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Abstract

In this paper, we propose a method which can be used to decompose a 2D or 3D constraint problem into a C-tree. With this decomposition,

a geometric constraint problem can be reduced into basic merge patterns, which are the smallest problems we need to solve in order to solve

the original problem in certain sense. Based on the C-tree decomposition algorithm, we implemented a software package MMP/Geometer.

Experimental results show that MMP/Geometer finds the smallest decomposition for all the testing examples efficiently.
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1. Introduction

Geometric constraint solving (GCS) is one of the key

techniques in parametric CAD, which allows the user to

make modifications to existing designs by changing

parametric values. GCS methods may also be used in

other fields like molecular modelling, robotics and computer

vision. There are four major approaches to GCS: the

numerical approach [14,26,31], the symbolic approach

[15,23,25,33], the rule-based approach [2,24,34,35] and

the graph-based approach [6,7,12,17,20,28,30]. This paper

will focus on using graph algorithms to decompose large

constraint problems into smaller ones.

In [32], Owen proposed a GCS method based on the tri-

connected decomposition of graphs, which may be used to

reduce a class of constraint problems into constraint

problems consisting of three primitives. In [7,16], Hoffmann

et al. proposed a method based on cluster formation to solve

2D and 3D constraint problems. An algorithm was
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introduced by Joan-Arinyo et al. in [21] to decompose a

2D constraint problem into an s-tree. This method is

equivalent to the methods of Owen and Hoffmann, but is

conceptually simpler.

The above approaches use special constraint problems,

i.e. triangles, as basic patterns to solve geometric constraint

problems. In [28], Latham and Middleditch proposed a

connectivity analysis algorithm which could be used to

decompose a constraint problem into what we called the

general construction sequence (defined in Section 2). A

similar method based on maximal matching of bipartite

graphs was proposed by Lamure and Michelucci [27]. In

[17], Hoffmann et al. gave an algorithm to find rigid bodies

in a constraint problem. Based on this, a general approach to

GCS was proposed [18]. In [19], Jermann et al. also gave a

general approach to GCS based on the idea in [17].

In this paper, we propose a method which can be used

to decompose a general 2D or 3D constraint problem into a

C-tree (connectivity tree). The algorithm is inspired by two

facts. First, the general construction sequence obtained with

Latham–Middleditch’s algorithm reduces the original con-

straint problem into smaller ones. But, in many cases these

smaller problems could be further simplified. Second, we

observed that not all rigid bodies in a constraint problem can

be used to split the original problem. We introduced the key

concept of faithful subgraph, which may lead to a split of the

constraint problem. The C-tree decomposition algorithm
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Fig. 1. A 2D problem: lengths of four edges and ANG (l2,l4) are given.
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consists of two main steps: using the general construction

sequence to find faithful subgraphs and using the faithful

subgraph to split the constraint problem into two sub-

problems. The complexity of the algorithm is O(n2(nCe)e),

where n and e are the numbers of geometric objects and

constraints, respectively. Major advantage of the algorithm

is that it can be used to decompose a general constraint

problem into certain kind of smallest problems and it leads

to a simple and efficient implementation.

A C-tree is a binary tree. For each node in the tree, its left

child is a rigid body which will be solved first. After the

left child is solved, we may use the information from the

left child to solve the right child and to merge the left and

right children to solve the constraint problem represented by

the node. All leaves of the C-tree are general construction

sequences. Therefore, solution of a constraint problem is

reduced to the solution of general construction sequences

with a C-tree decomposition.

We show that the solution of a general construction

sequence can be reduced to the solution of basic merge

patterns, which are the smallest problems we need to solve

in order to solve the original problem in certain sense. We

give a classification of the basic merge patterns both in 2D

and 3D cases and show that some of the basic merge

patterns have closed-form solutions.

We say that a graph decomposition method for GCS is a

general method if it can be used to handle all constraint

problems. Among the general GCS methods [18,19,24,27,

28], themethodMFAproposed in [18] and theC-treemethod

can be used to find a smallest decomposition in certain sense.

The MFA and C-tree methods have the same complexity.

Both can be used to solve 2D and 3D problems, although

paper [18] focuses on the 2D case and this paper focuses on

both 2D and 3D cases. Comparing to the algorithm in [18],

our algorithm is simpler and easy to implement.

Based on the C-tree decomposition algorithm and several

other algorithms proposed by us, we implemented a GCS

software package MMP/Geometer in the Windows

environment with VCCC. Experimental results show that

the software package finds the smallest decomposition for

all the testing examples efficiently.

The rest of the paper is organized as follows. In Section 2,

we introduce the methods to generate general construction

sequences. In Section 3, we give the algorithm to generate the

C-tree. In Section 4,we give a classification of the basicmerge

patterns. In Section 5, we report the experimental results for

our implementation of the C-tree decomposition algorithm.

In Section 6, we present the conclusion.
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Fig. 2. Graph representation for the problem in Fig. 1.
2. General construction sequence

2.1. Basic concepts

In the two-dimensional Euclidean plane, we consider two

types of geometric primitives: points and lines and two types
of geometric constraints: the distance constraint between

point/point, point/line and the angular constraint between

line/line. In the three-dimensional Euclidean space, we

consider three types of geometric primitives: points, planes

and lines and two types of geometric constraints: the

distance constraints between point/point, point/line, point/

plane, line/line and the angular constraints between line/

line, line/plane, plane/plane. A geometric constraint

problem consists of a set of geometric primitives and a set

of geometric constraints among these primitives. Angular

and distance constraints between two primitives o1 and o2
are denoted by ANG(o1, o2)Za and DIS(o1,o2)Zd,

respectively. We will use pi, hi and li to represent points,

planes and lines, respectively.

We use a constraint graph to represent a constraint

problem. The vertices of the graph represent the geometric

primitives and the edges represent the constraints. For a

constraint graph G, we use V(G) and E(G) to denote its sets

of vertices and edges, respectively. Fig. 2 is the graph

representation for the constraint problem in Fig. 1.

For an edge e in a constraint graph, let DOC(e) be the

valence of e, which is the number of scalar equations

required to define the constraint represented by e. Most

constraints considered by us have valence 1. There are

several exceptions: (1) Constraint DIS(p1,p2)Z0. In this

case, p1Zp2. In 2D case, the constraint has valence 2; in 3D,

the constraint has valence 3. We assume that this case does

no occur. (2) Constraint DIS(p1,l1)Z0 has valence 2 in 3D.

(3) Constraint ANG (h1,h2)Z0 has valence 2 in 3D. (4)

Constraint ANG (l1,l2)Z0 has valence 2 in 3D. These

constraints are degenerate cases.

For a geometric primitive o, let DOF(o) be the degrees

of freedom for o, which is the number of independent

parameters required to determine the geometric
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primitive. For a constraint graph G, let DOFðGÞZP
n2VðGÞ DOFðnÞ; DOCðGÞZ

P
e2EðGÞ DOCðeÞ. In the

constraint graphs, we use n lines to represent a constraint

of valency n.

Let RZ3 in 2D and RZ6 in 3D. A constraint graph G is

called structurally well-constrained if DOC(G)Z
DOF(G)KR and for every subgraph H of G, DOC

(H)%DOF(H)KR. A constraint graph G is called structu-

rally over-constrained if there is a subgraph H of G

satisfying DOC(H)ODOF(H)KR. A constraint graph G is

called structurally under-constrained if G is not over-

constraint and DOC(G)!DOF(G)KR.

A constraint system is called geometrically well-

constrained if its shape has only a finite number of cases.

In most cases, a constraint problem represented by a

structurally well-constrained graph is geometrically well-

constrained and hence defines a rigid body. But, in some

special cases a constraint problem represented by a

structurally well-constrained graph may have no solutions

or an infinite number of solutions. In this paper, we will

concern the structure solvability of the constraint problem

only. Therefore, when we say rigid bodies in this paper, we

mean structurally well-constrained problems.
2.2. General construction sequence

In a geometric constraint problem, a general construction

sequence (abbr. GC) is a sequence:

C : C1;C2;.;Cn

where each Ci is a set of geometric primitives, such that
1.
 The subgraph induced by BiZgi
kZ1Ck is well-con-

strained for each 1%i%n. Therefore, we may assume

that Bi is a rigid body.
2.
p1

p2
p3

p1

p2 l

p
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Fig. 3. Rigid bodies with three primitives in 2D case.
No proper subsets of Ci satisfy condition 1.

If each Ci contains only one primitive, we call the

corresponding GC an explicit construction sequence.

The largest DOF(Ci) for iZ1,.,n is the maximal

number of simultaneous equations to be solved in order to

solve the above GC. This number is called the controlling

degree of freedom of C and is denoted by MDOF(C).

For the example in Fig. 1, there are two essentially

different GCs:

G1 : fp1g; fp4g; fl4g; fl2; p2; p3g; fl1g; fl3g

G2 : fp1g; fp2g; fp4; p3; l2; l4g; fl1g; fl3g
(1)

We have MDOF(G1)ZDOF({l2,p2,p3})Z6,

MDOF(G2)ZDOF({p4,p3,l2,l4})Z8. It is clear that G1 is

better than G2.

In [28], Latham and Middleditch proposed an algorithm

which may be used to reduce a well-constrained problem

into a GC. Their method is based on the maximal

b-matching from graph theory which is of complexity
O(n(eCn)), where n is the number of vertices and e is the

number of edges in the constraint graph [1].
2.3. Find base primitives

In order to generate GCs with nice properties, we will

add three more constraints to a set of primitives in 2D and

six more constraints to a set of primitives in 3D before using

the algorithm mentioned in Section 2.2. These primitives

are called base primitives and will be generated firstly in the

GC. The geometric meaning of this step is as follows: a rigid

body in the plane has three DOFs and a rigid body in the

space has six DOFs. By fixing the position of the base

primitives, we can find the absolute position of the rigid

body. After this step, a structurally well-constrained

problem G will satisfy the condition DOC(G)ZDOF(G),

which is called strictly well-constrained.

In the 2D case, finding base primitives is easy. Since the

constraint problem is a rigid body, there exists at least one

distance constraint. We may use the two primitives involved

in this constraint as the base primitives and add three more

constraints as follows:
†
 If the two base primitives are two points, we may fix the

position of one point and the direction of the line passing

through the two points.
†
 If the two base primitives are a point p and a line l, we

may fix the position of p and the direction of l.

If using the above method to select base primitives, both

G1 and G2 in (1) could be generated. As a heuristic, we will

try to find rigid bodies consisting of three geometric

primitives and treat them as base primitives. If using this

heuristic, then we will only generate G1. In 2D case, we

need to find the graphs listed in Fig. 3, which can be done

with the following algorithm.

Algorithm 2.1. The input is a well-constrained constraint

graph. The output is a set of three vertices such that there

exist constraints between each pair of them and at least one

of the constraints is a distance constraint.
S1
 Search all the edges eZ(o1,o2) representing a distance

constraint such that one of o1, o2 is a point.
S2
 For each e, search all the vertices o having a constraint

with o1.
S3
 If o2 has a constraint with o, then return o1, o2, o. The

algorithm terminates.
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Fig. 4. Rigid bodies with two or three primitives in 3D case.
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Let e be the number of edges l1,.,le in the graph G, and

di the number of constraints involving li. Then the main loop

in Step 1 will execute e times. The loop in Step 2 for an edge

li will execute di times. If using an adjacent matrix to

represent the graph, Step 3 needs only one operation.

Therefore, the complexity of the algorithm is:

Xe

iZ1

Xdi

jZ1

Oð1ÞZ
Xe

iZ1

OðdiÞZO
Xe

iZ1

di

 !
ZOðeÞ

The last step is true because
Pe

iZ1 diZ2e, since each

constraint involving two primitives.

To find base primitives for a 3D constraint problem, we

first try to find a rigid body consisting of two or three

primitives in the constraint problem. The four graphs in

Fig. 4 represent such rigid bodies in 3D. The first diagram in

Fig. 4 represents three cases: three points, two points and

one plane, one point and two planes. The third diagram in

Fig. 4 represents two cases: a line and a point or a line and

a plane.

The following algorithm tries to find a set of base

primitives by first finding a rigid body with two or three

primitives. If such rigid bodies do not exist, we will select a

distance constraint and use the primitives involved in this

constraint as the base primitives. The reason is that a rigid

body always contains at least one distance constraint.

Algorithm 2.2. The input is a well-constrained constraint

graph for a 3D problem. The output is a set base primitives.
S1
D
W

D
W

Find the first and fourth diagram in Fig. 4 with

Algorithm 2.1. If such a sub-graph is found, then add

six constraints to fix the position of the rigid body and

return the three primitives as base primitives. For

instance, if the three primitives are three points p1, p2,

p3, we may add the six constraints as follows:

p1Z(0,0,0) is fixed as the origin; p2Z(d1,0,0) is a

point on the x-axis; p3Z(x,y,0) is a point on the

xy-plane.
C C
S2

V

Q Q
Search all the edges eZ(o1,o2) representing a distance

constraint DIS(o1,o2)Zd.
B
S3

B

If o1 is a line and o2 is a point, we may add six

constraints as follows. Fix o1 to be the z-axis and o2Z
(d,0,0) a point on the x-axis.
U A A
S4
(a) (b)
P P
If both o1 and o2 are lines, we may add six constraints as

follows. Add a new point p which is on o2 and has a

distance d to o1. Then we may select o1 and p as base

primitives and add six constraints similar as case S3.
Fig. 5. A 3D constraint problem.
S5
 Now o1, o2 must be points or planes. Since there is a
distance constraint between them, one of them must be a

point. Let o2 be a point. Since a constraint involving a

point must be a distance constraint, we may find a

third primitive o3 such that there is a constraint

DIS(o2,o3)Zd 0. The three primitives o1, o2, o3 could

have three possibilities.
S6
 If both o1 and o3 are points, we may add the following

six constraints: o2Z(0,0,0), o1Z(d,0,0), o3Z(x,y,0).
S7
 If o1 is a point and o3 is a plane, add six constraints as

follows. Take o3 to be the xy-plane; o2Z(0,0,d 0) a point

on the z-axis; and o1 a point in the xz-plane.
S8
 If both o1 and o3 are planes, we may add a new point p

which is the foot of the perpendicular line drawn from o2
to o1 and treat the problem similar as case S7.
Let us look at the constraint problem in Fig. 5(a), where

each line represents a distance constraint between two

points. For this problem, there are three essentially different

GCs C1, C2, C3:

C1 : fPg; fQg; fAg; fBg; fCg; fDg; fU;V ;Wg

C2 : fPg; fQg; fUg; fVg; fWg; fA;B;C;Dg

C3 : fWg; fDg; fP;Q;A;B;C;D;U;Vg

It is clear that the GCs depend on the base primitives. The

base primitives for GCs C1, C2, and C3 are {P,Q,A},

{P,Q,U}, {W,D,C}, respectively. Actually, if using Algor-

ithm 2.2 to select base primitives, only C1 and C2 could be

generated.

We have MDOF(C1)ZDOF({U,V,W})Z9, MDOF(C2)

ZDOF({A,B,C,D})Z12, MDOF(C3)ZDOF({P,Q,A,B,

C,U,V})Z21. It is clear that C1 is the best GC. To solve

this problem directly without decomposition, we need to

solve 21 quadratic equations. Using C1, we need only to
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solve nine quadratic equations. In the next section, we will

show that the problem can be further simplified to solve one

quadratic equation.
3. A C-tree decomposition algorithm

3.1. A general decomposition tree: C-tree

In order to define the C-tree, we introduce the concept of

deficit, which is a generalization of the deficit function

defined in [21].

The deficit of a geometric constraint graph G is defined as

deficitðGÞZDofðVðGÞÞKDocðEðGÞÞKR

where RZ3 or 6 in 2D or 3D cases, respectively. If G is a

structurally well-constrained problem then deficit (G)Z0. If

G is not structurally over-constrained then deficit (G)R0.

Theorem 3.1. Let G be a structurally well-constrained

graph, H, I, S subgraphs of G such that V(I)ZV(H)hV(S)

and there exist no constraints between vertices in V(H)K
V(I) and V(S)KV(I) (Fig. 6). Then we have deficit (H)C
deficit (S)Zdeficit (I). If H is also structurally well-

constrained, we have deficit (S)Zdeficit (I).

Proof. Since V(I)ZV(H)hV(S) and there exist no

constraints between vertices in V(H)KV(I) and V(S)K
V(I), we have DOF(V(H))CDOF(V(S))KDOF(V(I))Z
DOF(V(G)) and DOC(E(H))CDOC(E(S))KDOC(E(I))Z
DOC(E(G)). Thus deficit (H)Cdeficit (S)Kdeficit (I)Z
DOF(V(H))CDOF(V(S))KDOF(V(I))K(DOC(E(H))C
DOC(E(S))KDOC(E(I)))KRZDOF(V(G))KDOC(E(G))

KRZ0. The last equation is due to the fact that G is

structurally well-constrained. ,

Let G be a structurally well-constrained graph and H a

structurally well-constrained subgraph of G. Let I be the set

of vertices u2H such that there exists at least one constraint

between u and a vertex in V(G)KV(H). If IsV(H), H is

called a faithful subgraph. The importance of a faithful

subgraph is that we can use it to reduce the original problem

into two smaller ones.

Let H be a faithful subgraph of G. We may construct a

split subgraph S of G with H as follows: V(S)Z(V(G)K
V(H))gI, where I is defined in the preceding paragraph. If S

is structurally well-constrained, S is the split subgraph.

Otherwise, by Theorem 3.1, deficit (I)Zdeficit (S). Then we

may add deficit (I) auxiliary constraints between vertices in

I to make the new graph S structurally well-constrained.
H SI

Fig. 6. The relation between the faithful and split subgraphs.
This can be done with the algorithm in [28]. The algorithms

in [7,22] can also be used to obtain a structurally well-

constrained problem in certain cases. This new graph S is

called the split subgraph.

For instance, letG be the graph in Fig. 5(a),H the subgraph

of G induced by {W,U,V,P,Q}. Then H is a faithful subgraph

of G, because IZ{W,P,Q}sV(H). The split subgraph S is

the one in Fig. 5(b), where the constraint between W/P is the

auxiliary constraint. The geometric meaning is as follows.

Wefirst solve the constraint problemH, which is a rigid body.

To solve the remaining part S, we need to add an auxiliary

constraint betweenW/P tomake S a well-constraint problem.

This is possible because, we may solve the problem

represented by H and we may use the information from H

to determine the distance between W/P. Then the solution of

G is reduced to the solution of two smaller problemsH and S.

Definition 3.2. A C-tree for a constraint graph G is a binary

tree. The root of the tree is G. For each node N in the tree, its

left child L and right child R are as follows:
1.
 L is a faithful subgraph of N and R is the split subgraph of

N with L; or
2.
 L is a GC for N and RZ:.

All leaves are GCs.

Continue with the example in Fig. 5(a). HZ
{W,U,V,P,Q} is a faithful subgraph. The split subgraph S

is the one in Fig. 5(b). Then H and S are the left and right

children of G in the C-tree in Fig. 7. The left children for H

and S are their GCs, respectively.

We may say that the C-tree is a natural generalization for

the s-tree from [21]. In an s-tree, when a problem is divided

into two smaller problems P1 and P2, P1 and P2 always have

two common primitives. In a C-tree, P1 and P2 could have

any number of common primitives.

After a C-tree is obtained, we may use it to solve the

constraint problem as follows.

Algorithm 3.3. The input is a C-tree T. The outputs are the

coordinates of the geometric primitives:
S1
 We do a left to right depth-first search of the C-tree and

consider three cases: S2, S3, or S4.
({P},{Q},{U},{V},{W}) ({P},{Q},{A},{B},{C},{D},{W})

Fig. 7. A C-tree for the problem in Fig. 5.
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S2
 The current nodeN is a GC. The problem is reduced to the

computation of a GCwhichwill be discussed in Section 4.
S3
 The current node N only has the left child L, which is a

GC. In this case, L is evaluated and N is solved.
S4
 The current node N has two children. Due to the depth-

first search procedure, we already solved the left child L

which is a rigid body. From L, we may compute the

numerical values for the auxiliary constraints in the right

child R. Now the right child becomes a structurally well-

constrained problem. We may solve the right child

recursively with this algorithm and merge the left and

right children together to get the information about N.
Note that the merging of the left and right children is

easy, since they are connected by sharing several geometric

primitives. We omit the details and illustrate the procedure

with an example. If L and R share three points p1, p2, p3, a

merging process is given below. Let p1,i and p2,i be the

corresponding points of pi in L and R. We may fix R and

move L to a correct position as follows. First, do a

translation p2,1–p1,1 to L so that L and R will share the same

point p1. Second, do a rotational around point p1 to L so that

L and R will share the same point p2. Third, do a rotation

around line p1p2 to L so that L and R will share point p3.

Now the relative position of L and R are fixed.

It is clear that all leaves of a C-tree are GCs and hence the

computation of a C-tree is reduced to the computation

of GCs. We define the controlling degree of freedom of a

C-tree T MDOF(T) to be maximal MDOF(C) for all leaves

C of T. A C-tree T for constraint graph G is called minimal if

MDOF(T) is the smallest for all possible C-trees of G.

To solve the problem in Fig. 5(a) with the C-tree in

Fig. 7, we first compute the left child of the root using the

explicit construction sequence {P}, {Q}, {U}, {V}, {W}.

Then, we may compute the distance between P/W and solve

the right child using the explicit construction sequence {P},

{Q}, {A}, {C}, {D}, {W}. In this way, to solve the problem

in Fig. 5, we need only to find the intersection of three

spheres, which can be reduced to the solution of one

quadratic equation.
3.2. An algorithm to find a C-tree

Algorithm 3.4. The input is a structurally well-constrained

graph G. The output is a C-tree for G.

Let TZG as the initial value.
S1
 Select a set of base primitives with Algorithms 2.1 and

2.2. After three (2D case) or six (3D case) new

constraints are added, we obtain a new graph H from T.
S2
 With the algorithms in [28], we may find a GC for H

C : C1;.;Cm

such that the base primitives will always appear first in

the GC. Using Proposition 4.3 to decide whether C is
angular conflict. If it is, the problem generally has no

solutions and the algorithm terminates.
S3
 If jCijZ1 for some i, it is relatively easy to compute Ci.

We merge all the neighboring Ci containing only one

primitive into one set to obtain a reduced GC:

C0 : C 0
1;.;C 0

s:
S4
 If sZ1, then H can be solved by explicit constructions

and C is a construction sequence for H. We may

generate a C-tree from C as follows: the left child of T is

C and the right child is the empty set. The algorithm

terminates.
S5
 Let B0
iZgi

jZ1C
0
j and k the smallest number satisfying

the following condition. There exists at least one

primitive o2B0
k such that there are no constraints

between o and primitives in C 0
i, iZkC1,.,s. If such a k

does not exist, let kZs.
S6
 If kZs, there exist no faithful subgraphs in this GC. Find

a set of new base primitives for T to generate a new H as

done in S1 and go to S2. If no new base primitives exist,

we have to solve G with the GC C. We may generate a

C-tree for T as follows: the left child of T is C and the

right child is the empty set. The algorithm terminates.
S7
 Otherwise, k!s. Now B0
k induces a faithful subgraph F.

We build the C-tree as follows. The left child of T is F.

The left child of F is the GC: C1,.,Cd where d is an

integer satisfyinggd
jZ1CjZB0

k; the right child of F is the

empty set. The right child of T is the split subgraph G 0 of

G with F. Set TZG 0 go to S1.
Let n and e be the numbers of vertices and edges in G. As

mentioned in Section 2.2, Step S1 has complexity O(e). In

S2, we need to use the maximal b-matching from graph

theory to find a GC, which has complexity O(n(nCe)) [1].

Steps S3–S5 are linear in terms of n and e. Therefore, S2 is

the controlling step for the loop started at step S6. At the

worst case, the loop started by S6 could run for O(e) times,

since the number of base primitives is linear in terms of e.

The loop started at S7 could run n times. Therefore, the total

complexity of the algorithm is O(n2(nCe)e).

We may modify Algorithm 3.4 to find the minimal C-tree

for G by searching all the possible base primitive sets in

Step S1. For a given set of base primitives, the generated GC

is unique due to the fact that the corresponding strong

connected sets in the graph decomposition is unique [28].

Therefore, by searching all the possible base primitives, we

have obtained all the GCs and thus all the possible C-trees

for the problem.
3.3. Working examples

Let G be the graph in Fig. 5(a), which is also the root of

the C-tree. In Step S1 of Algorithm 3.4, we select P, Q, U as

the base primitives. In other words, we will construct G



({A},{B},{C},{D},{E,F,G,H})

({A,B,C,D,E,F,G,H},{I,J,K,L})

Fig. 9. C-tree for the constraint problem in Fig. 8.
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starting from these points. In S2, we generate the

following GC:

C : fPg; fQg; fUg; fVg; fWg; fA;B;C;Dg

In S3, the single points in C are collected together to form

the following reduced GC:

C0 : fP;Q;U;V ;Wg; fA;B;C;Dg

Step S4 does nothing. In S5, kZ1 since we may choose

oZU. In S6, kssZ2 so nothing is done. This means that

C0
1Z fP;Q;U;V ;Wg is a faithful subgraph. In S7, new notes

are added to the C-tree. The left child of the root is C0
1 and

the left child of C0
1 is the following construction sequence:

C4 : fPg; fQg; fUg; fVg; fWg

The right child of the root is the split subgraph of H by

C0
1, which is the graph in Fig. 5(b). Details on how to

generate the split subgraph is given in Section 3.1. Now, we

may repeat the above process for the right child, which can

be generated with the following GC:

C5 : fPg; fQg; fAg; fBg; fCg; fDg; fWg

Now the C-tree in Fig. 7 is generated. Basically speaking,

to solve the problem, we need to solve two GCs: C4 and C5.

Since MDOF(C4)ZMDOF(C5)Z3, which is the simplest

case we could have.

Fig. 8 is a more difficult constraint problem, where each

edge represents a distance between two points. Fig. 9 is the

C-tree for it. In Algorithm 3.4, we select points A, B, C as

the base primitives. Latham–Middleditch’s algorithm will

give a GC as follows:

D1 : fAg; fBg; fCg; fDg; fE;F;G;Hg; fI;L; J;Kg

The reduced GC in S3 is:

D1 : fA;B;C;Dg; fE;F;G;Hg; fI; L; J;Kg

In S5, kZ2, which will lead to the children of the root

(Fig. 9).

Note that the problem in Fig. 5(a) could be solved with

the cluster merging method proposed in [16]. But the

problem in Fig. 8 cannot be simplified with the cluster

formation method.
A
B

C

D

E

F

G

H

I

J

KL

Fig. 8. A 3D constraint problem about 12 points.
4. Basic merge patterns

With a C-tree decomposition, solving of a constraint

problem is reduced to the solving of a GC. In this section,

we will show how to solve a GC. Suppose that we want to

solve a constraint problem represented by a GC:

C : C1;C2;.;Cn (2)

All we need to do is to determine Ci based on C1,.,CiK1.

Let:

BZ g
iK1

kZ1
Ck; UZCi

We call the problem of determining U based on B basic

merging pattern. U and B are called the dependent objects

and the base objects, respectively. From the definition of

GCs, a basic merge pattern ðB;UÞ has the following

properties:
1.
 B and ðBgUÞ are rigid bodies.
2.
 There is no subset V of U such that ðBgVÞ is a rigid

body.

The sum of DOC(e) for all edges e between B and U,

denoted by CNðB;UÞ, describes an important natural of the

merging step, and is called the connection number. Since

both B and ðBgUÞ are rigid bodies, we need exactly

DOF(U) constraints to determine U. In other words, we

have

CNðB;UÞCDOCðUÞZDOFðUÞ (3)
4.1. Classification of 2D basic merge patterns

Theorem 4.1. In a 2D constraint problem, we have:

2%CNðB;UÞ% jUj

Proof. SinceU contains at least one element andB is a rigid

body, CNðB;UÞR2. If jUjO1 then for every vertex v in U

there exists at least one constraint between v and another

vertex in V. Otherwise, v can be determined by B

alone, which contradicts to the minimum property of U.



Fig. 10. The 2D general Stewart platform.
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Then, there exist at least (2!jUj)/2ZjUj constraints

between primitives in U, i.e. DOC(U)RjUj. We have

DOC(U)Z2jUj since all the geometric primitives are

of DOF two. By (3), CNðB;UÞZDOFðUÞKDOCðuÞ%
2jUjK jUjZ jUj. ,

Based on CNðB;UÞ, the solution of a basic merge pattern

ðB;UÞ can be divided into the following three cases:
1.
 If CNðB;UÞZ2,U consists of one geometric element o,

and o can be constructed explicitly.
2.
 If CNðB;UÞZ3, by (3), DOC(U)ZDOF(U)K3. Hence

U is a rigid body and can be solved independently of B.

To solve this basic merge pattern, we may first solve U

and then assemble two rigid bodiesB andU according to

three constraints.

This case deserves special attention. A basic merge

pattern ðB;UÞ satisfies condition CNðB;UÞZ3 is called a

generalized Stewart platform (abbr. GSP). Detailed

description of GSP may be found in Section 4.2. Fig. 10

is the illustration of a 2D GSP. The problem is to

determine the position of U assuming that (1) the position

of B is known; (2) U has been solved, that is, the relative

positions of the geometric primitives in U are known; and

(3) the values of the three constraints between B and U are

given. Closed-form solutions to the 2D GSP have been

found [11].
3.
 If CNðB;UÞO3, the problem becomes more compli-

cated. Now U is not a rigid body anymore. We need to

use the constraints inside U and those between U and B

to determine U. We will use the numerical compu-

tational method proposed in [14] to solve these kinds of

problems.
Fig. 11. Basic merging patterns c
As an example, the basic merging patterns for the case

jUjZ5 are shown in Fig. 11. In these diagrams, we use

circles to represent the vertices with two degrees of freedom,

circles labelled R to represent the rigid bodies, and the thin

lines to represent the constraints between B and U.

In Fig. 11, U is treated as a set of geometric

elements. We may further to decompose U as a set of

rigid bodies if possible. This will simplify the problem

greatly. In Fig. 12, the six merging patterns for case

jUjZ5 in Fig. 11 are simplified to three patterns.

Actually, these patterns represent more cases, because the

rigid bodies in these patterns may be of any size. The

first two cases are used in [29] as basic patterns to solve

constraint problems.
4.2. Classification of 3D basic merge patterns

Theorem 4.2. In a 3D constraint problem, let V3 be the set

of points and planes on the dependent object U, V4 the

set of lines on U. We have 3%CNðB;UÞ%DOFðUÞK
jUjZ2jV3jC3jV4

Proof. Since U contains at least one geometric primitive

and BgU is a rigid body, CNðB;UÞ should be greater than

or equal to the degree of freedom for one primitive. Hence

CNðB;UÞR3. From [28], U can be changed to a strongly

connected directed graph. Since a strongly connected graph

with n vertices has at least n edges, U contains at least jUj

constraints, i.e. DOC(U)RjUj. Since both B and BgU are

rigid bodies, we need exactly DOF(U)Z3jV3jC4jV4j

constraints to determine U. In other words, we have

CNðB;UÞCDOCðVÞZDOFðUÞZ 3jV3jC4jV4j

Thus CNðB;UÞ%DOFðUÞK jUjZ2jV3jC3jV4j. ,

Based on CNðB;UÞ, the solution of a basic merge pattern

ðB;UÞ can be divided into the following cases:
1.
onsi
If CNðB;UÞZ3, U consists of a point or a plane, which

can be constructed explicitly.
2.
 If CNðB;UÞZ4, U consists of a line, which can be

constructed explicitly.
3.
 If CNðB;UÞZ5,U consists of a line l and several points

on l. Suppose that there are m points pi, iZ1,.,m on l.

After renaming the points, DIS(pi,piC1), iZ1,.,nK1

must be known. Otherwise, DOF(U)O5 which is

contradict to the fact that CNðB;UÞZ5.
sting of five primitives.



Fig. 12. Basic merge patterns for rigid bodies.
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4.
Fig. 14. A 3D3A GSP.
If CNðB;UÞZ6, by (3), DOC(U)ZDOF(U)K6. Hence

U is a rigid body and can be solved independently of B.

To solve this basic merge pattern, we may first solve U

and then assemble two rigid bodiesB andU according to

six constraints.
5.
 If CNðB;UÞO6, the problem becomes more compli-

cated. Now U is not a rigid body anymore. We need to

use the constraints inside U and those between U and B

to determine U. Techniques from AI could be used to

simplify some of the cases [5]. Generally, we will use the

numerical computational method proposed in [14] to

solve these kinds of problems.

Let ðB;UÞ be a basic merging pattern such that

CNðB;UÞZ6. Then both B and U are rigid bodies.

Hence, it may be considered as an assembly problem. We

need to assemble two rigid bodies according to six

constraints. This problem can be divided into four cases:
3D3A
 There are three distance and three angular con-

straints between B and U
4D2A
 There are four distance and two angular constraints

between B and U
5D1A
 There are five distance and one angular constraints

between B and U
6D
 All the six constraints between B and U are distance

constraints
We cannot have more than three angular constraints due

to the fact that a 3D rigid body only need three angular

constraints to determine its directions.

This case deserves special attention because it is closely

related to the famous Stewart Platform [4], which is a 6D

basic merge pattern where all distance constraints are

between points. This platform is extensively studied
Fig. 13. The 3D GSP.
because it has many important applications. For a survey,

please consult [4]. Most of the work on Stewart platform is

focused on the forward displacement problem: for a given

position of B and a set of values of the distances, to

determine the position of U. This is exactly what we are

trying to do in solving a basic merge pattern.

The system ðB;UÞ satisfying CNðB;UÞZ6 will be

called a generalized Stewart platform (abbr. GSP). Fig. 13 is

an illustration of a GSP in 3D. Fig. 14 is a 3D3A GSP, where

B and U (the three lines perpendicular to each other) are

connected with three rotational and three distance con-

straints. In [10], we have given the upper bounds for the

number of solutions for all GSPs and closed-form solutions

for the 3D3A GSPs.

4.3. Detection of angular conflict

In the above, we only concern the structure of the basic

merge patterns. It could happen that a structurally well-

constrained problem may have no solutions. One such case

is to have too many angular constraints, which can be

easily detected. If one of the following cases occurs in a

basic merge pattern ðB;UÞ, we say that it is an angular

conflict pattern.
1.
 In 2D case, a line in U has more than one angular

constraints with elements in B. In 3D case, a plane or a

line in U has more than two angular constraints with

elements in B.
2.
 In 2D case, if CNðB;UÞZ3 and there are more than

one angular constraints between B and U. If

CNðB;UÞZ3, both B and U are rigid bodies and we

need only one angular constraint to determine the

rotational degree of freedom of U. In 3D case, if CNð

B;UÞZ6 and there are more than three angular

constraints between B and U.
3.
 In 2D case, let l be the number of lines in U. The

number for the angular constraint between U and B and

between primitives in U is more than l. In 3D case, let l

and h be the numbers of lines and planes in U. The

number for the angular constraints between U and B

and between primitives in U is more than 2(lCh).



Geometric Constraint Problem

General Construction Sequence

C-tree Decompositrion

Basic Merge Patterns

Explicit Construction GSP General Type

Fig. 15. Solving a constraint problem.
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A GC involving an angular conflict pattern is called an

angular conflict GC.

Proposition 4.3. In general, an angular conflict pattern

cannot be realized in the Euclidean space.

Proof. Let us consider the 2D case. Since a line and a rigid

body both have one angular (directional) DOF, it is clear

that the first two cases in the definition of an angular

conflict pattern will lead to angular conflicts and hence

cannot be realized in the Euclidean space. In the third

case, we may first consider those lines which have angular

constraints with lines in B. By case 1, each line can have

only one such constraint and the direction of this line is

determined. Let us call them fixed lines. In a similar way,

we may consider lines with angular constraints with fixed

lines. Repeat the process, we may assume that there are t

lines left and there exist more than t angular constraints

between themselves. But, t lines have at most t directional

DOFs. The more than t angular constraints will lead to

angular conflicts. ,
5. Implementation and experimental results

In this section, we report a software package based on the

C-tree decomposition algorithm. The GCS algorithms

implemented in the software are for 2D and 3D. The current

interface is only for 2D.

5.1. A General framework of GCS

We first give a general framework of GCS, which will be

used in our software package. This general framework

consists of four major steps.
1.
 Use the algorithm LIM0 in [8] to find explicit

construction sequences for the problem. This simple

algorithm is of linear complexity and could be used to

solve about 80% of the 512 geometry problems in [3].
2.

Table 1

Running times and final GCs for problems in Figs. 16 and 17

Figure Time in

second

Final GCS in the C-tree
If the LIM0 algorithm fails, we use the geometric

transformation method to find explicit construction

sequences [9]. This is a quadratic algorithm and is

complete for drawing constraint problems of simple

polygons.

(a) 0.537 {P4,P3,L3,L2,P2,P1,L4,L1}, {P7,P6,L6,L5,P5,L7,P8},
3.
{(P4,P3,L2), (L7,L6,P5)}

(b) 0.513 {A,B,C,D,E,F}; {G,H,I,J}; {(A,D,F), (G,H,I)}

(c) 0.464 {A,B,C,D,E,F}; {B,F,G,H,I,J,K,L}

(d) 0.347 {(A,B,C), (D,E,F)}; {(D,E,F), (G,H,I)}

(e) 0.399 {A,B,C,D}; {D,E,F,G}; {G,H,I,J}; {J,L,K,A,G,D}
If the above step fails, we use the C-tree decomposition

algorithm to reduce the problem into basic merge

patterns, which are the smallest problem we have to

solve in order to solve the original problem. This process

is illustrated in Fig. 15.

(f) 0.435 {K,L,M,G,H,D}; {A,B,C,D,E,F}; {D,F,I,J,M,N,O}
4.

(g) 0.512 {A,B,C,I,J,G,H}; {C,D,E,K,L,M,N};

{A,C,E,F,O,P,Q,R}

(h) 0.324 {P2,L2,P3,L5,P6,L1}; {P5,L3,P4,L6,P6,L4};

{P1,L1,L4,P6}

(i) 0.397 {L1,P4,L3,P5,L4,P6,L8,P11}; {P9,L7,P8,L6,P7,L5};

{(L1,L8,P6), (P9,P8,L5)};

{P1,P2,P3,L0,L2,L9,P10,P13,P12}
There are three types of basic merge patterns. The

explicit construction means to construct one geometric

primitive, which is generally easy. The GSP is to

determine the position of one rigid body, which has

closed-form solution in 2D [11] and certain cases in 3D

[10]. For the general type, we usually do not have closed-

form solutions. For the problems without closed-form
solutions, we use the numerical method reported in [14]

to solve the problem. This method can solve equation

systems consisting of 100 quadratic equations in

seconds.
5.2. The software and experimental results

We have implemented the general framework of GCS

introduced in Section 5.1 in our software package

MMP/Geometer [13] MMP/Geometer is implemented in

Windows environment with VCCC. Although the general

framework of GCS can be used to both 2D and 3D

problems, the current version of MMP/Geometer only

handles 2D problems. This is mainly due to the difficulty to

implement a 3D sketch interface.

After the algorithm is selected, we still need to add details

in the implementation to enhance the performance of the

algorithm. One problem is the ambiguities rising from

operations like ‘intersection of two circles’ or ‘intersection of

a circle and a line’. These constructions have several

solutions. When the user changes a constraint value, the

program will compute the position of all points in the figure

automatically. Our goal is to keep a continuous movement of
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Fig. 16. A 2D constraint problem (a) and its constraint graph.
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diagram. In other words, we try to avoid ‘jumps.’ The

problem is solved by comparing the two solutions with

the initial positions and then the software will remember the

relative position of the relevant elements. For instance, let p

be the intersection of two circles with centers o1 and o2 in the

original figure. After a constraint was changed, we assume

that the sign of the signed area of triangle po1o2 still keeps

the same.

Another concern is the speed. While changing the

constraint values, we adopt the following strategies to keep

the software fast: (1) after a constraint is changed, we need
Fig. 17. Eight constr
only to compute the positions for those elements whose

positions are affected by the changed constraint in the

C-tree. (2) When creating GCs, try to use the constructions

which are easier to compute. For instance constructions for

points are generally easy to compute than constructions for

lines. So we always try to construction lines before points.

(3) Optimize the code by using explicit formulas to solve

linear and quadratic equations.

Table 1 contains the running time for our software to draw

the diagrams and the final GCs in the C-tree. The timings are

collected on a PC with a 2.22 GHz CPU.
aint problems.
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We use problem (a) in Fig. 16 to explain the meaning of

the data in the table. In Fig. 16, the left figure is the

geometric constraint problem and the middle figure is the

constraint graph. The final GCs are the leaves of the C-tree.

For problem (a), the first GC {P4,P3,L3,L2,P2,P1,L4,L1} and

the second GC {P7,P6,L6,L5,P5,L7,P8} are two explicit

construction sequences. The third GC {(P4,P3,L2),

(L7,L6,P5)} is shown on the right part of Fig. 16, where

the dotted lines are the auxiliary constraints. It is a basic

merge pattern with BZ(P4,P3,L2) and UZ(L7,L6,P5). In

problems (b)–(g) of Fig. 17, the lengths for all the line

segments are assumed to be known. The constraint values in

problems (h) and (i) are explicitly given.
6. Conclusion

Ageometric constraint solving procedure usually consists

of two phases: the analysis phase, which is to reduce a large

geometric constraint problem into several subproblems, and

the computation phase, which is tomerge the subproblems by

numerical or symbolic computation. In this paper, we

propose an analysismethodwhichmay be used to decompose

any constraint problem into smaller rigid bodies if possible.

Comparing to other decomposition methods, our method can

be used to handle general constraint problems and is easier to

understand and implement. Experimental results show that

the algorithm finds the smallest decomposition for all the

testing examples efficiently.

The merge phase could be very difficult. This is due to

the intrinsic difficulty of the constraint problem: there exist

constraint problems of any size which cannot be decom-

posed into smaller rigid bodies. For these problems, we have

to solve them with brutal force computation methods. In our

software, we use a numerical computation method based on

optimization, which can be used to find solutions of a set of

equations consisting of up to 100 quadratic equations in

seconds [14].
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