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Abstract

A basic idea of geometric constraint solving (GCS) is to decompose the constraint problem into smaller ones according to some basic

configurations. In this paper, we find all spatial basic configurations involving points, lines, and planes containing up to six geometric

primitives in an automated way. Many of these basic configurations still resist effective analytical solutions. We propose the locus

intersection method (LIM) for GCS, a hybrid method based on geometric computation and numerical search that can be used to find all the

solutions for a geometric constraint problem. We show that the LIM can be used to solve all the above basic configurations.
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1. Introduction

Geometric constraint solving (GCS) is the central topic

in much of the current work of developing parametric CAD

systems. It also has applications in chemical molecular

modeling, linkage design, computer vision and computer

aided instruction. GCS algorithms accept the declarative

description of geometric diagrams or engineering drawings

as the input and output a drawing procedure. There are

four main approaches to GCS: the graph analysis approach

[8,13,14,19,23], the rule-based approach [1,4,10,16,20,24,

25], the numerical computation approach [18,21], and the

symbolic computation approach [5,17,26]. In practice,

combinations of these approaches are often used to obtain

the best result. The work in Refs. [3,6,9,11] uses this

approach.

Since practical problems from CAD are usually very

large, a basic idea in GCS is to use the following approach

of divide and conquer.

Schema DC(P)

1. Divide the problem P into several sub-problems P )

P1 < · · · < Pm:

2. Solve the sub-problems Qi ¼ DCðPiÞ recursively with

algorithm DC.

3. Merge the sub-problems together Q1 < · · · < Qm ) P:

Most GCS methods may be understood in this way.

For instance, in the numerical computation method, we treat

each individual primitive as a sub-problem in the first step.

The second step is trivial and the third step is to merge these

primitives by solving a large-scale equation system

simultaneously. This is of course an extreme case.

In general, graph algorithms are used to find feasible

decompositions. The ideal decomposition is that each of the

three steps in the algorithm may be solved effectively, stably

and completely.

The triangle merge approaches proposed in Refs. [13,23]

may be understood as decomposing a problem into three

sub-problems such that each pair of sub-problems shares a

common geometric primitive, and the merge step is to place

one primitive with respect to the other two. In this approach,

the triangle problems, i.e. the constraint problems

consisting of three primitives, play an important role.

They are used as building blocks for larger scale constraint

problems. We may call them the basic configurations in

these approaches. A smallest constraint problem that cannot

be solved with the above method may also be considered as

a basic configuration. If we can solve this basic problem,
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then we may use it as a building block to solve an enlarged

class of constraint problems. In Ref. [7], such a basic

configuration with six primitives is solved with four-bar

linkages. In Ref. [20], two rigid structures connected by

three constraints are considered as basic configurations.

In Ref. [14], a general method to find solvable sub-problems

is proposed. The advantage of this kind of generic solver is

that once we know how to solve a basic configuration and

how to decompose a large problem into sub-problems based

on this basic configuration, we may create templates to solve

classes of problems. Thus, highly stable and efficient solvers

become possible.

In the spatial case, two kinds of basic configurations

among points and planes, tetrahedra and octahedra, are

identified and studied in Refs. [3,13]. Several octahedral

problems involving points and lines are also considered in

Refs. [3,15]. In this paper, we will give a systematic study of

basic configurations involving points, planes, and lines.

Adding lines as new primitives increase the difficulty in

finding the basic configurations and solving them

completely. This may be understood in two ways. First the

constraint problems with lines are more difficult to solve

[15]. Second, the structures for basic configurations become

more complicated and the number of basic configurations

increases drastically. If considering points and planes only,

the smallest non-sequential basic configurations contain six

primitives [14]. When adding lines as a new primitive,

we show that there exist 1, 17, and 683 basic non-sequential

configurations with 4, 5, and 6 primitives—even if we treat

points and planes as the same type of primitives. This makes

it impossible to find all these configurations manually. In this

paper, an automated method is proposed to find these basic

configurations.

Since GCS is often used in the conceptual design, it

would be desirable to find all the solutions of the problem.

This makes it difficult to use iteration methods such as the

Newton–Raphson method. Homotopy methods are capable

of finding all the solutions. But a pre-condition for efficient

computation with this method is to find a reasonably small

bound for the number of solutions of the system. For the

octahedral configurations involving points and planes,

efficient homotopy methods are developed by reducing the

equation system for the configurations to a core system of

three equations [3], and in Ref. [22] a system of two quartic

equations is derived. But for basic configurations involving

lines, the solution bounds are still too high to solve the

problem efficiently with the homotopy method [15].

On the other hand, in Ref. [7] general linkages are used to

solve 2D basic configurations efficiently. In this approach,

loci of certain points in the linkage are generated and the

constraint problems are solved by finding the intersections

of these loci. This approach is also used to solve one basic

octahedral configuration with lines in Ref. [15]. The idea of

locus intersection is used to solve 2D constraint problems

in Refs. [8,9]. The geometric primitives considered in

Refs. [8,9] have two degrees of freedom, so Hsu and

Bruderlin only remove one constraint in each step in order

to generate a locus. They later considered higher-

dimensional situations and apply a multivariate secant

method to find solutions to the (higher-dimensional) loci.

However, their approach then was not very robust in higher

dimensions, and could not guarantee that they would find all

solutions.

In this paper, the idea of locus intersection is extended

and formalized to a general method for GCS: locus

intersection method (LIM). The LIM is a hybrid method,

which combines geometric construction and heuristic

search. Theoretically, it can be used to find all the solutions

for geometric constraint problems. Practically, it is powerful

enough to solve many difficult problems. In fact, all the 701

basic configurations, with 4, 5 and 6 primitives, can be

solved with the LIM.

The rest of this paper is organized as follows. In Section

2, we show how to find the basic configurations containing

up to six primitives. In Section 3, we introduce the LIM.

In Section 4, we show how to solve the basic configurations

with the LIM. In Section 5, we present our conclusions.

2. Automated generation of basic configurations

We consider three types of geometric primitives: points,

planes, and lines and two basic types of constraints: the

angle constraints between line/line, line/plane, plane/plane

and the distance constraints between point/point, point/line,

point/plane and line/line. Angle and distance

constraints between two primitives o1 and o2 are

denoted by ANGðo1; o2Þ and DISðo1; o2Þ; respectively. If

we do not need to distinguish the types of constraints, we

use CONSðo1; o2Þ to denote the constraint between the two

primitives. Parallel and incidence constraints may be

considered special cases of angle and distance constraints.

Between a pair of lines, there might exist both an angle

constraint and a distance constraint.

We may use a constraint graph to represent a constraint

problem. The vertices of the graph represent the geometric

primitives and the edges represent the constraints.

For a primitive o in a constraint problem, let DOFðoÞ be

the degree of freedom for o and DEGðoÞ the number of

constraints involving o: Note that each parallel constraint

between line/line, line/plane, plane/plane will be counted

twice, because it consumes two degrees of freedom for the

corresponding primitives. For a set of geometric primitives

O in a constraint problem, let DOFðOÞ ¼
P

o[O DOFðoÞ and

DEGðOÞ the number of constraints among primitives in O:

Basic configuration. A geometric constraint problem P is

called a basic configuration if it satisfies the following

conditions.

1. It is a structurally well-constrained problem [3].

Intuitively, this means that every sub-problem Q of P

satisfies DOFðQÞ ¼ DEGðQÞ þ 6: We subtract six here,
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because a rigid generic configuration in space has six

degrees of freedom.

2. There is no geometric primitive o in the problem

satisfying DEGðoÞ # DOFðoÞ: That is, no primitive in

the problem can be solved by a sequential construction.

Details for this case can be found in Section 3.1.

3. P cannot be decomposed into smaller basic configur-

ations. This criterion depends on what decomposition

method is used. In this paper, we use the method

proposed in Ref. [13].

A basic configuration with n points, m planes, and k lines

is said to be of type n Pm Hk L. Since the degrees of freedom

for points and planes are both three, we sometimes do not

distinguish them in the structural analysis. A basic

configuration with u points and planes and v lines is denoted

by u Bv L. For convenience, zero is always omitted from the

above notation. For instance, 0P1H5L is simplified to 1H5L.

In Ref. [13], it is pointed out that the octahedral problem

in Fig. 1 is a smallest basic configuration if the geometric

primitives are points and planes. There are eight non-trivial

octahedral problems involving points and planes [3].

Octahedral problems 5B1L, 4B2L, and 3B3L are also

considered in Ref. [3]. It is pointed out in Ref. [3] that

octahedral configurations with more lines than points are

always underconstrained. This is because, only angle

constraints between two lines are considered. If we consider

both the distance and angle constraints between two lines,

there exist many more basic configurations with six

geometric primitives. In the following sections, we will

give all the basic configurations involving up to six

geometric primitives.

2.1. Basic configurations involving four geometric

primitives

Let p be a point or a plane and o a geometric primitive.

Then there exists at most one constraint between p and o:

If there is a point or a plane p in the constraint problem and p

has less than four constraints, i.e. DEGðpÞ # 3; then p can

be constructed sequentially and the problem is not a basic

configuration. Therefore, all the primitives in a basic

configuration with four elements must be lines. It is not

difficult to check that the only basic configuration is

the tetrahedron in Fig. 2. The solution to this problem can

be found in Section 4.1.

Note that at least one of the constraints between l1; l3 and

l2; l4 must be a distance constraint. Otherwise, there would

be conflicts among the angle constraints. Hence, there exist

two types of basic configurations involving four lines: 4L1

and 4L2 which have four and five angle constraints,

respectively.

In Table 1, a means the existence of angle constraints

between two lines, d means the existence of distance

constraints between two lines, and a=d means the existence

of both kinds of constraints.

2.2. Automated generation of basic configurations

We use the adjacency matrix to specify graphs of

different constraint problems that have the same group of

primitives.

When the number of geometric primitives increases,

the number of constraint problems increases dramatically.

Therefore, we need to automate the process of finding basic

configurations. There are four basic steps to construct the

basic configurations with a fixed number of primitives.

S1 Construct all possible well-constrained problems.

S2 Delete those that can be constructed sequentially with

algorithm LIM0 in Section 3.1.

Fig. 1. Octahedron: a smallest basic configuration for points and planes.

Fig. 2. The basic configuration with four lines.

Table 1

Basic configurations with four lines

Pair of lines l1; l2 l2; l3 l3; l4 l4; l1 l2; l4 l1; l3
Problem 4L1 a=d a=d a=d a=d d d

Problem 4L2 a=d a=d a=d a=d d a
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S3 For those problems that have the same structure,

we need to consider only one of them. Two

constraint problems are said to have the same

structure if by renaming the primitives of the same

type in one of them, they become the same constraint

problem.

S4 Delete those that can be decomposed into smaller

problems with the method in Ref. [13].

Steps S1 and S3 can be done in a naive manner by

considering all the possible combinations. We introduce

several search strategies to enhance the search efficiency.

For S1, the main idea is to start from a good initial constraint

problem. From the definition of basic configuration, it is

easy to see that each geometric primitive in the problem

must be constrained with at least four constraints.

For instance, if we consider problems with six vertices,

the octahedron in Fig. 1 could be used as a starting point.

Although it might not cover all the conditions as we have

shown in Fig. 9, which is not of the octahedron type, it does

enhance the search efficiency.

For Step S3, we may use the Hamming number to

reduce the number of comparisons among the adjacency

matrix entries. Let Aðn; nÞ be the adjacency matrix for a

constraint problem with n primitives. Aði; jÞ is the number

of constraints between the ith primitive and the jth

primitive. The Hamming number for the ith primitive is

Hi ¼
Xn

j¼1

Aði; jÞ:

Then a necessary condition for two adjacency matrix

problems to be structurally the same is that the Hamming

numbers for the points, planes, and lines in them must

also be the same, respectively. Furthermore, if we cannot

distinguish two problems by comparing their Hamming

numbers, a test to find equivalent problems has to

consider only different combinations for those primitives

with the same class and the same Hamming number. For

instance, let {3; 4; 4; 5} be the Hamming numbers for

points p1; p2; p3; p4 and q1; q2; q3; q4 in two problems,

respectively. Point p1 with Hamming number 3 can only

be matched with point q1 with the same Hamming

number. We need to compare only the corresponding

arrays from the adjacency matrix of p1; p2; p3; p4 with that

from the adjacency matrix of q1; q2; q3; q4:

2.3. Basic configurations involving five

and six geometric primitives

Two simplifications are made in the process of finding

basic configurations. First, we consider only the structure

of the configurations and ignore the types of constraints

between two lines. Second, we will treat points and

planes as the same type of geometric primitives. This is

possible since they have the same degree of freedom.

Following the method in Section 2.2, we find all the basic

configurations with five and six geometric primitives.

In Tables 4 and 5, N0 is the number of basic

configurations; N1 is the number of problems that can be

solved with method LIM1 (see Section 3.2 for defi-

nition); N2 is the number of problems that can be solved

with method LIM2; Nt is the number of basic

configurations if we treat points and planes differently.

We do not determine the number Nt in all cases so as to

avoid the degenerated cases, which will be discussed in

later work.

3. Locus intersection method for GCS

It is desirable to find all the solutions of the constraint

problem. One way to do that is to find a geometric or

analytical solution to a geometric constraint problem.

But many difficult problems, including many basic

configurations discussed in this paper, still resist such

solutions [15]. In this section, we introduce a method

which is capable of finding all solutions of geometric

constraint problems.

3.1. Geometric construction sequence

Before presenting the method, we first define the

concept of construction sequences (CSs). As we men-

tioned before, a primitive o can be solved sequentially if

it satisfies the condition DEGðoÞ # DOFðoÞ: Let o1;…; ok

be the geometric primitives that have constraints with o

(if oi has two constraints with o; oi will appear twice).

Then o can be constructed from o1;…; ok by a

construction

o ¼ INTERðo1;…; okÞ: ð1Þ

For instance, let o be a point, o1; o2; o3 three planes,

where the distances between o and o1; o2; o3 are zero.

Then o is the intersection of the three planes.

In Eq. (1), if DOFðoÞ ¼ k; the corresponding con-

struction is called well-defined [13]. A well-defined

construction c generally introduces a finite number of

solutions, which is denoted by NUMðcÞ: If k , DOFðoÞ;

the corresponding construction is called deficient. In this

case, o generally has an infinite number of solutions. For

instance, if o is a line and o1 and o2 are two planes

imposing angle constraints on the line, then o is a line

whose direction is determined by o1 and o2; but can

translate freely in the space.

Considering three kinds of primitives: points, planes, and

lines, there are in all 10 well-defined constructions for

points, six well-defined constructions for planes, and 23

well-defined constructions for lines. Here are some

examples of these constructions, where Pi;Hi; Li represent

points, planes, and lines, respectively.
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† P ¼ INTERðP1;H1;L1Þ: The sets of points P satisfying

the constraints DISðPP1Þ ¼ d1; DISðPH1Þ ¼ d2;

DISðPL1Þ ¼ d2 are a sphere, two planes, and a cylinder,

respectively, and P is the intersection of them.

† H ¼ INTERðP1;P2;P3Þ: Constraint DISðH;PiÞ ¼ di

implies that plane H is tangent to the sphere with Pi

as center and with di as the radius. Then H is the common

tangent plane of three spheres.

† L ¼ INTERðP1;P2;P3; L1Þ; where the constraint

between L and L1 is a distance constraint. Constraint

DISðL;PiÞ ¼ di implies that line L is tangent to the

sphere with Pi as center and with di as the radius.

Constraint DISðL;L1Þ ¼ d4 implies that line L is tangent

to the cylinder with L1 as the axis and with d4 as the

radius. Then L is the common tangent line of three

spheres and a cylinder.

Of these constructions, the ones introducing points and

planes are relatively easy to compute. We may divide a

well-defined construction introducing a line into one of

three classes: 2A2D, 1A3D, or 4D, where nAm D means

that in the construction there are n angle constraints and

m distance constraints, respectively. There cannot be

more than two angle constraints in such a construction.

Here is a description of the three constructions.

2A2D

Of the three construction types for lines, this is the only

one that is easy to compute. We may first determine the

direction of the line from the two angle constraints, and

then use the other two distance constraints to position the

line. This construction generally has eight solutions.

1A3D

This class has many cases since the angle constraint may

be on a line or a plane and the distance constraints may

be on points or lines.

4D

This class also has many cases. The case of using four

points to determine a line is considered in Refs. [3,15]

and has 24 solutions. Note that we consider oriented

lines in this count; the number of geometric solutions is

12. The case of using four lines to determine a line has 8

solutions in the general case.

The 1A3D and 4D construction classes are too difficult to

be computed dynamically. We will discuss how to treat this

Problem in Section 4.4.

A diagram can be drawn sequentially if the geometric

primitives in the diagram can be listed in an order

o1; o2;…; om ð2Þ

such that each oi is introduced by a construction

using primitives o1;…; oi21: Let Ci be the construction

introducing primitive oi: We say that the diagram can be

drawn with the following construction sequence (abbr. CS)

C1;C2;…;Cm: ð3Þ

Suppose that all the primitives in Fig. 1 are points. If we

remove constraint CONSðp2; p5Þ; a CS is as follows.

p1is a free point

p2 ¼ INTERðp1Þ

p3 ¼ INTERðp1; p2Þ

p6 ¼ INTERðp2; p3Þ

p4 ¼ INTERðp1; p3; p6Þ

p5 ¼ INTERðp1; p4; p6Þ:

ð4Þ

The following algorithm to find a CS for a constraint

problem is well-known (see, e.g. Ref. [6]). Since we will use

it many times in this paper, we restate it here.

Algorithm LIM0.

Input: a constraint problem.

Output: a construction sequence CS with initial value Y:

1. Let o be a primitive in the problem satisfying d ¼

DEGðoÞ # DOFðoÞ:

2. Let o1;…; od be the primitives having constraints with o:

Then add a construction o ¼ INTERðo1;…; odÞ to CS.

Terminate if no such o exists.

3. Remove o and the constraints involving o from the

problem and go to Step 1.

This algorithm is linear in the number of constraints and

primitives if implemented properly.

To compute a CS, we need to introduce several concepts.

Since a spatial rigid body has six degrees of freedom,

some primitives in the problem must be placed with respect

to a coordinate system to guarantee that the problem has a

finite number of solutions. If a constraint problem may be

described by a CS, we may find a set of placement primitives

as follows. Let d be the maximal number such that the first d

primitives Od in the CS form a well-constrained

problem with the constraints in the CS. That is, Od satisfies

DOFðOdÞ ¼ DEGðOdÞ þ 6: Then these first d primitives

may be treated as a set of placement primitives. In CS (4),

PS ¼ {p1; p2; p3} is a set of placement primitives that form a

rigid body.

The driving primitives in a CS are those primitives

introduced by deficient constructions, but are not place-

ment primitives. To evaluate the CS, we need to add new

constraints depending on free parameters to the deficient

constructions to change them to well-defined constraints.

For instance, the construction p6 ¼ INTERðp2; p3Þ in

Eq. (4) is a deficient construction. Point p6 is on the

intersection circle of two spheres. Then, we may use the

angle formed by planes h ¼ p6p2p3 and p1p2p3 as a free

parameter, and p6 can now be introduced by a well-defined

construction as p6 ¼ INTERðp2; p3; hÞ: The number of

solutions of this new construction is defined as the number

of solutions of the deficient construction.
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The maximal number of branches of a CS (3) with p

placement primitives is defined as follows

NUMð3Þ ¼ NUMb

Y

i¼pþ1;m

NUMðCiÞ
ð5Þ

where NUMb is the number of solutions for the placement

part. For CS (4), the placement part is a triangle and hence

NUMb ¼ 1: The number of solution branches for the

remaining three constructions are two. Then NUMð4Þ ¼ 8:

If all the constructions are well-defined, then the

evaluation for the CS is straightforward, and the

corresponding constraint problem has at most NUMðcÞ

solutions. Otherwise, the problem generally has an infinite

number of solutions.

3.2. The locus intersection method

The LIM for GCS has the following basic steps. We will

use the octahedral problem in Fig. 1 as a working example.

Suppose that all the primitives in this problem are points.

Algorithm LIMd. In the algorithm, the input is a

well-constrained problem. The output is to find all the

solutions of the problem. Here d is the number of constraints

to be removed from the original problem.

1. Find A Sequential Solution. Try to solve the problem

with algorithm LIM0. If it cannot be solved, go to the next

step.

2. Remove Constraints and Determine Construction

Sequence. With Algorithm REMOVE, we may find a

number d . 0 and d constraints, where d is the smallest

number such that when we remove the d constraints from

the problem the remaining problem can be solved with

Algorithm LIM0. Let C be the CS found with LIM0 after

the d constraints are removed. The geometric primitives in

the removed constraints are called locus primitives. For the

problem in Fig. 1, if we remove the constraint between p2

and p5; algorithm LIM0 generates CS (4).

3. Find Placement Primitives. We use the CS C obtained

in the preceding step to find the placement primitives.

As mentioned in Section 3.1, placement elements for CS (4)

are p1; p2; p3:

4. Find driving primitives. Since d constraints are

removed from the well-constrained problem, there must

be some deficient constructions in C. In CS (4), the driving

primitive is p6:

5. Generate loci. We allow the driving primitives to

move with small steps, which will be explained below.

For each position of the driving primitives, we may compute

the coordinates of all primitives in the problem according to

the CS. Repeat the above process, we generate a set of

coordinates for each locus primitive. The set thus generated

is called the locus for the locus primitive. So the locus here

is discrete. The continuous curve in Fig. 3 is obtained by

connecting two consecutive points with a line segment.

How to select the moving steps for the driving primitive

is a subtle matter. The smaller the steps, the better the chance

we find all the solutions. But, a very small step will lead to a

large number of samples and will decrease the computation

speed. We use the following heuristic to select a suitable set

of values for the driving parameters. First, fixed and uniform

steps for the driving parameters are selected and used to

generate the loci. For instance, if the range for an angle

parameter is from 0 to p, we would select p/300 as the initial

step. Second, if for two consecutive values t1; t2 of the

driving parameter, the distances between the positions of

any locus primitive are larger than a small number, say 0.01,

we will add more samples between t1 and t2:

In this step, we need to decide how to move the

driving points. A general method is as followed. Suppose

that o ¼ INTERðo1;…; omÞ is a driving point with s deficient

degrees of freedom. Then we may select s primitives

b1;…; bs; which have been constructed before o;

and compute o using the following construction o ¼

INTERðo1;…; om; b1;…; bsÞ: The constraints between o

and bi are called driving constraints or driving parameters.

We also need to determine the range from which the

driving parameters take values. If the constraint between o

and bi is an angle constraint, then we may take the range

for the parameter as 0 , p and 0 , 2p depending on

whether o is a point or a line (or plane). If the constraint

between o and bi is a distance constraint, we may use the

following result to determine an upper bound for the

distance from o to bi:

Let P be a point and o1, o2 any primitives. Then

DISðo1; o2Þ # ðo1;PÞ þ DISðP; o2Þ

The proof for this result is omitted. In the general case,

such explicit upper bounds may not exist.

Note that the lower and upper bounds mentioned above

are generally not optimal (see Figs. 4 and 5). A more

detailed analysis could reveal narrower enclosures for

feasibility ranges. For example, Ref. [12] derives tight

Fig. 3. The distance curves for p2p5 in the Octahedral problem for points.

The x-axis is the driving parameter for point p6: The y-axis is DISðp2; p5Þ:

The horizontal line is at 1.82. The average time to compute the curves is

0.07 s on a PC with PIII733 and 128M memory. We select 157 samples for

the driving primitive. Sixteen curve segments are computed, which contain

2512 points. In the figure, two consecutive points are connected with a line

segment.
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range estimates for valid parameter ranges in 2D GCS based

on geometric reasoning.

In Eq. (4), we use the angle between plane p6p2p3 and

plane p1p2p3 as the driving parameter. This parameter

may change from 0 to p, but we consider only values from 0

to p/2 by symmetry.

6. Locus intersection. After the loci for locus primitives

are generated, we check them to find whether the removed

constraints are satisfied. To be more precise, let DS be the

set of values for the driving parameters, LS the set of locus

primitives, and PS the set of all primitives. For each value t

in DS, we may compute the coordinates LSðtÞ and PSðtÞ for

the primitives in LS and PS. We search the set LSðtÞ to find

the set T of values t0 such that LSðt0Þ satisfies the removed

constraints approximately. For instance, let the

removed constraint be DISðo1; o2Þ: For each value t in DS,

compute dðtÞ ¼ lDISðo1; o2Þ2 lo1ðtÞo2ðtÞll: A value t0 is

a solution if the following conditions are satisfied: dðt0Þ is a

local minimum and dðt0Þ is a small number. Then the

solutions of the GCS problem are {PSðtÞlt [ T}: This step

may be considered to find the intersections of several loci.

Fig. 3 is the distance curve for the 6p problem with a set

of constraint values given in Table 2. From this figure

we may give a classification of number of solutions for the

problem (in Table 3) according to distance p2p5:

For the problem given in Table 2, lp2p5l ¼ 1:3:

There exist 12 solutions. All of them are realizable in

Euclidean space.

Algorithm REMOVE. The input is a well-constrained

problem. The output is an integer d $ 0 and a set S of d

constraints. d is the smallest number such that when we

remove the d constraints in S from the problem the

remaining problem can be solved with Algorithm LIM0.

1. We will use a list L and some pointers Li which will be

pointed to notes of L.

2. For a vertex v; let SDEGðvÞ ¼ DEGðvÞ2 DOFðvÞ:

For each vertex v; compute e ¼ SDEGðvÞ: We put v

into list L in such a way that Le is pointed to the first

vertex w with SDEGðwÞ ¼ e and the vertices are in

an increasing order in L with SDEGðvÞ: These

properties for L will be kept during the algorithm.

Let d ¼ 0; S ¼ Y:
3. Let v be the first vertex in L and m ¼ SDEGðvÞ:

4. If m ¼ 0; then v can be constructed explicitly. Go to Step 7.

Fig. 4. Solutions to configuration 4L1. The x-axis is ANGðl2; l4Þ: The y-axis is the DISðl1; l3Þ: The average time to compute the 64 curve segments is 0.23 s on a

PC with PIII733 and 128M memory. We select 314 samples for the driving primitive. Sixty four curve segments are computed, which contain approximately

6656 points.

Fig. 5. Solutions to configuration 4L2. The x-axis is ANGðl2; l4Þ: The y-axis

is the ANGðl1; l3Þ: The average time to compute the 64 curves is 0.23 s on a

PC with PIII733 and 128M memory. The curves contain approximately

6656 points.

Table 2

A set of constraint values for the 6p problem

d12 ¼ 1:000 d13 ¼ 1:108 d23 ¼ 1:073 d14 ¼ 1:181

d15 ¼ 1:275 d26 ¼ 1:171 d34 ¼ 1:157 d45 ¼ 1:164

d46 ¼ 1:067 d56 ¼ 1:110 d36 ¼ 1:052 d25 ¼ 1:3
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5. If m . 0; then v cannot be constructed explicitly.

Set d ¼ d þ m: Remove m edges (constraints)

connecting v and add these edges to S.

6. For each vertex w connected with v with these m edges,

subtract the number c of removed edges between w and v

from DEGðwÞ: Since DEGðwÞ is changed, we move w to

the correct position in L. Now, v can be constructed

explicitly. Go to Step 7.

7. Remove vertex v from L. For each vertex w connected

with v; subtract the number c of edges between w and v

from DEGðwÞ and move w to the correct position in L.

Let n and e be the number of vertices and edges in the

constraint graph. Steps 3 – 7 are the main loop in

the algorithm. In each loop, we will remove one vertex

from the graph. Therefore, the loop runs n times. Step 2

needs Oðn þ eÞ operations. Let vi be the vertex removed in

the ith loop. Steps 3 and 4 need Oð1Þ operations. Steps 5, 6,

and 7 need OðDEGðviÞÞ operations. Therefore, the

total operations for steps 3 – 7 are OðnÞ þ Oð
Pn

i¼1 �

DEGðviÞ ¼ OðnÞ þ OðeÞ ¼ Oðn þ eÞ: Thus, the complexity

of the algorithm is Oðn þ eÞ:

Let d be the number of constraints cut. Then the driving

parameters take values in a d-dimensional space. Note that

number d is a critical parameter influencing the amount of

computation required by the above method. Because of this,

we call the above method the locus intersection method of

dimension d (abbr. LIMd).

Another important parameter in the above method is the

number of branches of the CS which represents the number

of loci need to be computed. This bound is generally much

smaller than the Bezout number (see, e.g. Ref. [3]) of

the problem. For instance, the naive Bezout number for the

Octahedron problem in Fig. 1 is 4096. In Ref. [3], a system

of polynomial equations with total degree 64 and BKK

bound 16 is obtained after simplification. The number of

loci need to be computed in our case is 8. Note, however,

that the loci here are different from the paths used in the

homotopy method. One locus here may give rise to multiple

solutions of the problem, and therefore the number of loci is

not equal to the number of solutions.

4. Solving the basic configurations

We have used the LIM method in Section 3.2 to solve all

basic configurations obtained in Section 2.2. The two

tetrahedral problems for lines can be solved with algorithm

LIM1. The results for the basic configurations with five and

six primitives are given in Tables 4 and 5. It is readily seen

that all the basic configurations up to six vertices for points,

planes, and lines can be solved with method LIM1 and

LIM2. Below, we will give some of the details of the

solutions.

4.1. Basic configurations with four lines

We first consider the basic configurations with four lines

(Fig. 2). If we remove the constraint between l1 and l3; a CS

is as follows.

l1 is a free line

l2 ¼ INTERðl1; l1Þ

l4 ¼ INTERðl1; l1; l2Þ

l3 ¼ INTERðl2; l2; l4; l4Þ:

ð6Þ

The placement primitives are lines l1 and l2: The driving

primitive is l4 which has an angle and distance

constraint with l1: Since one of the constraints

CONSðl1; l3Þ and CONSðl2; l4Þ is a distance constraint, we

may always assume that the constraint CONSðl2; l4Þ is a

distance constraint and add an angle constraint between l2

and l4 as the driving constraint.

Figs. 4 and 5 give the solution curves for problems 4L1

and 4L2 with concrete constraint values given in Tables 6

and 7.

Note that the Bezout numbers for problems 4L1 and 4L2

are 4,194,304 and 2,097,152. The maximal number of

branches (see Eq. (5) for the definition) for Eq. (6) is 64 in

both cases. Therefore, the number of loci generated by the

LIM1 method is 64. The two figures look different, because

the curve in Fig. 5 is the overlap of many curve segments.

For the given values of constraints, we may obtain

Table 3

Number of solutions of the Octahedron problem for different values of p2p5

Values for lP2P5l 0.275–1.171 1.171–1.228 1.228–1.353 1.353–1.615 1.615–2.263

Number of solutions 4 8 12 8 4

Table 4

Basic configurations with five geometric primitives

5B 4B1L 3B2L 2B3L 1B4L 5L Sum

N0 0 0 1 1 3 12 17

N1 0 0 1 1 3 12 17

Nt 0 0 1 1 3 12 17

Table 5

Basic configurations with six geometric primitives

6B 5B1L 4B2L 3B3L 2B4L 1B5L 6L Sum

N0 1 1 4 12 39 132 494 683

N1 1 1 4 12 37 122 437 614

N2 0 0 0 0 2 10 57 69

Nt 8 9 ? ? ? ? ? ?
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the following results from the method.

1. Problem 4L1 has solutions for 0:787 , ANGðl2; l4Þ ,

1:823: Problem 4L2 has solutions for 0:787 ,

ANGðl2; l4Þ , 1:823 and 0:524 , ANGðl1; l3Þ , 1:571:

Note that the curves in Figs. 4 and 5 are multiple curves,

i.e. several curves are coincident.

2. Problem 4L2 has 64 solutions on the solid part of the

solution curve. Problem 4L1 has at most 134 solutions for

different values DISðl1; l3Þ: Fig. 4 shows the case for

DISðl1; l3Þ ¼ 2:0; which has 98 solutions.

The basic configuration 4L2 can be solved analytically.

We may draw l1 and l2 first and determine the directions of

l3 and l4 by the angle constraints. Now, l3 and l4 can be

determined by solving a set of four equations of degree two.

In this way, we may prove that 4L2 has at most 64 solutions.

4.2. Basic configurations with five primitives

In all, there are 17 basic configurations involving five

primitives if we treat points and planes as the same type.

All of these problems can be solved with method LIM1. We

use a 5L configuration in Fig. 6 as an illustrative example,

where CONSðl1; l3Þ; CONSðl1; l4Þ; and CONSðl2; l4Þ are

distance constraints and CONSðl2; l5Þ is an angle constraint.

For this 5L configuration, each of the 14 constraints in

the configuration can be removed and we may obtain 14 CSs

for the problem. Among these CSs, the following two are

essentially different. All other CSs are similar to one of

them.

If we remove CONSðl1; l3Þ; a CS is as followed

l1 is a free line

l5 ¼ INTERðl1; l1Þ

l4 ¼ INTERðl1; l5; l5Þ

l2 ¼ INTERðl1; l1; l4; l5Þ

l3 ¼ INTERðl2; l2; l4; l4Þ

ð7Þ

The placement primitives are l1; l5: The driving primitive is

l4: The maximal number of branches is 512.

If we remove CONSðl2; l5Þ; a CS is as followed

l1 is a free line

l2 ¼ INTERðl1; l1Þ

l3 ¼ INTERðl1; l2; l2Þ

l4 ¼ INTERðl1; l2; l3; l3Þ

l5 ¼ INTERðl1; l1; l4; l4Þ

ð8Þ

The placement primitives are l1; l2: The driving primitive

is l3:

In Step 2 of algorithm LIMd, we may remove different

constraints. Therefore, the process of obtaining a CS is not

unique, and we could obtain many different CSs for the

same problem. An advantage of generating multiple CSs is

that we may select a ‘good’ one. For instance CS (7) is better

than (8). This is because, all the construction steps in Eq. (7)

determine a line using two angle and two distance

constraints. This kind of construction is easy to evaluate.

In Eq. (8) we construct l4 using one angle and three distance

constraints. This kind of construction is difficult to evaluate.

Therefore, we will choose CS (7) to compute the problem.

A general heuristic to select a good CS is to have the

smallest number of lines as the non-placement elements,

and in constructions for lines to use more 2A2D type

constructions.

4.3. Basic configurations with six primitives

From Table 5, there are in all 683 basic configurations

involving six primitives if we treat points and planes as the

same type. Of these problems, 614 can be solved with

method LIM1 and 69 have to be solved with method LIM2.

We take the 2P4L configuration in Fig. 7 as an illustrative

example. To solve this problem, we need algorithm LIM2.

The following construction is such that all steps are easy to

Table 6

The set of constraints for 4L1

d12 ¼ 0:00000 a12 ¼ 0:78540 d23 ¼
ffiffi
2

p
d24 ¼ 1:5

d13 removed d14 ¼ 1:00000 a14 ¼ p=2 d34 ¼ 2

a34 ¼ p=3 a23 ¼ p=4

Fig. 6. One 5L basic configuration.

Table 7

The set of constraints for 4L2

d12 ¼ 0:00000 a12 ¼ 0:78540 d23 ¼
ffiffi
2

p
d24 ¼ 1:5

a13 removed d14 ¼ 1:00000 a14 ¼ p=2 d34 ¼ 2

a34 ¼ p=3 a23 ¼ p=4
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evaluate. The Construction Sequence is as follows:

l1 is a free line

l2 ¼ INTERðl1; l1Þ

l3 ¼ INTERðl2; l2Þ

l4 ¼ INTERðl1; l1; l3; l3Þ

p1 ¼ INTERðl2; l3; l4Þ

p2 ¼ INTERðl2; l3; l4Þ

ð9Þ

The removed constraints are CONSðp1; l1Þ and

CONSðp2; l1Þ: The placement primitives are l1; l2:

The driving primitive is l3: The maximal number of

branches is 4096.

Note that besides the constraints with l2; the line l3 still

has two degrees of freedom. According to the algorithm

LIM2, we need to add two more driving constraints to

construct l3: The new construction for l3 is

l3 ¼ INTERðl2; l2; l1; l1Þ

and the driving parameters are the angles and distances

between l3 and l1: An upper bound for the DISðl3; l1Þ is

DISðp1; l1Þ þ DISðp1; l3Þ by the fact mentioned in Step 5 of

Algorithm LIMd.

Since there are two driving parameters, the loci for P1

and P2 are surfaces, and we need to search two surfaces in

the loci intersection step. We may use the following trick to

reduce the amount of computation and searches. After the

computation of point P1; we will check whether constraint

CONSðP1; l1Þ is satisfied, and only use those P1 satisfying

this constraint to compute P2: In this way, the locus for P2

will be a curve.

We consider the 6L configuration in Fig. 8 where

CONS(l1,l4), CONS(l1,l5), CONS(l2,l6), CONS(l3,l4),

CONS(l3,l6) are distance constraints and CONSðl2; l5Þ is

an angle constraint. This problem can be solved with

LIM2. If we remove CONSðl6; l2Þ and CONSðl6; l3Þ; a CS

is as follows.

l1 is a free line

l2 ¼ INTERðl1; l1Þ

l3 ¼ INTERðl1; l1; l2; l2Þ

l4 ¼ INTERðl1; l3Þ

l5 ¼ INTERðl1; l2; l4; l4Þ

l6 ¼ INTERðl4; l4; l5; l5Þ

ð10Þ

The placement primitives are l1; l2; l3: The driving

primitive is l4:

This problem differs from all other examples in that the

placement part is non-trivial. We need to estimate

the number of solutions for the placement part, while the

placement part for all the previous examples has only one

solution.

To compute the placement part, we may use l1; l2 as a

new placement and compute l3: In this way, we may find

eight solutions. But in these solutions, only four are

different geometrically. This is because, when rotating

l1; l2; l3 around the common perpendicular line of l1 and l2

by an angle p, one solution will change into another

solution. Therefore, the placement part has only four

solutions. This example shows that to use a large

placement part may reduce the total number of branches

needed to be computed.

Each of the three constructions for l4; l5; l6 in Eq. (10)

will produce 8 branches of curves. Therefore, the maximum

number of branches for CS (10) is 4 £ 8 £ 8 £ 8 ¼ 2048.

All the configurations encountered so far have the

octahedron structure. However, not all problems have this

structure. The 1P5L configuration in Fig. 9 is not an

octahedron. This problem could be solved with the LIM2

method.

4.4. Recursive locus intersection method

A precondition that the LIMd method works is that

constructions can be evaluated efficiently. This is always

Fig. 7. One 2P4L basic configuration.

Fig. 8. One 6L basic configuration.
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the case in basic 2D GCS, since we need to solve only two

equations of degree less than or equal to two [7]. As we

mentioned before, some of the constructions for spatial lines

are difficult to compute. We introduce the Recursive LIMd

method to solve this problem.

Let us consider the construction for line

l ¼ INTERðl1; l2; l3; l4Þ

which is of class 1A3D. Suppose that CONSðl; l1Þ is an

angle constraint. To compute this construction we introduce

a new construction

l ¼ INTERðl1; l2; l2; l3Þ

where the angle constraint between l and l2 is used as a free

parameter. In other words, we change the construction from

a well-defined one to a deficient one that is easy to compute

by removing another constraint DISðl; l4Þ: The removed

constraint needs to be checked later in the intersection step.

If the original problem involving this construction may be

solved with an LIMd method, then we will use an LIMdþ1

method to solve it.

For instance, if the constraints CONSðl1; l3Þ;

CONSðl1; l4Þ; CONSðl2; l4Þ; CONSðl2; l5Þ in the 5L problem

in Fig. 6 are all distance constraints, then we need a 1A3D

construction in any CS. So, if we remove DISðl1; l3Þ and

DISðl2; l5Þ; a CS is as follows.

l1 is a free line

l5 ¼ INTERðl1; l1Þ

l4 ¼ INTERðl1; l5; l5Þ

l2 ¼ INTERðl1; l1; l4Þ

l3 ¼ INTERðl2; l2; l4; l4Þ

ð11Þ

The placement primitives are l1; l5: The driving primitives

are l4 and l2: We use the angle constraints ANGðl4; l1Þ and

ANGðl4; l2Þ as the driving parameters. In terms of efficiency,

this is a trade off: we use a LIM2 method to solve a problem

that can be solved with an LIM1 method to avoid the

computation of a 1A3D construction.

We may treat a construction of type 4D for a line

similarly. In this case, we need to remove two constraints

and to introduce two driving angle constraints. If the

original problem involving this construction may be solved

with an LIMd method, then this change would let us solve

the problem using an LIMdþ2 method.

5. Conclusion

One of the main difficulties of GCS lies in the fact we

need methods that deliver efficient and complete solutions

to the constraint problem. A basic idea of GCS is to

decompose the constraint problem into smaller ones into

some basic configurations. In this paper, we identify all

basic spatial configurations containing up to six geometric

primitives and propose the LIM to find all solutions of these

basic configurations.

This paper further reveals the nature of difficulties of

GCS. Even for constraint problems with up to six primitives,

there exist hundreds of essentially different basic configur-

ations and most of them are quite difficult to solve. This is

basically due to the presence of lines. If only points and

planes are considered, then there is only one basic structure:

the octahedron as shown in Ref. [3]. This suggests that we

need to find a way to avoid using lines in spatial GCS in

the same way as points and planes. Also, some of the basic

line configurations may have special cases in which the

algebraic equations must be solved with specialized

techniques.

It is interesting to note that application considerations

also motivate limiting the role of lines in spatial

constraint systems. Namely, in the definition of spatial

constraint problems in parametric engineering design,

there is an underlying mechanism to select a solution

based on the orientations of the elements, in relation to

each other. When editing such a design, assigning new

dimensional constraint values to some of the distances or

angles, it is possible that the solution so identified is not

correct, [2]. Such problems can be avoided in many

cases when limiting the role of lines in the constraint

structure.
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