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1 Introduction

In 1977 Wu Wen-Tsün introduced an algebraic method which could be used
to prove theorems not involving betweenness in Euclidean geometry [16]. Since
then, hundreds of non-trivial theorems have been proved based on this method.
Further work [17] showed that the algebraic tools and algorithms of the method
were already begun in the work of J. F. Ritt [14]. The key to the method is
Ritt-Wu’s principle and Ritt-Wu’s Decomposition Algorithm [17], [18]. If one
implements the algorithms literally according to the description of the work by
Ritt and Wu, the size of polynomials produced in the process will become larger
and larger. In practice, some modifications of Ritt-Wu’s original algorithms are
used. Especially, Wu himself uses the notion of an ascending chain in loose sense
[17] to reduce the size of polynomials produced. However, ascending chains in
Wu’s loose sense still cannot prevent the size growth of polynomials in many
cases.

This paper presents an improved version of Ritt–Wu’s decomposition algo-
rithm using a new algorithm, W–prem, for computing pseudo remainders (Sec-
tions 2–4), and gives an efficient method for proving geometry theorems accord-
ing to Formulation F2 (see below) based on our improved algorithms (Sections
5–8). Besides the improved algorithms, we also prove many related theorems of
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2. Preliminary Definitions and Algorithms

theoretical as well as practical interest; we will like to draw particular attention
to Theorem (4.4).

In Section 5–8, we will address the same kinds of geometric statements as
Wu’s original method addresses. A geometric statement is valid only under
certain nondegenerate conditions. There are two approaches (formulations) to
dealing with nondegenerate conditions:

Formulation (Approach) F1. Introducing parameters and the notion of
“generally true” for a geometry statement. The present techniques can prove a
statement to be generally true, at the same time giving nondegenerate conditions
(usually in algebraic form) automatically.

Formulation (Approach) F2. Giving nondegenerate conditions in geometric
form manually (or mechanically) at the beginning as a part of the hypothe-
ses. Then the prover only needs to answer whether the conclusion follows the
hypotheses without adding any other conditions.

Our prover [3] mainly uses Formulation F1. This paper addresses F2 using
Wu’s method. Our improved algorithm/program has proved more than 500
theorems according to Formulation F2. Among the work related to Formulation
F2, we mention the work of D. Kapur [9] and H. P. Ko [13]. We will discuss
their work in Section 8.

2 Preliminary Definitions and Algorithms

Let K be a computable field such as Q, the field of rational numbers, and
y = y1, y2, . . . , ym be indeterminates. Unless stated otherwise, all polynomials
mentioned in this section are in A = K[y1, . . . , ym] = K[y].

Let f ∈ K[y]. The class of f , denoted by class(f), is the largest i such that
yi occurs in f . If f ∈ K, then class(f) = 0. Let c = class(f) > 0. We call yc,
denoted by lv(f), the leading variable of f . Considering f as a polynomial in
yc, we can write f as

anyn
c + an−1y

n−1
c + · · ·+ a0

where an, ..., a0 are in K[y1, . . . , yc−1], n > 0, and an 6= 0. We call an the initial
or leading coefficient of f and n the leading degree of f , denoting them as lc(f)
and ld(f), respectively.

Now we present the pseudo division algorithm, a basic step for most algo-
rithms. Let f and g be in K[y] and v be one of the y1, ..., ym. Suppose that
deg(f, v) > 0. Considering f and g as polynomials in v, we can write g and f
as g = anvn + · · · + a0, f = bkvk + · · · + b0. First set r = g. Then repeat the
following process while m = deg(r, v) ≥ k: r := bkr − cmvm−kf , where cm is
the leading coefficient of r in the variable v. It is easy to see that m strictly
decreases after each iteration. Thus the process terminates. At the end, we
have the pseudo remainder prem(g, f, v) = r = r0 and the following formula
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bs
kg = qf + r0, where s ≤ n− k + 1 and deg(r0, v) < deg(f, v).

Let c = class(f) > 0. A polynomial g is reduced with respect to polynomial f
if deg(g, yc) < deg(f, yc). Note that prem(g, f, yc) is reduced with respect to f ;
we denote prem(g, f, yc) simply by prem(g, f).

Definition (2.1). Let C = f1, f2, . . . , fr be a sequence of polynomials in
K[y]. We call it a quasi ascending chain or a triangular form if either r = 1 and
f1 6= 0, or r > 1 and 0 < class(f1) < class(f2) < · · · < class(fr).

Let f1, . . . , fr be a quasi ascending chain with class(f1) > 0. We define
prem(g; f1, . . . , fr) inductively to be prem((prem(g, fr); f1, ..., fr−1). Let it
be R. Then we have the following important Remainder Formula:

(2.1.1) Is1
1 · · · Isr

r g = Q1f1 + · · ·+ Qrfr + R

where the Ii are the initials of the fi, s1, . . . , sr are non-negative integers, and
Q1, . . . , Qr are polynomials. Furthermore, deg(R, xi) < deg(fi, xi), for i =
1, . . . , r, where xi = lv(fi).

(i) A quasi ascending chain is called an ascending chain in Ritt’s sense if fj

are reduced with respect to fi for i < j.

(ii) A quasi ascending chain is called an ascending chain in Wu’s sense (abb.
wu-asc chain) if the initials Ij of the fj are reduced with respect to fi for i < j.

Extensive computational experience suggests that for nontrivial problems,
ascending chains in Ritt’s sense as well as in Wu’s sense are very expensive to
compute both from space and time considerations. As we discuss later in the
paper, on Morley’s theorem, huge intermediate polynomials are generated for
computing these ascending chains. In this paper, we introduce ascending chains
in weak sense which are not that expensive to compute.

(iii) A quasi ascending chain is called an ascending chain in weak sense (abb.
w-asc chain) if prem(Ii; f1, ..., fr) 6= 0, for i = 1, ..., r.

Obviously, an ascending chain in Ritt’s sense is an ascending chain in Wu’s
sense; an ascending chain in Wu’s sense is an ascending chain in weak sense.
The key to our improved version of the algorithm is to use ascending chains in
weak sense. Whenever we talk about an ascending chain, it can be any one of
the above three.

We define a partial order < in K[y]: f < g if class(f) < class(g) or class(f) =
class(g) > 0 and ld(f) < ld(g). If neither f < g nor g < f , then we say f and
g are of the same rank. Obviously, every nonempty polynomial set S has a
minimal element, i.e., the one which is not higher than any other element in S.

Definition (2.2). Let C = f1, ..., fr and C1 = g1, ..., gm be two ascending
chains. We define C < C1 if there is an s such that s ≤ min(r,m) and fi and
gi are of the same rank for i < s and that fs < gs, or m < r and fi and gi are
of the same rank for i ≤ m.

Proposition (2.3). The partial order < among the set of all ascending
chains is well-founded, i.e, there are no infinite, strictly decreasing sequences of
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ascending chains.

Proof. See Lemma 1 of [17]. .QED.

Definition (2.4). Let S be a nonempty polynomial set. A minimal w-asc
chain in the set of all w-asc chains formed from polynomials in S is called a
w-basic set of S.

Unless stated otherwise, whenever we talk about a finite polynomial set S,
we assume S does not contain zero. By (2.3), every nonempty polynomial set
S has a w-basic set.

Theorem (2.5). Let S be a finite, non-empty polynomial set. There is an
algorithm to construct a w-basic set of S.

Proof. Let f1 be a minimal polynomial of S (in the order <). If class(f1) = 0,
then it forms a w-basic set of S. Now suppose class(f1) > 0. Let S1 be the
set of all polynomials in S, whose classes are higher than class(f1) and whose
initials I are such that prem(I; f1) 6= 0. If S1 is empty, then f1 forms a w-basic
set of S. Now suppose S1 is nonempty. Continuing this way, at step k, we
have a w-asc chain C = f1,...,fk in S. Let Sk be the set of all polynomials in
S, whose classes are higher than class(fk) and whose initials I are such that
prem(I; f1, ..., fk) 6= 0. If Sk is empty, then f1, ..., fk is a w-basic set of S.
Otherwise, chose a minimal element fk+1 in Sk. f1, ..., fk, fk+1 form a w-asc
chain again. Eventually, we arrive at a w-basic set of S in no more than m
steps. .QED.

In the original presentation of Ritt-Wu’s principle (cf. [14], [17]) the key
operation prem(f ; ASC) (where ASC is an ascending chain) is repeatedly used.
Since the main purpose of triangulation is to reduce the class or the leading
degree of f , we need only to take fewer pseudo remainders than prem(f ;ASC)
takes. This can reduce the size growth of polynomials produced. The following
W–prem is one of our key steps to control the size growth of polynomials.

Algorithm W–prem (2.6). Given a polynomial g and an ascending chain
ASC = f1, ..., fr with non-constant f1. We define W–prem(g;ASC) to be:

Case 1. prem(g; f1, ..., fr) if prem(lc(g); f1, ..., fr) = 0.
Case 2. g if class(fr) < class(g).
Case 3. W–prem(prem(g, fr); f1, ..., fr−1) if class(fr) = class(g).
Case 4. W–prem(g; f1, ..., fr−1) if class(fr) > class(g).

The remainder formula is still valid for W–prem, except deg(R, xi) < deg(fi, xi)
(where xi = lv(fi)) is not necessarily true.

Proposition (2.7). For an ascending chain ASC = f1, ..., fr with class(f1) >
0 and a polynomial g, if W–prem(g;ASC) = 0, then prem(g;ASC) = 0.

Proof. The proposition is easy to prove using induction on r. .QED.

We introduce a new notation extremely useful for the rest of the paper:

PD(ASC) = {g | prem(g;ASC) = 0}.
The following proposition insures the termination of the triangulation procedure
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of Ritt-Wu’s principle, when using W–prem.

Proposition (2.8). Let B = f1, . . . , fr be a w-basic set of polynomial set S
with 0 < class(f1), and h be a polynomial. Suppose g = W–prem(h; f1, . . . , fr)
is not zero. Then the set S1 = S ∪ {g} has a w-basic set lower than B.

Proof. See [4]. .QED.

3 A Modification of Ritt-Wu’s Principle

Now let us fix an extension E of the base field K. We denote Zero(S) the
common zeros of polynomials in S, i.e., the set

{(a1, ..., am) ∈ Em | h(a1, ..., am) = 0, for all h ∈ S}.

Let G be another polynomial set. We denote Zero(S/G) to be Zero(S) −⋃
g∈G Zero(g). The following improvement of Ritt–Wu’s Principle is used in

our prover.

Theorem (3.1). (Ritt-Wu’s Principle). Let S = {h1, ..., hn} be a finite
nonempty polynomial set. There is an algorithm to construct a w-asc chain
ASC, called a characteristic set of S and denoted by Char–Set(S), such that
either

(3.2). ASC consists of a non-zero constant in K∩Ideal(S); in this case Zero(S)
is empty, or

(3.3). ASC = f1, . . . , fr with class(f1) > 0 and such that fi ∈ Ideal(S) and
W–prem(hj ; f1, · · · , fr) = 0for all i = 1, . . . , r and j = 1, . . . , n; in this case we
have:

Zero(S) = Zero(ASC/{lc(f1), · · · , lc(fr)})
⋃
∪r

i=1Zero(S ∪ {lc(fi)}),(3.3.1)

Zero(S) = Zero(PD(ASC))
⋃
∪r

i=1Zero(S ∪ {lc(fi)}).(3.3.2)

Proof. By (2.5), we can construct a w-basic set B1 of S1 = S. If B1 consists
of only one nonzero constant, then we have (3.2). Otherwise, we can expand S1

to S2 by adding nonzero W–prem(g;B1) for all elements g in S1. If S2 = S1,
then we have (3.3). Otherwise, we can construct a w-basic set B2 of S2. By
(2.8), B1 > B2. If B2 does not consist of one nonzero constant, then we can
expand S2 to S3 using the same procedure. Thus we have a strictly increasing
sequence of polynomial sets:

S1 ⊂ S2 ⊂ · · · ,

with a strictly decreasing sequence of w-asc chains

B1 > B2 > · · · .
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By (2.3), this decreasing sequence can be only finite. Thus, there is an integer
k ≥ 1 such that either Bk consists of a nonzero constant or Sk = Sk+1; then we
have either (3.2) or (3.3), respectively. Formulas (3.3.1) and (3.3.2) are direct
consequences of the Remainder Formula (2.1.1) and (2.7). .QED.

Example (3.4). Let S = {h1, ..., h7} in Example (6.2) (the Morley configu-
ration).

S1 = S; B1 = h2, h3, h5, h7.
S2 = S ∪ {f1, f4, f6}; B2 = f1, h2, h3, f4, h5, f6, h7, where
f1 = W–prem(h1;B1) = prem(h1, h2),
f4 = W–prem(h4;B1) = prem(h4, h5),
f6 = W–prem(h6;B1) = prem(h6, h7).

The w-asc chain ASC = B2 is a characteristic set of S. The numbers of
terms of the polynomials in B2 (abb. the ntps) are 14, 4, 2, 28, 4, 59, 13. It
took about 15 sec to complete the computation on a Symbolics 3600. If we use
Wu-asc chain, it took about 30 minutes to reach the 5th iteration B5. The ntps
of B5 are 14, 14, 2, 301, 23, 1977, 47. The program stuck in a computation (for
more than 2 hours) of a prem(p, q), where the numbers of terms in p and q are
2388 and 1977.

Remark. Algorithm (3.1) is a “bottom-up” triangular procedure. It has been
observed that “top-down” triangular procedures ([1], [12], [10]) are much faster.
However, top-down versions are not complete, i.e., triangular forms obtained by
such kinds of procedures generally do not satisfy (3.3). It is a good strategy
to incorporate a top-down triangular procedure into Algorithm (3.1). This can
reduce the number of iterations in (3.1) and polynomial sizes in many cases. It
was first done in [12]. For example, we can produce a triangular form TRi for Si

by a top down procedure, then set Si to be Si ∪ TRi and take a w-basic set Bi

of Si, and so on. However, this approach should be combined with w-asc chain
and W–prem, otherwise the size control generally cannot be insured. Example
(3.4) is such an example, for which this approach does not help much without
using W–prem.

4 A Modification of Ritt-Wu’s Decomposition Algorithm

Theorem (4.1). Ritt-Wu’s Zero Decomposition Algorithm (the Refined
Form). Let S and G be two non-empty polynomial sets. There is an algo-
rithm either to detect the emptiness of Zero(S/G) or to decompose Zero(S/G)
in the following form:

Zero(S/G) =
⋃

1≤i≤k

Zero(ASCi/Ii ∪G),(4.1.1)

Zero(S/G) =
⋃

1≤i≤k

Zero(PD(ASCi)/G)(4.1.2)
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where each ASCi is an irreducible w-asc chain,1 the Ii is the initial set of the
ASCi, and prem(g;ASCi) 6= 0 for all g ∈ G and i = 1, ..., k.

Proof. Let ASCs be a set of w-asc chains, initialized to be empty at the
beginning.

Step 1. According to (3.1) we can construct a w-asc chain having the property
of either (3.2) or (3.3). In the case of (3.2), Zero(S/G) is empty. In the case of
(3.3), we have a w-asc chain ASC and a polynomial set S′ (i.e., Sk in the proof
of (3.1)) having ASC as one of its w-basic sets. Zero(S) = Zero(S′).

Step 2. Check whether the w-asc chain ASC = f1, ..., fr is reducible. If it is,
then there is an integer k > 0 such that f1, ..., fk−1 is irreducible, but f1, ..., fk

is reducible. By (9.4) in [4], we can find two polynomials g and h with class(fk)
= class(g) = class(h) and gh ∈ Ideal(f1, ..., fk). We have a decomposition:
Zero(S′) = Zero(S′ ∪ {g}) ∪ Zero(S′ ∪ {h}). Obviously, S′ ∪ {g} and S′ ∪ {h}
have w-basic sets strictly lower than that of S′. We can take each of S′ ∪ {g}
and S′ ∪ {h} as a new S, and go to step 1.

Step 3. Let ASC = f1, ..., fr and I = {lc(f1), ..., lc(fr)}. By (3.3.2) we have:
(4.1.3)
Zero(S/G) = Zero(S′/G) = Zero(ASC/I ∪G)

⋃
∪p∈I{Zero(S′ ∪ {p}/G)}.

Step 4. If prem(g;ASC) = 0 for some g ∈ G, then Zero(ASC/I ∪G) is empty.
Otherwise, we add this w-asc chain ASC to ASCs.

Step 5. For each p in I, let p′ = prem(p;ASC); since W–prem(p;ASC) 6= 0,
p′ 6= 0 by (2.7). For each Zero(S′∪{p}/G) = Zero(S′∪{p, p′}/G) in (4.1.3), take
S′∪{p, p′} as a new S, then go to step 1. Repeat this process recursively. Since
S′∪{p, p′} has a w-basic set strictly lower than that of S′ by (2.8), this recursive
process will finally terminate. For otherwise, we would have a strictly decreasing
sequence of w-asc chains, contradicting (2.3). The termination of each branch
happens when I consists of constant polynomials. Upon termination, we have
two cases:

(i) ASCs is empty. This means that S does not have common zeros.

(ii) ASCs = {ASC1, ..., ASCk} (1 ≤ k), then we have the decomposition
(4.1.1). Since Zero(ASCi/Ii) ⊂ Zero(PD(ASCi)) ⊂ Zero(S), (4.1.2) follows
from (4.1.1). .QED.

Theorem (4.2). Ritt-Wu’s Zero Decomposition Algorithm (the Coarse
Form). The same statement as in (4.1), except we do not require that each
w-asc ASCi be irreducible.

Proof. The only thing needed to change in Algorithm (4.1) is to drop step 2
in the proof of (4.1). .QED.

The reader who is not interested in the details of the further improvements
of the above algorithms can skip the rest of this section.

Remark 1. Since multivariate factorization is available in many algebraic sys-
1For the definition and properties of irreducible ascending chains see [3].
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tems, we suggest to keep step 2 and check the reducibility of prem(fk; f1, ..., fk−1).
Using factorization of multivariate polynomials over the integers is actually a
good strategy to reduce polynomial sizes. If we want to obtain the refined form,
we can put off factorization over extension fields to the last step when we have
the coarse form. This turns out to be very effective to obtain the refined form.
Among the 8 examples in [6], there are very few involving factorization over
extensions after we get the coarse form, and only one w-asc chain is actually
reducible over extension fields.

Remark 2. The branches produced in the recursive step 5 can be as many
as thousands and most of them are redundant. If G is not empty, we have the
following two techniques (1) and (2) to control branching.

(1) If some d ∈ G is reduced to zero by S′ (the set produced in Step 1) using
some other reductions (e.g., the reduction used in the Gröbner basis method),
then Zero(S/G) is empty. This is one of the most effective techniques to control
branching in the algorithm, especially such situations happen at early stages.

(2) Let ASC = f1, ..., fr. If prem(d,ASC) = 0 for some d ∈ G, Zero(PD(ASC)/G)
is empty. More important, we do not have to add initials of those fi which are
not used in computing prem(d,ASC) to S′.

(3) We still can use the above techniques (1) and (2) even G is empty. We
only need to write (3.3.2) (or (3.3.1)) in a different form:
(3.3.2′)
Zero(S) = Zero(PD(ASC))

⋃
∪1≤i≤rZero(S ∪ {lc(fi)}/{lc(f1), ..., lc(fi−1)}).

In this way, the final decomposition would be slightly different:

(4.1.2′) Zero(S/G) =
⋃

1≤i≤k

Zero(PD(ASCi)/G ∪Di).

Since S ⊂ PD(ASCi) for i = 1, ..., k, Zero(PD(ASCi)) ⊂ Zero(S). Thus we
actually can get rid of Di in (4.1.2′), and have the same decomposition (4.1.2)
or (4.1.1).

Techniques (1)–(3) can reduce branches by a magnitude of one or two orders
for essentially large problems. In Example (3.4), it took 5860 sec to decompose
Zero(S) without using (3); there were 2346 characteristic sets produced in the
process and 76 asc chains in (4.1.2) (i.e., k = 76). It took only 944 sec using (3).
There were 106 characteristic sets produced in the process and 45 asc chains in
(4.1.2).

Theorem (4.3). Let E be an algebraically closed extension of the base filed
K and G = {1}. Then (4.1.2) becomes

(4.3.1) Zero(S) =
⋃

1≤i≤k

Zero(PD(ASCi))

which is a decomposition of algebraic set Zero(S) into the union of the irre-
ducible varieties Zero(PD(ASCi)). Here each PD(ASCi) is a prime ideal. Or
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alternatively,

(4.3.2) Radical(S) =
⋂

1≤i≤k

PD(ASCi).

The decompositions in (4.1)–(4.3) are generally redundant, i.e., some Zero((PD(ASCi))
may be contained in others. The following theorem, the proof of which is rather
long, removes some redundancy without any cost.

Theorem (4.4). Let n = length(S) be the number of polynomials in S.
Suppose that the emptiness of Zero(S) is not detected in algorithm (4.1) or
(4.3) and the set unions in (4.1.1) and (4.1.2) (either in the refined form or in
the coarse form) are arranged in such a way that length(ASCi) ≤ n for i ≤ l,
and length(ASCi) > n for i > l for some integer 0 ≤ l ≤ k, then 0 < l, and we
have the decomposition

(4.4.1) Zero(S/G) =
⋃

1≤i≤l

Zero(PD(ASCi)/G).

Proof. If it is the refined form (4.1), then the theorem is a consequence of the
Affine Dimension Theorem [8]. In general case, see [4]. .QED.

Remark. Notice also that the formula:

Zero(S/G) =
⋃

1≤i≤l

Zero(ASCi/Ii ∪G)

is generally not true even for the refined form. This is the key advantage to use
Zero(PD(ASCi)) instead of Zero(ASCi/Ii).

Theorem (4.5). There is an algorithm to remove the redundancy in the
decomposition (4.3.1) completely, thus providing an irredundant decomposition
of an algebraic set.

Proof. Let ASC = f1, ..., fr be an irreducible asc chain. Let GBz be a
Gröbner basis of {f1, ..., fr, z ·lc(f1) · · · lc(fr)−1} in a compatible ordering with
yi1
1 · · · yim

m < z. Then GBz∩K[y] is a Gröbner basis of the prime ideal PD(ASC)
(for the proof of this statement, see p.85 of [3]). Once we have a Gröbner basis
of each PD(ASCi) in (4.4.1), we can get the irredundant decomposition easily.
See [6] for examples using this theorem. .QED.

5 A Method for Formulation F2

Let E be the field associated with a given geometry. Suppose the hypothesis
of a geometry statement can be algebraically expressed by a set of polyno-
mial equations {h1(y1, ..., ym) = 0, ...,hn(y1, ..., ym) = 0} together with a set
of polynomial inequations {s1(y1, ..., ym) 6= 0, ..., sq(y1, ..., ym) 6= 0} express-
ing the non-degenerate conditions and the conclusion by a polynomial equation
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g(y1, ..., ym) = 0. Then the equivalent algebraic form of the geometry statement
is

(5.1) ∀y1 · · · ym ∈ E[(h1 = 0 ∧ · · · ∧ hn = 0 ∧ s1 6= 0 ∧ · · · ∧ sq 6= 0) ⇒ g = 0].

Let S = {h1, ..., hn} and G = {s1, ..., sq}, then the above formula is equivalent
to

(5.2) Zero(S/G) ⊂ Zero(g).

Method (5.3). This method is to confirm (5.1), or in the case when E is
algebraically closed, to decide whether (5.1) is valid.

Using Algorithms (4.1) or (4.2), and Theorem (4.4) to decompose Zero(S/G)
into

Zero(S/G) =
⋃

1≤i≤l

Zero(PD(ASCi)/G).

Each Zero(PD(ASCi)/G) is called a component of Zero(S/G).

Case 1. prem(g;ASCi) = 0 for all i = 1, ..., l. Then (5.2), hence formula (5.1)
is valid by Theorem (5.4) below.

Case 2. prem(g;ASCi) 6= 0 for some i. If E is algebraically closed and each
ascending chain ASCi is irreducible, then formula (5.1) is not valid by Theorem
(5.5) below. .QED.

In case 2 and when formula (5.1) is disproved, we don’t have any information
about the reason why (5.1) is false: it is false because the geometry statement
is generally false or because some nondegenerate conditions are missing. This
is why the authors are in favor of Formulation F1 in Section 1 to introduce
the notion “generally (generically) true”, which is inherent to a given geometry
statement regardless of how much nondegenerate conditions are added.

Theorem (5.4). Let the notations be the same as in Section 4 and g be any
polynomial. Suppose we have decomposition (4.4.1) (in the coarse or refined
form). If prem(g;ASCi) = 0 for all i = 1, ..., l, then Z(S/G) ⊂ Zero(g).

Proof. Since prem(g;ASCi) = 0, g ∈ PD(ASCi). Hence Zero(PD(ASCi))
⊂ Zero(g) for all i. By (4.4.1), Zero(S/G) ⊂ Zero(g). .QED.

Theorem (5.5). Let the notations be the same as in Section 4 and g be any
polynomial. Suppose we have decomposition (4.4.1) in the refined form (i.e.,
all ASCi are irreducible) and all zeros are taken from an algebraically closed
extension E of K. Then

(i) Each Zero(PD(ASCi)/G) is non-empty.
(ii) Zero(S/G) ⊂ Zero(g) if and only if prem(g;ASCi) = 0 for all i = 1, ..., l.

Proof. See Theorems (4.8) and (9.3) in [4]. .QED.

10
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6 Examples

Example (6.1) (Pascal’s Theorem). Let A, B, C, D, F and E be six points
on a circle (O). Let P = AB ∩DF , Q = BC ∩ FE and S = CD ∩ EA. Show
that P , Q and S are collinear (Figure 1).

The obvious non-degenerate conditions in this problem seem to be “the three
pairs of lines, AB and DF , BC and FE, and CD and EA, have normal inter-
sections”. Let B = (u1, 0), A = (0, 0), C = (u2, u3), O = (x2, x1), D = (x3, u4),
F = (x4, u5), E = (x5, u6), P = (x6, 0), Q = (x8, x7), and S = (x10, x9). Then
the problem can be specified as follows:

h1 = 2u2x2 + 2u3x1 − u2
3 − u2

2 = 0 OA ≡ OC.
h2 = 2u1x2 − u2

1 = 0 OA ≡ OB.
h3 = x2

3 − 2x2x3 − 2u4x1 + u2
4 = 0 OA ≡ OD.

h4 = x2
4 − 2x2x4 − 2u5x1 + u2

5 = 0 OA ≡ OF .
h5 = x2

5 − 2x2x5 − 2u6x1 + u2
6 = 0 OA ≡ OE.

h6 = (u5 − u4)x6 + u4x4 − u5x3 = 0 P , D and F are collinear.
h7 = (u6 − u5)x8 − (x5 − x4)x7 + u5x5 − u6x4 = 0 Q, F and E are collinear.
h8 = u3x8 − (u2 − u1)x7 − u1u3 = 0 Q, B and C are collinear.
h9 = u6x10 − x5x9 = 0 S, E and A are collinear.
h10 = (u4 − u3)x10 − (x3 − u2)x9 + u3x3 − u2u4 = 0 S, C and D are collinear.
s1 = (u4 − u3)x5 − u6x3 + u2u6 6= 0 Lines AE and CD have a normal intersection.
s2 = u3x5 − u3x4 − (u2 − u1)u6 + (u2 − u1)u5 6= 0 Lines BC and EF have a normal

intersection.
s3 = u1u5 − u1u4 6= 0 Lines AB and DF have a normal intersection.
g = x7x10 − (x8 − x6)x9 − x6x7 = 0 Conclusion: S, Q and P are collinear.

Zero(S/G) = Zero(PD(ASC1)/G) (in 6.9s 2), where ASC1 = Char–Set(S).
Since prem(g; ASC1) = 0 (in 0.4s), the theorem has been confirmed.

O

C

F

A

E
B

D

P
QS

A B

D

C

F
E

Figure 1: Pascal’s Theorem

Figure 2: Morley’s Theorem

Example (6.2) (Morley’s Trisector Theorem.) The points of intersection D,
E and F of the adjacent trisectors of the angles of any triangle ABC are the
vertices of an equilateral triangle (Figure 2).

Let B = (y1, 0), A = (0, 0), D = (y2, y3), C = (y5, y4), F = (y8, y7), and
E = (y10, y9). Then the problem can be specified as follows:

2Meaning that it took 6.9 seconds to complete the computation on a Symbolics 3600.
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h1 = (y3
3 + (−3y2

2 + 6y1y2 − 3y2
1)y3)y5 + ((−3y2 + 3y1)y

2
3 + y3

2 − 3y1y
2
2 + 3y2

1y2 − y3
1)y4

−y1y
3
3 + (3y1y

2
2 − 6y2

1y2 + 3y3
1)y3 = 0 tan(6 CBA) − tan(36 DBA) = 0.

h2 = (y3
3 − 3y2

2y3)y5 + (−3y2y
2
3 + y3

2)y4 = 0 tan( 6 CAB) − tan(36 DAB) = 0.
h3 = y2

6 − 3 = 0 tan(±π/3) = ±√3.
h4 = (((y2

3 + y2
2 − y1y2)y5 − y1y3y4)y6 + y1y3y5 + (y2

3 + y2
2 − y1y2)y4)y8 + ((y1y3y5 + (y2

3 +
y2
2 − y1y2)y4)y6− (y2

3 + y2
2 − y1y2)y5 + y1y3y4)y7− ((y2

3 + y2
2 − y1y2)y

2
5 + (y2

3 + y2
2 − y1y2)y

2
4)y6−

y1y3y
2
5 − y1y3y

2
4 = 0

tan(6 BAD + 6 DBA + 6 ACF ) = ±√3.
h5 = (y1y3y5 − y1y2y4)y8 + (y1y2y5 + y1y3y4)y7 = 0 tan(DAB) = tan(CAF ).
h6 = ((2y4y5−y1y4)y8+(−y2

5 +y1y5+y2
4)y7−y4y

2
5−y3

4)y10+((−y2
5 +y1y5+y2

4)y8+(−2y4y5+
y1y4)y7+y3

5−y1y
2
5+y2

4y5−y1y
2
4)y9+(−y4y

2
5−y3

4)y8+(y3
5−y1y

2
5+y2

4y5−y1y
2
4)y7+y1y4y

2
5+y1y

3
4 = 0

tan(ACF ) = tan(ECB).
h7 = (y1y3y5 + (−y1y2 + y2

1)y4− y2
1y3)y10 + ((y1y2− y2

1)y5 + y1y3y4− y2
1y2 + y3

1)y9− y2
1y3y5 +

(y2
1y2 − y3

1)y4 + y3
1y3 = 0 tan(ABD) = tan(EBC).

s1 = y1y4 6= 0 A, B, C are not collinear.
s2 = y2

1 6= 0 Line AB is non-isotropic.
s3 = (y5 − y1)

2 + y2
4 6= 0 Line BC is non-isotropic.

s4 = y2
5 + y2

4 6= 0 Line AC is non-isotropic.
g = (y6y8 − y7 − y2y6 + y3)y10 + (y8 + y6y7 − y3y6 − y2)y9 + (−y2y6 − y3)y8 + (−y3y6 +

y2)y7 + (y2
3 + y2

2)y6 = 0
Conclusion: tan(6 EDF ) = ±√3.

Zero(S/G) = Zero(PD(ASC1)/G) (in 756.7s), where ASC1 = Char–Set(S)
(i.e., B2 in Example (3.4)). Since prem(g;ASC1) = 0 (in 6.4s), the theorem has
been confirmed. There are 18 triangles DEF thus formed. The proof by our
prover applies to all 18 equilateral triangles. The idea of the above specification
of the equation part comes from Wu’s work [17]. The specification of the non-
degenerate conditions is due to us. An isotropic line is a line perpendicular to
itself. It does not exist in Euclidean geometry. Thus we have proved Morley’s
theorem under the only non-degenerate condition that A, B, and C are not
collinear. For more examples See [4].

7 Experimental Results

We have implemented Method (5.3) in our prover [2]. More than 500 theorems
have been proved in this way. In particular, we have experimented with the same
set of the 512 theorems in [3] (using the same coordinates and equations). For
413 of the 512 theorems, the prover can generate non-degenerate conditions all
in geometric form by the method in [2]. For most of those 413 theorems, we
use such machine generated non-degenerate conditions in geometric form as the
inputs to our new method. We paid particular attention to a few problems
among these 413 theorems, specifying non-degenerate conditions manually. For
example, we proved Feuerbach’s theorem under the only non-degenerate that
“the vertices of the triangle are not collinear.”

For the remaining 91 theorems, some non-degenerate conditions in polynomial
inequations were generated by our previous method. First we simply deleted
these algebraic inequations, using the rest machine generated non-degenerate
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7. Experimental Results

conditions in geometric form as inputs. About half of these 91 theorems were
confirmed this way. We have to pay more attention to the remaining half, adding
more non-degenerate conditions in geometric form manually.

In this way, we have proved 493 of the 512 theorems. We had trouble with the
remaining 19 theorems within the time or space limit of the computer. Among
the 493 theorems proved, 471 were proved within 300 seconds; 12 within one
hour.

The following table gives time statistics of 30 theorems for various methods.
Wu(F1) is the method we mainly use for Formulation F1. The sign * means that
some non-degenerate conditions are still in algebraic form. The sign ? means
that it took more than 4 hours without results. Wu(F2) is the method in this
paper; 0.4 + 0.3 means that it took 0.4 sec to decompose and 0.3 sec to check
prem(g;ASCi) = 0. GB(F1) is our Gröbner basis method for Formulation F1
[7]. Strictly speaking, non-degenerate conditions produced by this method is
in algebraic form. However, by a theorem due to us, if GB(F1) confirms a
theorem in a class of constructive geometry statements, then it is valid under
geometric non-degenerate conditions produced by the method in [5]. GB(F2) is
our Gröbner basis method for Formulation F2 [7], [3].

Ex. No. Theorem Sources Wu(F1) Wu(F2) GB(F1) GB(F2)
Ex[1] Parallelogram Section 2 [7] 0.1 0.23 + 0.02 0.45 0.71
Ex[2] Theorem of Centroid Ex1, [7] 0.35 0.33 + 0.02 0.83 0.38
Ex[3] Theorem on Altitudes Ex133, [3] 0.83 0.5 + 0.1 2.5 75.7
Ex[4] Ceva’s Theorem Ex334, [3] 0.81 0.4 + 0.3 1.1 48.3
Ex[5] Simson’s Theorem Ex2, [7] 1.2 0.6 + 0.1 1.6 144.1
Ex[6] Brahmagupta Section 4 [7] 1.1 5.1 + 0.1 2.4 1.48
Ex[7] Pappus’ Theorem Ex6, [7] 1.3 2.5 + 0.2 6.4 44.6
Ex[8] Pappus Dual Ex17, [3] 1.7 0.8 + 0.3 15.8 293.9
Ex[9] Butterfly Theorem Ex5, [7] 1.5 6.1 + 0.1 24.5 ?
Ex[10] Simson Dual Ex21, [3] 4.8 20.9 + 1.2 ? ?
Ex[11] Four Simson Lines Ex311, [3] 3.2 4.9 + 1.3 ? ?
Ex[12] Ogilvy’s Theorem Ex65, [3] 238.5 20.6 + 195.6 ? ?
Ex[13] Secant Theorem Ex390, [3] 3.3 0.7 + 2.1 11,975.2 2950.4
Ex[14] Pascal’s Theorem This paper 3.9 8.9 + 0.3 1401.5 ?
Ex[15] Brianchon’s Theorem Ex19, [3] 9.6 5.0 + 5.3 ? ?
Ex[16] Pappus Point Ex7, [7] 5.6 8.8 + 1.9 54.6 ?
Ex[17] Isosceles Midpoint Ex8, [7] 2.6 3.7 + 0.1 1.5 3.3
Ex[18] Gauss’ Theorem Ex9, [7] 1.5 0.15 + 0.05 1.3 0.35
Ex[19] Gauss Point Ex10, [7] 3.7 5.7 + 0.6 18.8 95.1
Ex[20] Gauss Conic Ex17, [3] 1511.3 101.3 + 1502.1 5,225.4 ?
Ex[21] Feuerbach’s Theorem Ex204,[3] 2.8 27.3 + 1.0 28.2 197.9
Ex[22] Miquel Point Ex308, [3] 40.2 4.3 + 38.1 90.3 ?
Ex[23] Miquel Circle Ex309, [3] 412.3 1.9 + 555.2 137.7 ?
Ex[24] Steiner’s Theorem Ex13, [3] 10.2 8.6 + 4.2 ? ?
Ex[25] Kirman’s Theorem Ex14, [3] 8.2 6.7 + 6.0 ? ?
Ex[26] Pascal Conic 1 Ex9, [3] 11.8 2.8 + 11.2 71.6 ?
Ex[27] Pascal Conic 4 Ex12, [3] 210.3 8.6 + 184.2 ? ?
Ex[28] Morley’s Theorem This paper 20.2 * 756.7 + 6.4 308.1 * ?
Ex[29] V. Pratt’s Theorem Ex80, [3] 275.3 ? ? ?
Ex[30] Coxeter’s Theorem Ex40, [3] 218.2 * ? ? ?
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8 Related Work

Though people knew at the very beginning that Wu’s method could prove
theorems with Formulation F2, no attempt was ever made at that time, because
people (including the first author) thought it tended to be much slower than the
method based on Formulation F1. Wu, Chou, Gao and others proved hundreds
of theorems based on Formulation F1.

The first author experimented with Formulation F2 during 1984–1985 using
the Gröbner basic (GB) method. He was able to prove about 10 theorems and
found it very slow [7]. The hardest one proved by him was perhaps Simson’s
theorem.

D. Kapur, on the other hand, was successful in proving more and harder
theorems using the GB method based on a refutational approach according to
Formulation F2 [9].

H. P. Ko [13] was the first to use Ritt-Wu’s method to prove geometry theo-
rems according to Formulation F2. Our work is in the same direction as Ko’s
work and has similarities and differences with her work [13]. Our method is
faster than hers. Especially, our Theorem (4.4) makes the proof procedure
faster and clearer. For example, in Example (6.1), Ko produced four compo-
nents with ascending chains T1, T2, T3, and T4. According to Theorem (4.4),
Zero(Ti/Ii ∪ G) ⊂ Zero(PD(T1)/G) (for i = 2, 3, 4; here the Ii are the initial
sets of the ascending chains Ti) and Zero(S/G) = Zero(PD(T1)/G). So we
only need to check whether prem(g;T1) = 0; or in terms of Formulation F1, to
check whether g vanishes on the general components (generally true).

After this paper was submitted, we learned that D. Kapur and H. K. Wan
also used the characteristic set method to prove geometry theorems according
to Formulation F2 using a refutational approach [15], [11].

The authors wish to thank D. Kapur for his suggestion and comments.
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