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Abstract

An algorithm is proposed to give a global approximation of an implicit real plane algebraic curve with
nal quadratic B-spline curves. The algorithm consists of four steps: topology determination, curve segmentat
segment approximation and curve tracing. Due to the detailed geometric analysis, high accuracy of approximat
may be achieved with a small number of quadratic segments. The final approximation keeps many important g
metric features of the original curve such as the topology, convexity and sharp points. Our method is imple
and experiments show that it may achieve better approximation bound with less segments than previous
methods. We also extend the method to approximate spatial algebraic curves.
 2004 Elsevier B.V. All rights reserved.
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1. Introduction

An implicit real plane algebraic curveC of degreen is defined byf (x, y) = 0 wheref (x, y) ∈ R[x, y]
is a polynomial of degreen andR the field of real numbers. The curve is said to berational if it can be
additionally represented by rational parametric equationsx = x(t)

d(t)
andy = y(t)

d(t)
, wherex(t), y(t), d(t) ∈

R[t] are of degrees at mostn. Both the implicit and parametric representations of algebraic curves
important applications in CAGD. We can always convert a rational curve into an implicit represen
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which is called implicitization (Sederberg and Zheng, 2002). On the other hand, it is also desir
generate a parametric representation for an implicitly defined algebraic curve, which is called p
trization. Methods to find parametric equations of implicit curves are given (Abhyankar and Bajaj,
Sendra and Winkler, 1991; Gao and Chou, 1992). However only a small subset of real algebraic
are rational. In general, an algebraic curve of arbitrary degree is rational if and only if its genus is
to zero (Walker, 1978).

Approximation methods are therefore proposed to give a rational form for an implicit real alg
curve. The methods can be categorized into three classes: the linear approximations, the poi
pling approximations and the approximations based on power series. Ihm and Naylor surveye
techniques for generating a linear approximation of an algebraic curve (Ihm and Naylor, 1991). F
proposed a segmentation method for algebraic curves and then used a polygon to approximate
(Farouki, 1989). However, the detail of the segmentation process is not presented in the paper.
model shape, curve or surface, expressed by a set of sample points on it, Pottmann et al. introd
active B-spline curve or surface to approximate it (Pottmann et al., 2002). The method is further
in (Yang et al., 2004). Based on the Implicit Function Theorem, Montaudouin et al. sought to
sent a curve branch explicitly in one coordinate as function of the other one (Montaudouin et al.,
A technique was presented by Sederberg et al. to give a rational approximation of algebraic cu
some special cases (Sederberg et al., 1989). Using a combination of algebraic and numerical tec
Bajaj and Xu constructed aC1-continuous, piecewise rational approximation of a general plane alge
curve (Bajaj and Xu, 1997). Interval cubic Bézier curves are used to approximate a plane algebra
(Chen and Deng, 2003). However, most of these methods rely on the local properties of the appro
curves without the consideration of their global properties, so they generally result in many piece
final approximations.

In this paper, we consider the rational quadratic approximation problem for a plane algebraic
C with a global topology analysis. The resulted approximations are several rational quadratic B
curves, each of which is obtained from piecewise rational quadratic Bézier curves. The quadratic s
(or conics) is used since it has both the implicit and parametric forms and it is the freeform curv
the lowest degree and has many nice properties (Lee, 1985; Farin, 1989). The approximation a
mainly consists of the following steps:

(1) Topology determination. We find a rectangular bounding boxB and a graphG such that the curveC,
CB (the part ofC insideB), andG have the same topology.

(2) Curve segmentation. DivideC into triangle convex segments, which have similar properties wit
conics.

(3) Segment approximation. We present ashoulder point approximationmethod to give a nice approx
mation to a triangle convex segment with conics expressed in a rational quadratic Bézier form

(4) Curve tracing. Find a proper tracing order and convert the resulted approximation conics into r
quadratic B-spline curves, each of which gives aC1 global parametrization for a curve branch.

Due to the detailed geometric analysis, high accuracy of approximation may be achieved with
number of conics. The final approximation keeps many important geometric features of the o
curve such as the topology, convexity and sharp points. The branches obtained in the tracing step
a global parametrization and a refined topological structure of the curve. We implement our m
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in Maple and experiments show that our method may achieve better approximation bound w
segments than previously known methods.

We also extend our method to approximate a spatial algebraic curveCS implicitly defined by the
intersection of two algebraic surfaces with rational quadratic spline curves. The basic idea is that
forming a proper rotational transformation, the spatial curve is birational to a plane curveC : R(x, y) = 0
and thez-coordinate can be expressed as a rational function ofx andy with z = H(x, y). With this for-
mula, the approximation of spatial curves is converted into approximation of plane curves.

The rest of the paper is organized as follows. The three main parts: topology determination an
segmentation, segment approximation, curve tracing are illustrated in Sections 2, 3 and 4 resp
The main algorithm and some experimental results for plane curve approximation are given in Se
The spatial case is illustrated in Section 6. We conclude this paper in Section 7.

2. Topology determination and curve segmentation

Throughout this paper, we assume thatf (x, y) ∈ Z[x, y] is an irreducible polynomial of degree grea
than two, whereZ is the ring of integers. A plane algebraic curveC is implicitly defined byf (x, y) = 0.
Let B = {(x, y): xl � x � xr, yb � y � yu} be a bounding box. We useCB to denote the part ofC inside
B. In this section, we will determine a bounding boxB and a graphG such thatC, CB andG have the
same topology. In the later sections, we will approximateCB instead ofC.

2.1. Preliminaries

A point P = (x0, y0) is said to be asingular pointon C if f (x0, y0) = fx(x0, y0) = fy(x0, y0) = 0.
The inflection pointsor flexesof C are its non-singular points satisfying its Hession equationH(f ) = 0
(Walker, 1978).

A curve segmentS of C is an open ended and continuous part ofC with two endpointsP0 andP2.
The left (right) endpoint is the one with smaller (larger)x coordinate. IfP0 and P2 have the samex
coordinate, then the left (right) endpoint is the one with smaller (larger)y coordinate.

Let P0 be an endpoint of a curve segmentS. Then a tangent directionT0 of S at P0 always exists
(Walker, 1978). IfP0 is the left (right) endpoint,T0 is called theleft (right) tangent directionof S,
denoted byT− (T+). The left (right) tangent line is the line going through the left (right) endpoint w
left (right) tangent direction.

We useS[P0,P2] to denote a curve segment of curveC with left endpointP0 and right endpointP2

andS[P0, T0,P2, T2] is also used when the left and right tangent directionsT0 andT2 are also prescribed
A curve segmentS[P0, T0,P2, T2] is said to betriangle convexif either

(1) The left and right tangent lines ofS meet at a pointP1 and the line segmentP0P2 andS form a
convex region inside thecontrol triangle�P0P1P2 of S; or

(2) T0 andT2 are parallel and the line segmentP0P2 and the curve segmentS form a convex region.

Triangle convex segments have many similar properties with conics.
SP is said to be ashoulder pointon a triangle convex segmentS[P0,P2] if SP has the maximal distanc

to the lineP0P2.
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Lemma 1. The shoulder point for a triangle convex segmentS[P0,P2] is unique.

Proof. Suppose that there are two shoulder pointsS1
P andS2

P . SinceS[P0,P2] is triangle convex, the line
segmentS1

P S2
P should lie inside the region formed by lineP0P2 andS. SinceS1

P andS2
P have maximal

distance toP0P2, the line segmentS1
P S2

P must be coincident withS. This is impossible becausef (x, y)

is irreducible and of degree greater than two.�
A graphG is an ordered triple(V (G),E(G),ψG) consisting of a nonempty setV (G) of vertices, a set

E(G), disjoint fromV (G), of edges, and anincidence functionψG that associates with each edge oG
an unordered pair of (not necessarily distinct) vertices ofG. Thedegreeof a vertexv in G is the number
of edges ofG incident withv. A vertex of odd degree is calledodd vertex. We usually usee = (u, v) to
denote an edge inG with verticesu andv.

From a set of curve segmentsSS , we can generate a plane graphGS with a mapU :SS → GS such that

(1) U sends the endpoints of the segments inSS to the vertices inV (GS), and
(2) there exists an edge between two verticesv1, v2 in G if and only if v1, v2 are the endpoints of a curv

segment inSS .

It can be seen thatU is a bijection map andU−1 is used to denote the reverse.

2.2. Topology determination

The topology determination ofC produces a plane graphG, which is topologically equivalent toC
(Hong, 1996; Gonzalez-Vega and Necula, 2002). The algorithm in (Hong, 1996) is slightly modi
find a bounding boxB such thatC andCB have the same topology for later approximation.

Algorithm 1 (Topology determination). The input is a plane algebraic curveC. The output is a bound
ing box B = {(x, y): xl � x � xr, yb � y � yu} and a plane graphGT such thatGT , CB, andC are
topologically equivalent.

(1) Compute the discriminantD(y) = ∑m
i=0 diy

i of f (x, y) with respect tox and let yu = 1 +
max{|d0|,...,|dm−1|}

|dm| . Then by Cauchy’s inequality, all the roots ofD(y) = 0 are in the interva
(yb = −yu, yu).

(2) Compute the discriminant̄D(x) of f (x, y) with respect toy and determine its real roots:α1 < · · · <
αs−1. Select two rational numbersxl andxr such thatxl < α1 andxr > αs−1 and letα0 = xl , αs = xr .
Now we have determined the bounding boxB.

(3) For everyαi , compute withinB the real roots off (αi, y), βi,0 < · · · < βi,ti .
(4) At each pointPi,j = (αi, βi,j ), count the numbers of branches ofCB to the right and to the left.
(5) For each 0� i < s, the total number of branches to the right of pointsPi,j for all j must be the sam

as the total number of branches to the left of pointsPi+1,k for all k. Connect the pointsPi,j to the
other endpointsPi+1,nj

of the branches with edges, obeying the branch counts and get the graGT .

Lemma 2. C andCB have the same topology.
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Fig. 1. A curve and its topology graph.

Proof. P is said to be avertical point(horizontal point) of C if it is neither a singular point nor inflectio
point andf (x0, y0) = 0, fy(x0, y0) = 0 (fx(x0, y0) = 0). Vertical points are extremal points in thex-axis
direction. If point(x0, y0) is a vertical point, thenx0 is a solution of the discriminant̄D(x) = 0. Since
all singular points, vertical points, and horizontal points are contained insideB, the parts ofC outsideB
are disjoint branches which have only one intersection with the boundary ofB. HenceC andCB have the
same topology. �

Let V = {(αi, βi,j ), 0 � i � s, 0 � j � ti} and decompose it intoV = VV ∪ VS ∪ VO , whereVV is
the set of vertical points,VS is the set of singular points, andVO is the other simple points. Label th
generated curve segments in Algorithm 1 from left to right (i), top to bottom (j ) asST = {Si,j , 1 � i �
s, 1� j � si} wheresi denotes the number of curve segments ofCB with x in (αi−1, αi).

Consider the following curve for example

C0 : f0(x, y) = 2x4 − 3x2y + y2 − 2y3 + y4 = 0. (1)

The left part in Fig. 1 shows the corresponding symbols involved in the topology determinationC0

with Algorithm 1. The right figure shows the corresponding topology graphGT of C0.
With the topologyGT for CB, we can do the following basic operations for curve segments. A

rithm 2 try to obtain the intersection point of a vertical line with a specified segment, while Algorit
determines which segment a specified point onCB is contained in.

Algorithm 2 (Line curve intersection). The inputs are a curve segmentSi0,j0 = S[P0,P2] in ST for CB
with Pi = (xi, yi), i = 0,2 and anx̄ ∈ (x0, x2). The output is the intersection point�P = (x̄, ȳ) of the
vertical linex = x̄ with S.

(1) Letg(y) = f (x̄, y) and find all the solutionsy1 > · · · > ys of g(y) = 0 within B. Note thatg(y) = 0
has no repeated roots.

(2) SinceSi0,j0 is thej0th segment ofCB in the interval(x0, x2) from top to bottom,�P = (x̄, ȳ) = (x̄, yj0)

should be onSi0,j0.

Algorithm 3 (Point containment). The inputs are a point�P = (x̄, ȳ) on CB and the segments setST of
CB. The output is a pair of footnotes(i0, j0) such that point�P is onSi0,j0 ∈ ST .
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(1) Select a uniqueαi0 such thatαi0−1 � x̄ < αi0. If there exists only one segmentSi0,j0 in the interval
(αi0−1, αi0), output(i0, j0).

(2) If we can determine that each segmentSi0,j in the interval(αi0−1, αi0) is triangle convex and ther
exists just one segmentSi0,j0 with �P contained in its control triangle, output(i0, j0).

(3) Let g(y) = f (x̄, y). Isolate all the real roots ofg(y) = 0 within B and gety1 > · · · > yr . Suppose
that ȳ lies in the corresponding interval ofyj0 and output(i0, j0).

2.3. Flex computation and generation of triangle convex segments

We try to divideCB into triangle convex segments, so the division points must include flexes oCB.
A method to compute the real inflection points of cubic plane algebraic curves is given in (Che
Wang, 2003). However there seems no work on computing the flexes of general implicit algebraic
Since this is not the central topics of this paper, we compute the flexes ofCB directly from its definition
by solving the equation systemf (x, y) = 0 andH(f ) = 0 with well known methods based on resulta
computation. LetVF be the set of the flexes onCB.

Algorithm 4 (Division at flexes). The inputs areST and VF . The output is a set of triangle conve
segmentsSF = {Si,j,k, 1� i � s, 1� j � si, 1� k � sij } and its corresponding graphGF .

(1) For eachSi,j ∈ ST , find all the points inVF ∩ Si,j with Algorithm 3. List these points from left t
right according to thex coordinate:Pi,j,k , 1� k � sij − 1.

(2) Divide the segmentSi,j at the pointsPi,j,k , 1 � k � sij − 1, ending with the curve segmentsSi,j,k ,
1� k � sij .

(3) If there is no flex onSi,j , let Si,j,1 = Si,j andsij = 1.
(4) Let SF = {Si,j,k, 1 � i � s, 1 � j � si, 1 � k � sij } andGF = U(SF ). It is clear thatSF takes

V = VV ∪ VS ∪ VO ∪ VF as the endpoints of its segments.

Theorem 3. Each curve segmentS[P0,P2] in SF is triangle convex.

Proof. We may assume thatS[P0,P2] is above the lineP0P2. Let Pi = (xi, yi), i = 0,2, andP = (x, y)

any point onS. Fig. 2 shows all the possible forms ofS. Since there exist no singular points, flexes
vertical points onS and the sweeping angle of the tangent line from pointP0 to pointP2 is less thanπ ,
the slopek(P ) of S must be monotonic fromP0 to P2 in this case. More precisely, it is decreasing w
respect to the increasing of thex-coordinate ofP . According to convex theory (Chang and Sederb
1997), a curve segment satisfying these conditions forms a convex region withP0P2. This proves the
theorem for the case that the left and right tangent directions ofS are parallel.

In the other cases, we need further to show thatS is inside the control triangle�P0P1P2. For an
arbitrary pointP = (x, y) �= (x0, y0) on S, there must exists a point̃P lying betweenP0 andP with the

Fig. 2. Triangle convex segments.
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maximal distance toP0P . At this point, we havek(P̃ ) = y−y0
x−x0

. On the other hand, there exists a po

(x, ȳ) in the left tangent line ofS such thatk(P0) = ȳ−y0
x−x0

. Then

y − y0

x − x0
= k(P̃ ) < k(P0) = ȳ − y0

x − x0
.

We havey < ȳ. Then the pointP = (x, y) lies below the point(x, ȳ), a point in the left tangent line ofS.
In a similar way, we have that all the points inS lie below the right tangent line ofS. HenceS is inside
the control triangle. �

The curveC0 in Fig. 1 does not have flexes. Then its topology graph need not to be modified
curve in Fig. 14 has a flex pointv3.

2.4. Tangent direction computation

The tangent direction at a simple point can be easily obtained from its definition. In this sectio
will give a method to compute the tangent directions at a singular point.

Let K be an algebraic closed field, andC a curve defined byf (x, y) = 0 overK . Suppose that a
derivatives off (x, y), up to and including(r − 1)th, vanish atP0 but that at least oner th derivative does
not vanish. The tangent directions(λ,µ) to C atP0, correspond to the roots of

g(λ,µ) = fxrλr +
(

r

1

)
fxr−1yλ

r−1µ + · · · +
(

r

r

)
fyrµr = 0 (2)

where all the partial derivatives are evaluated atP0. But for a real algebraic curve defined byf (x, y) ∈
R[x, y], there does not exist such a one-one correspondence between the real roots of the
g(λ,µ) = 0 and the tangent directions of the real components containingP0.

For example, letC be the plane curve defined by

f (x, y) = y3 − 2y2x + 15yx4 − x5.

The real roots ofg(λ,µ) = 0 atP0 = (0,0) are(1,0) and(1,2). However, the curve has no real comp
nent with the tangent direction(1,0) atP0 (Fig. 3).

In the following algorithm, we will propose a method to compute the set of tangent directions(λ,µ)

of C at P0, which is a subset of the set of real roots ofg(λ,µ) = 0.

Algorithm 5 (Tangent directions at a singular point). The input is a singular pointP0 = (x0, y0) in VS .
The output is the left tangent directionsTj− for the segmentsSj ∈ SF , q � j � r , with P0 as its left
endpoint. We assume thatS1, . . . , Sr are listed from top to bottom.

(1) Find all the solutions(λi,µi), 1� i � s, of the homogeneous algebraic equationg(λ,µ) = 0 defined
in (2). Let

ki =
{

ki = µi

λi
, λi �= 0;

+∞, λi = 0 andµi > 0;
−∞, λi = 0 andµi < 0.

(2) Sortki in a descending order and rename them aski , 1� i � s.



812 X.-S. Gao, M. Li / Computer Aided Geometric Design 21 (2004) 805–828

s

rs the
Fig. 3. Unexpected tangent direction.

(3) Let

k̄1 = min(0,2k2), I1 = (−∞, k̄1], whenk1 = −∞;
k̄s = max(0,2ks−1), Is = [k̄s ,+∞), whenks = +∞.

Ii = [ki − δ̄, ki + δ̄], 1� i � s, otherwise.

Select a proper̄δ < δ such thatIi ∩ Ii+1 = φ, 1� i � s − 1.

(4) Takex̃j as thex-coordinate of the right endpoints ofSj , 1� j � r and let

x̃ = min
1�j�r

x̃j , ε = x̃ − x0

100
.

(5) Find a point(x0 + ε, ȳj ) on Sj , 1 � j � r with Algorithm 2. Let k̄j = ȳj −y0

ε
, which is an approxi-

mation of the slope ofSj at P0. If there exists ākj which is not in∪Ii, setε := ε/10 and repeat thi
step. This step will end becausek̄j is approaching to the slope of some segment at pointP0.

(6) Suppose that̄kj is in Inj
, 1 � nj � s. Then the left tangent directionTj− of Sj is (λnj

,µnj
), 1 �

j � r .

We can compute the right tangent directionsT+’s in a similar way as Algorithm 5 by taking−ε instead
of ε. Add the tangent information to each segment inSF to obtainS 
F and setG 
F = U(S 
F ) be the graph
representation.

The tangent directions of the segments in Fig. 1 at the singular points areV4: (1,
√

3), (1,−√
3); V5:

(1,0).

2.5. Segments combination

Two methods based on graph disposal are proposed to combine some curve segments inS 
F under
the condition that the triangle convexity of the segments is kept. The following algorithm conside
segments combination at simple points.

Algorithm 6 (Segments combination-1). The input isG 
F . The output is a new graphG 
C topologically
equivalent toG 
F and it has less edges than those ofG 
F .
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Fig. 4. Segments combination and the corresponding graph-1.

Fig. 5. Convexity maintenance.

(1) Let the set of vertices of the graphG 
F beV (S 
F ) = VV ∪ VS ∪ VO ∪ VF .
(2) For all P0 ∈ VO and edgesEi0,j0,k0 = (P0,P1), Ei1,j1,k1 = (P0,P2), combine them as one edgesEJ

whereJ = {{i0, j0, k0}, {i1, j1, k1}}. The information inJ is needed, e.g., in Algorithm 2.
(3) Keeping those edges containing no points inVO unchanged, we obtainG 
C . Let S 
C = U−1(G 
C). We

haveV (G 
C) = VV ∪ VS ∪ VF .

Since only two edges meet at a simple point, the graph topology does not change after removing
points. The combined segments are still triangle convex because a combined segment always lies
two vertical lines. Fig. 4 shows the combined segments and its corresponding graph for those in

The following algorithm tries to combine curve segments at certain singular points ensuring t
resulted approximation curves have the same topology with the original curve.

Algorithm 7 (Segments combination-2). The input isG 
F . The output is a refined plane graphG 
C such
that each segment inS 
C = U−1(G 
C) is triangle convex.

(1) Simplify G 
F to G 
C with Algorithm 6. LetVf ⊂ VS be the set of singular points with degree four a
not all the left or right tangent directions at the point are the same.

(2) For a pointPS ∈ Vf , let ES be the set of edges inG 
C with PS as an endpoint. IfES is empty, go to
step 5.

(3) Find two edgesEi0,j0,k0 andEi1,j1,k1 in ES such that they share the same tangent direction atPS and
they are at the same side of the tangent linels at PS . In Fig. 5 the left case satisfies this conditi
while the right one does not.

(4) Combine the edgesEi0,j0,k0 andEi1,j1,k1 into a new edge and refineG 
C as step 2 in Algorithm 6.
(5) LetVf = Vf \ {PS} go to step 2 untilVf is empty. SetS 
C = U−1(G 
C).
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Fig. 6. Segments combination and the corresponding graph-2.

Fig. 6 shows the refined graph and curve segments for those in Fig. 1.

3. Segment approximation

In this section, the resulted segments from curve segmentation are to be approximated with
quadratic Bézier curves. The approximation algorithm consists of two steps: the shoulder point
tation and the segment approximation.

3.1. Rational quadratic Bézier curve

A rational quadratic Bézier curvehas the following form

P(t) = P0φ0(t) + ωP1φ1(t) + P2φ2(t)

φ0(t) + ωφ1(t) + φ2(t)
, 0� t � 1, (3)

whereω ∈ R, Pi ∈ R
2 andφ0 = (1− t)2, φ1 = 2t (1− t), φ2 = t2.

The rational quadratic Bézier curve (3) has the following properties (Lee, 1985; Farin, 1989; Pot
1991).

(P1) P(t) lies in its control triangle�P0P1P2 for ω > 0, and is triangle convex.
(P2) P(t) passes through the endpoints�P0,P2 with the corresponding tangent directionsP ′(0) and

P ′(1) parallel toP0P1 andP1P2.
(P3) If the tangent lines at the endpoints are parallel, the curve can be written as

P(t) = P0φ0(t) + ωT φ1(t) + P2φ2(t)

φ0(t) + φ2(t)
; 0 � t � 1, (4)

whereT is the tangent vector at the endpointP0.
(P4) The pointSP = P(1

2) is called theshoulder pointof P(t). We haveSP = 1
2(Q0 + Q2), where

Q0 = P0+ωP1
1+ω

,Q2 = ωP1+P2
1+ω

or Q0 = P0 + ωT , Q2 = ωT + P2 when (4) is used.SP is the unique
point in the curve segmentP(t), 0� t � 1, that has the maximum distance to lineP0P2.

We usually rewriteP(t) in (3) or (4) asP(ω, t) to show its dependence onω. Let S[P0, T0,P2, T2]
be a triangle convex segment, andP1 be the intersection point of the tangent lines atP0 andP2 if it
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exists. The curve familyP(ω, t) with ω > 0 interpolates pointsP0,P2 and has the tangent directio
T0, T2 atP0,P2 respectively, and thus provides aG1 approximation ofS. Suppose that the solid curve
Fig. 7 is the curve segmentS to be approximated and the dotted curves are the quadratic curve f
P(ω, t). A proper value must be set forω such that it has an optimal approximation to the segmenS.
The selection of the weightω might lead to some optimization problems similar to the following:

min
ω>0

(
s
(
S,P (ω, t)

))
, min

ω>0

(
max

0�t�1

(
d2(ω, t)

))
,

where s(S,P (ω, t)) is the area bounded byS and P(ω, t), 0 � t � 1 andd(ω, t) is some distance
expression from a pointP(t) to S (Chuang and Hoffmann, 1989; Pottmann et al., 2002). However
expressions might involve complicated computations and are quite impractical.

In the next section, we will give another approximation method using the shoulder points. The sh
points ofS andP(ω, t) are to be pushed as near as possible, leading to an optimal approxima
the two segments in certain sense. This algorithm is therefore calledshoulder points approximation.
Experiments show that high accuracy of approximation may be achieved with a small number of

3.2. Shoulder point computation

From the definition of the shoulder point, we can see that the gradient ofC at the shoulder pointSP of
S[P0,P2], written as∇f (SP ), is perpendicular toP2 − P0. The following equations system is therefo
to be solved to getSP .

F(x, y) :
{

f (x, y) = 0,

h(x, y) = ∇f (x, y) · (P2 − P0) = 0.
(5)

However, it is not trivial to determine which one of these solutions corresponds to the unique sh
point ofS. The following algorithm based on the Newton–Ralphson method provides an efficient m
to obtain the shoulder point.

Algorithm 8 (Shoulder point computation). The input is a triangle convex segmentS[P0, T0,P2, T2]. The
output is the shoulder pointSP of S if it is found.

(1) Select an initial pointI0.
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As shown in the left part of Fig. 8, supposeP0P1P2 is the control triangle ofS andN is the midpoint
of P0,P2. If T0 is not parallel toT2, let M be the midpoint ofN andP1; otherwise letM = N. Suppose
M = (Mx,My). Find the intersection pointI0 = (Mx, Iy) on S from Algorithm 2 and setI0 as the initial
point.

It should be noticed that we do not take the initial pointI0 as the intersection point of the lineP1N

with the segmentS, which seems to be a better choice, since such an intersection point is not eas
obtained.

(2) Find the shoulder point with the Newton–Ralphson method.

Starting atp0 = I0, repeat the following process until‖
pk‖ < δ.

• Let J (x, y) be the Jacobian matrix ofF(x, y) defined in (5).
• Solve the system of the linear equationsJ (pk)
pk = −F(pk).

• Let pk+1 = pk + 
pk. If pk+1 lies in the control triangle ofS, go to the preceding step and repe
Otherwise or ifk = 10, the algorithm fails.

(3) If the above step ends in a successful way andpk+1 is neither a singular point nor an endpoint ofS,
outputSP = pk+1. Otherwise, the algorithm fails.

In the left part of Fig. 8,I0 is the initial point andSP is the shoulder point computed with the algorith
The above algorithm can be used to compute the shoulder point in most cases. If it fails, e.g

computed in the example curveC5 in Section 5, the following algorithm tries to refine the initial point
the Newton–Ralphson method until the shoulder point is obtained.

Algorithm 9 (Refined shoulder point computation). The input and output are the same with that of
gorithm 8 and supposePi = (xi, yi), i = 0,2.

(1) Use Algorithm 8 to find a shoulder point. If it fails, go to the next step.
(2) Let I0 = (Ix, Iy) be the initial point used in the preceding step, andl(x, y) = 0 the line passing

throughI0 and parallel toP0P2 with the formy = Iy + y2−y0
x2−x0

(x−Ix) (right figure in Fig. 8). Substitute
y into f (x, y) = 0 and we get a univariate equationg(x) = 0.
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(3) Find all the solutions̄x0 < · · · < x̄m of g(x) = 0 in the interval(x0, x2). Let

�Pi =
(

x̄i , Iy + y2 − y0

x2 − x0
(x̄i − Ix)

)
, 0� i � m.

(4) Select a unique point�Pi0, 0 � i0 � m, with Algorithm 3 such that it is onS. SetP0 = I0,P2 = �Pi0

and go to step 1.

Since the initial positions converge to the shoulder point, the process will end successfully.

3.3. Segment approximation

In geometry, the approximation error should be defined as the following Hausdorff distance b
the segmentS and its approximationSa,

e(S, Sa) = dis(S, Sa) = max
P∈S

min
P ′∈Sa

d(P,P ′).

However such a distance is difficult to compute and there is no need to compute it in most case
implement, we take the distance from the parametric curveP(t) = (x(t), y(t)), 0 � t � 1 to an implicit
defined curveC : f (x, y) = 0 in the following form, which is called theerror function (Chuang and
Hoffmann, 1989),

e(t) = f (x(t), y(t))

[fx(x(t), y(t))2 + fy(x(t), y(t))2]1/2
. (6)

The approximation error betweenP(t) and C is set as an optimization probleme(P (t),C) =
max0�t�1(e(t)). In practice, we samplet as ti = i

n
, 0 � i � n, for a proper value ofn and take the

approximation errore(P (t),C) as maxi (|e(ti)|).
Algorithm 10 (Segment approximation). The inputs are a triangle convex curve segmentS[P0, T0,P2, T2]
and the error boundδ. The output is a piecewise rational quadratic Bézier curves withG1 continuity such
that it give an approximation toS with approximation error less thanδ.

(1) According to the interpolating requirements at the endpoints ofP(ω, t), setP(ω, t) as (3), or (4)
if T0 andT2 are parallel.

(2) Find the shoulder pointSP = (Px,Py) on S with Algorithm 9.
(3) Let the shoulder point ofP(ω, t) beS(ω). A specific valueω0 will be determined such thatS(ω0)

has a minimum distance to the shoulder pointSP . If T0 is not parallel toT2, supposePi = (xi, yi),
i = 0,1,2, then we have

S(ω) = (Sx, Sy) = P0 + 2ωP1 + P2

2(1+ ω)
=

(
x0 + 2ωx1 + x2

2(1+ ω)
,
y0 + 2ωy1 + y2

2(1+ ω)

)
.

Solving the equation∂d2(P ,S(ω))

∂ω
= 0, whered2(SP , S(ω)) = (Px − Sx)

2 + (Py − Sy)
2, we get

ω0 = 1

2
· (x0 + x2 − 2Px) + α(y0 + y2 − 2Py)

(Px − x1) + α(Py − y1)
,

whereα = y0+y2−2y1
x0+x2−2x1

.
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If T0 = (Tx, Ty) is parallel toT2, we get in a similar way

ω0 = (2Sx − x0 − x2) + (2Sy − y0 − y2)

2(T 2
x + T 2

y )
.

(4) If the approximation errore(P (ω, t), S) < δ, output the Bézier curve. Otherwise, divide the s
ment into two parts at the shoulder pointSP and repeat the approximation method for them until
approximation error is less thanδ.

We may assume that there always exists a control triangle for an approximated curve segmentS, since
if its tangent directions are parallel at the endpoints, we may do one step of subdivision at its s
point. We can give the following theorem.

Theorem 4. With Algorithm10, the approximation error is convergent to zero. More precisely, lets be the
area of the control triangle for the approximated curve segment. Afterk steps of recursive subdivision
the Hausdorff distance betweenS and its approximation is less than

√
s/2k .

Proof. Let P(t) be the approximation curve ofS after one step of approximation. ThenP(t) and S

are contained in the same control triangle�P0P1P2 (Fig. 9). After one step of subdivision, the result
segments are contained in triangles�P0Q0M and�P2Q2M respectively. LetS0 andS2 be points on
P0P2 such thatMS0 ‖ P0Q0 andMS2 ‖ P2Q2, s0, s1 ands2 the areas of triangles�P0Q0M , �S0S2M

and�P2Q2M respectively. Then we have(s0 + s2)/s1 = Q0Q2/S0S2 and s1/s = (S0S2/P0P2)
2. As a

consequence,

s0 + s2

s
= Q0Q2 · S0S2

P0P
2
2

� (Q0Q2 + S0S2)
2

4P0P
2
2

= 1

4
. (7)

Due to the subdivision procedure, the angles� P1P0P2 and � P1P2P0 must be acute angles and hen
the angles� P0Q0M and � P2Q2M must be obtuse angles. Let the altitudes of the triangles�P0Q0M ,
�P2Q2M corresponding toP0M, P2M beh10 = Q0H0 andh12 respectively. We have(Q0H0)

2 � P0H0 ·
H0M � (P0H0 + H0M)2/4 = (P0M)2/4. That ish10 � P0M/2. Acting in a similar way, we geth12 �
P2M/2. From (7), we have that

h2
10 + h2

12 � h10 · P0M

2
+ h12 · P2M

2
= s0 + s2 � s

4
.

In particular, we haveh2
10 � s/4 andh2

12 � s/4. Repeat the process and it is easy to see that afterk steps
of subdivisions, we haveh2

k0 � s/22k andh2
k2 � s/22k . Thushk0 � √

s/2k andh2
k2 � √

s/2k . �



X.-S. Gao, M. Li / Computer Aided Geometric Design 21 (2004) 805–828 819

he

ges,

me.

ost

d
e
above

we first

ing
ir share
Fig. 10. Approximation and the error function ofC1.

The first part of Fig. 10 shows the approximation of the following curve

C1 : (x2 + y2)3 − 4x2y2 = 0.

The approximation process is taken as follows.C1 is first approximated with one piece of conics with t
error functione0(t) (6) plotted in the second part of Fig. 10.C1 is then divided at its shoulder pointV1 and
the resulted two segments are approximated with error functionse00(t) ande01(t). Due to the symmetry
of C0, we only showe00(t) in the third part of Fig. 10. In a similar way,e000(t), e001(t), e0010(t), e0011(t)

are obtained and plotted in the third part of Fig. 10.

4. Curve tracing

The following concepts from graph theory will be used (Bondy and Murty, 1976). Awalk in a graph
G is a finite non-null sequenceW = v0e1v1e2v2 . . . ekvk , whose terms are alternately vertices and ed
such that for 1� i � k, the ends ofei arevi−1 andvi . The integerk is the lengthof W . If the edges
e1, e2, . . . , ek are further distinct,W is called atrail . A trail that traverses every edge ofG is called an
Euler trail of G. A walk is closed if it has positive length and its origin and terminus are the sa
A closed Euler trail is called anEuler tour.

Theorem 5 (Bondy and Murty, 1976). A connected graph has an Euler trail if and only if it has at m
two vertices of odd degree.

To guarantee theG1 continuity, two segmentsS[P1, T1,P2, T2] andS[P3, T3,P4, T4] can be connecte
in a trail only if P2 = P3 andT2 = λT3 for a non-zero numberλ. A walk in the topology graph of a curv
is called abranchif the corresponding segments of every neighboring edges in the trail satisfy the
property.

Based on the theory of plane algebraic curves, for example (Walker, 1978; Cheng et al., 2004),
have the following theorems about the structure of a real plane algebraic curveC.

Theorem 6. Every point on a real plane algebraic curveC has an even number of segments originat
from it. Furthermore, we can divide the segments into pairs such that two segments in the same pa
the same tangent direction.
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Theorem 7. For a real plane algebraic curveC, the number of the branches approaching to infinity
even.

From Lemma 2 and the above two theorems, the vertices in the graphG 
C with odd degrees must be th
intersections of the boundaries ofB with the curve branches ofCB approaching to infinity. Such poin
are calledboundary pointsand its degree inG 
C must be one.

Algorithm 11 (Curve tracing). The input is a graphG 
C for a plane curveCB. The outputs are edge-disjoi
branchesTi such that

⋃r
i=1 Ti = E(G 
C).

(1) For all the singular pointsP in VS do the following steps.
(2) For any edgee1 = (P,P1), find another edgee2 = (P,P2) sharing the same tangent direction atP

with e1. If there exist more than one such edges, we consider all the possible cases and selec
resulting the smallest number of branchesr . This step is always possible by Theorem 6.

(3) UpdateG 
C as follows: (a) add a new vertexVP and two new edgese′
1 = (P1, VP ), e′

2 = (VP ,P2) to
G 
C ; (b) remove the edgese1 ande2 from G 
C . Repeat this step until the degree ofP is equal to two.

(4) Divide the updated graphG 
C into some connected subgraphsGi

C , 1� i � r .

(5) The degree of each vertex inGi

C is two except the boundary points. The degree of a boundary

is one. With this property, we can then generate naturally a Euler trailTi of Gi

C .

There only exist two possible cases for eachGi

C . One case is thatV (Gi


C) contains no boundary point

then the resultedTi is a Euler tour. The other case is thatV (Gi

C) contains just two boundary points an

Ti is then a Euler trail from one boundary point to the other one.
This algorithm not only gives a tracing order forCB but also gives a clear explanation for the num

of the resulted branches. From Theorem 5, if the number of the boundary points onCB is 2k, k � 1, there
always existk edge-disjoint walksTi , 1� i � k, of G 
C such that

⋃k
i=1 Ti = E(G 
C). We can then conclud

thatr � k.
We give the generation process of the tracing order ofC0 in Fig. 11. Verticesv4 andv5 are split into

two points respectively, giving a Euler tourv0v5v9v
′
4v2v

′
5v7v4v0 for the graph. Geometrically, the vertic

v′
4 andv′

5 arev4 andv5 respectively.

Fig. 11. The generation of the tracing order ofC0.
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5. Main algorithm and experimental results

Algorithm 12. The inputs areC : f (x, y) = 0 and an error boundδ > 0. The outputs are a bounding b
B and rational quadratic B-spline curvesBi(t), 1� i � r, such that they give aC1 approximation toCB
with e(Bi(t),C) < δ.

(1) Topology determination.Determine the bounding boxB and the topology ofCB with Algorithm 1.
Let the resulted segments beST and letGT = U(ST ).

(2) Flex computation.Compute the set of flexesVF of CB as shown in Section 2.3. Divide those segme
in ST containing flexes with Algorithm 4 to obtain a new set of triangle convex segmentsSF and let
GF = U(SF ).

(3) Tangent computation.Compute the tangent directions of each segment inSF at its endpoints with
Algorithm 5 to obtainG 
F andS 
F .

(4) Segments combination.Combine some edges in the graphG 
F with Algorithm 6 or 7 to obtain a new
graphG 
C andS 
C .

(5) Segment approximation.Approximate each segment inS 
C with piecewise rational quadratic Bézi
curves with Algorithm 10.

(6) Curve tracing.Find r edge-disjoint branchesTi , 1 � i � r , in G 
C with Algorithm 11. LetEi =
U−1(Ti) be the corresponding curve branches inCB.

(7) B-spline conversion.Convert these approximation rational quadratic Bézier curves for the seg
in Ei into a B-spline curveBi with a proper knot selection (Piegl and Tiller, 1987).Bi provides aC1

continuous approximation to branchBi , 1� i � r .

The method reported is implemented in Maple. The benchmark curvesC0,C1,C2, C3, C4 are from (Walker,
1978). CurvesC5 andC6 are taken from (Gonzalez-Vega and Necula, 2002).

C2 : x4 + x2y2 − 2x2y − xy2 + y2 = 0,

C3 : (x2 + y2)2 + 3x2y − y3,

C4 : (x2 + y2)3 − 4x2y2 = 0,

C5 : y8 + y7 − (8+ 7x)y6 − (7− 21x2)y5 − (−20− 35x + 35x3)y4

− (−14+ 70x2 − 35x4)y3 − (16+ 42x − 70x3 + 21x5)y2

− (7− 42x2 + 35x4 − 7x6)y + 7x − 14x3 + 7x5 − x7 = 0,

C6 : −3+ 12y2 + 2y4 − 12y6 + y8 + 12x2 − 28y2x2 + 12y4x2

+ 4y6x2 − 18x4 + 20y2x4 + 2y4x4 + 12x6 − 4x6y2 − 3x8 = 0.

In the figures in this section, the left figures show the approximation spline curves and the right
show the plots of the corresponding error functions. Specifically, the curve in the right figures defi
the interval(i, i + 1) corresponds to the(i + 1)th curve segment with the following tracing orders in t
left figures.

Tracing order forC0 (Fig. 12):v0v5v9v4v2v5v7v4v0.

Tracing order forC2 (Fig. 14):v0v1v2v3v4v0.

Tracing order forC3 (Fig. 15):v0v1v2v3v1v4v5v1v6v0.
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Fig. 12. Approximation and the error function ofC0.

Fig. 13. Approximation ofC0 in (Bajaj and Xu, 1997).

Table 1
Comparison of our results with results in BX (Bajaj and Xu, 1997)

Our results BX

Ex. deg d-app error p-num d-app error p-nu

C0 4 (2,2) 0.003 8 (2,1) 0.1 34
C2 4 (2,2) 0.005 5 (3,3) 0.1 12
C3 4 (2,2) 0.005 9 (2,1) 0.09 27
C4 6 (2,2) 0.003 12 (2,1) 0.1 28

Tracing order forC4 (Fig. 16):v0v1v2v3v1v4v5v1v6v0.

Tracing order forC5 (Fig. 17):v0v1v2v3v4v5v6v7v8.

Tracing order forC6 (Fig. 18):v0v1v2v3v4v5v6v7v8 andv9v10v13v11v12v9.

As a comparison, we list some approximation results obtained by our algorithm and that obta
(Bajaj and Xu, 1997) in Table 1. In the table,degis the degree of curveCi ; d-app= (m,n), wherem,n

are the degrees ofP(t),Q(t) in the approximation rational curveP(t)

Q(t)
; error is the error bound;p-numis

the number of approximation curve segments of degree p-app. It can be seen from the table that
method may achieve better approximation bound with less approximation segments than that i
and Xu, 1997). The approximation ofC0 obtained in (Bajaj and Xu, 1997) are also shown in Fig. 13
an intuitive comparison.
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Fig. 14. Approximation and the error function ofC2.

Fig. 15. Approximation and the error function ofC3.

Fig. 16. Approximation and the error function ofC4.

6. Approximation of spatial curves

Suppose that an irreducible spatial curveCS is defined by the intersection of two implicitly define
algebraic surfacesg(v) = 0 andh(v) = 0, wherev = (x, y, z). It is known how to decide whether th
curve CS is irreducible or not (Gao and Chou, 1992). LetA be a 3×3 matrix, v̄ = (x̄, ȳ, z̄) = v · A,
ḡ(v̄) = g(v · A), h̄(v̄) = h(v · A). We first have the following result (Gao and Chou, 1992).
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Fig. 17. Approximation and the error function ofC5.

Fig. 18. Approximation ofC6.

Fig. 19. The error function ofC6. C6 has four branches and is symmetric with thex axis. We only show the result of the err
function for two of the branches.

Theorem 8. Let CS be an irreducible spatial curve defined byg(v) = 0 and h(v) = 0. We may always
find a rotational matrixA such that the new spatial curvēCS defined byḡ(v̄) = h̄(v̄) = 0 is birational
to an algebraic plane curveC : R(x̄, ȳ) = 0. We may also find a birational map fromC to CS as follows
(x̄, ȳ) → (x̄, ȳ,H(x̄, ȳ)), whereH is a rational function inx̄, ȳ.
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Before giving our approximation method toCS , we will first propose an algorithm to give an appro
mation for a functionR(t) with a rational quadratic function.

Algorithm 13. The input is a rational functionR(t), t0 � t � t1, and the output is an approximatio
rational quadratic functionRa(t), t0 � t � t1, of R(t) such that

Ra(t0) = R(t0), Ra(t1) = R(t1); R′
a(t0) = R′(t0), R′

a(t1) = R′(t0).

(1) Without loss of generality, we may assume thatt0 = 0, t1 = 1 for simplicity.
(2) Suppose that the approximation function ofR(t) is

Ra(t) = ω0R0φ0(t) + ω1R1φ1(t) + ω2R2φ2(t)

ω0φ0(t) + ω1φ1(t) + ω2φ2(t)
; 0 � t � 1, ωi,Ri ∈ R, i = 0,1,2,

whereφi(t) is defined in (3).
(3) It can be easily seen thatR0 = R(0) andR2 = R(1). From

R′
a(0) = 2ω1

ω0
(R1 − R0) = T0, R′

a(1) = 2ω1

ω2
(R2 − R1) = T2,

we get

ω0 = 2(R1−R0)

ω1T0
, ω2 = 2(R2−R1)

ω1T2
, if T0T2 �= 0;

ω0 = 2(R1−R0)

ω1T0
, R2 = R1, if T0 �= 0, T2 = 0;

ω1 = 0, if T0 = T2 = 0.

(4) LetRa(
1
2) = M = R(1

2), we have

ω1 = 1, R1 = R2
0T2−R2

2T0−(R0T2−R2T0−T0T2)M

R0T2−R2T0+T0T2+(T0−T2)M
, if T0T2 �= 0;

ω1 = 1, ω2 = 2(R2
0−R0R2−R2T0+(R2−R0+T0)M)

T0(R2−M)
, if T0 �= 0, T2 = 0;

ω0 = 1, ω2 = −R0−M

R2−M
,R1 = 1, if T0 = T2 = 0.

It is evident that the approximation error ofRa(t) to R(t) is convergent to zero.
For an approximationCa

S (t) of CS , we define their approximation error function as

e(t) = max
(
e(g, t), e(h, t)

)
, (8)

where

e(g, t) = g(Ca
S (t))

[gx(Ca
S(t))

2 + gy(Ca
S (t))2 + gz(Ca

S (t))2]1/2
.

Functione(h, t) is defined in a similar way as in (Chuang and Hoffmann, 1989). The approximation
e(CS,Ca

S ) is then taken as max0�t�1 e(t). The following algorithm is taken to give a rational quadra
approximation ofCS . It first gives an approximation to the projection ofCS into thexy plane with Algo-
rithm 12. And then it approximatesCS in thez direction with Algorithm 13.

Algorithm 14. The inputs are a spatial curveCS defined byg = h = 0 and an error boundδ > 0. The out-
puts are a bounding boxBS = {(x, y, z): x0 � x � x1, y0 � y � y1, z0 � z � z1} and rational quadrati
spatial spline curvesEi(t), 1� i � r , such that they give aC1 approximation ofCS within the bounding
boxBS ande(CS,E

S
i ) < δ.
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(1) Decide whetherg = h = 0 defines an irreducible spatial curve as done in (Gao and Chou, 199
CS is not irreducible, end the algorithm. Otherwise, letR(x, y) andH(x, y) be the polynomial and
rational function obtained in Theorem 8.

(2) For the plane curveC : R(x, y) = 0, determine a bounding boxB1 = {(x, y): x0 � x � x1, y0 � y �
y1} and its approximation B-spline curvesBi(t), 0� i � r with Algorithm 12. Similarly, we may de
termine a bounding boxB2 = {(x, z): x̄0 � x � x̄1, z0 � y � z1}. LetBS = {(x, y, z): min(x0, x̄0) �
x � max(x1, x̄1), y0 � y � y1, z0 � y � z1}. ThenCS and the part ofCS insideBS have the same
topology.

(3) LetEP (t) = (Ex(t),Ey(t)), t0 � t � t1 be one quadratic segment inBi(t). SupposeS andSS[P0,P1]
are the corresponding segments toEP (t) in C and CS respectively.SS[P0,P1] is a spatial curve
segment with endpointsPi = (xi, yi, zi), i = 0,1. Take the following steps to give a rational quadra
approximation ofSS .
• Let Ēz(t) = H(Ex(t),Ey(t)), t0 � t � t1. From the interpolation property ofEP (t) at its end-

points, we haveĒz(ti) = H(Ex(ti),Ey(ti)) = H(xi, yi) = zi , i = 0,1.

• Give a rational quadratic approximation functionEz(t) for Ēz(t) such thatEz(ti) = Ēz(ti),E
′
z(ti) =

Ē′
z(ti), i = 0,1, with Algorithm 13. LetE(t) = (Ex(t),Ey(t), Ez(t)), t0 � t � t1. Then it is a spa

tial quadratic curve segment.
• If the approximation errore(E(t), SS) < δ, end this procedure. Otherwise compute the shou

point SP = (xp, yp) of S and letzp = H(xp, yp). Divide SS at (xp, yp, zp) and repeat this proce
dure untile(E(t), SS) < δ.

(4) The resulted spatial quadratic curve segments naturally form a spline curve withC1 continuity. De-
note them asEi(t), 1� i � r .

Theorem 9. With Algorithm14, each resulted spline curveEi(t), 0 � i � r , is C1-continuous and the
approximatione(CS,Ei(t)) is convergent to zero after a sufficient number of subdivisions.

Proof. Suppose thatĒi(t) = (xi(t), yi(t), zi(t)), i = 0,1, are two adjacent quadratic segments (c
ics) in Ei(t) sharing a common knott = t1. From the approximation of the plane curveC, we have
that (x0(t1), y0(t1)) = (x1(t1), y1(t1)) and (x′

0(t1), y
′
0(t1)) = (x′

1(t1), y
′
1(t1)). Then we get thatz0(t1) =

H(x0(t1), y0(t1)) = H(x1(t1), y1(t1)) = z1(t1) and thereforeĒ0(t1) = Ē1(t1). Furthermore, fromz′
i(t) =

Hx(xi(t), yi(t))x
′
i (t) + Hy(xi(t), yi(t))y

′
i (t), we getz′

0(t1) = z′
1(t1) and thereforeĒ′

0(t) = Ē′
1(t). This

proves that eachEi(t) is C1 continuous.
Suppose thatP0 = (x0, y0, z0) is a point onCS . Then we haveR(x0, y0) = 0 andz0 = H(x0, y0).

From the approximation ofEP (t) to C : R(x, y) = 0, we have a pointEP (t0) with the minimum
Euclidean distanceD(EP (t0), (x0, y0)) to (x0, y0). Let H(t0) = H(EP (t0)), P̃0 = (EP (t0),H(t0)) and
�P0 = (x0, y0,H(t0)) and we have

D
(
E(t0),P0

)
� D

(
E(t0), P̃0

) + D(P̃0, �P0) + D(�P0,P0).

From the approximation ofEz(t) to H(t), D(E(t0), P̃0) is convergent to zero. From the appro
mation of EP (t) to C, D(P̃0, �P0) converges to zero. With the continuity ofH(x, y), D(�P0,P0) =
D((x0, y0,H(EP (t0))), (x0, y0,H(x0, y0))) is convergent to zero. ThenD(E(t0),P0) is convergent to
zero and so doese(CS,Ei(t)). �
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Fig. 20. Approximation of a spatial curve defined as the intersection of two surfaces.

Let CS be a spatial curve defined as below (Bajaj et al., 1988) (Fig. 20)

g(x, y, z) = z − 2x4 − y4 = 0, h(x, y, z) = z − 3x2y + y2 − 2y3 = 0,

and letR(x, y) be the resultant ofg(x, y, z) and h(x, y, z) with respect toz. Then the plane curv
C : R(x, y) = 2x4 − 3x2y + y2 − 2y3 + y4 = 0 is birational toCS with H(x, y) = 2x4 + y4. In factC is
just C0 as defined in (1). Using the approximation result ofC0 in Section 5, we obtain the approximatio
curve forCS , which still consists of eight curve segments as plotted in the left figure in Fig. 20. Th
of the approximation error function as defined in (8) is shown as the right figure in Fig. 20.

7. Conclusion

In this paper, we give a simple and intuitive approximation of the plane algebraic curve with ra
quadratic curves. The basic idea is to divide the curve into triangle convex segments which can b
approximated with quadratic Bézier curves and to connect the segments into certain maximal b
which can be globally approximated by quadratic B-splines. We also extend the method to give a
mation to spatial curves.

Experiments show that we can achieve high precision approximation with few segments. Ins
giving a power series for each approximated segment, the endpoint information and shoulder po
mainly used to express the segment. Since the geometric information is considered, the algorithm
to understand and many geometric characters of the approximated curve are kept.

References

Abhyankar, S., Bajaj, C., 1988. Automatic parameterization of rational curves and surfaces, III: algebraic plane curves. C
puter Aided Geometric Design 5 (4), 309–321.

Bajaj, C., Hoffmann, C., Hopcroft, J., Lynch, R., 1988. Tracing surface intersections. Computer Aided Geometric Desi
285–307.

Bajaj, C., Xu, G.L., 1997. Piecewise rational approximations of real algebraic curves. J. Comput. Math. 15 (1), 55–71.
Bondy, J., Murty, U., 1976. Graph Theory with Applications. Macmillan Press.
Chang, G.Z., Sederberg, T., 1997. Over and Over Again. American Mathematical Association.
Chen, F.L., Wang, W.P., 2003. Computing real inflection points of cubic algebraic curves. Computer Aided Geometric D

(2), 101–117.



828 X.-S. Gao, M. Li / Computer Aided Geometric Design 21 (2004) 805–828

g of the

4.

L. (Eds.),

nication

ter

tion 42

.),

Trends.

.

.,

.), Theory

im, M.S.

ded De-
Chen, F.L., Deng, L., 2003. Interval parametrization of planar algebraic curves. In: Li, Z.M., Sit, W. (Eds.), Proceedin
6th Asian Symposium on Computer Mathematics. World Scientific, Singapore, pp. 64–76.

Cheng, J., Gao, X.-S, Li, M., 2004. Topology determination of real projective plane algebraic curves. Preprint.
Chuang, J., Hoffmann, C., 1989. On local implicit approximation and its application. ACM Trans. Graph. 8 (4), 298–32
Farin, G., 1989. Curvature continuity and offsets for piecewise conics. ACM Trans. Graph. 8 (2), 89–99.
Farouki, R., 1989. Hierarchical segmentations of algebraic curves and some applications. In: Lyche, T., Schumaker, L.

Math. Methods in Comp. Aided Geom. Design. Academic Press, Boston, MA, pp. 239–248.
Gao, X.S., Chou, S.C., 1992. On the parameterization of algebraic curves. Applicable Algebra in Elementary Commu

and Computing 3, 27–38.
Gonzalez-Vega, L., Necula, I., 2002. Efficient topology determination of implicitly defined algebraic plane curves. Compu

Aided Geometric Design 19 (9), 719–743.
Hong, H., 1996. An efficient method for analyzing the topology of plane real algebraic curves. Math. Comput. Simula

(4–6), 571–582.
Ihm, I., Naylor, B., 1991. Piecewise linear approximations of digitized space curves with applications. In: Patrikalakis, N. (Ed

Scientific Visualization of Physical Phenomena. Springer-Verlag, Berlin, pp. 545–569.
Lee, E., 1985. Rational Bézier representation for conics. In: Farin, G. (Ed.), Geometric Modeling: Algorithm and New

SIAM, Philadelphia, PA, pp. 3–19.
Montaudouin, Y., Tiller, W., Vold,H., 1986. Application of power series in computational geometry. Computer-Aided Design 18

(10), 93–108.
Piegl, L., Tiller, W., 1987. Curve and surface constructions using rational B-spline. Computer-Aided Design 19 (9), 485–498
Pottmann, H., 1991. Locally controllable conic splines with curvature continuity. ACM Trans. Graph. 10 (4), 366–377.
Pottmann, H., Leopoldseder, S., Hofer,M., 2002. Approximation with active B-spline curves and surfaces. In: Coquillart, S

Shum, H., Hu, S.M. (Eds.), Proc. of Pacific Graphics 2002. IEEE Press, Los Alamitos, CA, pp. 8–25.
Sederberg, T., Zhao, J., Zundel, A., 1989. Rational approximation of algebraic curves. In: Strasser, W., Seidel, H. (Eds

and Practice of Geometric Modeling. Springer-Verlag, Berlin, pp. 33–54.
Sederberg, T., Zheng, J., 2002. Algebraic methods for computer aided geometric design. In: Farin, G., Hoschek, J., K

(Eds.), Handbook of Computer Aided Geometric Design. North-Holland, Amsterdam.
Sendra, J., Winkler, F., 1991. Symbolic parameterization curves. J. Symbolic Comput. 12, 607–632.
Walker, R., 1978. Algebraic Curves. Springer-Verlag, New York.
Yang, H.P., Wang, W.P., Sun, J.G., 2004. Control points adjustment for B-spline curve approximation. Computer-Ai

sign 36 (7), 639–652.


