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1. Introduction

1 Introduction

In the past decade highly successful algebraic methods for mechanical geom-
etry theorem proving have been developed. This began with Wu’s pioneering
work in 1978 [10]. In the subsequent developments, hundreds of hard theorems
in Euclidean and Non–Euclidean geometries have been proved by computer pro-
grams based on Wu’s method [11], [12], [1], [2]. Inspired by the success of Wu’s
work, several groups also successfully applied the Gröbner basis (GB) method
to prove the same class of geometry statements that Wu’s method addresses [7],
[8], [9]. In most of the current research, two different but related formulations
for geometry statements have been considered.

Formulation (Approach) F1. Introducing parameters and the notion of
“generally true” for a geometry statement. The present techniques can prove a
statement to be generally true, at the same time giving nondegenerate conditions
(usually in algebraic form) automatically.

Formulation (Approach) F2. Giving nondegenerate conditions in geomet-
ric form manually (or mechanically) at the beginning as a part of the hypothe-
ses. Then the prover only needs to answer whether the conclusion follows the
hypotheses without adding any other conditions.

The method originally developed by Wu is for Formulation F1. One of the
advantages of Formulation F1 is that non-degenerate conditions can be taken
care of without explicitly specifying them. Formulation F1 gives a clear insight
into the nature of a geometric statement: if a geometry statement is proved
to be generally false, then it cannot be valid no matter how many additional
non-degenerate conditions are added so long as the hypotheses keep consistent.

On the other hand, how to translate algebraic nondegenerate conditions into
their geometric forms is also an interesting and important topic. This is the aim
of this paper. In this paper we presents a method for generating non-degenerate
conditions in geometric form for a class of geometry statements, called Class C,
when using Formulation 1. We prove a mathematical theorem stating that non-
degenerate conditions produced by our method are complete in metric geometry,
i.e., if the statement is not valid under these non-degenerate conditions, then it
is generally false.

In Section 2, we discuss difficulties for finding non-degenerate conditions.
In Section 3, we present our method for generating geometric non-degenerate
conditions for Class C. In section 4, we prove that under certain conditions, this
method is complete.
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2. Difficulties with Non-Degenerate Conditions

2 Difficulties with Non-Degenerate Conditions

Theorems in geometry textbooks often implicitly assume some non-degenerate
conditions that are necessary for the theorems to be valid. Finding all non-
degenerate conditions sufficient for a geometry statement to be true may be
difficult in many cases. The situation becomes more complicated when we use
Wu’s method (or the GB method) for proving theorems, because these meth-
ods are complete only for metric geometry, not for Euclidean geometry. The
following are two examples.

Figure 1 Figure 2

Example (2.1). (Simson’s Theorem). Let D be a point on the circumscribed
circle (O) of triangle ABC. From D three perpendiculars are drawn to the three
sides BC, CA and AB of4ABC. Let E, F and G be the three feet respectively.
Show that E, F and G are collinear (Figure 1).

The obvious non-degenerate condition for this statement seems to be “A, B
and C are not collinear”. Indeed, in Euclidean geometry, Simson’s theorem is
valid under this condition. However, if we try to prove Simson’s theorem under
this condition with Wu’s method or the GB method according to Formulation
F2 (i.e., without adding any other conditions), then the statement cannot be
confirmed. The reason for this phenomenon is that Wu’s method (or the GB)
method is complete only for metric geometry, not for Euclidean geometry. Here
we will not give a detailed account of metric geometry (in Wu’s sense), the
reader can find the discussion in [3], [12]. We only mention that the theory of
metric geometry has many models, among which are Euclidean geometry R2,
unordered metric geometries (e.g., complex geometry C2), etc.

If we want to decide whether Simson’s theorem is a theorem of the theory
of metric geometry, then the following additional non-degenerate condition is
necessary:

(2.1.1) AB, BC, and CA are not isotropic
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3. A Class of Geometric Statements of Constructive Type

An isotropic line is a line perpendicular to itself; it does not exist in Euclidean
geometry. However, there exist isotropic lines in other models of the theory
of metric geometry (e.g., C2). The result in using Wu’s method shows that
Simson’s theorem can be proved in unordered geometries (i.e., without using the
axioms of order) under (2.1.1); however, if we drop (2.1.1) from the hypotheses,
then the axioms of order is necessary. Unless we have a clear understanding
of the nature of the method and the statements to be proved, it is very hard
to come up with non-degenerate conditions such as (2.1.1). This paper gives a
satisfactory solution to these problems.

Even in Euclidean geometry, there are some nondegenerate conditions hard
to find as illustrated by the following example.

Example (2.2). (the Butterfly Theorem) A, B, C and D are four points
on circle (O). E is the intersection of AC and BD. Through E draw a line
perpendicular to OE, meeting AD at F and BC at G. Show FE ≡ GE (Figure
2).

Here we need a necessary non-degenerate condition that EO is not perpen-
dicular to AD. The necessity of this condition is hard to perceive.

In the next section, we shall classify a class of geometry statements of con-
structive type (Class C) and present a mechanical method for producing suffi-
cient number of non-degenerate conditions in geometric form for a statement in
this class. In section 4, we shall prove our method is complete.

3 A Class of Geometric Statements of Constructive Type

3.1 Definition of Class C

Most theorems in elementary geometry can be described in a constructive way:
given a certain arbitrary points, lines, circles and points on these circles and
lines, new points, lines and circles are constructed step by step using geometric
constructions such as taking the intersection of two lines, an intersection of a
line and a circle, or an intersection of two circles. In this subsection, we use the
natural language to give a definition of such a statement. In Section 3.3, we will
give the precise formula of such a statement using geometric predicates.

First, let us give “circle” a formal definition. A circle h is a pair of a point
O and a segment (AB): h = (O, (AB)), where A and B are two points.
Two circles (O, (AB)) and (P, (CD)) are equal if and only if O = P and
congruent(A,B, C,D) (for the definition of “congruent”, see 3.2). O is called
the center of the circle and (AB) the radius. A point P is on circle (O, (AB))
if congruent(O, P, A, B).

Let Π be a finite set of points. We say line l is constructed directly from Π if

4



3. A Class of Geometric Statements of Constructive Type

(i) The line l joins two points A and B in Π. We denote it by l = L(AB); or

(ii) The line l passes through one point C in Π and parallel to a line joining
two points A and B in Π. We denote it by l = P (C,AB); or

(iii) The line l passes through one point C in Π and perpendicular to a line
joining two points A and B in Π. We denote it by l = T (C,AB); or

(iv) The line l is the perpendicular–bisector of AB with A and B in Π. We
denote it by l = B(AB).

A line l constructed directly from Π is well defined if the two points A and B
mentioned above are distinct.

Likewise, we say a circle c = (O, (AB)) is constructed directly from Π if points
O, A and B are in Π. The lines and circles constructed directly from Π are said
to be in Π, for brevity.

Definition. A geometry statement is of constructive type or in Class C if
the points, lines, and circles in the statement can be constructed in a definite
prescribed manner using the following ten constructions, assuming Π to be the
set of points already constructed so far:

Construction 1. Taking an arbitrary point.

Construction 2. Drawing an arbitrary line. This can be reduced to taking
two arbitrary points.

Construction 3. Drawing an arbitrary circle. This can be also reduced to
taking two or three arbitrary points.

Construction 4. Drawing an arbitrary line passing through a point in Π. This
can be reduced to taking an arbitrary point.

Construction 5. Drawing an arbitrary circle knowing its center in Π. This
can be also reduced to taking one or two arbitrary points.

Construction 6. Taking an arbitrary point on a line in Π.

Construction 7. Taking an arbitrary point on a circle in Π.

Construction 8. Taking the intersection of two lines in Π.

Construction 9. Taking an intersection of a line and a circle in Π.

Construction 10. Taking an intersection of two circles in Π.

The conclusion is a certain (equality) relation among the points thus con-
structed.

In the actual prover [2], [6], we have included more constructions such as
taking midpoints and constructions involving angle congruence, the radical axis
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3. A Class of Geometric Statements of Constructive Type

of two circles, taking a point on a circle knowing three points on the circle, etc.

Example (3.1). Simson’s theorem can be specified as a statement in Class
C by the following construction sequence:

Points A, B, and C are arbitrarily chosen, construction 1
O = B(AB) ∩B(AC), construction 8
D is on circle (O, (OA)), construction 7
E = T (D,BC) ∩ L(BC), construction 8
F = T (D, AC) ∩ L(AC), construction 8
G = T (D, AB) ∩ L(AB), construction 8

with conclusion collinear(E,F, G).

The Butterfly theorem can be specified as a statement in Class C by the
following construction sequence:

O and A are arbitrarily chosen, construction 1
B is on (O, (OA)), construction 7
C is on (O, (OA)), construction 7
D is on (O, (OA)), construction 7
E = L(AC) ∩ L(BD), construction 8
F = L(AD) ∩ T (E, OE), construction 8
G = L(EF ) ∩ L(BC), construction 8

with conclusion midpoint(F,E, G).

In the above examples, we use a construction sequence to express a statement
in Class C. We will soon present an algorithm for generating non-degenerate
conditions for a statement in Class C, knowing its construction sequence. Before
presenting the algorithm, we first specify what exact geometric predicates we
use.

3.2 The Basic Predicates

In order to describe the logical formula of a statement in Class C, we need
four basic (non-logical) predicates: “collinear(A,B, C)”, “parallel(A, B,C, D)”,
“perpendicular(A,B, C, D)”, “congruent(A,B, C, D)”.1 We should emphasize
that these predicates do include degenerate cases. To be more precise, let A =
(x1, y1) B = (x2, y2), C = (x3, y3) and D = (x4, y4).

(1) Predicate “collinear(A,B, C)” means that points A, B and C are on the
same line; they are not necessarily distinct. Its corresponding algebraic equation
is

(x1 − x2)(y2 − y3)− (x2 − x3)(y1 − y2) = 0.

1In our actual prover [2], [3], there are many other predicates. For the complete list of all
these predicates and their algebraic equations see pp.97–99 of [3].
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3. A Class of Geometric Statements of Constructive Type

(2) Predicate “parallel(A,B, C,D)” means that

[(A = B) ∨ (C = D) ∨ (A,B,C, D are on the same line) ∨ (AB ‖ CD)].
Its algebraic equation is

(x1 − x2)(y3 − y4)− (x3 − x4)(y1 − y2) = 0.

(3) Predicate “perpendicular(A,B, C,D)” means that [(A = B) ∨ (C = D) ∨
(AB ⊥ CD)]. Its algebraic equation is

(x1 − x2)(x3 − x4) + (y1 − y2)(y3 − y4) = 0.

For convenience, we define a new predicate “isotropic(A,B)” to be perpendicular(A,B, A,B),
which means A = B or L(AB) is an isotropic line.

(4) Predicate “congruent(A,B,C, D)” means [(isotropic(A, B) ∧ isotropic(C, D))
∨ (AB is congruent to CD)]. Its algebraic equation is

(x1 − x2)2 + (y1 − y2)2 − (x3 − x4)2 − (y3 − y4)2 = 0.

There are many advantages of using the above predicates. Each of the
above predicates corresponds to only one equation, thus its negation corre-
sponds to only one inequation. E.g., ¬parallel(A,B, C, D) is “(A 6= B) ∧ (C 6=
D) ∧ (A,B, C,D are not on the same line) ∧ ¬(AB ‖ CD)”. Its corresponding
inequation is

(x1 − x2)(y3 − y4)− (x3 − x4)(y1 − y2) 6= 0,

which is the exact non-degenerate condition we want for intersecting two lines
AB and CD: they have only one common point. Note that this condition
implies the condition (A 6= B ∧ C 6= D).

3.3 Mechanical Generation of Non-Degenerate Conditions for Class
C

For a statement in Class C, we can generate non-degenerate conditions follow-
ing the construction sequence step by step. Suppose we have already generated
a set of non-degenerate conditions DS under the previous constructions. Let
HS be the set of the equation hypotheses under the previous constructions, and
Π be the set of points constructed so far. The next construction is one of the ten
constructions in Section 3.1. First we add the point(s) to be constructed to the
set Π. Since the first five constructions are reduced to taking arbitrary points,
nothing is added to HS or DS. Thus we assume the next construction is one of
constructions 6–10. We use abbreviations coll(), perp(), para() and cong() for
predicates collinear(), perpendicular(), parallel() and congruent(), respectively.

Construction 6. Taking an arbitrary point D on a line l in Π. There are four
kinds of lines in Π.
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3. A Class of Geometric Statements of Constructive Type

Case 6.1. l = L(AB).
HS := {coll(A,B,D)} ∪HS; DS := {A 6= B} ∪DS.
Case 6.2. l = P (C, AB).
HS := {para(A,B, C,D)} ∪HS; DS := {A 6= B} ∪DS.
Case 6.3. l = T (C, AB).
HS := {perp(A,B,C, D)} ∪HS; DS := {A 6= B} ∪DS.
Case 6.4. l = B(AB).
HS := {cong(A,D, B,D)} ∪HS; DS := {A 6= B} ∪DS.
Construction 7. Taking an arbitrary point A on a circle (B, (CD)) in Π.
HS := {cong(A,B, C, D)} ∪HS.
Construction 8. Taking the intersection I of two lines in Π.
Since there are four types of lines in Π, there are 10 types of intersections:

types LL, LP , LT , LB, PP , PT , PB, TT , TB, and BB.
Let the two lines be given by the following equations:

l1 : a1x + b1y + c1 = 0,
l2 : a2x + b2y + c2 = 0.

The elegance of our approach is that for all 10 types of intersections, the only
non-degenerate condition in algebraic form is ∆ = a1b2 − a2b1 6= 0.

Case 8.1. Type LL: I = L(AB) ∩ L(CD).
HS := {coll(A,B, I), coll(C,D, I)} ∪HS; DS := {¬para(A,B, C, D)} ∪DS.
Note that ¬para(A,B, C, D) implies A 6= B and C 6= D.
Case 8.2. Type LP : = L(AB) ∩ P (E, CD).
HS := {coll(A, B, I), para(C, D,E, I)} ∪ HS; DS := {¬para(A,B, C, D)} ∪

DS. In the special case,
Case 8.2.1. If B = D, DS becomes DS := {¬coll(A,B, C)} ∪DS.

Case 8.3. Type LT : I = L(AB) ∩ T (E, CD).
HS := {coll(A,B, I), perp(C, D, E, I)} ∪HS; DS := {¬perp(A,B, C,D)} ∪

DS. In the special case,
Case 8.3.1. (The foot from E to AB) A = C and B = D. DS :=

{¬isotropic(A,B)} ∪DS.
Case 8.4. Type LB: I = L(AB) ∩B(CD).
HS := {coll(A,B, I), cong(I, C, I, D)} ∪ HS; DS := {¬perp(A,B, C, D)} ∪

DS. In the special case,
Case 8.4.1. A = C and B = D. DS := {¬isotropic(A, B)} ∪DS.2

Case 8.5. Type PP : I = P (E, AB) ∩ P (F, CD).
HS := {para(A,B, E, I), para(C, D, F, I)}∪HS; DS := {¬para(A, B,C, D)}∪

DS. In the special case,
Case 8.5.1. B = D. DS := {¬coll(A,B, C)} ∪DS.

2This is one of the two ways to specify the midpoint.

8



3. A Class of Geometric Statements of Constructive Type

Case 8.6. Type PT : I = P (E,AB) ∩ T (F, CD).
HS := {para(A,B, E, I), perp(C,D, F, I)}∪HS; DS := {¬perp(A,B, C,D)}∪

DS.
Case 8.7. Type PB: I = P (E,AB) ∩B(CD).
HS := {para(A,B, E, I), cong(I, C, I,D)}∪HS; DS := {¬perp(A, B,C, D)}∪

DS.
Case 8.8. Type TT : I = T (E, AB) ∩ T (F, CD).
HS := {perp(A,B,E, I),perp(C, D,F, I)}∪HS; DS := {¬para(A,B, C,D)}∪

DS. In the special case,
Case 8.8.1. B = D. DS := {¬coll(A,B, C)} ∪DS.

Case 8.9. Type TB: I = T (E, AB) ∩B(CD).
HS := {perp(A,B,E, I), cong(I, C, I, D)}∪HS; DS := {¬para(A, B,C, D)}∪

DS. In the special case,
Case 8.9.1. B = D. DS := {¬coll(A,B, C)} ∪DS.

Case 8.10. Type BB: I = B(AB) ∩B(CD).
HS := {perp(I, A, I, B), cong(I, C, I,D)}∪HS; DS := {¬para(A,B, C,D)}∪

DS. In the special case,
Case 8.10.1. B = D. DS := {¬coll(A,B, C)} ∪DS.

Construction 9. Taking an intersection Q of a line and a circle in Π. Let the
line be L(AB), or P (C, AB), or T (C, AB), or B(AB), the circle be (O, (DE)).
DS := {¬isotropic(A,B)} ∪DS.

If Q = L(AB) ∩ (O, (DE)), then HS := {coll(A,B, Q), cong(O, Q,D, E)} ∪
HS.

If Q = P (C,AB)∩(O, (DE)), then HS := {para(A,B, C, Q), cong(O, Q,D, E)}∪
HS.

If Q = T (C, AB)∩(O, (DE)), then HS := {perp(A,B,C, Q), cong(O, Q,D, E)}∪
HS.

If Q = B(AB)∩(O, (DE)), then HS := {cong(Q,A,Q, B), cong(O, Q,D, E)}∪
HS.

Case 9.1. In the special case when one of the intersections, say S, of the circle
and the line is already in Π. DS := {¬isotropic(A,B), S 6= Q} ∪DS.

Construction 10. Taking an intersection Q of two circles in Π. Let the two
circles be (O, (AB)) and (P, (CD)).

HS := {cong(O, Q, A,B), cong(P,Q, C, D)}∪HS; DS = {¬isotropic(O,P )}∪
DS. In the special case,

Case 10.1. One of the intersections is already in Π, say, S. DS := {¬isotropic(O,P ), S 6=
Q} ∪DS.

Repeating the above steps until every construction is processed, finally we
have two parts for the hypotheses: one is HS = {H1, ..., Hr}, called the equation
part of the hypotheses; the other is DS = {¬D1, ...,¬Ds}, called the inequation
part of the hypotheses representing non-degenerate conditions of the statement.
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3. A Class of Geometric Statements of Constructive Type

Let C be the conclusion of the statement, whose algebraic form is a polynomial
equation in the coordinates of the points in Π. Then the exact statement is3

(3.2) ∀P ∈ Π(HS ∧DS ⇒ C).

Thus according to our translation, we can denote a statement S in Class C by
(HS, DS, C).

3.4 Examples

Example (3.4). (Simson’s Theorem and the Butterfly theorem). According
to the construction sequence of Simson’s theorem in Example (3.1), the non-
degenerate conditions (the inequation part of the hypotheses) are

DSs =
¬collinear(A,B,C), Case 8.10.1
¬isotropic(AB), Case 8.3.1
¬isotropic(AC), Case 8.3.1
¬isotropic(BC). Case 8.3.1

The equation part of the hypotheses is

perpendicular(A,B, D,G),
perpendicular(A,C, D, F ),
perpendicular(B,C, D,E),
collinear(A,B,G),
collinear(A,C, F ), HSs

collinear(B, C,E),
congruent(O, A,O, B),
congruent(O, A,O, C),
congruent(O, A,O, D).

Nondegenerate conditions DSs are exactly what we discussed in Section 2.
Then the exact statement of Simson’s theorem according to the constructions
in (3.1) is:

(3.5) ∀A · · · ∀G[HSs ∧DSs ⇒ collinear(E, F, G)].

Note that for the same theorem, the construction sequence is usually not
unique. Different construction sequences lead to different non-degenerate con-
ditions. For example, we have at least 8 essentially different construction se-
quences for Simson’s theorem. However, for all different construction sequences,
the equation part of the hypotheses is always the same; in this example, it is al-
ways HSs.

3Depending on the context, HS can also denote the conjunction of its elements, i.e., HS =
H1 ∧ · · · ∧Hr. The same convention is for DS and other sets of geometric conditions.
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4. The Completeness of Non-Degenerate Conditions for Metric Geometry

The non-degenerate conditions for the Butterfly theorem according to the
construction sequence in (3.1) are

DSb =
¬parallel(A,C,B,D), Case 8.1
¬perpendicular(A,D, O, E), Case 8.3
¬parallel(E,F, B, C). Case 8.1

The equation part of the hypotheses is

congruent(O, A,O, B),
congruent(O, A,O, C),
congruent(O, A,O, D),
collinear(A,E, C),
collinear(B, E, D), HSb

perpendicular(O, E,E, F ),
collinear(E, F, G),
collinear(F,A, D),
collinear(G,B,C).

The exact statement of the Butterfly theorem according to the constructions in
(3.1) is:

(3.6) ∀A · · · ∀G[HSb ∧DSb ⇒ midpoint(F, E,G)].

The results in Section 4 and 5 show that either (3.5) (or (3.6)) is a theorem in
the theory of metric geometry, or it cannot be a theorem no matter how many
additional non-degenerate conditions are added as long as the hypotheses keep
consistent.

4 The Completeness of Non-Degenerate Conditions for Metric Ge-
ometry

The completeness of our method for generating non-degenerate conditions
DS can be stated as the following theorem.

Theorem (4.1). For an irreducible (to be defined later) statement in Class
C, our mechanically generated non-degenerate conditions are sufficient for the
statement to be valid in the theory of metric geometry. To be more precise, let
S = (HS,DS, C) be a statement in Class C, where HS = {H1, ...,Hr} is the
equation part of the hypotheses, DS = {¬D1, ...,¬Ds} is the inequation part of
the hypotheses, and C is the conclusion. Let Π be the set of all points involved
in S. If S is irreducible (to be defined later) and the formula

(4.2) ∀P ∈ Π(HS ∧DS ⇒ C),

is not valid in a model Ω of the theory of metric geometry whose associated field
FΩ is algebraically closed, then (4.2) cannot be a theorem in Ω by adding any
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4. The Completeness of Non-Degenerate Conditions for Metric Geometry

set of additional conditions ¬Ds+1, ...,¬Dt as long as they keep the consistency
with the hypotheses, where each Di is a geometric condition whose algebraic
form is an equation. The consistency means that

(4.3) ∀P ∈ Π(HS ∧DS ⇒ Di),

are not valid in Ω, for i = s + 1, ..., t. .QED.

Now we are proving Theorem (4.1). Our final goal is to prove Theorem (4.8)
which is the algebraic form of Theorem (4.1). The proof here was originally in
[2].

We use the algebraic approach. Following Hilbert and Wu, we use two kinds
of variables: the parameters uj and the dependent variables xk. Our proof also
provides a method to choose the parameters u, the dependent variables x, the
variable order in x, and a method to decide whether (4.2) is valid in Ω.

After adopting an appropriate coordinate system, each point P in the state-
ment S corresponds to a pair of coordinates: P = (xp, yp). We introduce new
parameters u, dependent variables x, and equations according to the steps of
constructions. Under the previous constructions, suppose we have already intro-
duced parameters u1, ..., uj−1, dependent variables x1, ..., xk−1, and the equa-
tions h1 = 0, ..., hk−1 = 0 corresponding to a part of hypotheses {H1, ...,Hk−1},
and an ascending chain of the form:

f1(u1, . . . , uj−1, x1)

f2(u1, . . . , uj−1, x1, x2)

(4.4) . . .

fk−1(u1, . . . , uj−1, x1, . . . , xk−1).

Furthermore, we assume the ascending chain (in week sense) f1, ..., fk−1 is ir-
reducible.4 Let Π be the set of points constructed so far. First we add the
next point(s) to be constructed to Π. Since Constructions 1–5 introduce only
arbitrarily chosen points, we only need to assign new parameters to the coor-
dinates of the points. E.g., for construction 1 (taking any point A), we can let
A = (uj , uj+1). Thus we assume that the next construction is one of Construc-
tions 6–10.

Construction 6. Taking an arbitrary point D on a line l in Π. Let the
corresponding condition in HS be Hk. Let the line equation hk = 0 for l, which
is the algebraic form of Hk, be

ax + by + c = 0.

4For the definition of ascending chains, see [11], [3], or [4]. The ascending chain f1, ..., fk−1

is irreducible if f(u, x1, ..., xi) is irreducible in the field Q(u)[x1, ..., xi]/(f1, ..., fi−1), for i =
1, ..., k − 1. Here here (f1, ..., fi−1) is the ideal generated by f1, ..., fi−1.
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4. The Completeness of Non-Degenerate Conditions for Metric Geometry

Here a, b, and c are polynomials in coordinates of the previously constructed
points. E.g., if l = T (C,AB) and C = (x2, y2), A = (x3, y3), B = (x4, y4), then
the equation is:

(x− x2)(x3 − x4) + (y − y2)(y3 − y4) = 0,

i.e., a = x3 − x4, b = y3 − y4 and c = −x2(x3 − x4)− y2(y3 − y4).

Our first step is to check whether Ra = prem(a; f1, ..., fk−1) and Rb =
prem(b; f1, ..., fk−1) are zero. (Here prem denotes the successive pseudo re-
mainder of a polynomial by an ascending chain, see [4] for details.)

Case 6.1. Ra = 0 and Rb = 0. Then the line l is not well defined. We detect
the inconsistency of the hypotheses with adding A 6= B. In that case, we either
can say that the hypotheses do not satisfy the dimensionality constraint required
by Formulation F1 (see p.47 [3]), or it is a theorem according to Formulation 2
because of the inconsistency of the hypotheses.

Case 6.2. One of Ra and Rb, say Rb, is zero. We can let D = (xk, uj) and
have a new equation:

fk = axk + buj + c = 0,

where uj and xk are the new parameter and dependent variables introduced.
We have a new irreducible ascending chain f1, ..., fk. Then the condition a 6= 0
is equivalent to that the line l is well defined (A 6= B).

Case 6.3. Both Ra and Rb are not zero. We can do the same as in case 6.2.
The only difference is that the condition a 6= 0 is no longer equivalent to A 6= B.
But (a 6= 0 ∨ b 6= 0) is equivalent to A 6= B. We will come back to this in the
proof of (4.8).

Construction 7. Taking an arbitrary point A on a circle (B, (CD)) in Π. Let
A = (xk, uj), B = (x2, y2), C = (x3, y3) and D = (x4, y4). Then the algebraic
form of the corresponding hypothesis Hk in HS is the equation

hk = (xk − x2)2 + (uj − y2)2 − (x3 − x4)2 − (y3 − y4)2 = 0.

Our next step is to check whether CD is isotropic, i.e., whether R = prem((x3−
x4)2 + (y3 − y4)2; f1, ..., fk−1) is zero. If R 6= 0, then let fk = hk, and f1, ..., fk

is irreducible (see [2]). We always assume this is the case.

Construction 8. Taking the intersection I of two lines l1 and l2 in Π. We have
two corresponding hypotheses Hk and Hk+1 in HS, whose algebraic forms are
two equations for lines l1 and l2:

hk = a1x + b1y + c1 = 0,
hk+1 = a2x + b2y + c2 = 0.

First, we check whether R = prem(∆; f1, ..., fk−1) is zero, where ∆ = a1b2 −
a2b1. Note that ∆ 6= 0 is the algebraic form of the non-degenerate condition
generated in cases 8.1–8.10 of Section 3.3.
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Case 8.1. R = 0. Then adding condition ∆ 6= 0 causes inconsistency with the
previous constructions.

Case 8.2. R 6= 0. Letting I = (xk+1, xk), then we have two new equations:

fk = ∆xk + d = 0,
fk+1 = ∆xk+1 + e = 0.

where d = a1c2 − a2c1 and e = b2c1 − b1c2. We have an irreducible ascending
chain f1, ..., fk+1.

Construction 9. Taking an intersection Q of a line l and a circle c in Π. We
have two corresponding hypotheses Hk and Hk+1 in HS whose corresponding
algebraic forms are the equations for the circle c and the line l:

hk = y2 + x2 + by + ax + c = 0
hk+1 = b1y + a1x + c1 = 0.

First, we check whether R = prem(a2
1 + b2

1; f1, ..., fk−1) is zero.

Case 9.1. R = 0. Then the hypothesis HS ∧DS is inconsistent.

Case 9.2. R 6= 0. One of Ra = prem(a1; f1, ..., fk−1), Rb = prem(b1; f1, ..., fk−1)
is zero, say, Rb. (They cannot be both zero, otherwise R would be zero). Then
a1 6= 0 means that the line l is well defined. We introduce two dependent vari-
ables xk, xk+1 and let Q = (xk+1, xk). Eliminating y from equation hk, we
have

fk = (b2
1 + a2

1)x
2
k + (2a1c1 + ab2

1 − a1bb1)xk + (c2
1 − bb1c1 + b2

1c) = 0,
fk+1 = a1xk+1 + b1xk + c1 = 0.

Now we have an ascending chain (in weak sense) f1, ..., fk+1. We can check
whether f1, ..., fk+1 is irreducible using the algorithm introduced in [1] and
implemented in our prover. If it is reducible, generally it is still open whether
non-degenerate conditions DS are sufficient. In the statement of Theorem (4.1),
we assume f1, ..., fk+1 is irreducible.

Case 9.3. R 6= 0, and both Ra and Rb are non-zero. We can do the same as
in Case 9.2. The only difference is that (a1 6= 0 ∨ b1 6= 0) is the condition that
the line l is well defined. We will come back to this condition in the proof of
Theorem (4.8).

Construction 10. Taking an intersection Q of two circles c1 and c2 in Π. We
have two corresponding hypotheses Hk and Hk+1 in HS whose corresponding
algebraic forms are the equations for the circles c1 and c2:

hk = y2 + x2 + by + ax + c = 0,
hk+1 = y2 + x2 + ey + dx + j = 0.

14
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We can replace hk+1 by hk − hk+1. Then hk+1 = 0 is a line equation:

hk+1 = b1y + a1x + c1 = 0,

where a1 = a − d, b1 = b − e, c1 = c − j. This is the line l joining the two
intersection points of c1 and c2, if they intersect (this is generally the case if the
field associated with the geometry Ω is algebraically closed.) But line l exists in
Ω even if c1 and c2 do not have common points in Ω. This is the radical axis of
the two circles. Note that l is non-isotropic iff the line joining the two centers
is non-isotropic. Now we check whether R = prem(a2

1 + b2
1; f1, ..., fk−1) is zero.

Case 10.1. R = 0. This means the radical is isotropic, hence the line OP
joining the two centers is isotropic and the hypothesis HS ∧DS is inconsistent.

Case 10.2. R 6= 0, and one of Ra = prem(a1; f1, ..., fk−1) and Rb = prem(b1; f1, ..., fk−1)
is zero. Then we have exactly the same situation as in case 9.2.

Case 10.3. R 6= 0, and both Ra and Rb are not zero. Then we have exactly
the same situation as in case 9.3.

Repeating this process until we complete all constructions. Finally, we have
an irreducible ascending chain:

f1(u1, . . . , ud, x1)

f2(u1, . . . , ud, x1, x2)

(4.5) . . .

fr(u1, . . . , ud, x1, . . . , xr).

This is the definition of a statement in Class C to be irreducible in the state-
ment of Theorem (4.1). Now we want to ask whether the formula, i.e., the exact
statement of S

(4.6) ∀P ∈ Π[(H1 ∧ · · · ∧Hr ∧ ¬D1 ∧ · · · ∧ ¬Ds) ⇒ C]

is valid in Ω, or in its equivalent algebraic form, whether the formula

(4.7) ∀ ∈ ux[(h1 = 0 ∧ · · · ∧ hr = 0 ∧ d1 6= 0 ∧ · · · ∧ ds 6= 0) ⇒ c = 0]

is valid in FΩ, where h1, ..., hr, and c are the polynomials corresponding to
H1, ..., Hr and C, respectively, d1, ...ds are polynomials corresponding to D1, ..., Ds.

Remark. Each ¬Di is one of the negations of the four predicates: collinear,
parallel, perpendicular, and point equal. The algebraic form for each of the first
three is a polynomial equation. For the last one, it is also an equation if we
introduce a new variable z (see [5]).

We have the following theorem which is the algebraic form of Theorem (4.1).
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Theorem (4.8). For a statement S = (HS, DS,C) in Class C, let the ascend-
ing chain ASC = f1, ..., fr of the form of (4.5), obtained by the above procedure,
be irreducible and Ii = lc(fi) be the initial of fi. If FΩ is algebraically closed,
then the following conditions are equivalent:

(1) prem(c;ASC) = 0;
(2) The formula

(4.9) ∀ux ∈ FΩ[(f1 = 0 ∧ · · · ∧ fr = 0 ∧ I1 6= 0 ∧ · · · ∧ Ir 6= 0) ⇒ c = 0]

is valid in FΩ;
(3) Formula (4.7) is valid in FΩ;
(4) Formula (4.6) is valid in Ω;
(5) prem(d · c; ASC) = 0 for any polynomial d with prem(d; ASC) 6= 0.

Proof. (1) ⇒ (2). Suppose R = prem(c; ASC) = 0. Since we have the
remainder formula (p.13 of [3]):

Is1
1 · · · Isr

r c = Q1f1 + · · ·+ Qrfr + R,

and R = 0, formula (4.9) is valid.

(2) ⇒ (1). Since FΩ is algebraically closed and the ascending chain ASC is
irreducible, (1) follows from (2) by Theorem (3.7) on p.30 in [3].

(2) ⇒ (3). Let J be the set {Ii |Ii is not a constant, i = 1, ..., r}. Let N =
{d1, ..., ds}. Note that N ⊂ J . We want to show that those Ik in J but not in
N can be removed in (4.9). Such an Ik can be only the following three cases:

Case 1: Case 6.3. In this case Ik = a. We can let A = (uj , xk) and f ′k =
bxk + auj + c = 0. The ascending chain ASC ′ = f1, ..., fk−1, f

′
k, fk+1, ..., fr

is also irreducible. By Lemma (A1.1) [5], prem(c; ASC) = 0 if and only if
prem(c; ASC ′) = 0. Thus we only need the condition (a 6= 0 ∨ b 6= 0). This is
equivalent to one of the conditions di 6= 0.

Case 2: Case 9.3. In this case Ik = a1. Using the same technique as in Case 1,
we can come to the conclusion that Ik 6= 0 can be replaced by a weaker condition
(a1 6= 0 ∨ b1 6= 0), which is implied by a2

1 + b2
1 6= 0, i.e., by the condition that

line l is non-isotropic.

The details work as follows. Assuming the order xk+1 < xk, we have an
ascending chain: ASC ′ = f1, ...fk−1, f

′
k, f ′k+1, fk+2, ..., fr, where

f ′k = (b2
1+a2

1)x
2
k+1+(2b1c1−aa1b1+a2

1b)xk+1+(c2
1−aa1c1+a2

1c) = 0,
f ′k+1 = b1xk + a1xk+1 + c1 = 0.

The discriminate of f ′k is −a2δ and that of fk is −b2δ, where δ = 4c2
1−4bb1c1−

4aa1c1 + 4b2
1c + 4a2

1c− a2b2
1 + 2aa1bb1 − a2

1b
2. Thus f ′k is irreducible over F =

Q(u)[x]/(f1, ..., fk−1) iff fk is irreducible over F . Hence f ′k is irreducible. Since
prem(fi; ASC ′) = 0 and prem(f ′i ; ASC) = 0 (for i = k, k +1), prem(c; ASC) =
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0 iff prem(c; ASC ′) = 0 by Lemma (A1.1) [5]. Thus we only need the condition
(a1 6= 0 ∨ b1 6= 0) which is implied by di = a2

1 + b2
1 6= 0.

Case 3: Case 10.3. The same as in Case 2.

Thus the formula ∀ux[(f1 = 0 ∧ · · · ∧ fr ∧ d1 6= 0 ∧ · · · ∧ ds 6= 0) ⇒ c = 0] is
valid. Since (h1 = 0 ∧ · · · ∧ hr = 0) ⇒ (f1 = 0 ∧ · · · ∧ fr = 0), (3) follows from
(2).

(3) ⇒ (2). By the remainder formula, (f1 = 0∧· · ·∧fr = 0∧I1 6= 0∧· · ·∧Ir 6=
0) ⇒ hi = 0. Also I1 6= 0∧ · · · ∧ Ir 6= 0 ⇒ di 6= 0. Thus (4.9) follows from (4.7).

(3)⇔ (4). Since (4.7) is the algebraic form of (4.6), (3) and (4) are equivalent.

(1) ⇔ (5). Since ASC is irreducible, (1) and (5) are equivalent. .QED.

Remark. Interpreted in other way, (5) is the completeness of the non-
degenerate conditions ¬Di. Suppose ¬D is another non-degenerate condition
whose algebraic form is d 6= 0. If (HS ∧ DS) ⇒ C is not valid in Ω, then
prem(c; ASC) 6= 0. By (5), prem(d · c; ASC) 6= 0, i.e., (HS ∧DS ∧ ¬D) ⇒ C
is still not valid.
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