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Abstract

The numerical approach to solving geometric constraint problems is indispensable for building a practical CAD system. The most
commonly-used numerical method is the Newton–Raphson method. It is fast, but has the instability problem: the method requires good
initial values. To overcome this problem, recently the homotopy method has been proposed and experimented with. According to the report,
the homotopy method generally works much better in terms of stability. In this paper we use the numerical optimization method to deal with
the geometric constraint solving problem. The experimental results based on our implementation of the method show that this method is also
much less sensitive to the initial value. Further, a distinctive advantage of the method is that under- and over-constrained problems can be
handled naturally and efficiently. We also give many instructive examples to illustrate the above advantages.q Published by Elsevier
Science Ltd.
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1. Introduction

There are several approaches to solving the geometric
constraint problem. Thesymbolic approach[7,14,21] trans-
lates geometric constraints into a system of polynomial
equations and solves the system by computer algebra tech-
niques such as the Wu–Ritt method or the Grobner basis
method [8]. It is reliable and complete, but is too slow and
space-consuming to solve practical problems.

The propagation approach[1,6,9,15,22,23,26,28,39,41]
solves the constraint system by deriving unknown variables
or geometric objects from already known ones using a set of
predefined rules. Usually the propagation methods are
implemented with expert systems or logic programming
languages such as Prolog.

The graph analysis approach[5,12,13,25,35,37,40]
translates a geometric constraint problem into a graph and
finds the geometric construction sequence by analyzing the
graph. Both the propagation approach and the graph analy-
sis approach have their limitation in scope.

On the other hand, the numerical approach
[2,4,19,24,27,29,31,36] is a general method for solving the

geometric constraint problem. Like the symbolic method,
the numerical method first translates the constraints into a
system of nonlinear equations. Then this equation system is
solved by iterative methods instead of exact symbolic
computation.

The most commonly used method in the numerical
approach is the Newton–Raphson method. It is fast, but
has the instability problem: the method is sensitive to the
initial values. A small deviation in the initial value can lead
to an unexpected or unwanted solution, or to the iteration
divergence. To overcome this problem, recently the homo-
topy method has been proposed and experimented with [24].
According to the report in Ref. [24], generally the homotopy
method works much better in terms of stability. These two
methods generally require the number of variables to be the
same as the number of equations. If these two numbers are
different, i.e. the constraint system is generally over- or
under-constrained, some special techniques, such as linear
least square and singular value decomposition of a matrix,
are required.

In this paper, based on the optimization method we use a
numerical method for solving geometric constraint
problems. Our experiments with this method show that it
is also quite stable. Further, the method cannaturally deal
with under- and over-constrained problems. We also give
many instructive examples to illustrate the above advan-
tages. Numerical approaches similar to the optimization
method have been introduced and discussed in Refs.
[2,4,19]. We will discuss the related work in Section 2.11.
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2. The optimization method for solving geometric
constraint problems

2.1. Using optimization method for solving a system of
equations

Generally, a geometric constraint problem can be first
translated into a system of equations:

f1�x1;…; xn� � 0

f2�x1;…; xn� � 0

…

fm�x1;…; xn� � 0

�1�

Then the problem is how to solve this system of equations
F�X� � 0; where F � �f1; f2;…; fm�T : Rn ! Rm is the
equation vector andX � �x1; x2;…; xn�T is the vector of
unknown variables. This system of equations can be solved
iteratively by the Newton–Raphson method [29]. The itera-
tion formula isXk11 � Xk 2 J�Xk�21F�Xk�; whereJ�Xk� is
the Jacobi matrix ofF�X� at pointXk.

The Newton–Raphson method usually requires that the
number of constraints and the number of variables are the
same so that the inverse of the Jacobi matrix can be calcu-
lated. This requirement makes the method difficult to handle
under- and over-constrained problems which frequently
occur in real applications.

Unlike the other numerical methods, the optimization
approach solves the system of equationsF�X� by converting
it into finding X at which the sum of squares

s�X� �
Xm
i�1

fi�X�2 �2�

is minimal. It is obvious thatF�X� � 0 has areal solutionXp

if and only if mins�X� is 0. The problem of solving a system
of equations is thus converted into the problem of finding the
minimum of a real multi-variate function. The problem
now can be solved by various well-developed numerical
optimization methods [10,32,33].

One obvious fact for this approach is that the number of
equationsm is not necessarily the same as the number of
variablesn. Thus for this approach it is natural to deal with
under- and over-constrained problems.

In this paper, we focus on the numerical aspects of the
algorithm to solve the geometric constraint solving problem
by the optimization method. We have tested two optimiza-
tion methods: the modified Levenberg–Marquardt method
and the BFGS method. Next we will briefly introduce these
two methods.

2.2. The modified Levenberg–Marquardt method

By the optimality condition we have the fact that the
derivatives g�X� of s�X� at the minimum points equal

zero. Using the chain rule of derivation we have

g�X� � 2J�X�TF�X� �3�
where J�X� is the Jacobi matrix of the function vector
F�X� � �f1; f2;…; fm�: Applying the Newton–Raphson itera-
tion formula to Eq. (3) we have the following iteration
formula

�JT
k Jk 1 Sk�DXk � 2JT

k Fk �4�

Xk11 � Xk 1 DXk

where S�X� � Pm
i�1 fi�X�72fi�X� is a function of second-

order derivatives. If we ignore the second-order derivatives
we have the Gauss–Newton iteration formula

DXk � 2�JT
k Jk�21JT

k Fk �5�

Xk11 � Xk 1 DXk

To ensure thats�X� decreases with each iteration and also
to deal with the singularity of matrixJT

k Jk; the Levenberg–
Marquardt method is usually used with the modified
iteration formula

DXk � 2�JT
k Jk 1 lkI �21JT

k Fk �6�

Xk11 � Xk 1 DXk

whereI is the unit matrix andl k is a small real number.
The selection ofl k should ensure that the matrix�JT

k Jk 1
lkI � is positive definite. In practice the selection ofl k has a
great impact on the convergence domain and speed. Usually
l k is initially set to 0.01 and later is doubled if�JT

k Jk 1 lkI �
is not positive definite. This method is a locally convergence
optimization method and its behavior in our experiments is
not satisfactory either in convergence speed and domain.
The main problem is that the initial guess of the solution
should be very near the solution to ensure that matrixJT

k Jk is
positive definite. This problem becomes more serious when
processing under-constrained problems, since matrixJT

k Jk

always singular in this case. This makes us resort to the
second optimization method to solve the problem.

2.3. The BFGS method

The second method we have tried is the BFGS method
which is also called the secant or quasi-Newton method
[3,10,33]. It is a globally convergent method and thus is a
more robust numerical optimization method. This method
tries to construct a secant approximationH of the Hessian
matrix of functions�X�: The main algorithm of BFGS is
described as follows:

1. Initialization

H0 � a unit matrix; X0 � the initial value; k � 0;

2. Compute the derivativesg�X� and their differenceyk atXk
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gk � 7s�Xk�; if igki , 1 thenXp

� Xk and stop the iteration

yk � gk 2 gk21;

3. Compute search directionpk and the step to reach a
minimum along the directionpk

pk � 2Hkgk

lk � minls�Xk 1 lpk�

DXk � lkpk

Xk11 � Xk 1 DXk

4. Adjust matrixH

Hk11 � Hk 1 1 1
yT

k Hkyk

DXT
k yk

 !
DXkDXT

k

DXT
k yk

2
HkykDXT

k 1 DXky
T
k Hk

DXT
k yk

5. k 1 1 goto (2)

More details of this algorithm can be found in Refs.
[3,10,33]. There are several ways to improve this algorithm.
One improvement is to use the trust region technique in this
algorithm to promote convergence from poor starting point
guesses [16]. Another improvement is to use a different
updating formula to avoid storing the secant matrixH to
save memory [34].

Compared with the Newton–Raphson method for
geometric constraint solving, the optimization method has
the following desirable features:

• This method is quite stable as demonstrated by our
experimental results. The success of finding a desired
solution by this method is rather insensitive to the initial
guess of the solution to the geometric constraint solving
problem. Also the solution found by this method is more
predictable in contrast to the drastic solution jumping
caused by even small changes of the initial value in the
Newton–Raphson method.

• Under- and over-constrained problems are naturally
handled by this method. In particular, for under-
constrained problems, this method will find a “visually
less changed” solution which is reasonably near the initi-
ally sketched diagram. For over-constrained but consis-
tent problems, this method will generally still find a
solution. This feature will be shown in Section 2.5.

The concept of “visually less changed” is not rigorously
defined. However, we can give a formal definition to a
related concept. A solutionX is visually least changedif
X is a solution to a geometric constraint problem andiX 2
X0i2 is minimal, whereX0 is the initial guess of the solution.
From our experiments, we have found that the optimization
method often finds a solution near the visually least changed
solution for under-constrained problems.

In the next section we will show some experimental
results of this method.

2.4. Experimental results with the BFGS method

We have developed a system AGP (Associative
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Fig. 1. Some simple examples.



Geometric Pad) using the BFGS method.3 It is an experi-
mental sketching system implemented in C11 under the
Linux and X/Motif environment.

In AGP, four types of geometric objects are supported:
points, lines, circles and arcs. However, only points are
internally maintained on which constraints are specified.
This is made possible by introducing some auxiliary points
under some circumstances. For example when specifying
that two circles with centersC1 andC2 are tangent, a new
auxiliary tangent pointT is introduced and the tangent
constraint is internally converted into three constraints:
(collinear; C1 T C2), (onCircle T C1) and (onCircleT C2).
Finally constraints in the form of (onCirclePi C) i �
1;… are converted into (equalDistancePiC Pi11C� i �
1;…; k 2 1:

In this section we show some examples solved by AGP to
demonstrate some features of the optimization method.

Fig. 1 shows some simple examples made by AGP. Fig.
1a is one of theApollonius construction problems. The
problem is to construct a circle tangent to three given circles
which are specified to have fixed centersCi �i � 1; 2;3� and
to pass through fixed pointsPi �i � 1; 2;3�; respectively.
Actually the problem has eight solutions. In the figure
AGP generated four essentially different circles (in dashed

lines) corresponding the four initially roughly sketched
circles.

Fig. 1b is the diagram of the Thebault–Taylor theorem
proposed as a conjecture in 1938 and proved in 1983. The
theorem states that given a triangleP1 P2 P3 and a pointP4

onP2P3; circleC1 is the circumscribed circle of the triangle;
circleC2 is the inscribed circle of the triangle; circlesC3 and
C4 are tangent to lineP2 P3, line P1 P4, and circleC1, then
the centersC2, C3 andC4 are collinear. The construction of
this diagram is well constrained, but it has 256 solutions.

In Fig. 1c the regular pentagon is specified such that all its
five sides are equal and three of its diagonals in dashed lines
are equal; the circumscribed circle is specified to pass
through five vertices of the pentagon; and the inscribed
circle is specified to be tangent to the five sides of the
pentagon. Note that this problem is over-constrained.
Table 1 shows the running statistics of these three exam-
ples.4

Since the BFGS method is a globally convergence numer-
ical optimization method, the success of finding a solution is
not very sensitive to the initial value. This preferable feature
is demonstrated in Fig. 2 where the three circles are speci-
fied to be mutually tangent and to be tangent to two neigh-
boring sides of a triangle whose three vertices are specified

J.-X. Ge et al. / Computer-Aided Design 31 (1999) 867–879870

Fig. 2. The example to demonstrate the insensitivity to the inexact initial guesses of the solutions: (a) and (c) are the initial diagrams constructedby the user; (b)
and (d) are the diagrams after computation.

3 This software can be accessed at ftp://henry.cs.twsu.edu/pub/agp/
agp.tgz.

4 All the running time in this paper is collected by averaging ten conse-
cutive execution time on a Pentium Pro 200 machine with the Linux oper-
ating system.



to be fixed. Fig. 2a and c are the initial diagrams sketched by
the user. It is easy to see that the differences between the
initial guesses and the exact solutions of this problem,
respectively, in Fig. 2b and d are rather large. Also this
figure demonstrates how different initial values lead to
different branches of the solutions.

Fig. 3 is the simplest case for the problem we callthe
tangent packing problem. The problem is to packn�n 1 1�=2
circles (n rows of circles) tangent to adjacent circles and/or
the adjacent neighboring sides of a given triangle. Fig. 3 is
the case ofn� 6; i.e. we need to pack 21 circles in the
triangle. This difficult problem contains 174 variables
(since we introduce auxiliary tangent points) and 6 linear
equations and 168 quadratic equations which could not be
block triangularized. Table 2 shows the running results for
different n of this problem.5

2.5. Under- or over-constrained problems

Under- and over-constrained problems are very common
in real applications. For example, engineering drawings are
usually under constrained, especially in their early design
stages. It is quite inconvenient to require the user to draw the
diagram with all the dimensions specified at the beginning.
Even for some finished engineering drawings under-
constrained cases can still occur, since some unimportant
dimensions are ignored by the users. Over-constrained
problems are not common in engineering drawings.
However, the over-constraining technique can be used as
a tool to aid the user to draw some complicated figures
conveniently or to exclude some unwanted solutions.

The optimization method is capable of handling under-
and over-constrained problems in a very natural way. The
following examples demonstrate this capability. Fig. 4
shows the process to draw a regular 11-polygon. First the
user sketches the diagram as in Fig. 4a. Then he/she speci-
fies that the bottom side to be fixed and all the sides of the
polygon are equal. At this moment, this problem is under-
constrained since the polygon is not totally fixed. However,
the diagram can still be computed satisfying all the
constraints in the system as shown in Fig. 4b. Finally, the
user specifies that all the diagonals connecting the two next
adjacent vertices in the figure are equal. After computation
we get the regular 11-polygon as shown in Fig. 4c. This
actually becomes an over-constrained problem, since the

user needs only to specify 8 of the 11 diagonals to be
equal. Of course, this over-constrained problem is consis-
tent, meaning that introducing redundant constraints will not
conflict with the existing constraints. Effectively handling
under- and over-constrained problems is a preferable feature
of a geometric constraint solving system. In this problem, it
is rather difficult to decide which eight diagonals should be
selected to be equal. It is more convenient for the user to
specify all the diagonals to be equal.

Sometimes over-constraining can be used to select a solu-
tion and exclude others from a finite set of solutions to a
geometric constraint problem. The next example demon-
strates such usage in drawing a regular pentagon. Fig. 5a
is the initial configuration of the diagram with two pointsP1

andP2 fixed. After specifying that five sides of the pentagon
are equal and three diagonalsP1P3, P2P5 andP3P5 are equal,
the diagram becomes the one in Fig. 5b which is a solution
we do not want. Actually the problem is well constrained
and there are eight solutions to this problem. Next we
specify in Fig. 5c that pointsP1 and P2 are fixed; five
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Fig. 3. A difficult problem. (a) The initial diagram drawn by the user. (b)
Diagram generated after all tangent constraints are added.

Table 2
Running statistics for Fig. 3 with different number of circles

# Circles (# rows) # Equations # Variables Time (s)

3 (2) 30 30 0.228
6 (3) 54 54 0.965
10 (4) 86 86 3.379
15 (5) 126 126 11.587
21 (6) 174 174 23.751

Table 1
Running statistics for Fig. 1

# Equations # Variables Time (s)

Fig. 1a 44 44 0.623
Fig. 1b 34 34 0.172
Fig. 1c 28 24 0.142

5 The case whenn� 4 was given in Ref. [24] which inspires us to
consider other cases.



sides of the pentagon are equal; four diagonalsP1P3, P2P5,
P3P5 and P1P4 are equal. Obviously it becomes an over-
constrained problem. After computation we get the desired
regular pentagon in Fig. 5d.

In the general case under-, well-, and over-constrained
problems could be very complicated. It could happen that
a seemingly well-constrained diagram actually has infinite
solutions. For example, to specify a regular pentagon we
give seven constraints: all the five sides of the pentagon
are equal and the four diagonals in Fig. 5c are equal.

These constraints are independent in the sense that each
polynomial corresponding to one constraint is not in the
radical ideal of the polynomials corresponding to the other
constraints. Since the problem has five points and thus needs
seven independent constraints, it seems to be well
constrained. But the problem actually has infinite solutions
since the length of each side of the pentagon is not fixed.
This phenomenon occurs for problems with many branches
of solutions. Some of the constraints are used to eliminate
branches, but not to reduce the degree of freedom of the
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Fig. 4. Under- and over-constrained examples. (a) The initial diagram
drawn by the user. (b) Diagram generated after specifying that the bottom
side is fixed and the lengths of eleven sides are equal. (c) Diagram gener-
ated after specifying that all the diagonals in the figure are equal.

Fig. 5. The example to use redundant constraints to select different branches
of solutions. (a) Initial diagram drawn by the user. (b) Diagram generated
after specifying that five sides of the pentagon are equal and three diagonals
are equal. (c) Initial diagram drawn by the user. (d) Diagram generated after
specifying that five sides of the pentagon are equal and four diagonals are
equal.



diagram. Generally, this kind of problem cannot be solved
with the propagation method or the graph analysis method.
Obviously the ability of the optimization approach to handle
such problems is an advantage over other methods.

2.6. Practical considerations

Our experiments with the optimization method show that
this method is quite efficient for medium sized geometric
constraint solving problems with less than one hundred
equations. However, for larger problems the performance
is not satisfactory. For example, the problem in Fig. 6 is
to pack 19 tangent circles in the area separated by two given
tangent circlesC1 andC2. It contains more than 170 equa-
tions, and we solve the problem as a whole in nearly 39 s.

One solution is to use various storage saving techniques
to improve the performance [20]. Among these methods we
tested the method in Ref. [30]. The result is quite satisfac-
tory. For the six tangent circle packing problem, the method
takes only 0.84 s instead of 23.75 s (see Table 2). However,
this method is less unstable that our original method
equipped with the trust region technique. In any case this
is a good starting point. On one side we could try improve
the stability of those very efficient but less stable numerical
methods by using some techniques, such as the trust region
method and stable line search methods. On the other side,
we could provide the system with two numerical solvers.
These solver are selected so that one is efficient but less
stable and the other is stable but less efficient. When solving
a specific problem, the system first tries the efficient solver.
If the efficient solver could not solve the problem, the stable
solver is invoked.

The other solution is to use the decomposition techniques
discussed below. Actually the diagram in Fig. 6 could be
constructed sequentially in an order of the size of the circle
to be constructed. The construction of each circle is a special
case of the Apollonius construction problems.

For those kinds of problems we can use two decomposi-
tion techniques to improve the computation performance.

One is calledequation oriented decompositiontechnique
which turns a system of equations intoblock triangular
form. A system of equations is said to be in block triangular
form if it can be divided into subsets of equations:

S1�x1;…; xn1
�;S2�x1;…; xn11n2

�;…;St�x1;…; xn11…1nt
�:

whereni is the number of equations inSi. Such a system of
equations can be solved sequentially. Each timeSi is solved
by the optimization method and the solution is substituted
into subsequent sub-systemsSk �k . i�: The block triangu-
larization process can be implemented by the algorithms
proposed in Refs. [25,37].

Another technique is calledcluster oriented decomposi-
tion which solves the constraint problems by first dividing
the diagram into a set of small sub-diagrams called clusters
and then assembling these clusters again. A cluster is essen-
tially assumed to be a rigid body only having translational
and rotational degrees of freedom. This implies that the
inner-cluster constraints which only concern geometric
objects in the same cluster are invariant with respect to
the rigid body transformation, e.g. if an inner-constraint in
a cluster is originally satisfied it will still be satisfied after
the cluster is transformed by any translational and rotational
transformation.

First suppose clustersC1;…;Cp in the diagram are recog-
nized and solved with some methods [1,5,13,35,41]. For
each clusterCi we introduce a transformation matrixTi

Ti �
ai 2bi c

bi ai di

0 0 1

0BB@
1CCA

whereai, bi, ci anddi are unknown variables satisfyinga2
i 1

b2
i � 1:
Like the 3D cases [27,36], we first translate the inter-

cluster constraints, which constrain geometric objects in
different clusters, into a system of equations withai, bi, ci

anddi �i � 1;…; p� as unknown variables. For example, an
inter-cluster constraint requiring that two clustersCi andCj

share a common pointP can be written as

Ti

xpi

ypi

1

0BB@
1CCA � Tj

xpj

ypj

1

0BB@
1CCA

which essentially represents two linear equations with
elements in Ti and Tj as unknown variables, where
�xpi; ypi� and �xpj; ypj� are the numerical coordinate values
for pointP in clustersCi andCj, respectively. The equations
obtained in this way, called assembly equations, are then
solved by the optimization method. The solution to the
system of assembly equations, if it exists, ensures that the
inter-clusters will be satisfied after the transformations
are performed on the clusters. Since the inner-cluster
constraints are invariant with respect to the transformation,
all the constraints in the system are now satisfied.
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Fig. 6. A sequence of Apollonius’ construction problems.



Generally, these two decomposition techniques will
improve the performance of numerical calculation greatly.
It will make the optimization method attractive in some real
applications, such as engineering drawing systems in which
nearly all problems can be solved sequentially. However,
this decomposition technique will not be helpful if the struc-
ture of the problem is very “bad”. The diagram in Fig. 3 is
such an example. It is obvious that the system of equations
for the problem cannot be structurally block-triangularized
and the diagram itself also cannot be clustered.

2.7. Problem of inequalities

One of the problems of the optimization method is that
the general numerical optimization methods only find local
minima of a multi-variate function. It is possible for the
functions�X� in Eq. (2) to have a nonzero local minimum,
although there exists a solutionXp to Eq. (1). Furthermore,
the general optimization method usually cannot properly
handle the critical point (the point at which the gradient
vector of the goal function is zero) which is not an minimal
point. From our experience, this problem rarely happens for
under- or well-constrained problems (actually, we have
encountered no such cases so far). However, for over-
constrained problems we did encounter such cases. In parti-
cular it becomes serious when the constraint problem
involves inequalities.

For example, the diagram in Fig. 5d is generated from the
sketch in Fig. 5c by specifying thatP1P3 � P1P4 � P2P5 �
P3P5: This is an over-constrained problem. However, if the
initial sketch is Fig. 5b with the same constraints, then the
optimization iteration will finally reach a critical point
which is not a solution.

A natural remedy for this problem seems to use inequality
constraints. For this example we tried to add an inequality
constraint which specifies that pointP4 is above lineP3P5 in
Fig. 5b. In theory it should get the desired result. Each
inequality f �X� $ 0 can be transformed into an equality
f �X�2 My2 � 0; where y is a newly introduced variable
and M is a positive number. It is obvious that we have
;X�f �X� $ 0, 'y f�X�2 My2 � 0�:However, this attempt
failed in our experiments. The reason is that the introduction
of inequalities may lead to some critical points near the
solution we want.

Here is a very simple example to demonstrate this situa-
tion. Suppose we have an equationx2 2 1� 0 and an
inequality x $ 0; following the above discussion we
construct a functionf �x; y� to be minimized

f �x; y� � �x2 2 1�2 1 M�x 2 y2�2

For M � 1 there are five critical points for this
function:�1;^1�; �^ ��

2
p

=2;0� and (0,0) (see Fig. 7a–c). But
only the first two critical points are the minimum points we
want. The other critical points are essentially saddle points
which are not local minima. The introduction of these
saddle points make the problem especially difficult. The

success rate of our numerical solver for this problem is
only 33.3% for the initial values ofx; y [ �25;5� (see
Fig. 7d). Although we can chooseM $ 2 so that the critical
points �^ ��

2
p

=2:0� are eliminated, the critical point (0,0)
cannot be removed.

2.8. Constraint hierarchy

The constraint hierarchy can be introduced to geo-
metric constraint problems. In mechanical designs, some
constraints, especially those related to structural configura-
tion or performance of the part, are of the highest priority
and should be satisfied unconditionally. Others, such as
those for esthetical purposes, are of lower priority and are
not necessarily to be satisfied. Freeman-Benson [11] solves
constraint hierarchy problems with an efficient local propa-
gation method. However, his method cannot handle
geometric constraint problems.

We solve this problem with multi-objective optimization
methods. As in Ref. [11] we partition all the constraints in
the system into a constraint hierarchy with different priority
levels. We assume that constraints in lower constraint
hierarchy levels have higher priority, and level zero has
the highest priority. Following the way in Section 2.1, for
each constraint hierarchy leveli we could construct an
objective functionGi�X�

Gi�X� �
Xmi

j�0

mij f
2
ij �X�

wherem ij can be used to specify the relative importance of
each constraint in the same hierarchy level.

Now the constraint problem has been transformed into a
classic nonlinear multi-objective unconstrained optimiza-
tion problem

min{G0�X�;G1�X�;…;Gk�X�} :
Several numerical methods can be used to solve the above

problem [33,38]. We convert this problem into a constrained
optimization problem. For simplicity, we only consider
two levels of constraints. Constraints in level zero are
compulsory and constraints in level one are preferable.
First, we solve the problem in level zero by solving follow-
ing minimization problem

Gp
0 � min

x[xn
G0�X�:

Since the constraints in this level are mandatory, we must
check thatGp

0 is less than a prescribed small number10. If
this condition is satisfied then we proceed to the next level
of constraints. One natural condition to satisfy this level of
constraint is that no constraints in the previous level (level
zero) are violated. So we turn this problem into a
constrained optimization problem with the following goal
function

Gp
1 � min

x[D
G1�X�
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Fig. 7. Problem of unwanted critical point. (a) The graph of functionf �x; y� in interval�20:2;1:2� × �21:2;1:2�: (b) The graph of the function fory� 0 withx in
interval (21.2,1.2). (c) The graph of the function forx� 1 with y in interval (21.2,1.2). (d) The convergence diagram forx; y [ �25;5�: The black area
consists of the set of the initial points which will lead the numerical solver to the solutions (1,^1).
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whereD � { Xu�G0�X� # Gp
0 1 11} and 11 is a small real

number.
Using current general nonlinear constrained optimization

techniques [3,10,33], it is not difficult to find a solution for
the above problem. Since constraints in this level are not
necessarily to be satisfied,Gp

1 does not have to be zero.
It is worth pointing out that this technique can be easily

adapted to find a visually least changed solution discussed in
Section 2.3.

2.9. Linear constraints

In some applications, such as the user interface design
and the architectural layout design, only linear constraints
are involved. In this case, we can model the geometric
constraint problems with much simpler optimization
models. One such model translates the constraints into a
linear programming problem

minxcTx

s:t: Ax � 0 Bx $ 0

where the conditions correspond to the geometric
constraints in the system. For this problem, we can simply
set the goal function to be a constant. This problem can be
solved by commonly used linear programming algorithms
[18,22]. The other model is the quadratic programming
model where the goal function is the sum of the squares
of linear functions induced by linear geometric constraints,
thus could be written as

minxxTAx

s:t: Bx $ 0:

This problem can be solved by a very efficient algorithm
called successive quadratic programming (SQP) approach
[3,33]. We believe that these methods can solve these speci-
fic problems much more efficiently and robustly.

2.10. Global optimization

The limitation of the optimization method discussed in
Section 2.7 can be overcome with the global optimization
method. The global optimization method can be used to
determine global minima for a goal function. It is obvious
that if there exists a solutionX to Eq. (1), the goal function
s�X� in Eq. (2) will always reach its global minimal value of
zero at a point which is assumed to be found by the global
optimization method. The global optimization will solve the
problem by assuring that the minimization process will not
trap into a local minimal point or an unwanted critical point.

Besides, the global optimization method can be used to
find as many solutions to a set of equations as possible by
enumerating local minima of the goal function in Eq. (2).

The global optimization method is a current research
topic in the numerical optimization. Many global opti-
mization methods have been developed, including the

deterministic method, the stochastic method, the simulated
annealing method, the interval method, and the genetic
algorithm [17,32,33]. Some of these, especially the determi-
nistic method, are so well developed that they could be used
to solve many difficult problems in real applications.

2.11. Comparison to some related work

Numerical approaches similar to the optimization method
have been introduced and discussed in Refs. [2,4,19]. While
these papers focused on the mathematical model, the main
purpose of our paper is to address the numerical experiment
with the optimization method. For the numerical method to
solve the geometric constraint problems, one of the most
challenging problem is how to find a numerical method
which is both efficient and robust.

In Ref. [4] the authors convert the constraints to an energy
function and solve the constraint problem by minimizing the
energy function. However, the steepest descent method used
in their work suffers from slow convergence because of the
zigzagging problem [3], which makes it hard to be used to
solve real application problems. In Refs. [2,19] the authors
independently proposed a method to convert the constraint
problem into a constrained optimization problem. However,
both papers gives no detailed information about the numer-
ical behavior of the algorithm.

Also the distinctive advantage of the optimization method
in handling with under- and over-constrained problems is
one of the main focuses of our paper as our experiments
with various regularn-polygons have shown (Section 2.5).
We have made extensive experiments with under- and over-
constrained problems and have found that our approach is
very natural to deal with these problems.

Furthermore, we observe that with this method redundant
constraints can be naturally used in practice to select a solu-
tion branch from a finite set of solutions of a well
constrained problem (Section 2.5).

3. Conclusions

In this paper we use the optimization method to solve
geometric constraint problems. Many experimental results
show that this method is stable and effective in solving
difficult geometric constraint problems. In particular, it
can be used to solve under- and over-constrained problems
naturally. Further more, this method can be extended to a
general frame work to cover more general geometric
constraint problems in many applications such as CAD.
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