
( (pointsA B C)

(circumcenterO A B C)

(midpointP A B)

(foot FD B A C)

(inter D (l B FD) (cir O B))

(PCDC = 4POPO) )

Example 6.299 (0.967, 15, 14)If a quadrilateral is both cyclic and orthodiagonal, the sum
of the squares of two opposite sides is equal to the square of the circumdiameter of the
quadrilateral.

D

O

B

CA

Figure 6-299

Constructive description
( (pointsA B C)

(circumcenterO A B C)

(foot FD B A C)

(inter D (l B FD) (cir O B))

(AB
2
+DC

2
= 4OA

2
) )
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Example 6.300 (2.117, 26, 20)Show that the line joining the midpoints of the diagonals of
a cyclic orthodiagonal quadrilateral is equal to the distance of the point of intersection of
the diagonals from the circumcenter of the quadrilateral.

A C

B

O

D

E

U

V

Figure 6-300

Constructive description
( (pointsA B C)

(circumcenterO A B C)

(foot E B A C)

(inter D (l B E) (cir O B))

(midpointU A C)

(midpointV B D)

(eqdistanceU V O E) )

Example 6.301 (1.050, 16, 16)If the diagonals of a cyclic quadrilateral ABCD are orthogo-
nal, and E is the diametric opposite of D on its circumcircle,show that AE= CB.

A C

B

O

D

E

Figure 6-301

Constructive description
( (pointsA B C)

(circumcenterO A B C)

(foot FD B A C)

(inter D (l B FD) (cir O B))

(inter E (l D O) (cir O D))

(eqdistanceA E C B) )

Example 6.302 (1.250, 4, 84)A1B1C1D1 is a quadrilateral with an inscribed circle O. Then
O is on the line joining the midpoints of A1C1 and B1D1.

O

A

B

C

D

A B

C
D

M

N

Figure 6-302

1
1

1
1

Constructive description
( (circle A B C D) (circumcenterO A B C)

(on BT (t B B O)) (on AT (t A A O))

(on CT (t C C O)) (on DT (t D D O))

(inter A1 (l B BT) (l A AT))

(inter B1 (l C CT ) (l B BT))

(inter C1 (l D DT) (l C CT ))

(inter D1 (l A AT) (l D DT ))

(midpointM A1 C1)

(inter N (l B1 D1) (l O M))

(midpointN B1 D1) )
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6.4.7 The Butterfly Theorems

For the machine proof of the general butterfly theorem for a circle, See Example 3.81 on
page 146

Example 6.303 (0.516, 4, 31)The Butterfly theorem for a circle.

G

F

A

C

B

D

O

E

Figure 6-303

Constructive description
( (circle A B C D)

(circumcenterO A B C)

(inter E (l A B) (l C D))

(inter G (l B C) (t E E O))

(inter F (l A D) (t E E O))

( GF
EF
= 2) )

Example 6.304 (Butterfly Theorem for Quadrilaterals) (0.166, 3, 19)Let ABCD be a quadrilat-
eral such that AB= BC and AD= CD. M is the intersection of AC and BD. Pass-
ing through M two lines are drawn which meet the sides of ABCD at P,Q,S,R. Let
G = PR∩ AC, H = S Q∩ AC. Show that GM= MH.

A C

B

M

D

P

Q

S

R

G H

Figure 6-304

Constructive description
( (pointsA C)

(on B (b A C))

(midpointM A C)

(on D (l B M))

(on P (l A B))

(inter Q (l C D) (l P M))

(on S (l B C))

(inter R (l A D) (l S M))

(inter G (l A C) (l P R))

(inter H (l A C) (l S Q))

( MG
GA
= MH

HC
) )

The eliminants
MH
CH

H
=

SMQS

SCQS
, MG

AG

G
=

SMPR
SAPR

SAPR
R
=
−SADP·SAMS

SAMDS
, SMPR

R
=

SMPS·SAMD

SAMDS

SAMS
S
=( BS

BC
−1)·SABM, SCQS

S
=( BS

BC
−1)·SCBQ

SMQS
S
= − (SBMQ· BS

BC
−SBMQ−SCMQ· BS

BC
)

SMPS
S
= − (SBMP· BS

BC
−SBMP−SCMP· BS

BC
)

SCMQ
Q
=

SCMP·SCMD

SCMDP
, SBMQ

Q
=

SBMP·SCMD

SCMDP

SCBQ
Q
=

SCMP·SCBD

SCMDP
, SADP

P
= − (SABD· AP

AB
)

SCMP
P
= − (SCBM· AP

AB
), SABD

D
=SABM· BD

BM

SCMD
D
=( BD

BM
−1)·SCBM, SCBD

D
=SCBM· BD

BM

SAMD
D
=( BD

BM
−1)·SABM, SABM

M
= − 1

2(SACB)
SCBM

M
=

1
2(SACB)

The machine proof

( MG
AG

)/( MH
CH

)
H
=
−SCQS

−SMQS
· MG

AG

G
=

SMPR·SCQS

SMQS·SAPR

R
=

(−SMPS·SAMD)·SCQS·SAMDS

SMQS·(−SADP·SAMS)·(−SAMDS)

simpli f y
=

−SMPS·SAMD·SCQS

SMQS·SADP·SAMS
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S
=
−(−SBMP· BS

BC
+SBMP+SCMP· BS

BC
)·SAMD·(SCBQ· BS

BC
−SCBQ)

(−SBMQ· BS
BC
+SBMQ+SCMQ· BS

BC
)·SADP·(SABM· BS

BC
−SABM)

simpli f y
=

−(SBMP· BS
BC
−SBMP−SCMP· BS

BC
)·SAMD·SCBQ

(SBMQ· BS
BC
−SBMQ−SCMQ· BS

BC
)·SADP·SABM

Q
=

−(SBMP· BS
BC
−SBMP−SCMP· BS

BC
)·SAMD·SCMP·SCBD·SCMDP·(−SCMDP)

(−SCMDP·SBMP·SCMD· BS
BC
+SCMDP·SBMP·SCMD+SCMDP·SCMP·SCMD· BS

BC
)·SADP·SABM·SCMDP

simpli f y
=

−SAMD·SCMP·SCBD

SCMD·SADP·SABM

P
=
−SAMD·(−SCBM· AP

AB
)·SCBD

SCMD·(−SABD· AP
AB

)·SABM

simpli f y
=

−SAMD·SCBM·SCBD

SCMD·SABD·SABM

D
=
−(SABM· BD

BM
−SABM)·SCBM·SCBM· BD

BM

(SCBM· BD
BM
−SCBM)·SABM· BD

BM
·SABM

simpli f y
=

−SCBM

SABM

M
=
−( 1

2SACB)

− 1
2SACB

simpli f y
= 1

Example 6.305 (Butterfly Theorem for Quadrilaterals) (0.066, 2, 14)Let ABCD be a quadrilat-
eral such that the intersection M of its diagonals is the midpoint of AC. Passing through
M two lines are drawn which meet the sides of ABCD at P,Q,S,R. Let G= PR∩ AC,
H = S Q∩ AC. Show that GM= MH.
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Constructive description
( (pointsA C B)

(midpointM A C)

(lratio D M B r1)

(lratio P A B r2)

(lratio R A D r3)

(inter Q (l P M) (l C D))

(inter S (l R M) (l B C))

(inter G (l A C) (l P R))

(inter H (l A C) (l S Q))

( MG
GA
= MH

HC
) )

The machine proof

( MG
AG

)/( MH
CH

)
H
=
−SCQS

−SMQS
· MG

AG

G
=

SMPR·SCQS

SMQS·SAPR

S
=

SMPR·(−SCMR·SCBQ)·(−SCMBR)
(−SMRQ·SCBM)·SAPR·SCMBR

simpli f y
=

−SMPR·SCMR·SCBQ

SMRQ·SCBM·SAPR

Q
=
−SMPR·SCMR·SCMP·SCBD·(−SCMDP)

SMPR·SCMD·SCBM·SAPR·SCMDP

simpli f y
=

SCMR·SCMP·SCBD

SCMD·SCBM·SAPR

R
=

SCMD·r3·SCMP·SCBD

SCMD·SCBM·(−SADP·r3)

simpli f y
=

−SCMP·SCBD

SCBM·SADP

P
=
−(−SCBM·r2)·SCBD

SCBM·(−SABD·r2)

simpli f y
=

−SCBD

SABD

D
=
−(−SCBM·r1+SCBM)
−SABM·r1+SABM

simpli f y
=

−SCBM

SABM

M
=
−( 1

2SACB)

− 1
2SACB

simpli f y
= 1

The eliminants

MH
CH

H
=

SMQS

SCQS

MG
AG

G
=

SMPR
SAPR

SMQS
S
=

SMRQ·SCBM

SCMBR

SCQS
S
=
−SCMR·SCBQ

SCMBR

SMRQ
Q
=

SMPR·SCMD

−SCMDP

SCBQ
Q
=

SCMP·SCBD

SCMDP

SAPR
R
= − (SADP·r3)

SCMR
R
=SCMD·r3

SADP
P
= − (SABD·r2)

SCMP
P
= − (SCBM·r2)

SABD
D
= − ((r1−1)·SABM)

SCBD
D
= − ((r1−1)·SCBM)

SABM
M
= − 1

2(SACB)

SCBM
M
=

1
2(SACB)

Example 6.306 (0.100, 2, 15)Let ABCD be a quadrilateral and M the intersection of its
diagonals. Passing through M two lines are drawn which meet the sides of ABCD at
P,Q,S,R. Let G= PR∩ AC, H = S Q∩ AC. Show that

MG

AG
=

MH

CH

CM

MA
.
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Constructive description
( (pointsA B C)

(lratio M A C r0)

(lratio D M B r1)

(lratio P A B r2)

(lratio R A D r3)

(inter Q (l P M) (l C D))

(inter S (l R M) (l B C))

(inter G (l A C) (l P R))

(inter H (l A C) (l S Q))

( MG
AG
= MH

CH
CM
MA

) )

The machine proof
MG
AG

−MH
CH
·CM

AM

H
=

−SCQS

−(−SMQS)·CM
AM

· MG
AG

G
=

−SMPR·SCQS

SMQS·CM
AM
·SAPR

S
=
−SMPR·(−SCMR·SBCQ)·(−SBMCR)

(−SMRQ·SBCM)·CM
AM
·SAPR·SBMCR

simpli f y
=

SMPR·SCMR·SBCQ

SMRQ·SBCM·CM
AM
·SAPR

Q
=

SMPR·SCMR·SCMP·SBCD·(−SCMDP)

SMPR·SCMD·SBCM·CM
AM
·SAPR·SCMDP

simpli f y
=

−SCMR·SCMP·SBCD

SCMD·SBCM·CM
AM
·SAPR

R
=

−SCMD·r3·SCMP·SBCD

SCMD·SBCM·CM
AM
·(−SADP·r3)

simpli f y
=

SCMP·SBCD

SBCM·CM
AM
·SADP

P
=

SBCM·r2·SBCD

SBCM·CM
AM
·(−SABD·r2)

simpli f y
=

−SBCD
CM
AM
·SABD

D
=

−(−SBCM·r1+SBCM)
CM
AM
·(−SABM·r1+SABM)

simpli f y
=

−SBCM
CM
AM
·SABM

M
=
−(−SABC·r0+SABC)·r0

(r0−1)·SABC·r0

simpli f y
= 1

The eliminants

MH
CH

H
=

SMQS

SCQS

MG
AG

G
=

SMPR
SAPR

SMQS
S
=

SMRQ·SBCM

SBMCR

SCQS
S
=
−SCMR·SBCQ

SBMCR

SMRQ
Q
=

SMPR·SCMD

−SCMDP

SBCQ
Q
=

SCMP·SBCD

SCMDP

SAPR
R
= − (SADP·r3)

SCMR
R
=SCMD·r3

SADP
P
= − (SABD·r2)

SCMP
P
=SBCM·r2

SABD
D
= − ((r1−1)·SABM)

SBCD
D
= − ((r1−1)·SBCM)

SABM
M
=SABC·r0

CM
AM

M
=

r0−1
r0

SBCM
M
= − ((r0−1)·SABC)
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6.5 Circles

6.5.1 Chords, Secants, and Tangents

Example 6.307 (The Secant Theorem) (0.016, 1, 8)The product of the distances of a given
point, from any two points which are collinear with the givenpoint and lie on the circle, is
a constant. This constant is called the power of the point with respect to the circle.

A O

B

C

D

E

Figure 6-307

Constructive description
( (circle A B C D)

(inter E (l B D) (l A C))

(eq-product
A E C E B E D E) ).

The machine proof
PAEC

PBED

E
=

(−PACA·SBCD·SABD)·S2
ABCD

(−PBDB·SACD·SABC)·S2
ABCD

simpli f y
=

PACA·SBCD·SABD

PBDB·SACD·SABC

=
(2ÃC

2
)·(−C̃D·B̃D·B̃C)·(−B̃D·ÃD·ÃB)

(2B̃D
2
)·(−C̃D·ÃD·ÃC)·(−B̃C·ÃC·ÃB)

simpli f y
= 1

The eliminants

PBED
E
=
−PBDB·SACD·SABC

S2
ABCD

PAEC
E
=
−PACA·SBCD·SABD

S2
ABCD

SABC=
B̃C·ÃC·ÃB

(−2)·d

SACD=
C̃D·ÃD·ÃC

(−2)·d
PBDB=2(B̃D

2)
SABD=

B̃D·ÃD·ÃB
(−2)·d

SBCD=
C̃D·B̃D·B̃C

(−2)·d
PACA=2(ÃC

2)

Example 6.308 (0.050, 4, 3)The power of a point with respect to a circle is equal, both in
magnitude and in sign, to the square of the distance of the point from the center of the circle
diminished by the square of the radius of the circle.

Constructive description
( (pointsA B)

(on O (b A B))

(on E (l A B))

( 1
2 PAEB = OE

2−OA
2
) )

The eliminants

POEO
E
=PBOB· AE

AB
−PAOA· AE

AB
+PAOA+PABA· AE

AB

2
−PABA· AE

AB

PAEB
E
=( AE

AB
−1)·PABA· AE

AB

PBOB
O
=PAOA

A B

O

E

Figure 6-308

The machine proof
PAEB

POEO−PAOA

E
=

PABA· AE
AB

2
−PABA· AE

AB

PBOB· AE
AB
−PAOA· AE

AB
+PABA· AE

AB

2
−PABA· AE

AB

simpli f y
=

( AE
AB
−1)·PABA

PBOB−PAOA+PABA· AE
AB
−PABA

O
=

PABA· AE
AB
−PABA

PABA· AE
AB
−PABA

simpli f y
= 1
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Example 6.309 (The Tangent Theorem) (0.017 3 4)The product of the distances of a given
point, from any two points which are collinear with the givenpoint and lie on the circle, is
equal to the square of the tangent line from the given point tothe circle.

A

T

O

P

B

Figure 6-309

Constructive description
((pointsA T)

(on O (b A T)) (tratio P T O r)

(inter B (l A P) (cir O A))

(eq-productP T P T P A P B) )

The machine proof
PT PT
PAPB

B
=

PT PT·PAPA
POPO·PAPA−PAPA·PAOA

simpli f y
=

PT PT

POPO−PAOA

P
=

PTOT·r2

PTOT·r2+PTOT−PAOA

O
=

PAOA·r2

PAOA·r2

simpli f y
= 1

The eliminants

PAPB
B
=POPO−PAOA

POPO
P
=(r2+1)·PTOT

PT PT
P
=PTOT·(r)2

PTOT
O
=PAOA

Example 6.310 (0.066, 3, 5)From the ends D and C of a diameter of circle(O) perpendic-
ulars are drawn to chord AB. Let E and F be the feet of the perpendiculars. Show that
OE = OF.

A BM

O

C

D

E
F

Figure 6-310

Constructive description
( (pointsA B D)

(circumcenterO A B D)

(lratio C O D −1)

(foot E C A B)

(foot F D A B)

(midpointM A B)

(midpointM E F) )

The machine proof

− EM
FM

M
=

AE
AB
− 1

2

− AF
AB
+ 1

2

F
=
−( AE

AB
− 1

2 )·PABA

PBAD− 1
2 PABA

E
=
−(PBAC− 1

2 PABA)·PABA

(PBAD− 1
2 PABA)·PABA

simpli f y
=

−(PBAC− 1
2 PABA)

PBAD− 1
2 PABA

C
=
−(2PBAO−PBAD− 1

2 PABA)

PBAD− 1
2 PABA

O
=

(−2)·(−PBAD+
1
2 PABA)

(PBAD− 1
2 PABA)·(2)

simpli f y
= 1

The eliminants

EM
FM

M
=

AE
AB
− 1

2

AF
AB
− 1

2

AF
AB

F
=

PBAD
PABA

AE
AB

E
=

PBAC

PABA

PBAC
C
=2(PBAO− 1

2 PBAD)

PBAO
O
=

1
2(PABA)

Example 6.311Let A, B,C,D,E and P be six cyclic points. From P perpendicular lines are
drawn to AB, BC, CD, DE, and EA respectively. Let the foot be L,M,N,, K, and S . Show
that AL

LB
· BM

MC
· CN

ND
· DK

KE
· ES

S A
= −1.
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A

O

B

C

D

P

E

L

M

N

K

S

Figure 6-311

Constructive description
((circle A B C D E P)

(foot L P A B)

(foot M P B C)

(foot N P C D)

(foot K P D E)

(foot S P E A)

( AL
LB

BM
MC

CN
ND

DK
KE

ES
S A
= −1) )

The machine proof
ES
AS
· DK

EK
·CN
DN
· BM
CM
· AL

BL

S
=

PAEP
−PEAP

· DK
EK
·CN

DN
· BM
CM
· AL

BL

K
=
−PAEP·PEDP

PEAP·(−PDEP) · CN
DN
· BM
CM
· AL

BL

N
=

PAEP·PEDP·PDCP

PEAP·PDEP·(−PCDP) · BM
CM
· AL

BL

M
=
−PAEP·PEDP·PDCP·PCBP

PEAP·PDEP·PCDP·(−PBCP) · AL
BL

L
=

PAEP·PEDP·PDCP·PCBP·PBAP

PEAP·PDEP·PCDP·PBCP·(−PABP)

co−cir
=

−(−2ẼP·ÃE·cos(AP))·(2D̃P·D̃E·cos(EP))
(2ÃP·ÃE·cos(EP))·(−2ẼP·D̃E·cos(DP))

(2C̃P·C̃D·cos(DP))·(2B̃P·B̃C·cos(CP))·(2ÃP·ÃB·cos(BP))
(−2D̃P·C̃D·cos(CP))·(−2C̃P·B̃C·cos(BP))·(−2B̃P·ÃB·cos(AP))

simpli f y
= 1

The eliminants
ES
AS

S
=

PAEP
−PEAP

, DK
EK

K
=

PEDP
−PDEP

CN
DN

N
=

PDCP

−PCDP
, BM

CM

M
=

PCBP

−PBCP

AL
BL

L
=

PBAP

−PABP

PABP= − 2(B̃P·ÃB·cos(AP))
PBCP= − 2(C̃P·B̃C·cos(BP))
PCDP= − 2(D̃P·C̃D·cos(CP))
PDEP= − 2(ẼP·D̃E·cos(DP))
PEAP=2(ÃP·ÃE·cos(EP))
PBAP=2(ÃP·ÃB·cos(BP))
PCBP=2(B̃P·B̃C·cos(CP))
PDCP=2(C̃P·C̃D·cos(DP))
PEDP=2(D̃P·D̃E·cos(EP))
PAEP= − 2(ẼP·ÃE·cos(AP))

Example 6.312 (0.416, 4, 22)If ABCD is a rectangle inscribed in a circle, center O, and if
PX, PX1, PY PY1 are the perpendiculars from any point P upon the sides AB, CD,AD,
BC, prove that PX· PX1 + PY · PY1 is equal to the power of P with respect to the circle O.

A B

P

D C

O

X

1X

Y 1Y

Figure 6-312

Constructive description
( (pointsA B P) (on D (t A A B))

(inter C (p B A D) (p D A B))

(inter O (l B D) (l A C))

(foot X P A B)

(inter X1 (l C D) (l P X))

(foot Y P A D)

(inter Y1 (l B C) (l Y P))

(OP
2−OA

2
= 1

2 PXPX1+
1
2 PYPY1) )

Example 6.313 (0.150, 3, 15)Let D be a point on the side CB of a right triangle ABC such
that the circle(O) with diameter CD touches the hypotenuse AB at E. Let F= AC∩ DE.
Show that AF= AE.
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F

B

A

E

O DC

Figure 6-313

Constructive description
( (pointsC E)

(on D (t E E C))

(midpointO D C)

(inter A (t E E O) (t C C O))

(inter B (l D C) (l A E))

(inter F (l D E) (l A C))

(eqdistanceA F A E) )

The eliminants

PAFA
F
=

PCAC·(SEDA)2

(SCEAD)2

SCEAD
A
=

PDEO·PECO−16SCEO·SCED

(−16)·SCEO

PEAE
A
=

PEOE·(PECO)2

(16)·(SCEO)2

SEDA
A
=

PDEO·PECO

(16)·SCEO

PCAC
A
=

PCOC·(PCEO)2

(16)·(SCEO)2

SCEO
O
=

1
2(SCED)

PECO
O
=

1
2(PECD)

PEOE
O
=

1
4(2PEDE−PCDC+2PCEC)

PDEO
O
=

1
2(PEDE)

PCEO
O
=

1
2(PCEC)

PCOC
O
=

1
4(PCDC)

SCED
D
= − 1

4(PCEC· DE
EC

)
PECD

D
=PCEC

PEDE
D
=PCEC·( DE

EC
)2

PCDC
D
=( DE

EC

2
+1)·PCEC

The machine proof
PAFA
PEAE

F
=

PCAC·S2
EDA

PEAE·S2
CEAD

A
=

PCOC·P2
CEO·((−

1
4 PDEO·PECO))2·((−4SCEO))2·(16S2

CEO)

PEOE·P2
ECO·(

1
4 PDEO·PECO−4SCEO·SCED)2·((−4SCEO))2·(16S2

CEO)

simpli f y
=

PCOC·(PCEO)2·(PDEO)2

PEOE·(PDEO·PECO−16SCEO·SCED)2

O
=

( 1
4 PCDC)·(( 1

2 PCEC))2·(( 1
2 PEDE))2

( 1
2 PEDE− 1

4 PCDC+
1
2 PCEC)·( 1

4 PEDE·PECD−8S2
CED)2

D
=

(PCEC· DE
EC

2
+PCEC)·(PCEC)2·(PCEC· DE

EC

2
)2

(PCEC· DE
EC

2
+PCEC)·((−P2

CEC·
DE
EC

2
))2

simpli f y
= 1

Example 6.314 (3.250, 21, 23)Show that the sum of the powers, with respect to the circum-
circle of a triangle, of the symmetries of the orthocenter with respect to the vertices of the
triangle is equal to the sum of the squares of the sides of the triangle.

A B

C

O

D

F

E

H

1A
1B

1C

Figure 6-314

Constructive description
( (pointsA B C)

(circumcenterO A B C)

(foot D A B C)

(foot F C A B)

(foot E B A C)
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(inter H (l B E) (l A D))

(lratio A1 A H −1)

(lratio B1 B H −1)

(lratio C1 C H −1)

(A1O
2−OB

2
+B1O

2−OB
2
+C1O

2−OB
2
= AB

2
+BC

2
+CA

2
) )

Example 6.315 (0.700, 17, 17)Two unequal circles are tangent internally at A. The tangent
to the smaller circle at a point B meets the larger circle in C,D. Show that AB bisects the
angle CAD.

A
1O2O

B

C

D

Figure 6-315

Constructive description
( (pointsA B C)

(inter O1 (t B B C) (b A B))

(inter O2 (l A O1) (b A C))

(inter D (l B C) (cir O2 C))

(eqangleC A B B A D) )

Example 6.316 (1.850, 65, 19)If G is the centroid of a triangle ABC, show that the powers
of the vertices A, B, C for the circles GBC, GCA, GAB, respectively, are equal.

2O

1O

GE

D

A

BC

Figure 6-316

Constructive description
( (pointsA B C)

(centroidG A B C)

(circumcenterO1 B C G)

(circumcenterO2 A C G)

(AO1
2−O1C

2
= BO2

2−O2C
2
) )

Example 6.317 (0.083, 4, 10)Let C be a point on a chord AB of circle O. Let D and E be the
intersections of perpendicular of OC through C with the two tangents of the circle at A and
B, respectively. Show that CE= CD.

O A

B

C

D

E

Figure 6-317

Constructive description
((pointsA B)

(on O (b A B))

(lratio C A B r)

(tratio X B O s)

(inter E (l B X) (t C C O))

(inter D (l C E) (t A A O))

(midpointC D E) )
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The machine proof

−CD
CE

D
=
−POAC

−POCAE

E
=

POAC·PCBOX

−PCBOX·POAC−POCX·PBAO+POAX·PBCO

X
=

POAC·(4SBOC·s)
−(4POAC·SBOC·s+4PBCO·SABO·s−4PBAO·SBOC·s)

simpli f y
=

−POAC·SBOC

POAC·SBOC+PBCO·SABO−PBAO·SBOC

C
=

−PBAO·r ·(−SABO·r+SABO)
−PBAO·SABO·r2+PBAO·SABO·r+PABA·SABO·r2−PABA·SABO·r

simpli f y
=

−PBAO

PBAO−PABA

py
=
−(−PBOB+PAOA+PABA)·(2)
(−PBOB+PAOA−PABA)·(2)

O
=

PABA
PABA

simpli f y
= 1

The eliminants
CD
CE

D
=

POAC

−POCAE

POCAE
E
=
−(PCBOX·POAC+POCX·PBAO−POAX·PBCO)

PCBOX

POAX
X
=PBAO−4SABO·s

POCX
X
=PBCO−4SBOC·s

PCBOX
X
=4(SBOC·s)

PBCO
C
= − ((r−1)·(PBAO−PABA·r))

SBOC
C
= − ((r−1)·SABO)

POAC
C
=PBAO·r, PBOB

O
=PAOA

PBAO= − 1
2(PBOB−PAOA−PABA)

Example 6.318 (0.083, 5, 14)Let G be a point on the circle(O) with diameter BC, A be
the midpoint of the arc BG. AD⊥ BC. E = AD ∩ BG and F = AC ∩ BG. Show that
AE = BE(= EF).

F
E

D

A

M

G

CB O

Figure 6-318

Constructive description
( (pointsG B)

(midpointM B G)

(tratio A M B r)

(inter O (l A M) (b A B))

(lratio C O B −1)

(foot D A B C)

(inter E (l A D) (l B G))

(inter F (l A C) (l B G))

(eqdistanceA E B E) )

Example 6.319 (0.050, 2, 6)Let D be the intersection of one of the bisectors of∠A of triangle
ABC with side BC, E be the intersection of AD with the circumcircle of ABC. Show that
AB · AC = AD · AE.



6.5 Circles 415

B C

A

D

O

E

Figure 6-319

Constructive description
( (circle A B C)

(circumcenterO A B C)

(lratio D B C ÃB
ÃB+ÃC

)

(inter E (l A D) (cir O A))

(PDAAE = 2ÃB·ÃC) )

The machine proof
PDAE

(2)·ÃC·ÃB

E
=

2POAD·PADA

(2)·ÃC·ÃB·PADA

simpli f y
=

POAD

ÃC·ÃB

D
=

ÃC·PBAO+ÃB·PCAO

ÃC·ÃB·(ÃC+ÃB)

O
=

2ÃC·PABA+2ÃB·PACA

ÃC·ÃB·(ÃC+ÃB)·(2)2

co−cir
= 2ÃC

2·ÃB+2ÃC·ÃB
2

(2)·ÃC·ÃB·(ÃC+ÃB)

simpli f y
= 1

The eliminants

PDAE
E
=(2)·POAD

POAD
D
=

ÃC·PBAO+ÃB·PCAO

ÃC+ÃB

PCAO
O
=

1
2(PACA)

PBAO
O
=

1
2(PABA)

PACA=2(ÃC
2)

PABA=2(ÃB
2)

Example 6.320 (0.067, 5, 12)Let ABC be a triangle. Through A a line is drawn tangent
to the circle with diameter BC at D. Let E be a point on AB such that AD = AE. The
perpendicular to AB at E meets AC at F. Show that AE/AB= AC/AF.

B C

A

O

D
E

F

Figure 6-320

Constructive description
( (pointsE D)

(on A (b E D))

(on B (l A E))

(tratio OO D A 1)

(inter O (l OO D) (b B D))

(lratio C O B −1)

(inter F (l A C) (t E E A))

(eq-productA B A C A E A F) )

The eliminants
AF
AC

F
=

PEAE

PEAC

PEAC
C
=2PEAO−PEAB

PEAO
O
=

2PDBOO ·PEAD−PDBD·PEAOO−PDBD·PEAD

(−2)·PBDOO

PEAOO

OO
= PEAD+4SEDA

PDBOO

OO
= PDBD−4SDAB

PBDOO

OO
= 4(SDAB)

SDAB
B
=SEDA· AB

AE

PEAB
B
=PEAE· AB

AE

PDBD
B
= − (PDAD· AB

AE
−PDAD−PEAE· AB

AE

2
+PEAE· AB

AE
−PEDE· AB

AE
)

AB
EA

B
= − ( AB

AE
)

PEAD=
1
2(PDAD+PEAE−PEDE)

PDAD
A
=PEAE

The machine proof

(− AB
EA

)/( AF
AC

)
F
=

PEAC

PEAE
· − AB

EA

C
=
−(2PEAO−PEAB)

PEAE
· AB

EA

O
=
−(PBDOO ·PEAB+2PDBOO ·PEAD−PDBD·PEAOO−PDBD·PEAD)

PEAE·(−PBDOO) · AB
EA
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OO
=
−4PDBD·SEDA+4PEAB·SDAB−8PEAD·SDAB

PEAE·(4SDAB) · AB
EA

B
=
− AB

AE
·(−PDAD·SEDA· AB

AE
+PDAD·SEDA+2PEAD·SEDA· AB

AE
−PEAE·SEDA· AB

AE
+PEDE·SEDA· AB

AE
)

PEAE·SEDA· AB
AE
·(−1)

simpli f y
=

−(PDAD· AB
AE
−PDAD−2PEAD· AB

AE
+PEAE· AB

AE
−PEDE· AB

AE
)

PEAE

py
=
−(−2PDAD)

PEAE·(2)

A
=

PEAE
PEAE

simpli f y
= 1

Example 6.321 (0.600, 2, 40)The cross ratio of four points on a circles with respect to any
points on the circle is constant.

A B

C

O

D

E

G
F

1E

1G
1F

Figure 6-321

Constructive description
(circle A E E1 B C D)

(inter G (l A B) (l C E))

(inter F (l D E) (l A B))

(inter G1 (l E1 C) (l A B))

(inter F1 (l E1 D) (l A B))

( AF
BF
· BG

AG
=

AF1
BF1
· BG1

AG1
) )

The machine proof
BG
AG
· AF

BF
BG1
AG1
· AF1

BF1

F1
=

−SE1BD

BG1
AG1
·SAE1D

· BG
AG
· AF

BF

G1
=
−SE1BD·SAE1C

(−SE1BC)·SAE1D
· BG

AG
· AF

BF

F
=

(−SAED)·SE1BD·SAE1C

SE1BC·SAE1D·SEBD
· BG

AG

G
=
−SEBC·SAED·SE1BD·SAE1C

SE1BC·SAE1D·SEBD·(−SAEC)

co−cir
=

(−B̃C·ẼC·ẼB)·(−ẼD·ÃD·ÃE)·(−B̃D·Ẽ1D·Ẽ1B)·(−Ẽ1C·ÃC·ÃE1)·((2d))4

(−B̃C·Ẽ1C·Ẽ1B)·(−Ẽ1D·ÃD·ÃE1)·(−B̃D·ẼD·ẼB)·(−ẼC·ÃC·ÃE)·((2d))4

simpli f y
= 1

The eliminants
AF1
BF1

F1
=

SAE1D

−SE1BD

BG1
AG1

G1
=
−SE1BC

SAE1C

AF
BF

F
=
−SAED
SEBD

BG
AG

G
=

SEBC

−SAEC

SAEC=
ẼC·ÃC·ÃE

(−2)·d

SEBD=
B̃D·ẼD·ẼB

(−2)·d

SAE1D=
Ẽ1D·ÃD·ÃE1

(−2)·d

SE1BC=
B̃C·Ẽ1C·Ẽ1B

(−2)·d

SAE1C=
Ẽ1C·ÃC·ÃE1

(−2)·d

SE1BD=
B̃D·Ẽ1D·Ẽ1B

(−2)·d

SAED=
ẼD·ÃD·ÃE

(−2)·d

SEBC=
B̃C·ẼC·ẼB

(−2)·d

Example 6.322 (0.083, 1, 17)The tangent to a circle at the point C meets the diameter AB,
produced, in T; Prove that the other tangent from T to the circle is divided harmonically
by CA, CB, CT and its point of contact.



6.5 Circles 417

1B

1A
T

D

E

C

BOA

Figure 6-322

Constructive description
((pointsA C)

(on B (t C C A))

(midpointO A B)

(foot E C A O)

(lratio D E C −1)

(inter T (l A O) (t C C O))

(inter A1 (l T D) (l C A))

(inter B1 (l T D) (l C B))

(harmonicT D A1 B1) )

The machine proof

(− T A1
DA1

)/( T B1
DB1

)

B1
=

SCBD

SCBT
· − T A1

DA1

A1
=
−(−SACT)·SCBD

SCBT·(−SACD)

T
=
−PACO·SACO·SCBD·(−PAOC)

(−PBCO·SACO)·SACD·(−PAOC)

simpli f y
=

PACO·SCBD

PBCO·SACD

D
=

PACO·(2SCBE)
PBCO·(2SACE)

E
=

PACO·PABC·SACB·PAOA

PBCO·PCAO·SACO·PABA

O
=

( 1
2 PACA)·PABC·SACB·( 1

4 PABA)

( 1
2 PCBC)·( 1

2 PCAB)·( 1
2SACB)·PABA

simpli f y
=

PACA·PABC

PCBC·PCAB

py
=

PACA·(PCBC+PABA−PACA)·(2)
PCBC·(−PCBC+PABA+PACA)·(2)

B
=
−2PCBC·PACA

−2PCBC·PACA

simpli f y
= 1

The eliminants
T B1
DB1

B1
=

SCBT

SCBD
T A1
DA1

A1
=

SACT

SACD

SCBT
T
=

PBCO·SACO

PAOC

SACT
T
=

PACO·SACO

−PAOC

SACD
D
=2(SACE)

SCBD
D
=2(SCBE)

SACE
E
=

PCAO·SACO

PAOA

SCBE
E
=

PABC·SACB

PABA

SACO
O
=

1
2(SACB)

PCAO
O
=

1
2(PCAB)

PBCO
O
=

1
2(PCBC)

PAOA
O
=

1
4(PABA)

PACO
O
=

1
2(PACA)

PCAB=
(PCBC−PABA−PACA)

−2
PABC=

1
2(PCBC+PABA−PACA)

PABA
B
=PCBC+PACA

Example 6.323 (0.650, 10, 19)Let R be a point on the circle with diameter AB. At a point P
of AB a perpendicular is drawn meeting BR at N, AR at M, and meeting the circle at Q.
Show that PQ2 = PM · PN.

OA BP

Q

R

M

N

Figure 6-323

Constructive description
( (pointsA Q R)

(circumcenterO A Q R)

(lratio B O A −1)

(foot P Q A O)

(inter M (l P Q) (l A R))

(inter N (l P Q) (l R B))

(eq-productP M P N P Q P Q) )

Example 6.324 (0.066, 3, 12)Through point F on the circle with diameter AB a tangent to
the circle is drawn meeting the two lines, perpendicular to AB at A and B, at D and E.
Show the OA2 = DF · EF.
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OA B

F
D

E

Figure 6-324

Constructive description
( (pointsA F)

(on B (t F F A))

(midpointO A B)

(on M (t F F O))

(inter D (l F M) (t A A B))

(inter E (l F M) (t B B A))

(eq-productD F F E O A O A) )

The machine proof
−PDFE
PAOA

E
=
−PMFD·PABF
PAOA·PBFAM

D
=

−PFMF ·PFAB·PABF
PAOA·PBFAM·(−PBFAM)

M
=

PFOF·MF
FO

2
·PFAB·PABF

PAOA·((−4SAFB·MF
FO

))2

simpli f y
=

PFOF·PFAB·PABF

(16)·PAOA·(SAFB)2

O
=

( 1
2 PFBF− 1

4 PABA+
1
2 PAFA)·PFAB·PABF

(16)·( 1
4 PABA)·(SAFB)2

coor
=

(2u2
2+2u2

1)·(2u2
1)·(2u2

2)·((2))2

(16)·(2u2
2+2u2

1)·((−u2·u1))2

simpli f y
= 1

The eliminants

PDFE
E
=

PMFD ·PABF
PBFAM

PMFD
D
=

PFMF ·PFAB
−PBFAM

PBFAM
M
= − 4(SAFB·MF

FO
)

PFMF
M
=PFOF·( MF

FO
)2

PAOA
O
=

1
4(PABA)

PFOF
O
= 1

4 (2PFBF−PABA+2PAFA)

SAFB= − 1
2(u2·u1)

PABF=2((u2)2)
PFAB=2((u1)2)
PAFA=2((u1)2)
PABA=2(u2

2+u2
1)

PFBF=2((u2)2)

In the above machine proof,F = (0, 0),A = (u1, 0), B = (0, u2).

Example 6.325 (0.066, 2, 12)Let AD be the altitude on the hypotenuse BC of right triangle
ABC. A circle passing through C and D meets AC at E. BE meets thecircle at another
point F. Show that AF⊥ BE.

A B

C

D

M

O

E F

Figure 6-325

Constructive description
( (pointsA B)

(tratioC A B H)

(foot D A B C)

(midpointM C D)

(tratio O M C I)

(inter E (l C A) (cir O C))

(inter F (l E B) (cir O E))

(perpendicularA F B E) )

The machine proof
PABE
PEBF

F
=

PABE·PBEB
−POEO·PBEB+PBEB·PBOB

simpli f y
=

PABE

−(POEO−PBOB)

E
=

PABC

−(PCOC−PBOB)

O
=

−PABC

PCMC−PBMB

M
=

−PABC

− BC
CD

2
·PCDC− BC

CD
·PCDC

simpli f y
=

PABC

( BC
CD
+1)· BC

CD
·PCDC

D
=

PABC·PBCB·(PACB)2

(−PBCB+PACB)·(−PBCB)·P2
ACB

simpli f y
=

PABC

PBCB−PACB

C
=

PABA
PABA

simpli f y
= 1

The eliminants

PEBF
F
=−(POEO−PBOB)

POEO
E
=PCOC

PABE
E
=PABC

PBOB
O
=PCMC·I2+PBMB

PCOC
O
=(I2+1)·PCMC

PBMB
M
=

1
4((2 BC

CD
+1)2·PCDC)

PCMC
M
=

1
4(PCDC)

PCDC
D
=

(PACB)2

PBCB

BC
CD

D
=
−PBCB

PACB

PACB
C
=PABA·(r)2

PBCB
C
=(r2+1)·PABA

PABC
C
=PABA
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Example 6.326 (0.067, 5, 9)Let M be the midpoint of the arc AB of circle(O), D be the
midpoint of AB. The perpendicular through M is drawn to the tangent of the circle at A
meeting that tangent at E. Show ME= MD.

E

M

O

BA
D

Figure 6-326

Constructive description
( (pointsA D)

(on M (t D D A))

(lratio B D A −1)

(inter O (l M D) (b A M))

(inter E (p M O A) (t A O A))

(perp-biesctM D E) )

Example 6.327 (0.200, 4, 11)The circle with the altitude AD of triangle ABC as a diameter
meets AB and AC at E and F, respectively. Show that B, C, E and F are on the same circle.

Constructive description
( (pointsA B C)

(foot D A B C)

(midpointO A D)

(inter E (l A B) (cir O A))

(inter F (l A C) (cir O A))

(cocircleE F C B) )

The eliminants

SBCF
F
=

(PCOC−PAOA)·SABC

PACA

PBFC
F
=
−(2PCAO−PBAC)·(PCOC−PAOA)

PACA

PBEC
E
=
−(2PBAO−PBAC)·(PBOB−PAOA)

PABA

SBCE
E
=

(PBOB−PAOA)·SABC

PABA

PBAO
O
=

1
2(PBAD)

PCAO
O
=

1
2(PCAD)

PBAD
D
=

PBAC·PABC+PACB·PABA

PBCB

PCAD
D
=

PBAC·PACB+PACA·PABC

PBCB

PABC=
1
2(PBCB−PACA+PABA)

PACB=
1
2(PBCB+PACA−PABA)

PBAC= − 1
2(PBCB−PACA−PABA)

B C

A

D

O
E

F

Figure 6-327

The machine proof
SBCE·PBFC

SBCF·PBEC

F
=

SBCE·(−2PCOC·PCAO+PCOC·PBAC+2PCAO·PAOA−PBAC·PAOA)·PACA

(PCOC·SABC−PAOA·SABC)·PBEC·PACA

simpli f y
=

−SBCE·(2PCAO−PBAC)
SABC·PBEC

E
=

−(PBOB·SABC−PAOA·SABC)·(2PCAO−PBAC)·PABA

SABC·(−2PBOB·PBAO+PBOB·PBAC+2PBAO·PAOA−PBAC·PAOA)·PABA

simpli f y
=

2PCAO−PBAC

2PBAO−PBAC



420 Chapter 6. Topics from Geometry

O
=

PCAD−PBAC

PBAD−PBAC

D
=

(−PBCB·PBAC+PBAC·PACB+PACA·PABC)·PBCB

(−PBCB·PBAC+PBAC·PABC+PACB·PABA)·PBCB

simpli f y
=

PBCB·PBAC−PBAC·PACB−PACA·PABC

PBCB·PBAC−PBAC·PABC−PACB·PABA

py
=

(−2P2
BCB+2P2

ACA−4PACA·PABA+2P2
ABA)·((2))3

(−2P2
BCB+2P2

ACA−4PACA·PABA+2P2
ABA)·((2))3

simpli f y
= 1

Example 6.328 (0.033, 1, 11)Let A, B, C, D be four points on circle(O). E = CD∩ AB. CB
meets the line passing through E and parallel to AD at F. GF is tangent to circle(O) at G.
Show that FG= FE.

By Example 6.309, we only need to
prove the following statement.

G F

E

D

O

C

BA

Figure 6-328

Constructive description
( (circle A B D C)

(inter E (l A B) (l C D))

(inter F (l B C) (p E A D))

(eq-productF B F C E F E F) )

The machine proof
PBFC

PEFE

F
=

PBCB·SBDE·SACE·S2
ABDC

PADA·S2
BCE·S

2
ABDC

simpli f y
=

PBCB·SBDE·SACE

PADA·(SBCE)2

E
=

PBCB·(−SBDC·SABD)·(−SADC·SABC)·(SADBC)2

PADA·((−SBDC·SABC))2·(SADBC)2

simpli f y
=

PBCB·SABD·SADC

PADA·SBDC·SABC

co−cir
=

(2B̃C
2
)·(−B̃D·ÃD·ÃB)·(−D̃C·ÃC·ÃD)·((2d))2

(2ÃD
2
)·(−D̃C·B̃C·B̃D)·(−B̃C·ÃC·ÃB)·((2d))2

simpli f y
= 1

The eliminants

PEFE
F
=

PADA·(SBCE)2

(SABDC)2

PBFC
F
=

PBCB·SBDE·SACE

(SABDC)2

SBCE
E
=
−SBDC·SABC

SADBC

SACE
E
=
−SADC·SABC

SADBC

SBDE
E
=
−SBDC·SABD

SADBC

SABC=
B̃C·ÃC·ÃB

(−2)·d

SBDC=
D̃C·B̃C·B̃D

(−2)·d
PADA=2((ÃD)2)
SADC=

D̃C·ÃC·ÃD
(−2)·d

SABD=
B̃D·ÃD·ÃB

(−2)·d
PBCB=2((B̃C)2)

Example 6.329 (1.783 25 21)The bisector of triangle ABC at vertex C bisects the arc AB of
the circumcircle of triangle ABC.

A B

C

O

M

N

Figure 6-329

Constructive description
( (pointsA B C)

(circumcenterO A B C)
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(midpointM A B)

(inter N (l O M) (cir O A))

(eqangleA C N N C B) )

Example 6.330 (0.066, 2, 6)Let PT and PB be two tangents to a circle, AB the diameter
through B, and TH the perpendicular from T to AB. Then AP bisects TH.

IH

A

T

O

PB

Figure 6-330

Constructive description
( (pointsB P)

(on O (t B B P))

(inter T (cir O B) (cir P B))

(lratio A O B −1)

(inter H (l B O) (p T B P))

(inter I (l T H) (l A P))

(midpoint I T H) )

The machine proof

− T I
HI

I
=
−SPT A
−SPAH

H
=

SPT A·(−SBPO)
−SBT PA·SBPO

simpli f y
=

SPT A
SBT PA

A
=
−2SPOT−SBPT

−SBPT+2SBPO

T
=

(2PPOP·SBPO−2PBPO·SBPO)·PPOP

(−2PPOP·SBPO+2PBPO·SBPO)·PPOP·(−1)

simpli f y
= 1

The eliminants
T I
HI

I
=

SPT A
−SPAH

SPAH
H
=SBT PA

SBT PA
A
= − (SBPT−2SBPO)

SPT A
A
= − (2SPOT+SBPT)

SBPT
T
=

(2)·PBPO·SBPO

PPOP

SPOT
T
= − (SBPO)

Example 6.3315 (0.083 3 15)Let M be a point on line AB. Two squares AMCD and BMEF
are drawn on the same side of AB. Let U and V be the center of the squares AMCD and
BMEF. Line BC and circle VB meet in N. Show that when point M moving on line AB,
the line MN passes through a fixed point.

5This is a problem from the 1959 International Mathematical Olympia.
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Constructive description
((pointsA B)

(on M (l A B))

(tratioC M A 1)

(midpointU A C)

(tratio E M B −1)

(midpointV E B)

(midpointO A B)

(tratio R O A−1)

(inter N (l B C) (cir V B))

(inter T (l B C) (l M R))

( BN
CN
= BT

CT
) )

The machine proof

( BN
CN

)/( BT
CT

)
T
=
−SMCR

SBMR
· BN

CN

N
=

−PCBV·SMCR

SBMR·(PCBV− 1
2 PBCB)

R
=

−PCBV·SMCO

( 1
4 PMABO)·(PCBV− 1

2 PBCB)

O
=

(−4)·PCBV·( 1
2SBMC+

1
2SAMC)

(− 1
2 PABM)·(PCBV− 1

2 PBCB)

V
=

(4)·( 1
2 PCBE)·(SBMC+SAMC)

PABM·( 1
2 PCBE− 1

2 PBCB)

E
=

(4)·(PMBC+4SBMC)·(SBMC+SAMC)
PABM·(PMBC−PBCB+4SBMC)

C
=

(4)·(PBMB−PAMB)·(− 1
4 PAMB− 1

4 PAMA)
PABM·(−PAMB−PAMA)

simpli f y
=

PBMB−PAMB

PABM

M
=
−PABA· AM

AB
+PABA

−PABA· AM
AB
+PABA

simpli f y
= 1

The eliminants
BT
CT

T
=

SBMR
−SMCR

BN
CN

N
=

PCBV

( 1
2 )·(2PCBV−PBCB)

SBMR
R
=

1
4(PMABO)

SMCR
R
=SMCO

PMABO
O
= − 1

2(PABM)
SMCO

O
=

1
2(SBMC+SAMC)

PCBV
V
=

1
2(PCBE)

PCBE
E
=PMBC+4SBMC

PBCB
C
=PBMB+PAMA

SAMC
C
= − 1

4(PAMA)
SBMC

C
= − 1

4(PAMB)
PMBC

C
=PBMB

PABM
M
= − (( AM

AB
−1)·PABA)

PAMB
M
=( AM

AB
−1)·PABA· AM

AB

PBMB
M
=( AM

AB
−1)2·PABA

Example 6.332 (0.616, 22, 31)Let M be the midpoint of the hypotenuse of the right triangle
ABC. A circle passing through A and M meet AB at E. F is the pointon the circle such
that EF ‖ BC. Show that BC= 2EF.

F

E

O

M

C

BA

Figure 6-332

Constructive description
( (pointsA B)

(on C (t A A B))

(midpointM B C)

(midpointX A M)

(on O (t X X A))

(inter E (l A B) (cir O A))

(inter F (p E B C) (cir O E))

( EF
BC
= 1/2) )

Example 6.333 (0.767, 14, 21)Let PA tangent to circle(O) at point A. M is the midpoint of
PA. C is a point on the circle. PC and MC meet the circle at points E and B, respectively.
PB meets the circle at D. Show that ED is parallel to AP.
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E D

C

B

M

O

PA

Figure 6-333

Constructive description
( (pointsA B C) (circumcenterO A B C)

(inter M (l B C) (t A A O))

(lratio P M A −1)

(inter D (l B P) (cir O B))

(inter E (l C P) (cir O C))

(parallelE D A M) )

Example 6.334 (0.366, 6, 23)If P is any point on a semicircle, diameter AB, and BC, CD
are two equal arcs, then if E= CA∩PB, F = AD∩PC, prove that AD is perpendicular to
EF.

OA B

CD

P

E

F

Figure 6-334

Constructive description
( (pointsA P C)

(circumcenterO A P C)

(lratio B O A −1)

(inter D (cir C B) (cir O B))

(inter E (l P B) (l C A))

(inter F (l P C) (l A D))

(perpendicularE F A D) )

Example 6.335 (1.900, 49, 18)From the point S the two tangents S A, S B and the secant
S PQ are drawn to the same circle. Prove that AP/AQ= BP/BQ.

Q

P

B

M

S

A

D
O

Figure 6-335

Constructive description
( (pointsA B P) (circumcenterO A B P)

(midpointM A B)

(inter S (l O M) (t A A O))

(inter Q (l S P) (cir O P))

(eq-productA Q B P A P B Q) )

Example 6.336 (0.466, 6, 19)Show that the lines joining a point of a circle to the ends of a
chord divide harmonically the diameter perpendicular to the chord.

A

D

P

O

BF

E

Q
S

Figure 6-336

Constructive description
( (pointsA D P)

(circumcenterO A D P)

(lratio B O A −1)

(foot F D O A)

(lratio E F D −1)

(inter Q (l A O) (l P E))

(inter S (l A O) (l P D))

(harmonicA B Q S) )
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Example 6.337 (0.133, 3, 16)From a point A two lines are drawn tangent to circle(O) at B
and C. From a point P on the circle perpendiculars are drawn toBC, AB, and AC. Let D,
F, E be the feet. Show that PD2 = PE · PF.

B A

O

C

P
D

E

F

Figure 6-337

Constructive description
( (pointsB C P)

(circumcenterO B C P)

(inter A (t B B O) (t C C O))

(foot D P B C)

(foot E P A C)

(foot F P A B)

(eq-productP D P D P E P F) )

Example 6.338 (1.113, 14, 24)Through P a tangent PE and a secant PAB of circle(O) are
drawn. The bisector of angle APE meets AE and BE at C and D. Showthat EC= ED.

E P

O

A

B
C D

Figure 6-338

Constructive description
( (pointsP E C)

(on Y (a P C E P C))

(inter A (l E C) (l P Y))

(midpointM A E) (tratio Z E P H)

(inter O (t M M E) (l E Z))

(inter B (l P A) (cir O A))

(inter D (l P C) (l B E))

(eqdistanceE D E C) )

Example 6.339 (0.216, 3, 18)Let N be the traces of the internal bisectors of the triangle ABC
on the circumscribed circle(O). Show that the Simson line of N is the external bisector of
the medial triangle of ABC.

K

N

F

E D

O

C

BA

Figure 6-339

Constructive description
( (pointsA B C)

(circumcenterO A B C)

(midpointD B C)

(midpointE A C) (midpointF B A)

(inter N (l O F) (cir O A))

(foot K N A C)

(eqangleE F K K F D) )
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6.5.2 Intersectional Circles

Example 6.340 (0.216, 3, 18)Through the two common points A, B of two circles(O) and
(O1) two lines are drawn meeting the circles at C and D, E and F, respectively. Show that
CE ‖ DF.

For a proof of this theorem based on full-angles, see Example1.115 on page 47.

FE

D

C

O

B N

A M

1O

X

Figure 6-340

Constructive description
( (circle B A C E)

(midpointX A B)

(tratio O X B H)

(foot M O A C)

(foot N O B E)

(lratio D M A −1)

(lratio F N B −1)

(SCED = SCEF) )

The machine proof
SCED

SCEF

F
=

SCED

2SCEN−SBCE

D
=

2SCEM−SACE

2SCEN−SBCE

N
=

(2SCEM−SACE)·PBEB

2PBEO·SBCE−PBEB·SBCE

simpli f y
=

(2SCEM−SACE)·PBEB

(2PBEO−PBEB)·SBCE

M
=

(2PACO·SACE−PACA·SACE)·PBEB

(2PBEO−PBEB)·SBCE·PACA

simpli f y
=

(2PACO−PACA)·SACE·PBEB

(2PBEO−PBEB)·SBCE·PACA

O
=

(2PACX−PACA−8SBCX·r)·SACE·PBEB

(2PBEX−PBEB−8SBEX·r)·SBCE·PACA

X
=

(PBCA+4SBAC·r)·SACE·PBEB

(PBEA+4SBAE·r)·SBCE·PACA

co−cir
=

(−4ÃC·B̃C·B̃A·r+4ÃC·B̃C·cos(BA)·d)·(−C̃E·ÃE·ÃC)·(2B̃E
2
)·((2d))2

(−4ÃE·B̃E·B̃A·r+4ÃE·B̃E·cos(BA)·d)·(−C̃E·B̃E·B̃C)·(2ÃC
2
)·((2d))2

simpli f y
= 1

The eliminants

SCEF
F
=2SCEN−SBCE

SCED
D
=2SCEM−SACE

SCEN
N
=

PBEO·SBCE

PBEB

SCEM
M
=

PACO·SACE

PACA

PBEO
O
=PBEX−4SBEX·r

PACO
O
=PACX−4SBCX·r

SBEX
X
= − 1

2(SBAE)
PBEX

X
=

1
2(PBEA+PBEB)

SBCX
X
= − 1

2(SBAC)
PACX

X
=

1
2(PACA+PBCA)

PACA=2((ÃC)2)
SBCE=

C̃E·B̃E·B̃C
(−2)·d

SBAE=
ÃE·B̃E·B̃A

(−2)·d
PBEA=2(ÃE·B̃E·cos(BA))
PBEB=2((B̃E)2)
SACE=

C̃E·ÃE·ÃC
(−2)·d

SBAC=
ÃC·B̃C·B̃A

(−2)·d
PBCA=2(ÃC·B̃C·cos(BA))

Example 6.341 (1.583, 39, 25)Let A and B the two common points of two circles(O) and
(O1). Through A a line is drawn meeting the circles at C and D respectively. G is the
midpoint of CD. Line BG intersects circles(O) and (O1) at E and F, respectively. Show
that EG= GF.
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F

E

G

D

C

B

A

1OO
X

Figure 6-341

Constructive description
( (pointsA B C)

(midpointX A B)

(on O1 (t X X A))

(inter O (l X O1) (b A C))

(inter D (l C A) (cir O1 A))

(midpointG C D)

(inter E (l B G) (cir O B))

(inter F (l B G) (cir O1 B))

(midpointG F E) )

Example 6.342 (0.133, 6, 14)Three circles, centers A, B, C, have a point D in common and
intersect two-by-two in the points A1, B1, C1. The common chord DC1 of the first two circles
meets the third in C2. Let A2, B2 be the analogous points on the other two circles. Prove
that the segments A1A2, B1B2, C1C2 are twice as long as the altitudes of the triangle ABC.

C B

A

D F

1C

2C

Figure 6-342

Constructive description
( (pointsA B C D)

(foot F C A B)

(inter C1 (cir B D) (cir A D))

(inter C2 (l D C1) (cir C D))

(
C2C1

CF
= 2) )

The eliminants
C1C2

CF

C2
=
−(PCC1C−PCDC)

PDC1D
· DC1

CF

PDC1D
C1
=

(4)·(PBDB·PBAD−PBAD·PABD+PADA·PABD)
PABA

DC1
CF

C1
=

(2)·SABD

SABC

PCC1C
C1
= −(PCDC·PABA−2PBDB·PBAD−2PBCB·PBAD

+4PBAD·PABD−2PADA·PABD−2PACA·PABD)/PABA

SABC=
1
2(y1·x0)

SABD=
1
2(y2·x0)

PABD=(−2(x2−x0)·x0)
PACA=2(y2

1+x2
1)

PADA=2(y2
2+x2

2)
PBAD=2(x2·x0)
PBCB=2(y2

1+x2
1−2x1·x0+x2

0)
PBDB=2(y2

2+x2
2−2x2·x0+x2

0)
PABA=2(x2

0)
PCDC=2(y2

2−2y2·y1+y2
1+x2

2−2x2·x1+x2
1)

The machine proof
1
2(−C1C2

CF
)

C2
=
−(−DC1

CF
·PCC1C+

DC1
CF
·PCDC)

(2)·PDC1D

simpli f y
=

PCC1C−PCDC

(2)·PDC1D
· DC1

CF

C1
=

(−2PCDC·PABA+2PBDB·PBAD+2PBCB·PBAD−4PBAD·PABD+2PADA·PABD+2PACA·PABD)·(2SABD)·PABA
(2)·(4PBDB·PBAD−4PBAD·PABD+4PADA·PABD)·SABC·PABA
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simpli f y
=

−(PCDC·PABA−PBDB·PBAD−PBCB·PBAD+2PBAD·PABD−PADA·PABD−PACA·PABD)·SABD

(2)·(PBDB·PBAD−PBAD·PABD+PADA·PABD)·SABC

coor
=
−(−8y2·y1·x2

0)·y2·x0·(2)

(2)·(4y2
2·x

2
0)·y1·x0·(2)

simpli f y
= 1

In the above proof, we haveA = (0, 0), B = (x0, 0),C = (x1, y1), andD = (x2, y2).

Example 6.343 (0.050, 3, 8)Show that an altitude of a triangle is the radical axis of the two
circles having for diameters the medians issued from the other two vertices.

B C

A

1B1C

M N

Figure 6-343

Constructive description
( (pointsA B C)

(midpointB1 A C)

(midpointC1 A B)

(midpointM B B1)

(midpointN C C1)

(on-radicalA M B N C) )

The machine proof
−PBMB+PAMA
−PCNC+PANA

N
=

−PBMB+PAMA

− 1
2 PCC1C+

1
2 PAC1A+

1
2 PACA

M
=

(2)·( 1
2 PBB1B− 1

2 PAB1A− 1
2 PABA)

PCC1C−PAC1A−PACA

C1
=

PBB1B−PAB1A−PABA
1
2 PBCB− 1

2 PACA− 1
2 PABA

B1
=

(2)·( 1
2 PBCB− 1

2 PACA− 1
2 PABA)

PBCB−PACA−PABA

simpli f y
= 1

The eliminants

PANA
N
= − 1

4(PCC1C−2PAC1A−2PACA)
PCNC

N
=

1
4(PCC1C)

PAMA
M
= − 1

4(PBB1B−2PAB1A−2PABA)
PBMB

M
=

1
4(PBB1B)

PAC1A
C1
=

1
4(PABA)

PCC1C
C1
=

1
4(2PBCB+2PACA−PABA)

PAB1A
B1
=

1
4(PACA)

PBB1B
B1
=

1
4(2PBCB−PACA+2PABA)

Example 6.344 (0.800, 12, 18)Let A and B be the two common points of two circles(O)
and (O1). Through B a line is drawn meeting the circles at C and D respectively. Show
AC/AD = OA/O1A.

X

O 1O

A

B
C

D

Figure 6-344

Constructive description
( (pointsA B C)

(midpointX A B)

(on O1 (t X X A))

(inter O (l X O1) (b A C))

(inter D (l C B) (cir O1 B))

(eq-productA C O1 A A D O A) )
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Example 6.345 (0.783, 16, 25)From a point P on the line joining the two common points
A and B of two circles(O) and (O1) two secants PCE and PFD are drawn to the circles
respectively. Show that PC· PE = PF · PD.

D

FC

E

P

B

A

1OO
X

Figure 6-345

Constructive description
( (pointsA C F X)

(on Y (t X X A))

(inter O (l X Y) (b A C))

(inter O1 (l X Y) (b A F))

(lratio B X A −1) (on P (l A X))

(inter E (l P C) (cir O C))

(inter D (l P F) (cir O1 F))

(eq-productP C P E P D P F) )

Example 6.346 (1.283, 60, 67)If three chords drawn through a point of a circle are taken for
diameters of three circles, these circles intersect, in pairs, in three new points, which are
collinear.

A B

C

O

D

1M 2M

3M

E

F

G

Figure 6-346

Constructive description
( (circle A B C D) (midpointM1 A D)

(midpointM2 B D) (midpointM3 C D)

(inter E (cir M2 D) (cir M1 D))

(inter F (cir M3 D) (cir M1 D))

(inter G (cir M3 D) (cir M2 D))

(collinearE F G) )

Example 6.347 (0.733, 11, 38)If three circles pass through the same point of the circumcircle
of the triangle of their centers, these circles intersect, in pairs, in three collinear points.

A B

C

O

P

1A

1B

1C

Figure 6-347

Constructive description
( (circle A B C P)

(inter A1 (cir B P) (cir C P))

(inter B1 (cir C P) (cir A P))

(inter C1 (cir B P) (cir A P))

(collinearA1 B1 C1) )

Example 6.348 (1.083, 24, 66)If three circles having a point in common intersect in pairs in
three collinear points, their common point is cyclic with their centers.
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1A 1B

P

1C

A

B

C

Figure 6-348

Constructive description
( (pointsA1 B1 P)

(on C1 (l B1 A1)) (midpointM1 P B1)

(on T1 (t M1 M1 P) 1) (midpointM2 P C1)

(on T2 (t M2 M2 P) 1) (midpointM3 P A1)

(on T3 (t M3 M3 P) 1)

(inter A (l M1 T1) (l M2 T2))

(inter B (l M3 T3) (l M2 T2))

(inter C (l M1 T1) (l M3 T3))

(cocircleA B C P) )

Example 6.349 (0.333, 7, 15)Show that the radical axis of the two circles having for diame-
ters the diagonals AC, BD of a trapezoid ABCD passes through the point of intersection E
of the nonparallel sides BC, AD.

A B

CD

E

1N 2N

I

Figure 6-349

Constructive description
( (pointsA B C)

(on D (p C A B))

(inter E (l A D) (l B C))

(midpointN1 A C)

(midpointN2 B D)

(on-radicalE N1 A N2 B) )

Example 6.350 (0.250, 8, 13)Given two circles(A), (B) intersecting in E, F, show that the
chord E1F1 determined in(A) by the lines MEE1, MFF1 joining E, F to any point M of
(B) is perpendicular to MB.

1F

1E

M

F

E

B

A D

Figure 6-350

Constructive description
( (pointsE F M)

(circumcenterB E F M)

(midpointD E F) (lratio A D B r)

(inter E1 (l M E) (cir A E))

(inter F1 (l M F) (cir A F))

(perpendicularE1 F1 M B) )

Example 6.351 (0.667, 4, 44)From the midpoint C of arc AB of a circle, two secants are
drawn meeting line AB at F, G, and the circle at D and E. Show that F, D, E, and G are
on the same circle.

C

O

A

M

B

D

E

F

G

Figure 6-451

Constructive description
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( (circle A C D E)

(circumcenterO A C D)

(foot M A O C) (lratio B M A −1)

(inter F (l A M) (l D C))

(inter G (l A M) (l C E))

(cocircleD E F G) )

Example 6.352 (1.067 39 18)From point P two tangent lines PA and PB of a circle are
drawn. D is the middle point of segment AB. Through D a secant EF is drawn. Then
∠EPD= ∠FPD.

A

B

E

O
D

P

F

Figure 6-352

Constructive description
( (pointsA B E)

(circumcenterO A B E)

(midpointD A B)

(inter P (l O D) (t A A O))

(inter F (l E D) (cir O E))

(eqangleE P O O P F) )

Example 6.353 (0.100 4 13 )Let D and E be two points on sides AB and AC of triangle ABC
such that DE‖ BC. Show that the circumcircles of triangle ABC and ADE are tangent.

A

B C

O

D
EN

Figure 6-353

Constructive description
( (pointsA B C)

(circumcenterO A B C)

(on D (l A B))

(inter E (l A C) (p D B C))

(circumcenterN A D E)

(SANO = 0) )

6.5.3 The Inversion

Definition Suppose that we have given a circle whose center is O and the radius has the
length r, 0. Let P and Q be any two points collinear with O such that

OP ·OQ= r2.

Then P is said to be the inverse of Q with regard to the circle, and the transformation from
P to Q is called an inversion. The point O is called the center of inversion, the given circle
the circle of inversion, and its radius the radius of inversion.

Example 6.354 (0.001, 2, 3)Two inverse points divide the corresponding diameter harmoni-
cally.
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B AO P Q

Figure 6-354

Constructive description
( (pointsB A)

(midpointO A B)

(lratio P O A r)

(lratio Q O A 1
r )

(harmonicA B P Q) )

The machine proof

(− AP
BP

)/( AQ
BQ

)

Q
=
− BO

AO
·r+1

−r+1 · − AP
BP

P
=
−(r−1)·( BO

AO
·r−1)

(r−1)·(− BO
AO
+r)

simpli f y
=

BO
AO
·r−1

BO
AO
−r

O
=

(− 1
2 r− 1

2)·( 1
2 )

(− 1
2 r− 1

2)·( 1
2 )

simpli f y
= 1

The eliminants
AQ
BQ

Q
=

r−1
BO
AO
·r−1

AP
BP

P
=

r−1

−( BO
AO
−r)

BO
AO

O
= − (1)

Example 6.355From a point P outside a given circle, center O, the tangents are drawn to
the circle. Show that P is the inverse of the point of the intersection of OP with the chord
of contact.

AC

B

O

P

E

Figure 6-355

Constructive description
((pointsA C)

(on B (t C C A))

(midpointO A B)

(inter P (l A O) (t C C O))

(foot E C A O)

(inversionO A P E) )

The machine proof

(−OP
AO

)/(− AO
OE

)
E
=

PAOC

PAOA
· −OP

AO

P
=
−PCOC·PAOC

PAOA·(−PAOC)

simpli f y
=

PCOC

PAOA

O
=

1
2 PCBC− 1

4 PABA+
1
2 PACA

1
4 PABA

B
=

PCBC+PACA

PCBC+PACA

simpli f y
= 1

The eliminants
AO
OE

E
=
−PAOA

PAOC

OP
AO

P
=

PCOC

−PAOC

PAOA
O
=

1
4(PABA)

PCOC
O
=

1
4(2PCBC−PABA+2PACA)

PABA
B
=PCBC+PACA

Example 6.356 (0.433, 10, 11)Prove that two pairs of inverse points with respect to the same
circle are cyclic, or collinear.
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O
A

B

P Q

R

S

Figure 6-356

Constructive description
( (pointsA B)

(on O (b A B))

(lratio P O A r1)

(lratio Q O A 1
r1

)

(lratio R O B r2)

(lratio S O B 1
r2

)

(cocircleP Q R S) )

The eliminants

SPQS
S
=

SBPQ

r2

PRS R
S
=

PORO·r2
2−PORO·r2+PBRB·r2−PBOB·r2+PBOB

r2
2

SPRS
S
=

SOPR·r2−SOPR+SBPR

r2

SQRS
S
=

SOQR·r2−SOQR+SBQR

r2

SPQR
R
=SBPQ·r2 PBRB

R
=(r2−1)2·PBOB

PORO
R
=PBOB·r2

2 SBPR
R
=(r2−1)·SBOP

SOPR
R
=SBOP·r2 SBQR

R
=(r2−1)·SBOQ

SOQR
R
=SBOQ·r2

SBPQ
Q
=
−(SBOP·r1−SBOP−SABP)

r1

PPQP
Q
=

POPO·r2
1−POPO·r1+PAPA·r1−PAOA·r1+PAOA

r2
1

SBOQ
Q
=

SABO

r1
SABP

P
= − ((r1−1)·SABO)

SBOP
P
=SABO·r1 PAPA

P
=(r1−1)2·PAOA

POPO
P
=PAOA·r2

1 PBOB
O
=PAOA

The machine proof
PPQP·(−SQRS)·SPRS

PRS R·SPQS·(−SPQR)

S
=

PPQP·(−SOQR·r2+SOQR−SBQR)·(SOPR·r2−SOPR+SBPR)·r2·r2
2

(PORO·r2
2−PORO·r2+PBRB·r2−PBOB·r2+PBOB)·SBPQ·(−SPQR)·r2

2

simpli f y
=

PPQP·(SOQR·r2−SOQR+SBQR)·(SOPR·r2−SOPR+SBPR)·r2

(PORO·r2
2−PORO·r2+PBRB·r2−PBOB·r2+PBOB)·SBPQ·SPQR

R
=

PPQP·(SBOQ·r2
2−SBOQ)·(SBOP·r2

2−SBOP)·r2

(PBOB·r4
2−2PBOB·r2

2+PBOB)·SBPQ·SBPQ·r2

simpli f y
=

PPQP·SBOQ·SBOP

PBOB·S2
BPQ

Q
=

(POPO·r2
1−POPO·r1+PAPA·r1−PAOA·r1+PAOA)·SABO·SBOP·r2

1

PBOB·(−SBOP·r1+SBOP+SABP)2·r1·r2
1

simpli f y
=

(POPO·r2
1−POPO·r1+PAPA·r1−PAOA·r1+PAOA)·SABO·SBOP

PBOB·(SBOP·r1−SBOP−SABP)2·r1

P
=

(PAOA·r4
1−2PAOA·r2

1+PAOA)·SABO·SABO·r1

PBOB·(SABO·r2
1−SABO)2·r1

simpli f y
=

PAOA

PBOB

O
=

PAOA

PAOA

simpli f y
= 1

Example 6.357 (0.067, 6, 9)The inverse of a line not passing through the center of inversion
is a circle through that point.
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Constructive description
( (pointsO A)

(lratio Q O A 1
r )

(tratio R Q O r1)

(lratio P O A r)

(midpointU P O)

(lratio G O R
POAO
PORO

)

(eqdistanceG U U O) )

The eliminants

PUGU
G
= PRUR·POAO+POUO·PORO−POUO·POAO−PORO·POAO+P2

OAO/PORO

POUO
U
=

1
4(POPO)

PRUR
U
=

1
4(2PRPR−POPO+2PORO)

POPO
P
=POAO·(r)2

PRPR
P
=PARA·r−PORO·r+PORO+POAO·r2−POAO·r

PORO
R
=(r2

1+1)·POQO

PARA
R
=PAQA+POQO·r2

1

POQO
Q
=

POAO

(r)2

PAQA
Q
=

(r−1)2·POAO

(r)2

The machine proof
PUGU

POUO

=
PRUR·PORO·POAO+POUO·P2

ORO−POUO·PORO·POAO−P2
ORO·POAO+PORO·P2

OAO

POUO·P2
ORO

simpli f y
=

PRUR·POAO+POUO·PORO−POUO·POAO−PORO·POAO+P2
OAO

POUO·PORO

U
=

1
2 PRPR·POAO+

1
4 POPO·PORO− 1

2 POPO·POAO− 1
2 PORO·POAO+P2

OAO

( 1
4 POPO)·PORO

P
=

2PARA·POAO·r+PORO·POAO·r2−2PORO·POAO·r−2P2
OAO·r+4P2

OAO

POAO·r2·PORO

simpli f y
=

2PARA·r+PORO·r2−2PORO·r−2POAO·r+4POAO

(r)2·PORO

R
=

2PAQA·r+POQO·r2
1·r

2+POQO·r2−2POQO·r−2POAO·r+4POAO

(r)2·(POQO·r2
1+POQO)

simpli f y
=

2PAQA·r+POQO·r2
1·r

2+POQO·r2−2POQO·r−2POAO·r+4POAO

(r)2·(r2
1+1)·POQO

Q
=

(POAO·r2
1·r

4+POAO·r4)·r2

(r)2·(r2
1+1)·POAO·(r2)2

simpli f y
= 1

Example 6.358 (0.133, 5, 11)If the circle U passes trough two inverse points of circle O.
Then the inverse of any point on circle U with regard to circleO is on circle U. In other
words, the inverse of circle U with regard to circle O is itself.

A
O

X

PQ

U

E

F

Figure 6-358

Constructive description
( (pointsA O X)

(lratio P O A r) (lratio Q O A 1
r )

(midpointMU P Q)

(tratio U MU P rU )

(inter E (l P X) (cir U P))

(inter F (l E O) (cir U E))

(inversionO A E F) )
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The machine proof
PAOA

PEOF

F
=

PAOA·POEO

−PUEU ·POEO+POEO·POUO

simpli f y
=

PAOA

−(PUEU−POUO)

E
=

PAOA

−(PPUP−POUO)

U
=

−PAOA

PPMU P−POMU O

MU
=

−PAOA

−OP
PQ

2
·PPQP−OP

PQ
·PPQP

simpli f y
=

PAOA

( OP
PQ
+1)·OP

PQ
·PPQP

Q
=

PAOA·r2·( OP
AO
·r+1)2

(−OP
AO
·r)·(POPO·r2−POPO·r+PAPA·r−PAOA·r+PAOA)

simpli f y
=

PAOA·r ·( OP
AO
·r+1)2

−OP
AO
·(POPO·r2−POPO·r+PAPA·r−PAOA·r+PAOA)

P
=

PAOA·r ·(r2−1)2·(−1)
−r ·(PAOA·r4−2PAOA·r2+PAOA)·((−1))2

simpli f y
= 1

The eliminants

PEOF
F
=−(PUEU−POUO)

PUEU
E
=PPUP

POUO
U
=PPMU P·r2

U+POMU O

PPUP
U
=(r2

U+1)·PPMU P

PPQP
Q
=

POPO·r2−POPO·r+PAPA·r−PAOA·r+PAOA
(r)2

POMU O
MU
=

1
4((2OP

PQ
+1)2·PPQP)

PPMU P
MU
=

1
4(PPQP)

OP
PQ

Q
=
−r

OP
AO
·r+1
· OP

AO

PAPA
P
=(r−1)2·PAOA

POPO
P
=PAOA·(r)2, OP

AO

P
= − (r)

Example 6.359 (10.817, 267, 29)The inverse of a circle not passing through the center of
inversion is a circle.

O

A

X

PQ UE FI

R
G

Figure 6-359

Constructive description
( (pointsO A X)

(lratio P O A r1)

(lratio Q O A r2)

(midpointU P Q)

(lratio E O A 1
r1

)

(lratio F O A 1
r2

)

(midpoint I E F)

(inter R (l P X) (cir U P))

(lratio G O R
POAO
PORO

)

(eqdistanceG I I E) )

Example 6.360 (0.033, 4, 24)The harmonic conjugate of a fixed point with respect to a vari-
able pair of points which lie on a given circle and are collinear with the fixed point, de-
scribes a straight line. This line is called the polar of the fixed point with the circle, and
the fixed point is said to be the pole of the line.

O A

E

F

P Q

M

Figure 6-360

Constructive description
( (circle E F A) (circumcenterO E F A)

(inter P (l O A) (l E F))

(lratio Q O A OA
OP

)

(inter M (l E F) (t Q Q A))

(harmonicE F M P) )
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Example 6.361 (0.216, 5, 6)Let P and Q be inverse points with regard to circle OA. Then
for any point C on circle O, we have CP· AQ= CQ · AP.

A

B

C

O P

Q

Figure 6-361

Constructive description
( (pointsA B C)

(circumcenterO A B C)

(lratio P O A r)

(lratio Q O A 1
r )

(eq-productC P A Q C Q A P) )

Example 6.362 (0.400, 8, 16)If the circle (B) passes through the center A of the circle(A),
and a diameter of(A) meets the common chord of the two circles in F and the circle(B)
again in G, show that the points F, G are inverse for the circle(A).

G

F

D

I

E

C

BA

Figure 6-362

Constructive description
( (pointsD E C)

(circumcenterA D E C) (midpoint I E C)

(inter B (l A I) (b A E))

(inter F (l E C) (l A D))

(inter G (l A D) (cir B A))

(inversionA D G F) )

Example 6.363 (0.466, 6, 15)Show that the two lines joining any point of a circle to the ends
of a given chord meet the diameter perpendicular to that chord in two inverse points.

Q P

D

F

I

E

AO

Figure 6-363

Constructive description
( (pointsA E D)

(circumcenterO A E D)

(foot I E A O) (lratio F I E −1)

(inter P (l O A) (l D E))

(inter Q (l O A) (l D F))

(inversionO A P Q) )

Example 6.364 (0.700, 8, 25)TP, TQ are the tangents at the extremities of a chord PQ of a
circle. The tangent at any point R of the circle meets PQ in S ; prove that TR is the polar
of S .

P A

O

Q
R

T

S

D

1S

Figure 6-364

Constructive description
( (pointsP Q R)

(circumcenterO P Q R)
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(on A (t P P O))

(inter T (l A P) (t Q Q O))

(inter S (l P Q) (t R R O))

(inter S1 (l T R) (l O S))

(inversionO P S S1) )

6.5.4 Orthogonal Circles

Definition. Two circles O1 and O2 with a common point A are said to be orthogonal if
O1A⊥O2A.

Example 6.365 (0.050, 4, 7)If two circles are orthogonal, any two diametrically opposite
points of one circle are conjugate with respect to the other circle.

Constructive description
( (pointsD E)

(on O1 (b D E))

(lratio F O1 E −1)

(on O (t D D O1))

(foot G F O E)

(inversionO D G E) )

The eliminants

PEOG
G
=PEOF

PEOF
O
=PEDF+PDO1D · OD

DO1

2
−4SDO1F · OD

DO1
+4SDEO1 ·

OD
DO1

PDOD
O
=PDO1D ·( OD

DO1
)2

SDO1F
F
=SDEO1

PEDF
F
=2PEDO1−PDED

PEDO1= − 1
2(PEO1E−PDO1D−PDED)

PEO1E
O1
= PDO1D

O 1O

D

E
A

F

G

Figure 6-365

The machine proof
PDOD

PEOG

G
=

PDOD

PEOF

O
=

PDO1D· OD
DO1

2

PEDF+PDO1D· OD
DO1

2
−4SDO1F · OD

DO1
+4SDEO1 ·

OD
DO1

F
=

PDO1D·( OD
DO1

)2

2PEDO1+PDO1D· OD
DO1

2
−PDED

py
=

PDO1D ·( OD
DO1

)2·(2)

−2PEO1E+2PDO1D · OD
DO1

2
+2PDO1D

O1
=
−PDO1D· OD

DO1

2

−PDO1D· OD
DO1

2

simpli f y
= 1
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Example 6.366 (0.016, 1, 3)Show that the two poles of the common chord of two orthogonal
circles with respect to these circles coincide with the centers of the given circles.

A

R
1OD

B

2O

Figure 6-366

Constructive description
( (pointsA R)

(on O1 (b A R))

(foot D A R O1)

(lratio B D A −1)

(inter O2 (l O1 D) (t A A O1))

(inversionO1 R D O2) )

The machine proof

(−O1D

RO1
)/(− RO1

O1O2
)

O2
=

PAO1A

PAO1R
· −O1D

RO1

D
=
−PAO1R·PAO1A

PAO1R·(−PRO1R)

simpli f y
=

PAO1A

PRO1R

O1
=

PAO1A

PAO1A

simpli f y
= 1

The eliminants
RO1

O1O2

O2
=
−PAO1R

PAO1A

O1D

RO1

D
=

PAO1R

−PRO1R
, PRO1R

O1
= PAO1A

Example 6.367 (0.001, 1, 5)A circle orthogonal to two given circles has its center on the
radical axis of the two circles.

Constructive description:( (pointsD1 D2) (on O (b D1 D2)) (on O1 (t D1 D1 O))

(on O2 (t D2 D2 O)) (on-radicalO O1 D1 O2 D2) )

2D

1D
2O

1O
O

Figure 6-367

The machine proof
POO1O−PD1O1D1
POO2O−PD2O2D2

O2
=

POO1O−PD1O1D1
PD2OD2

O1
=

PD1OD1
PD2OD2

O
=

PD1OD1
PD1OD1

simpli f y
= 1

The eliminants

PD2O2D2

O2
= PD2OD2 ·(

O2D2
D2O

)2

POO2O
O2
= (

O2D2
D2O

2
+1)·PD2OD2

PD1O1D1

O1
= PD1OD1 ·(

O1D1
D1O

)2

POO1O
O1
= (

O1D1
D1O

2
+1)·PD1OD1

PD2OD2
O
=PD1OD1

Example 6.368 (0.283, 8, 12)If two circles are orthogonal, any two points of one of them
collinear with the center of the second circle are inverse for that second circle.

F
E

M

D

B

CA

Figure 6-368

Constructive description
( (pointsM E F)

(circumcenterB M E F)
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(inter A (l E F) (t M M B))

(inversionA M E F) )

Example 6.369 (0.350, 4, 18)The two lines joining the points of intersection of two orthogo-
nal circles to a point on one of the circles meet the other circle in two diametrically opposite
points.

D

C

A

F

I

E

P Q

Figure 6-369

Constructive description
( (pointsC E F)

(circumcenterQ C E F)

(lratio D Q C −1)

(midpoint I E F)

(inter P (l Q I) (t E E Q))

(inter A (l E C) (cir P E))

(inter A1 (l F D) (l C E))

( CA
EA
=

CA1
EA1

) )

Example 6.370 (0.850, 11, 19)Show that in a triangle ABC the circles on AH and BC as
diameters are orthogonal.

B C

A

H

M

NI

Figure 6-370

Constructive description
( (pointsA B C)

(orthocenterH A B C)

(midpointM B C)

(midpointN A H)

(inter I (l A B) (cir N A))

(perpendicularM I N I) )

Example 6.371 (1.183, 10, 12)The circle IBC is orthogonal to the circle on IbIc as diameter.

B C

I

A

bI

cI

O

M

Figure 6-371

Constructive description
( (pointsB C I)

(incenterA I B C)

(inter IB (t C C I) (l B I))

(inter IC (t B B I) (l C I))

(circumcenterO B C I)

(midpointM IB IC)

(perpendicularM B O B) )

Example 6.372 (0.533, 16, 32)Show that given two perpendicular diameters of two orthog-
onal circles, the lines joining an end of one of these diameters to the ends of the other pass
through the points common to the two circles.
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A B

PD

E

F

G

I

Figure 6-372

Constructive description
( (pointsP D I)

(circumcenterA P D I)

(lratio E A D −1)

(midpointX P I)

(inter B (l A X) (t P P A))

(inter G (l I E) (cir B I))

(lratio F B G −1)

(perpendicularF G D E) )

Example 6.373 (0.083, 4, 15)Show that if AB is a diameter and M any point of a circle,
center O, the two circles AMO, BMO are orthogonal.

O
AB

M

I

J
P

Figure 6-373

Constructive description
( (pointsA M)

(on B (t M M A))

(midpointO A B)

(circumcenterI A M O)

(circumcenterJ B M O)

(perpendicularI M M J) )

Example 6.374 (0.783, 11, 23)If the line joining the ends A, B of a diameter AB of a given
circle (O) to a given point P meets(O) again in A1, B1, show that the circle PA1B1 is
orthogonal to(O).

1A 1B

A
O

B

P

1O

Figure 6-374

Constructive description
( (pointsA1 B1 A)

(circumcenterO A1 B1 A)

(lratio B O A −1)

(inter P (l A A1) (l B B1))

(circumcenterO1 A1 B1 P)

(perpendicularO1 A1 A1 O) )

6.5.5 The Simson Line

Let D be a point on the circumscribed circle of triangleABC. FromD three perpendiculars
are drawn to the three sidesBC, AC, andABof triangleABC. Let E, F, andG be the three
feet respectively. ThenE,F andG are collinear. The lineEFG is called theSimson lineof
the pointD with respect to the triangleABC, andD is called thepoleof the simson line.
For machine proofs of Simson’s theorem see Example 3.79 on page 144, Example 3.106
on page 164 and Example 5.55 on page 248.
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Example 6.375 (0.933, 3, 37)The Simson line bisects the line joining its pole to the ortho-
center of the triangle.

A B

C

O

D

F

G

H

N

Figure 6-375

Constructive description
( (circle A B C D)

(orthocenterH A B C)

(foot F D A C)

(foot G D A B)

(inter N (l G F) (l D H))

(midpointN D H) )

Example 6.376 (0.050, 1, 8)Let D be a point on the circumcircle of triangle ABC. If line DA
is parallel to BC, show that the Simson line D(ABC) is parallel to the circumradius OA.

G

F

D

O

C

BA

Figure 6-376

Constructive description
( (pointsA B C)

(circumcenterO A B C)

(pratioPD A B C 1)

(inter D (l A PD) (cir O A))

(foot F D A C)

(foot G D A B)

(parallelG F O A) )

The machine proof
−SAOG

−SAOF

G
=

PBAD·SABO

(−SAOF)·PABA

F
=
−PBAD·SABO·PACA

(−PCAD·SACO)·PABA

D
=

(2POAPD ·PBAPD )·SABO·PACA·PAPDA

(2POAPD ·PCAPD )·SACO·PABA·PAPDA

simpli f y
=

PBAPD ·SABO·PACA

PCAPD ·SACO·PABA

PD
=

PABC·SABO·PACA

PACB·SACO·PABA·(−1)

O
=
−PABC·PACB·PABA·PACA·(−32SABC)

PACB·PACA·PABC·PABA·(32SABC)

simpli f y
= 1

The eliminants

SAOG
G
=
−PBAD·SABO

PABA

SAOF
F
=
−PCAD·SACO

PACA

PCAD
D
=

(2)·POAPD ·PCAPD
PAPDA

PBAD
D
=

(2)·POAPD ·PBAPD

PAPDA

PCAPD

PD
= PACB

PBAPD

PD
= − (PABC)

SACO
O
=

PACA·PABC

(−32)·SABC

SABO
O
=

PACB·PABA

(32)·SABC

Example 6.377 (0.033, 1, 8)If E, F, G are the feet of the perpendiculars from a point D
of the circumcircle of a triangle ABC upon its sides BC, CA, AB, prove that the triangle
DFG, DBC are similar.

G

F

D

O

C

BA

Figure 6-377

Constructive description
( (circle A B C D)

(foot F D A C)

(foot G D A B)

(eq-productD B D F D C D G) )
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The machine proof
PBDB·PDFD
PCDC·PDGD

G
=

PBDB·PDFD·PABA

PCDC·(16S2
ABD)

F
=

PBDB·(16S2
ACD)·PABA

(16)·PCDC·S2
ABD·PACA

co−cir
=

(2BD
2
)·(−CD·AD·AC)2·(2AB

2
)·(2d)2

(2CD
2
)·(−BD·AD·AB)2·(2AC

2
)·(2d)2

simpli f y
= 1

The eliminants

PDGD
G
=

(16)·S2
ABD

PABA

PDFD
F
=

(16)·S2
ACD

PACA

PACA=2(AC
2)

SABD=
BD·AD·AB

(−2)·d
PCDC=2(CD

2)
PABA=2(AB

2)
SACD=

CD·AD·AC
(−2)·d

PBDB=2(BD
2)

Example 6.378 (0.050, 3, 5)Simson lines corresponding to pairs of diametrically opposite
points on the circumcircle of a triangle meet a side of the triangle in two isotomic points.

O

A

B

D

D

G

G

C

Figure 6-378

1

1

1

Constructive description
( (circle A B C D)

(circumcenterO A B D)

(lratio D1 O D −1)

(foot G D A B)

(foot G1 D1 A B)

(midpointC1 A B)

(midpointC1 G G1) )

The machine proof

− GC1
G1C1

C1
=

AG
AB
− 1

2

− AG1
AB
+ 1

2

G1
=
−( AG

AB
− 1

2)·PABA

PBAD1−
1
2 PABA

G
=
−(PBAD− 1

2 PABA)·PABA

(PBAD1−
1
2 PABA)·PABA

simpli f y
=

−(PBAD− 1
2 PABA)

PBAD1−
1
2 PABA

D1
=

−(PBAD− 1
2 PABA)

2PBAO−PBAD− 1
2 PABA

O
=
−(PBAD− 1

2 PABA)·(2)

(2)·(−PBAD+
1
2 PABA)

simpli f y
= 1

The eliminants

GC1
G1C1

C1
=

AG
AB
− 1

2

AG1
AB
− 1

2

AG1
AB

G1
=

PBAD1
PABA

AG
AB

G
=

PBAD
PABA

PBAD1

D1
=2(PBAO− 1

2 PBAD)

PBAO
O
=

1
2(PABA)

Example 6.379 (1.817, 4, 35)If the perpendicular from a point D of the circumcircle(O) of
a triangle ABC to the sides BC, CA, AB meet(O) again in the points N, M, L, the three
lines AN, BM, CL are parallel to the simson of D for ABC.

A B

C

O

D

F

G
L

Figure 6-379

Constructive description
( (circle A B C D)

(circumcenterO A B C)

(foot F D A C)



442 Chapter 6. Topics from Geometry

(foot G D A B)

(inter L (l D G) (cir O D))

(parallelC L F G) )

Example 6.380 (4.283, 26, 25)Show that the simson of the point where an altitude cuts the
circumcircle again passes through the foot of the altitude and is antiparallel to the corre-
sponding side of the triangle with respect to the other two sides.

G
F

E

D

H
O

C

BA

Figure 6-380

Constructive description
( (pointsA B C)

(circumcenterO A B C)

(foot G C A B)

(inter D (l C G) (cir O C))

(foot E D A C)

(foot F D B C)

(inter G1 (l A B) (l E F))

( AG
BG
=

AG1
BG1

) )

Example 6.381 (1.633, 4, 39)If the Simson line D(ABC) meets BC in E and the altitude from
A in K, show that the line DK is parallel to EH, where H is the orthocenter of ABC.

B C

A

O

D

E

G

H

K

Figure 6-381

Constructive description
( (circle A B C D)

(foot E D B C)

(foot G D A B)

(orthocenterH A B C)

(inter K (l E G) (l A H))

(parallelD K E H) )

Example 6.382 (1.483, 7, 44)Show that the symmetries, with respect to the sides of a triangle,
of a point on its circumcircle lie on a line passing through the orthocenter of the triangle.

H

1F

1G

G

F

D

O

C

BA

Figure 6-382

Constructive description
( (circle A B C D)

(orthocenterH A B C)

(foot F D A C)

(foot G D A B)

(lratio G1 G D −1)

(lratio F1 F D −1)

(collinearF1 G1 H)
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Example 6.383 (4.133, 4, 53)The four Simson lines of four points of a circle, each taken for
the triangle formed by the remaining three points, are concurrent.

A B

C
O

D

E

F

G

H

I

J

K

Figure 6-383

Constructive description
( (circle A B C D)

(circumcenterO A B C)

(foot E D A B) (foot F D A C)

(foot G C A B) (foot H C A D)

(foot I A D B) (foot J A B C)

(inter K (l H G) (l E F))

(inter M (l E F) (l I J)) ( EK
FK
= EM

FM
) )

Example 6.384 (5.333, 58, 76)If two triangles are inscribed in the same circle and are sym-
metrical with respect to the center of that circle, show thatthe two simsons of any point of
the circle for these triangles are rectangular.

1F

1G

F

G

1C

1B 1A

D

O

C

BA

Figure 6-384

Constructive description
( (circle A B C D)

(circumcenterO A B C)

(lratio A1 O A −1)

(lratio B1 O B −1) (lratio C1 O C −1)

(foot G D A B) (foot F D A C)

(foot G1 D A1 B1)

(foot F1 D A1 C1)

(perpendicularG1 F1 G F) )

Example 6.385 (1.683, 15, 48)Show that the Simson lines of the three points where the al-
titudes of a triangle cut the circumcircle again form a triangle homothetic to the orthic
triangle, and its circumcenter coincides with orthocenterof the orthic triangle.

I
1C

1B

1A

2F

2E 2D

1F

1E

1D

G

H

F

E

D

O

C

BA

Figure 6-385

Constructive description
( (pointsA B C)

(circumcenterO A B C) (orthocenterH A B C)

(foot D A B C) (foot E B A C)

(foot F C A B) (orthocenterG D E F)

(lratio D1 D H −1) (lratio E1 E H −1)

(lratio F1 F H −1) (foot D2 D1 A B)

(foot E2 E1 A B) (foot F2 F1 A C)

(inter A1 (l E E2) (l D D2))

(inter B1 (l D D2) (l F F2)) (inter C1 (l E E2) (l F F2))

(inter I (l A1 F) (l B1 E)) (
IB1
IE
=

IA1
IF

) )
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Example 6.386 (0.633, 3, 40)The perpendiculars dropped upon the sides BC, CA, AB of the
triangle from a point P on its circumcircle meet these sides in L, M, N and the circle in A1,
B1, C1. The Simson line LMN meets B1C1, C1A1, A1B1 in L1, M1, N1. Prove that the lines
AL1, BM1, CN1 are concurrent.

I

1N

1M

1L1C

1B

1A

F

E

D

N

M

L

P

C

O

X

BA

Figure 6-386

Constructive description
( (circle A B C P) (circumcenterO A B C)

(midpointX A B) (foot L P B C)

(foot M P A C) (foot N P A B)

(foot D O P L) (foot E O P M)

(foot F O P N) (lratio A1 D P −1)

(lratio B1 E P −1) (lratio C1 F P −1)

(inter L1 (l B1 C1) (l M N))

(inter M1 (l C1 A1) (l M N))

(inter N1 (l A1 B1) (l M N)) (inter I (l B M1) (l A L1))

(inter J (l A L1) (l C N1)) ( AI
L1I
= AJ

L1J
) )

Example 6.387 (0.467, 5, 38)The circumradius OP of the triangle ABC meets the sides of
the triangle in the points A1, B1, C1. Show that the projections A2, B2, C2 of the points A1,
B1, C1 upon the lines AP, BP, CP lie on the Simson line of P for ABC.

F

G

2A
1A

P

O

C

BA

Figure6-387

Constructive description
( (circle A B C P)

(circumcenterO A B C)

(inter A1 (l B C) (l P O))

(foot A2 A1 A P)

(foot G P A B)

(foot F P A C)

(inter F1 (l A C) (l G A2))

(
AF1
CF1
= AF

CF
) )

Example 6.388 (0.950, 3, 37)Let L, M, N be the projections of the point P of the circumcircle
of the triangle ABC upon the sides BC, CA, AB, and let the Simson line LMN meet the
altitudes AD, BE, CF in the points L1, M1, N1. Show that the segments LM, L1M1 are
equal to the projection of the sides upon the Simson line.

A B

C

H
O

P
L

M

N

1L

1M

1N

1A

1B

Figure 6-388

Constructive description
( (circle A B C P)

(circumcenterO A B C) (orthocenterH A B C)

(foot L P B C) (foot M P A C)

(foot N P A B)

(inter L1 (l A H) (l N M))
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(inter M1 (l B H) (l N M))

(inter N1 (l C H) (l N M))

(foot A1 A M N)

(foot B1 B M N)

(
L1M1

ML
= 1) )

6.5.6 The Pascal Configuration

For a machine proof of Pascal’s theorem, see Example 3.80 on page 145.

Example 6.389 (The Converse of Pascal’s Theorem On a Circle)(0.933, 7, 44)

S

Q

P

F

E

D

O

C

BA

Figure 6-389

Constructive description
( (circle A E B D C)

(circumcenterO A B C)

(inter P (l A B) (l E D))

(lratio Q B C r)

(inter S (l D C) (l P Q))

(inter F (l E Q) (l A S))

(cocircleF A B C) )

Example 6.390 (Pascal’s Theorem: The General Case) (0.666,3, 23) Let A, B, C, D, F and E
be six points with P= AB∩ DE, Q = BC ∩ EF and S = CD ∩ FA collinear. Then
P1 = AC∩ DE, Q1 = BE∩CF and S1 = AB∩ FD are collinear.

Constructive description
((pointsB A D E S)

(on C (l D S))

(inter P (l B A) (l D E))

(inter Q (l B C) (l S P))

(inter F (l E Q) (l A S))

(inter S1 (l D F) (l B A))

(inter P1 (l A C) (l D E))

(inter Z2 (l B E) (l S1 P1))

(inter Z1 (l C F) (l S1 P1))

(
S1Z1
P1Z1
· P1Z2
S1Z2

= 1) )

The eliminants
S1Z1
P1Z1

Z1
=

SCFS1
SCFP1

P1Z2
S1Z2

Z2
=

SBEP1
SBES1

SCFP1

P1
=
−SDEC·SACF

SADCE

SBEP1

P1
=

SAEC·SBDE

SADCE

SBES1

S1
=
−SBDF·SBAE

SBDAF

SCFS1

S1
=

SDCF ·SBAF

SBDAF

SBDF
F
=

SAS Q·SBDE+SAES·SBDQ

SAES Q

SACF
F
=
−SASC·SAEQ

SAES Q

SBAF
F
=

SAEQ·SBAS

SAES Q

SDCF
F
=

SES Q·SADC

SAES Q

SBDQ
Q
=

SBS P·SBDC

SBSCP

The eliminants
SAS Q

Q
=

SAS P·SBSC

SBSCP

SES Q
Q
=

SES P·SBSC

SBSCP

SBS P
P
=
−SBDE·SBAS

SBDAE

SAS P
P
=
−SADE·SBAS

SBDAE

SES P
P
=

SDES·SBAE

SBDAE

SBDC
C
=SBDS· DC

DS

SASC
C
=( DC

DS
−1)·SADS

SDEC
C
=SDES· DC

DS

SAEC
C
=SAES· DC

DS
+SADE· DC

DS
−SADE

SADC
C
=SADS· DC

DS

SBSC
C
=( DC

DS
−1)·SBDS
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1Q

1P

1S

B

Q

P

S
E

D

F

CA

Figure 6-390

The machine proof
S1Z1
P1Z1
· P1Z2
S1Z2

Z1
=

SCFS1
SCFP1

· P1Z2
S1Z2

Z2
=

SCFS1 ·SBEP1
SCFP1 ·SBES1

P1
=

SCFS1 ·(−SAEC·SBDE)·SADCE

(−SDEC·SACF)·SBES1 ·(−SADCE)

simpli f y
=

−SCFS1 ·SAEC·SBDE

SDEC·SACF·SBES1

S1
=
−(−SDCF ·SBAF)·SAEC·SBDE·SBDAF

SDEC·SACF·(−SBDF·SBAE)·(−SBDAF)

simpli f y
=

SDCF ·SBAF·SAEC·SBDE

SDEC·SACF·SBDF·SBAE

F
=

SES Q·SADC·SAEQ·SBAS·SAEC·SBDE·(−SAES Q)·SAES Q

SDEC·(−SASC·SAEQ)·(−SAS Q·SBDE−SAES·SBDQ)·SBAE·(SAES Q)2

simpli f y
=

−SES Q·SADC·SBAS·SAEC·SBDE

SDEC·SASC·(SAS Q·SBDE+SAES·SBDQ)·SBAE

Q
=

−(−SES P·SBSC)·SADC·SBAS·SAEC·SBDE·SBSCP·(−SBSCP)
SDEC·SASC·(−SBSCP·SAS P·SBSC·SBDE−SBSCP·SAES·SBS P·SBDC)·SBAE·(−SBSCP)

simpli f y
=

−SES P·SBSC·SADC·SBAS·SAEC·SBDE

SDEC·SASC·(SAS P·SBSC·SBDE+SAES·SBS P·SBDC)·SBAE

P
=

−(−SDES·SBAE)·SBSC·SADC·SBAS·SAEC·SBDE·(SBDAE)2

SDEC·SASC·(−SBDAE·SAES·SBDC·SBDE·SBAS−SBDAE·SADE·SBSC·SBDE·SBAS)·SBAE·(−SBDAE)

simpli f y
=

SDES·SBSC·SADC·SAEC

SDEC·SASC·(SAES·SBDC+SADE·SBSC)

C
=

SDES·(SBDS· DC
DS
−SBDS)·SADS· DC

DS
·(SAES· DC

DS
+SADE· DC

DS
−SADE)

SDES· DC
DS
·(SADS· DC

DS
−SADS)·(SAES·SBDS· DC

DS
+SADE·SBDS· DC

DS
−SADE·SBDS)

simpli f y
= 1

Example 6.391 (Brianchon’s Theorem) (1.750, 2, 137)The dual of Pascal theorem.

O

A

B
C

D

E

F

1A

1B

1C

1D

1E

1F
I

Figure 6-391

Constructive description
( (circle A B C D E F) (circumcenterO A B C)

(on BT (t B B O)) (on AT (t A A O))

(on CT (t C C O)) (on DT (t D D O))

(on ET (t E E O)) (on FT (t F F O))

(inter A1 (l B BT) (l A AT)) (inter D1 (l E ET ) (l D DT ))

(inter B1 (l C CT ) (l B BT)) (inter E1 (l F FT ) (l E ET ))

(inter C1 (l D DT) (l C CT )) (inter F1 (l A AT) (l F FT ))

(inter I (l B1 E1) (l A1 D1)) (inter J (l A1 D1) (l C1 F1))

(
A1I

D1I
=

A1J

D1J
) )

Example 6.392 (Kirkman’s theorem) (0.650, 2, 50)Given six points A, B, C, D, E, and F
on a circle (or a conic), the three Pascal lines[BAECDF], [CDBFEA], [FECABD] are
concurrent.

There are 60 Kirkman points for one Pascal configuration.
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I
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T
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F

E

D

O

C

B
A

Figure 6-392

Constructive description
( (circle A B C D E F)

(inter P (l C D) (l A B))

(inter Q (l D F) (l A E))

(inter S (l A C) (l B F))

(inter T (l B D) (l A E))

(inter X (l A B) (l E F))

(inter Y (l D F) (l A C))

(inter I (l S T) (l P Q))

(inter J (l P Q) (l X Y)) ( PI
QI
= PJ

QJ
) )

Example 6.393 (Steiner’s theorem) (0.700, 2, 63)Given six points A, B, C, D, E, and F on a
circle (or a conic), the three Pascal lines[ABEDCF], [CDAFEB], [EFCBAD] are con-
current.

There are 20 steiner points for one Pascal configuration.

I

Y

X

T

S

Q
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F

E

D

O

C

B
A

Figure 6-393

Constructive description
( (circle A B C D E F) (inter P (l C D) (l A B))

(inter Q (l F A) (l D E))

(inter S (l B C) (l F A))

(inter T (l A D) (l B E))

(inter X (l A B) (l E F))

(inter Y (l C F) (l A D))

(inter I (l S T) (l P Q))

(inter J (l P Q) (l X Y)) ( PI
QI
= PJ

QJ
) )

Example 6.394 (0.967, 2, 30)Given five points A0, A1, A2, A3 and A4, then points A0A1∩A2A3,
A0A1∩A2A4, A0A2∩A1A3, A0A2∩A1A4, A0A3∩A1A2, A0A4∩A1A2 are on the same conic.
(There are 60 such conics for five points.)

S

Q

P

5P

4P

3P

2P

1P

0P

4A

3A

2A

1A0A

Figure 6-394

Constructive description
( (pointsA0 A1 A2 A3 A4) (inter P0 (l A2 A3) (l A0 A1))

(inter P1 (l A2 A4) (l A0 A1))

(inter P2 (l A1 A3) (l A0 A2))

(inter P3 (l A1 A4) (l A0 A2))

(inter P4 (l A1 A2) (l A0 A3))

(inter P5 (l A1 A2) (l A0 A4))

(inter P (l P3 P4) (l P0 P1))

(inter Q (l P4 P5) (l P1 P2))

(inter S (l P5 P0) (l P2 P3)) (collinearP Q S) )
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Example 6.395 (4.383, 3, 84)Given six points A0, A1, A2, A3, A4 and A5 on one conic, then
points A0A1 ∩ A2A3, A0A1 ∩ A4A5, A0A2 ∩ A1A3, A0A3 ∩ A1A2, A0A4 ∩ A1A5, A0A5 ∩ A1A4

are on the same conic. (There are 45 such conics for one Pascalconfiguration.)

Z

Y

X

5P

4P

3P

2P

1P 0P

5A

4A 3A

O
2A

1A0A

Figure 6-395

Constructive description
( (circle A0 A1 A2 A3 A4 A5)

(inter P0 (l A2 A3) (l A0 A1))

(inter P1 (l A4 A5) (l A0 A1))

(inter P2 (l A1 A3) (l A0 A2))

(inter P3 (l A1 A2) (l A0 A3))

(inter P4 (l A1 A5) (l A0 A4))

(inter P5 (l A1 A4) (l A0 A5))

(inter X (l P3 P4) (l P0 P1))

(inter Y (l P4 P5) (l P1 P2)) (inter Z (l P5 P0) (l P2 P3))

(inter Z1 (l P2 P3) (l X Y)) (
P2Z

P3Z
=

P2Z1
P3Z1

) )

Example 6.396 (4.566, 4, 75)Given six points A0, A1, A2, A3, A4 and A5 on one conic, then
points A0A1 ∩ A2A3, A0A1 ∩ A4A5, A0A2 ∩ A1A4, A0A3 ∩ A1A5, A0A4 ∩ A1A2, A0A5 ∩ A1A3

are on the same conic.

There are 90 such conics for one Pascal configuration.

Z

Y

X
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Figure 6-396

Constructive description
( (circle A0 A1 A2 A3 A4 A5)

(inter P0 (l A2 A3) (l A0 A1))

(inter P1 (l A4 A5) (l A0 A1))

(inter P2 (l A1 A4) (l A0 A2))

(inter P3 (l A1 A5) (l A0 A3))

(inter P4 (l A1 A2) (l A0 A4))

(inter P5 (l A1 A3) (l A0 A5))

(inter Y (l P4 P5) (l P1 P2))

(inter Z (l P5 P0) (l P2 P3))

(inter X (l P3 P4) (l P0 P1))

(inter W (l P0 P1) (l Y Z)) (
P1X

P0X
=

P1W

P0W
) )

Example 6.3976 (0.866, 2, 55)Given six points A0, A1, A2, A3, A4 and A5 on one conic, then
points A0A1 ∩ A2A3, A0A1 ∩ A4A5, A0A2 ∩ A3A4, A0A3 ∩ A2A5, A1A4 ∩ A2A5, A1A5 ∩ A3A4

are on the same conic.

There are 60 such conics for one Pascal configuration.

6Example 6.397 was a new theorem found by Wu in 1980 [36]. Examples 6.395 and 6.396 were found by
us.
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Figure 6-397

Constructive description
( (circle A0 A1 A2 A3 A4 A5)

(inter P0 (l A2 A3) (l A0 A1))

(inter P1 (l A4 A5) (l A0 A1))

(inter P2 (l A3 A4) (l A0 A2))

(inter P3 (l A2 A5) (l A0 A3))

(inter P4 (l A2 A5) (l A1 A4))

(inter P5 (l A3 A4) (l A1 A5))

(inter X (l P4 P2) (l A0 A1))

(inter Y (l A3 A4) (l P1 P3))

(inter Z (l P5 P0) (l A2 A5))

(inter W (l P5 P0) (l X Y)) (
P5Z

P0Z
=

P5W

P0W
) )

6.5.7 Cantor’s Theorems

Example 6.398 (0.083, 3, 8)The perpendiculars from the midpoints of the sides of a triangle
to the tangent lines of the circumcircle at the third vertex of the triangle are concurrent,
and this concurrent point is the center of the nine point circle of the triangle

A B

C

O LM

N

Figure 6-398

Constructive description
( (pointsA B C)

(circumcenterO A B C)

(midpointL B C)

(midpointM A C)

(inter N (p L O A) (p M O B))

(eqdistanceN L N M) )

The machine proof
PLNL

PMNM

N
=

S2
BLOM·PAOA·S2

ABO

S2
ALOM·PBOB·S2

ABO

simpli f y
=

S2
BLOM·PAOA

S2
ALOM·PBOB

M
=

(−SBOL− 1
2SBCO+

1
2SABO)2·PAOA

(−SAOL− 1
2SACO)2·PBOB

L
=

(− 1
2SABO)2·PAOA

(− 1
2SABO)2·PBOB

simpli f y
=

PAOA

PBOB

O
=

PBCB·PACA·PABA·(64S2
ABC)

PBCB·PACA·PABA·(64S2
ABC)

simpli f y
= 1

The eliminants

PMNM
N
=

S2
ALOM·PBOB

S2
ABO

PLNL
N
=

S2
BLOM·PAOA

S2
ABO

SALOM
M
= − (SAOL+

1
2SACO)

SBLOM
M
= − (SBOL+

1
2SBCO− 1

2SABO)

SAOL
L
= − 1

2(SACO+SABO)

SBOL
L
= − 1

2(SBCO)

PBOB
O
=

PBCB·PACA·PABA

(64)·S2
ABC

PAOA
O
=

PBCB·PACA·PABA

(64)·S2
ABC

Example 6.399 (0.017, 5, 5)Let A, B,C,D be four points on a circle O. The perpendiculars
from the centroids of the four triangles ABC, ABD, ACD, and BCD to the tangent lines of
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circle O at points D,C, B,A are concurrent.

Constructive description
( (circle A B C D) (circumcenterO A B C)

(centroidM A B C) (centroidN A B D)

(centroidL B C D)

(inter P (p M O D) (p N O C))

(parallelP L O A) )

The eliminants

SAOP
P
=

SCMON·SADO+SCDO·SAOM

SCDO

SAOL
L
= − 1

3(SADO+SACO+SABO)
SCMON

N
= − (SCOM+

1
3SCDO− 1

3SBCO− 1
3SACO)

SAOM
M
= − 1

3(SACO+SABO)
SCOM

M
=

1
3(SBCO+SACO)

A

B

C

O

D

M

NL

P

Figure 6-399

The machine proof
−SAOP

−SAOL

P
=

SCMON·SADO+SCDO·SAOM

(−SAOL)·(−SCDO)

L
=

(SCMON·SADO+SCDO·SAOM)·(3)
(−SADO−SACO−SABO)·SCDO

N
=

(−3)·(−3SCOM·SADO+3SCDO·SAOM−SCDO·SADO+SBCO·SADO+SADO·SACO)
(SADO+SACO+SABO)·SCDO·(3)

M
=

(3)·(3SCDO·SADO+3SCDO·SACO+3SCDO·SABO)
(SADO+SACO+SABO)·SCDO·(3)2

simpli f y
= 1

Example 6.400 (1.900, 42, 81)Let A, B,C,D,E be five points on a circle O. The perpendic-
ulars from the centroids of the triangles whose vertices arefrom A, B,C,D,E to the lines
joining the remaining two points are concurrent.
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E
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2C

N

Figure 6-400

Constructive description
( (circle A B C D E) (circumcenterO A B C)

(centroidA1 B C D) (centroidB1 A C D)

(centroidC1 A B D) (midpointA2 A E)

(midpointB2 B E) (midpointC2 C E)

(inter N (p A1 A2 O) (p B1 B2 O)) (perpendicularN C1 C E) )

For more results related to Cantor’s theorems, see Example 3.82 on page 147, Example
5.50 on page 245, Example 5.51 on page 245, and Example 5.56 onpage 248.

6.6 A Summary

We have given 400 machine proved geometry theorems in Sections 6.2–6.5 and 78 ma-
chine solved geometry problems in Part I of the book. Thus totally there are 478 machine
solved geometry problems in this book, including 280 proofsproduced automatically by a
computer program.
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In order to access the overall performance of the algorithm/program, we will first list
the machine computation times and proof lengths of the examples in Part I.

No. page time maxt lems
2.35 73 0.017 1 3
2.36 74 0.117 2 9
2.37 75 0.067 1 7
2.41 78 0.050 1 5
2.42 80 0.133 1 14
2.46 83 0.067 2 4
2.47 84 0.033 1 3
2.52 86 0.083 4 5
2.53 87 0.250 6 8
2.54 88 0.300 9 13
2.55 89 0.300 10 7
2.56 91 0.167 2 17
2.58 92 0.517 17 18
2.59 93 1.033 15 18
2.62 94 0.050 1 4
2.65 96 0.117 1 10
2.66 98 0.117 1 10
3.36 120 0.001 1 2
3.40 123 0.050 3 3
3.41 124 0.017 1 4
3.42 124 0.750 3 15
3.43 125 0.083 2 10
3.44 126 0.033 1 7
3.45 127 0.250 6 16
3.51 130 0.067 1 6
3.52 131 0.050 3 6
3.53 132 1086.8 3125 65
3.68 139 0.050 2 2
3.69 140 0.067 2 5
3.70 140 0.033 1 5
3.71 141 0.033 3 3
3.79 144 0.033 1 12
3.80 145 0.083 1 14
3.81 146 0.050 1 14
3.82 147 0.067 4 5
3.102 156 1.050 48 15
3.105 162 0.867 5 8
3.106 164 0.117 2 7
3.107 164 0.033 2 4

No. page time maxt lems
3.108 165 0.200 5 8
3.109 165 0.350 4 7
3.110 166 0.050 3 7
3.111 167 1.383 4 11
3.112 167 1.100 5 10
4.23 180 0.033 1 4
4.24 180 0.017 1 2
4.25 180 0.033 2 7
4.40 189 0.067 2 6
4.41 190 0.883 9 10
4.47 192 0.083 3 7
4.53 194 0.017 1 4
4.54 195 0.033 1 3
4.61 198 0.083 4 8
4.62 198 0.133 3 8
4.63 199 0.083 2 5
4.64 200 0.067 3 6
4.65 201 0.083 3 6
4.87 210 0.100 4 7
4.88 211 0.117 5 6
4.89 211 0.067 3 6
4.90 212 0.133 4 6
4.91 213 0.167 4 10
4.92 215 99.200 140 78
5.38 237 0.083 4 8
5.46 243 0.017 2 4
5.47 243 0.100 3 7
5.48 244 0.117 4 5
5.49 244 0.083 5 5
5.55 248 0.017 1 9
5.56 248 0.717 4 5
5.57 250 0.083 5 7
5.58 252 0.083 6 5
5.59 252 0.117 9 6
5.61 253 0.067 4 3
5.62 254 0.133 5 3
5.63 255 0.017 3 2
5.64 255 0.050 3 3
5.65 256 0.267 7 9
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Table 1. Statistics for the Examples in Part I

We use a triple(time,maxt,lems)to measure how difficult a machine proof is:

1. time is the time needed to complete the machine proof. The programis imple-
mented on a NexT Turbo workstation (25 MIPS) using AKCL (Austin-Kyoto Com-
mon Lisp).

2. maxt is the number of terms of the maximal polynomial occurring inthe machine
proof. Thus maxt measures the amount of computation needed in the proof.

3. lemsis the number of elimination lemmas used to eliminate pointsfrom geometry
quantities. In other words, lems is the number of deduction steps in the proof.

The following table contains some statistics for the timings and proof lengths of the 478
machine solved problems in this book.

Proving Time Proof Length Deduction Step
Time (secs) % of Thm. Maxterm % of Thm. Lemmas % of Thm.

t ≤ 0.1 45.3% m= 1 16.9% l ≤ 3 7.1%
t ≤ 0.5 68.8% m≤ 2 33.0% l ≤ 5 16.7%
t ≤ 1 85.5% m≤ 5 66.9% l ≤ 10 42.6%
t ≤ 5 97.45% m≤ 10 81.7% l ≤ 20 73.2%
t ≤ 10 98.9% m≤ 100 98.7% l ≤ 50 95.1%

t < 1087 100% m≤ 3125 100% l ≤ 137 100%

Table 2. Statistics for the 478 Theorems

Remark.

1. We can see that our program is very fast and can produce short proofs for many
difficult geometry theorems. Eighty-five percent of the 478 proofs can be completed
within one second, and the average maximal term and deduction step for the 478
examples are 14.877and 17.35 steps respectively.

2. If we set a standard that a machine proof isreadableif one of the following condi-
tions holds

(1) the maximal term in the proof is less than or equal to 5;

(2) the deduction step of the proof is less than or equal to 10; or

(3) the maximal term in the proof is less than or equal to 10, and the deduction step
is less than or equal to 20,

7If not considering Morley’s theorem (see 3 of the this remark), the average maximal
term is 8.37.
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then 76.9 percent (or 368) of the proofs of the 478 theorems produced by our prover
are readable. The machine proofs for 59.2% or 283 of the 478 theorems are actually
presented in this book.

3. In spite of this success, there are still some geometry theorems for which the method/program
performs badly. For instance, for Morley’s theorem (on page132), we havetime=
1086.8, maxt= 3125,andlems= 65. There are two main factors in the description
of the geometry statements that affect the machine proof: thenumber of pointsin the
statement and thetype of constructionsneeded to describe it. Generally speaking,
the number of points in a geometry statement is fixed and reflects the difficulty level
of the statement in nature. On the other hand, the difficulty related to the type of con-
structions is somehow artificial. According to our experience, the geometry relations
can be listed in ascending order of difficulties as follows:

collinear, parallel, ratios, perpendicular, circles, angles.

Morley’s theorem involves information mainly about angles, and most of the other
“difficult geometry theorems” involve perpendiculars, circles,or angles.

We have two ideas for further improvement of the method/program. First, we can put
elimination results for more constructions into the program instead of dividing these
constructions into other simple constructions. Second, wecan use new geometry
quantities to produce short and readable proofs. In our method, we mainly use areas
and Pythagoras differences, which deal perfectly with geometry statements about
collinear and parallel, but do not always work well for a geometry statement about
perpendicular, circles, and angles. For instance, to express the fact that the sum of
two angles is equal to another angle, we have to use a complicated equation of areas
and Pythagoras differences.

Besides area and Pythagoras difference, we also discussed how to use other geometry
quantities such as the vector, the complex number, and the full-angle, to produce
short and readable proofs. The approach based on full-angles presented in Section
3.8 is quite promising. It uses the angle as the basic geometry quantity, and hence
might produce short proofs for difficult geometry problems about angles, circles, and
perpendiculars.
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[108] B. Grünbaum & G. C. Shephard, From Menelaus to Computer Assisted Proofs in
Geometry, preprint, 1993.

[109] M. Hardzikadic, F. Lichtenberger, & D. Y. Y. Yun, An Application of Knowledge
Based Technology in Education: a Geometry Theorem Prover,Proc. of SYMSAC’86,
ed. B.W. Char, p. 141-147, ACM Press.

[110] T. Havel, The Use of Distances as Coordinates in Computer-Aided Proofs of Theo-
rems in Euclidean Geometry, IMA Preprint No. 389, University of Minnesota, 1988.

[111] Hitoshi Iba & Hirochika Inoue, Geometric Reasoning Based on Algebraic Method
Part I: Application of Wu’s Method to Geometric Reasoning, Journal of Artificial
Intelligence, Japan, vol5, No 3, p. 46–56.

[112] Hitoshi Iba & Hirochika Inoue, Geometric Reasoning Based on Algebraic Method
Part II: Solution t Locus Problems, Journal of Artificial Intelligence, Japan, vol5, No
3, p. 57–69.

[113] C. Hoffmann (eds),Issues in Robotics and Nonlinear Geometry, Advances in Com-
puting Research,vol. 6, JAI Press INc, Greenwich, USA.

[114] H. Hong, Simple Solution Formula Construction in Cylindrical Algebraic Decompo-
sition based on Quantifier Elimination,Proc. of ISAAC’92, p. 177–188, 1992, ACM
Press.

[115] J. W. Hong, Can a Geometry Theorem Be Proved by an Example?,Scientia Sinica,
29, 824–834, 1986.

[116] J. W. Hong, How Fast the Algebraic Approximation Can be?, Scientia Sinica,29,
813–823, 1986.

[117] M. A. Hussain, M. A. Drew, & M. A. Noble, Using a Computerfor Automatic
Proving of Geometric Theorems,Computers in Mechanical Engineering, 5, p. 56-
69.

[118] M. Kalkbrener,Three Contributions to Elimination Theory, Phd Thesis, RISC, Linz,
1991.

[119] M. Kalkbrener, A Generalized Euclidean Algorithm forGeometry Theorem Proving,
Mathematik Report No. 93-02, ETH Zurich.



463

[120] D. Kapur, Geometry Theorem Proving Using Hilbert’s Nullstellensatz,Proc. of
SYMSAC’86, Waterloo, 1986, 202–208.
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List of Symbols

△ABC 5 triangleABC
▽ABC 5 the area of triangleABC
(ABCD) 270 the cross-ratio
)∠ABCD 37 the oriented angle fromAB to CD
∠[AB,CD] 44 the full-angle fromAB to CD

[
−−→
AB,
−−→
CD] 231 the exterior product

〈−−→AB,
−−→
CD〉 230 the inner product

[x, y] 226 the exterior product
〈x, y〉 223 the inner product
−→
A 229 the vector from the origin toA
−−→
AB 229 the vector fromA to B
AB 3 the directed line segment fromA to B
ÃB 39 the oriented chord
ÂB 142 the cochord of̃AB
AB∩CD 9 the intersection ofAB andCD
AB ‖ CD 17 AB is parallel toCD
AB⊥CD 30 AB is perpendicular toCD
CH 61 the Hilbert intersection point statements in the plane
CL 109 the linear constructive statements in the plane
CABC 27 the co-area of triangleABC
O(ABCD) 271 the cross-ratio for five points
PABC 28 the Pythagoras difference of triangleABC for point B
PABCD 30 the Pythagoras difference of quadrilateralABCD
SABC 6 the signed area of triangleABC
SABCD 8 the signed area of quadrilateralABCD
SH 182 the Hilbert intersection point statements in the space
VABCD 171 the signed volume of tetrahedronABCD
VABCDE 173 the signed volume of polyhedronA-BCD-E
K[x] 150 the ring of polynomials
class(P) 150 the class of polynomialP
init(P) 150 the initial of polynomialP
ld(P) 150 the leading degree of polynomialP
lv(P) 150 the leading variable of polynomialP
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prem(P,Q) 151 the pseudo division ofP for Q

a
A
= b 72 pointA is eliminated froma

a
simplify
= b 72 a is simplified

a
py
= b 135 Pythagoras difference is expanded

a
cons
= b 123 constant is substituted

a
herron
= b 135 using Herron-Qin’s formula

a
area−co
= b 68 using the area coordinates

a
2lines
= b 79 using the two-line configuration

a
co−cir
= b 144 using the co-circle theorem

a
volume−co
= b 199 using the volume coordinates



Index

a machine proof, 72
a proof is at the first level or lemma level, 71
a proof is at the second level or proposition

level, 72
a proof is at the third level or axiom level, 72
AFFINE, 70
affine geometry, 83
affine geometry of dimension three, 178
affine geometry., 82
affine plane geometry , 82
affine space, 229
algebraic approach, 81
algebraic extension, 153
algorithm PLANE, 119
algorithm Solid, 210
algorithm: VECTOR, 240
ALINE, 129
angle, 51, 132
anticenter, 396
anticomplementary triangle, 292
ARATIO, 136, 182
area coordinate system, 133
area coordinates, 68, 118
Artin, 81
associated field, 81
auxiliary parallelograms, 58

basis, 222
BLINE, 110
BPLANE, 184
Brahmagupta’s formula, 40
Brocard points, 362
Butterfly theorem, 42
butterfly theorem, 42, 405
butterfly theorem for quadrilaterals, 405

Cantor’s First Theorem, 245
Cantor’s Second Theorem, 245
Cantor’s theorem, 147, 248, 449
Cartesian product, 81
Cayley-Menger formula, 207
center of inversion, 430
CENTROID, 138
centroid, 245, 365
centroid of Tetrahedra, 195
centroid theorem, 13, 243, 285
centroid theorem for tetrahedra, 192, 234
Ceva’s Theorem, 10, 11
Ceva’s theorem, 11, 62, 94, 95, 266
ceva’s theorem, 61
Ceva’s Theorem for Skew Quadrilaterals, 194
cevian, 266
cevian triangle, 266
CIR, 148, 186
CIRC, 164
CIRCLE, 144
circle of inversion, 430
CIRCUMCENTER, 138
circumcenter, 308
circumcircle, 308
class, 150
co-angle inequality, 24
co-angle Theorem, 25
co-angle theorem, 21
co-angle triangles, 21
co-area, 27
co-circle theorem, 40
co-circle theorem for Pythagoras difference,

43
co-face theorem, 174
co-side theorem, 9, 57, 263
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co-side triangles, 8
co-trihedral theorem, 179
co-vertex theorem, 173
cochord, 142
COCIRCLE, 130
COLL, 63, 183
COLLINEAR, 114
collinear, 4
Collins, 53
complete quadrilateral, 372
complex number, 249
configuration, 90
CONG, 113
congruent, 226
conjugate rays, 271
consistency of proofs, 52
CONSTANT, 123
construction, 60, 110, 181
constructive configuration, 184
constructive geometry statement, 9
constructive geometry statements, 109
constructive statement, 182
coordinates, 222
COPL, 183
coplanar, 171
cosine law, 36
CPLANE, 185
cross ratio, 270
cross-ratio, 271
cyclic quadrilateral, 395

derive unknown formula, 86
Desargues’ Axiom, 19, 82
Desargues’ axiom, 83
Desargues’ theorem, 276
dimension, 172
dimension axioms, 55
Dimension of vector space, 222
directed line segment, 3
directed lines, 3
distance formula in area coordinate system,

134
DPLANE, 185

Echols’ first theorem, 252
Echols’ second theorem, 252
Echols’ theorem in general form, 253
elementary geometry, 53
eliminate area ratios, 190
eliminate co-circle points, 144
eliminate free points from the areas, 67
eliminate length ratios, 193
eliminate points from Pythagoras difference,

114
eliminate points from areas, 65
eliminate points from length ratios, 66
eliminate volumes, 188
elimination, 10
EQ-PRODUCT, 114
EQANGLE, 130
EQDISTANCE, 114
equilateral triangle, 127, 251
Erdos’ inequality, 26
Euclid, 81
Euclid’s parallel axiom, 58
Euclidean plane, 3
Euclidean space of dimension three, 225
Euler line, 326
Euler points, 329
Euler triangle, 329
Euler’s theorem, 141
exscribed circles, 333
extension, 152
exterior product, 226, 231

Fano plane, 91
Feuerbach’s theorem, 329
field, 221
field associated with, 81, 83
final remainder, 151
finite geometries, 85
flat full-angle, 45
FOOT, 112
FOOT2LINE, 182, 233
FOOT2PLANE, 185, 233
full-angle, 44, 128, 157
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Gauss line, 375
Gauss point, 375
Gauss-line theorem, 74
Gelernter, 52
general butterfly theorem, 41, 146
generally false, 155
generic point, 153
geometric approach, 81
geometric information base, 159
geometric objects, 110
geometric quantities, 109, 233
geometric quantity, 60, 181
geometry knowledge base, 160
geometry quantity, 128
Gergonne point, 341
Grünbaum, 94

Hanson, 52
HARMONIC, 114, 123
harmonic pencil, 271
harmonic sequence, 5, 122, 271, 372
Herron-Qin formula in the Minkowskian ge-

ometry, 246
Herron-Qin’s Formula, 108
Herron-Qin’s formula, 37, 109, 135, 231
Herron-Qin’s formula for quadrilateral, 108
Herron-Qin’s formula for quadrilaterals, 38,

39
Herron-Qin’s Formula for Tetrahedra, 206
Herron-Qin’s formula for tetrahedron, 207
Hilbert, 59, 81
Hilbert intersection point statement, 61
Hilbert’s intersection point statements, 182
Hilbert’s Mechanization theorem, 59
homothetic, 296
homothetic center, 296
hyperbolic trigonometric, 247

INCENTER, 138
incenter theorem, 333
incidence, 82
initial, 150
inner product, 223, 230

inscribed angle theorem, 46, 131
inscribed circle, 333
INTER, 110
intercept triangles, 347
International Mathematical Olympia, 421
International Mathematical Olympiad, 124,

200, 213, 336
international mathematical olympiad, 25
inverse, 430
INVERSION, 123
inversion, 123, 430
irreducible, 152
isogonal conjugate point, 346
isogonal conjugates, 306
isotomic, 265
isotropic, 224
isotropic line, 229

Lagrange identity, 228
leading degree, 150
leading variable, 150
Lemoine axis, 315
Lemoine Point, 346
Lesening’s theorem, 276
light cone, 224
LINE, 110
line equation in the area coordinate system,

134
linear constructive geometry statements, 111
linear geometry quantity, 115
Loveland, 52
LRATIO, 122

medial triangle, 292
median, 285
Menelaus’ Theorem, 87
Menelaus’ theorem, 11, 12, 73, 263
Menelaus’ theorem for skew quadrilaterals,

180
Meta theorem, 241
metric vector space, 223
MIDPOINT, 114, 122
Minkowskian plane geometry, 246
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Minkowskian space, 225
Miquel Point, 164
Monge’s theorem, 215
Morley’s theorem, 132, 453
MRATIO, 122

Nagel point, 342
ndg condition, 61, 111
NE-SQUARE, 255
NE-TRIANGLE, 252
negative Euclidean space, 226
negative Minkowskian space, 226
Nehring’s theorem, 278
nine point circle, 49, 329
nine-point circle theorem, 329
non-degenerate conditions, 52
nondegenerate condition, 62
nonsingular, 223
number of points, 453

OLINE, 184
ON, 110
oriented angle, 36, 37
oriented chord, 39, 141
oriented quadrilateral, 7
oriented triangle, 6, 55
orthic triangle, 300
ORTHOCENTER, 138
Orthocenter theorem, 32
Orthocenter theorem for tetrahedron, 204
Orthocenter theorem in Minkowskian Geom-

etry, 247
Orthocenter-dual, 32
orthocentric, 302
orthocentric quadrilateral, 302
orthodiagonal quadrilateral, 401
orthogonal circles, 436

Pappus point theorem, 275
Pappus’ line, 275
Pappus’ Theorem, 92, 274
Pappus’ theorem, 14, 80
Pappus-dual, 275

PARA, 63
paradox, 52
PARALLEL, 114
parallel, 17, 175, 229, 232
parallel translation, 106
parallelogram, 17, 19, 20, 51, 58
PARTIO, 111
Pascal’s configuration, 59
Pascal’s theorem, 41, 445
Pascal’s theorem on a circle, 145
Pascalian Axiom, 82
Pascalian axiom, 19, 83, 84
PE-SQUARE, 255
PE-TRIANGLE, 252
pedal triangle, 354
PERP, 113, 183
PERPENDICULAR, 114
perpendicular, 223
PLANE, 184
plane, 172
PLINE, 110
POINT, 110
polar, 434
pole, 434, 439
polygons, 12
polygrams, 94
position coordinates, 4, 56
position ratio, 56
position ratios, 4
PPLANE, 184
PRATIO, 181
predicate form, 63, 113, 182
predicates, 63
PRLL, 183
PRLP, 183
prover, 52
pseudo division], 151
pseudo remainder, 151
Ptolemy’s theorem, 40, 142
pure constructive, 241
pure point of intersection theorem, 59
Pythagoras difference, 28, 103
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Pythagoras difference theorem, 28
Pythagoras difference for an oriented quadri-

lateral, 30
Pythagorean theorem, 24, 28, 225, 230

quadratic geometry quantity, 116

ratio constructions, 122
ratio of the directed segments, 55
ratio of two parallel line segments, 17, 58
rectangular coordinate system, 225
reduced, 150
reducible, 152
regularn-polygons, 253
remainder formula, 151, 153
right full-angle, 45

segment arithmetic, 83
Seidenberg, 53
Shephard, 94
signed area, 55
signed area of an oriented quadrilateral, 55
signed area of an oriented triangle, 6
signed area of triangle, 231
similar, 22
Simson line, 439
Simson’s theorem, 43, 144, 164
Simson’s theorem in Minkowskian geome-

try, 248
sine law, 34
skew area coordinate system, 133
skew volume coordinate system, 215
solid metric geometry, 229
SPHERE, 186
square, 224
square distance, 230
squares, 123
SRATIO, 233
Steiner’s theorem, 189
Steiner-Lehmus’ theorem, 26
structureΩ, 82
subspace, 222
successive pseudo division, 151

symmedian, 346
symmedian point, 346
symmetric matrix, 223
SYMMETRY, 122

TANGENT, 114
tangent function, 128
tangential triangle, 317
Tarski, 53
the parameter set, 151
the radius of inversion, 430
the volume method, 198
Theorem of Pratt-Wu, 370
theorem of three perpendiculars, 204
theory of geometry, 81
TLINE, 110
TPLANE, 184
transcendental over, 152
translation, 176
transversal, 94
transversals for polygrams, 95, 99
TRATIO, 111
triangular form, 151
trilinear polar, 358
triple scalar product, 228
trisector, 132
tritangent circles, 333
two-line configuration, 79
type of constructions, 453

unordered geometry, 53

vector, 229
vector space, 221
vectors, 222
visual angle theorem, 35
volume, 232
volume coordinates, 196

Wu, 53, 150

Zhang, 2, 81


