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Abstract

An algorithm is proposed to give a global approximation of an implicit real plane algebraic curve with ratio-
nal quadratic B-spline curves. The algorithm consistsoof fsteps: topology determination, curve segmentation,
segment approximation and curve tracing. Due to the detgg®metric analysis, high accuracy of approximation
may be achieved with a small number of quadratic segsadine final approximation keeps many important geo-
metric features of the original curve such as the topology, convexity and sharp points. Our method is implemented
and experiments show that it may achieve better approximation bound with less segments than previously known
methods. We also extend the method to approximate spatial algebraic curves.

0 2004 Elsevier B.V. All rights reserved.
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1. Introduction

An implicit real plane algebraic cur&of degreen is defined byf (x, y) = O wheref (x, y) € R[x, y]
is a polynomial of degree andR the field of real numbers. The curve is said torbtional if it can be
additionally represented by rational parametric equatroasx“) andy = ;(f), wherex (1), y(t),d(t) €
R[z] are of degrees at most Both the implicit and parametrlc representatlons of algebraic curves have

important applications in CAGD. We can always convert a rational curve into an implicit representation,
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which is called implicitization (Sederberg and Zheng, 2002). On the other hand, it is also desirable to
generate a parametric representation for an implicitly defined algebraic curve, which is called parame-
trization. Methods to find parametric equations of implicit curves are given (Abhyankar and Bajaj, 1988;
Sendra and Winkler, 1991; Gao and Chou, 1992). However only a small subset of real algebraic curves
are rational. In general, an algebraic curve of arbitrary degree is rational if and only if its genus is equal
to zero (Walker, 1978).

Approximation methods are therefore proposed to give a rational form for an implicit real algebraic
curve. The methods can be categorized into three classes: the linear approximations, the points sam-
pling approximations and the approximations based on power series. Ihm and Naylor surveyed some
techniques for generating a linear approximation of an algebraic curve (Ihm and Naylor, 1991). Farouki
proposed a segmentation method for algebraic curves and then used a polygon to approximate the curve
(Farouki, 1989). However, the detail of the segmentation process is not presented in the paper. Given a
model shape, curve or surface, expressed by a set of sample points on it, Pottmann et al. introduced the
active B-spline curve or surface to approximate it (Pottmann et al., 2002). The method is further refined
in (Yang et al., 2004). Based on the Implicit Function Theorem, Montaudouin et al. sought to repre-
sent a curve branch explicitly in one coordinate as function of the other one (Montaudouin et al., 1986).
A technigue was presented by Sederberg et al. to give a rational approximation of algebraic curves for
some special cases (Sederberg et al., 1989). Using a combination of algebraic and numerical techniques,
Bajaj and Xu constructed @'-continuous, piecewise rational approximation of a general plane algebraic
curve (Bajaj and Xu, 1997). Interval cubic Bézier curves are used to approximate a plane algebraic curve
(Chen and Deng, 2003). However, most of these methods rely on the local properties of the approximated
curves without the consideration of their global properties, so they generally result in many pieces in the
final approximations.

In this paper, we consider the rational quadratic approximation problem for a plane algebraic curve
C with a global topology analysis. The resulted approximations are several rational quadratic B-spline
curves, each of which is obtained from piecewise rational quadratic Bézier curves. The quadratic segment
(or conics) is used since it has both the implicit and parametric forms and it is the freeform curve with
the lowest degree and has many nice properties (Lee, 1985; Farin, 1989). The approximation algorithm
mainly consists of the following steps:

(1) Topology determination. We find a rectangular bounding B@nd a graply; such that the curvé,
Cp (the part ofC inside B), andG have the same topology.

(2) Curve segmentation. Dividé into triangle convex segmentahich have similar properties with
conics.

(3) Segment approximation. We presergt@ulder point approximatiomethod to give a nice approxi-
mation to a triangle convex segment with conics expressed in a rational quadratic Bézier form.

(4) Curve tracing. Find a proper tracing order and convert the resulted approximation conics into rational
quadratic B-spline curves, each of which give§’aglobal parametrization for a curve branch.

Due to the detailed geometric analysis, high accuracy of approximation may be achieved with a small
number of conics. The final approximation keeps many important geometric features of the original
curve such as the topology, convexity and sharp points. The branches obtained in the tracing step provide
a global parametrization and a refined topological structure of the curve. We implement our method
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in Maple and experiments show that our method may achieve better approximation bound with less
segments than previously known methods.

We also extend our method to approximate a spatial algebraic ciyrmmplicitly defined by the
intersection of two algebraic surfaces with rational quadratic spline curves. The basic idea is that by per-
forming a proper rotational transformation, the spatial curve is birational to a plane€CurRéx, y) =0
and thez-coordinate can be expressed as a rational functionasfd y with z = H(x, y). With this for-
mula, the approximation of spatial curves is converted into approximation of plane curves.

The rest of the paper is organized as follows. The three main parts: topology determination and curve
segmentation, segment approximation, curve tracing are illustrated in Sections 2, 3 and 4 respectively.
The main algorithm and some experimental results for plane curve approximation are given in Section 5.
The spatial case is illustrated in Section 6. We conclude this paper in Section 7.

2. Topology determination and curve segmentation

Throughout this paper, we assume tlfiét, y) € Z[x, y] is an irreducible polynomial of degree greater
than two, wheré is the ring of integers. A plane algebraic cut/és implicitly defined by f (x, y) =0.
Let B={(x,y): x; <x < x,, ¥ <y <y, be abounding box. We ugk; to denote the part af inside
B. In this section, we will determine a bounding bBxand a graplg such thatC, Cz andG have the
same topology. In the later sections, we will approxin@tenstead ofC.

2.1. Preliminaries

A point P = (xq, yo) is said to be aingular pointon C if f(xo, yo) = fi(x0, o) = fy(x0, yo) = 0.
Theinflection pointsor flexesof C are its non-singular points satisfying its Hession equafiy) = 0
(Walker, 1978).

A curve segmenf of C is an open ended and continuous partofith two endpointsPy and Ps.
The left (right) endpoint is the one with smaller (largerlcoordinate. IfPy and P, have the same
coordinate, then the left (right) endpoint is the one with smaller (largegordinate.

Let Py be an endpoint of a curve segmehtThen a tangent directiofi; of S at Py always exists
(Walker, 1978). If Py is the left (right) endpointT; is called theleft (right) tangent directionof S,
denoted byr_ (T.). Theleft (right) tangent line is the line going through the left (right) endpoint with
left (right) tangent direction.

We useS[ Py, P>] to denote a curve segment of cu@ewith left endpointPy and right endpointP,
andS[ P, Ty, P>, T>] is also used when the left and right tangent directiinand 7, are also prescribed.

A curve segmenS[ Py, To, P», T5] is said to beriangle convexf either

(1) The left and right tangent lines ¢f meet at a pointP; and the line segmen® P, and S form a
convex region inside theontrol triangle A Py P, P, of S; or
(2) Ty andT;, are parallel and the line segmer$P, and the curve segmeftform a convex region.

Triangle convex segments have many similar properties with conics.
Sp is said to be ahoulder poinbn a triangle convex segmesitPy, P,] if Sp has the maximal distance
to the line Py Ps.
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Lemma 1. The shoulder point for a triangle convex segmg&p®,, P,] is unique.

Proof. Suppose that there are two shoulder poifendS2. SinceS[ Py, P,] is triangle convex, the line
segmentS3 S2 should lie inside the region formed by lifg P, and S. SinceS} and S2 have maximal
distance taP, P,, the line segmens$tS2 must be coincident witls. This is impossible becaus&(x, y)
is irreducible and of degree greater than twa

A graphg is an ordered tripl€V (G), E(G), ¥¢g) consisting of a nonempty s&(G) of vertices a set
E(G9), disjoint from V(G), of edges and anincidence function/¢g that associates with each edgedf
an unordered pair of (not necessarily distinct) vertice§.ofhedegreeof a vertexv in G is the number
of edges ofG incident withv. A vertex of odd degree is callentld vertex We usually use = (u, v) to
denote an edge iG with verticesu andv.

From a set of curve segmerfs, we can generate a plane graghwith a mapl/ : S¢ — Gs such that

(1) U sends the endpoints of the segments§jno the vertices irV (Gs), and
(2) there exists an edge between two vertiecgs, in G if and only if v1, v, are the endpoints of a curve
segment inSs.

It can be seen thaf is a bijection map ant¢ ! is used to denote the reverse.
2.2. Topology determination

The topology determination af produces a plane gragh which is topologically equivalent tG
(Hong, 1996; Gonzalez-Vega and Necula, 2002). The algorithm in (Hong, 1996) is slightly modified to
find a bounding box8 such thatC andCgz have the same topology for later approximation.

Algorithm 1 (Topology determination The input is a plane algebraic cur@e The output is a bound-
ing box B ={(x,y): x;y <x<x, y»» <y <y} and a plane grapfr such thatGr, Cg, andC are
topologically equivalent.

(1) Compute the discriminanD(y) = > " d;y" of f(x,y) with respect tox and lety, =1 +

mlid-nldoall  Then by Cauchy's inequality, all the roots d@d(y) = 0 are in the interval

(Vo = = Yus Yu)- )
(2) Compute the discriminar®(x) of f(x, y) with respect toy and determine its real rootg; < - - - <

o,_1. Select two rational numberns andx, such thaty; < «q andx, > a,_1 and leteg = x;, o, = x,.
Now we have determined the bounding b®x

(3) For everyy;, compute withinB the real roots off («;, y), Bio <+ < Biy-

(4) Ateach point?; ; = (a4, B, j), count the numbers of branches@ to the right and to the left.

(5) Foreach G<i < s, the total number of branches to the right of poifts for all j must be the same
as the total number of branches to the left of poiAts; , for all k. Connect the points; ; to the
other endpoints’;, 1 ,, of the branches with edges, obeying the branch counts and get thecgraph

Lemma 2. C andCp have the same topology.
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Fig. 1. A curve and its topology graph.

Proof. P is said to be aertical point(horizontal poinj of C if it is neither a singular point nor inflection
point andf (xg, yo) = 0, fy(x0, yo) = 0 (fx(x0, yo) = 0). Vertical points are extremal points in theaxis
direction. If point(xo, yo) is a vertical point, theny is a solution of the discriminanb(x) = 0. Since
all singular points, vertical points, and horizontal points are contained ifisitiee parts o’ outsideB
are disjoint branches which have only one intersection with the boundd#yté&nceC andCgz have the
same topology. O

Let V ={(o;, Bi,j), 0<i <s, 0< j <) and decompose it inty = Vy U Vs UV, whereVy is
the set of vertical pointsVs is the set of singular points, arid, is the other simple points. Label the
generated curve segments in Algorithm 1 from left to right top to bottom §) asSy ={S; ;, 1<i <
s, 1< j <s;} wheres; denotes the number of curve segment§ofvith x in («;_1, ;).

Consider the following curve for example

Co: folx,y) =2x* —3x?%y +y2 - 2y3 +y*=0. 1)

The left part in Fig. 1 shows the corresponding symbols involved in the topology determinatiian of
with Algorithm 1. The right figure shows the corresponding topology g@pbf Co.

With the topologyGr for Cz, we can do the following basic operations for curve segments. Algo-
rithm 2 try to obtain the intersection point of a vertical line with a specified segment, while Algorithm 3
determines which segment a specified poin€Cgns contained in.

Algorithm 2 (Line curve intersection The inputs are a curve segmesy j, = S[Po, Pl in Sy for Cx
with P, = (x;, y;),i = 0,2 and anx € (xp, x2). The output is the intersection poift = (x, y) of the
vertical linex = x with S.

(1) Letg(y) = f(x,y) and find all the solutions; > - -- > y, of g(y) = 0 within B. Note thatg(y) =0
has no repeated roots.

(2) Sinces;, j, is the joth segment of 5 in the interval(xo, x») from top to bottomP = (x, ) = (¥, Yio)
should be ors;, ;.

Algorithm 3 (Point containment The inputs are a poinF_: (x,y) onCp and the segments s&t of
Ci. The output is a pair of footnotds, jo) such that point is onS;, ;, € Sr.
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(1) Select a unique;, such thaiy,;,_1 < x < «;,. If there exists only one segmesy, ;, in the interval
(ctip-1, ), OUtPUL(io, o).

(2) If we can determine that each segmépt; in the interval(e;,—1, «;,) is triangle convex and there
exists just one segmesy, j, with P contained in its control triangle, outp(b, jo).

(3) Letg(y) = f(x,y). Isolate all the real roots gf(y) = 0 within B and gety; > --- > y,. Suppose
thaty lies in the corresponding interval of, and outputio, jo).

2.3. Flex computation and generation of triangle convex segments

We try to divideCp into triangle convex segments, so the division points must include flex@s.of
A method to compute the real inflection points of cubic plane algebraic curves is given in (Chen and
Wang, 2003). However there seems no work on computing the flexes of general implicit algebraic curves.
Since this is not the central topics of this paper, we compute the flexgs difectly from its definition
by solving the equation systeif(x, y) = 0 andH (/) = 0 with well known methods based on resultant
computation. LeW be the set of the flexes dix.

Algorithm 4 (Division at flexes The inputs areS;y and Vr. The output is a set of triangle convex
segmentsSy = {S; jx, 1<i <5, 1< j <s;, 1<k <s;;} and its corresponding graggh:.

(1) For eachs; ; € Sr, find all the points inVx N S; ; with Algorithm 3. List these points from left to
right according to the coordinate:P; ;;, 1<k <s;; — 1.

(2) Divide the segment; ; at the pointsP; ; x, 1< k <s;; — 1, ending with the curve segmenSs; .,
1 < k < sij-

(3) Ifthere is no flex ors; ;, let S; ;1 = S; ; ands;; = 1.

(4) LetSp ={Sijx, 1<i<s, 1<j<s, 1L<k<s;) andGry =U(SF). It is clear thatSy takes
V =Vy U VsUVp U Vg as the endpoints of its segments.

Theorem 3. Each curve segmei®i[ Py, P>] in Sf is triangle convex.

Proof. We may assume th&i[ Py, P,] is above the line P,. Let P, = (x;, y;), i =0, 2, andP = (x, y)
any point onS. Fig. 2 shows all the possible forms 8f Since there exist no singular points, flexes or
vertical points onS and the sweeping angle of the tangent line from p&into point P, is less thanr,
the slopek(P) of S must be monotonic fron®, to P, in this case. More precisely, it is decreasing with
respect to the increasing of thecoordinate ofP. According to convex theory (Chang and Sederberg,
1997), a curve segment satisfying these conditions forms a convex regiorPyfth This proves the
theorem for the case that the left and right tangent directiorssawé parallel.

In the other cases, we need further to show thas inside the control triangleé\ Py P, P,. For an
arbitrary pointP = (x, y) # (xo, yo) 0n S, there must exists a poirit lying betweenP, and P with the

Pl Pl Pl
PO £ N P2 PO IFZPO >~ P2 WMW

Fig. 2. Triangle convex segments.
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maximal distance ta?, P. At this point, we havdc(ﬁ) = )‘C:—;g On the other hand, there exists a point
(x, y) in the left tangent line of such thatk(Py) = )ycj—fcg Then

y_yOZk(ﬁ)<k(Po)=y_y0.
X — X0 X — X0

We havey < y. Then the pointP = (x, y) lies below the pointx, y), a point in the left tangent line &f.
In a similar way, we have that all the pointsSnlie below the right tangent line of. Hences is inside
the control triangle. O

The curveCy in Fig. 1 does not have flexes. Then its topology graph need not to be modified. The
curve in Fig. 14 has a flex poing.

2.4. Tangent direction computation

The tangent direction at a simple point can be easily obtained from its definition. In this section, we
will give a method to compute the tangent directions at a singular point.

Let K be an algebraic closed field, afda curve defined byf (x, y) = 0 over K. Suppose that all
derivatives off (x, y), up to and includingr — 1)th, vanish atP, but that at least oneth derivative does
not vanish. The tangent directios, 1) to C at Py, correspond to the roots of

= £+ () i ot () fon =0 @

where all the partial derivatives are evaluated®atBut for a real algebraic curve defined lyx, y) €
R[x, y], there does not exist such a one-one correspondence between the real roots of the equation
g(i, ) =0 and the tangent directions of the real components contaijng

For example, le€ be the plane curve defined by

fx,y) =y%—2y%x + 15yx* — x°.

The real roots of (A, u) =0 at Py = (0, 0) are(1, 0) and(1, 2). However, the curve has no real compo-
nent with the tangent directiofi, 0) at Py (Fig. 3).

In the following algorithm, we will propose a method to compute the set of tangent directions
of C at Py, which is a subset of the set of real rootsgdf., 1) = O.

Algorithm 5 (Tangent directions at a singular pofTrhe input is a singular poinPy = (xo, yg) in Vs.
The output is the left tangent directiod$_ for the segments; € S, g < j <r, with Py as its left
endpoint. We assume théy, ..., S, are listed from top to bottom.

(1) Find all the solutionsga;, u;), 1< i < s, of the homogeneous algebraic equati@h, 1) = 0 defined
in (2). Let

ki=*5, X #0;

i

ki =1 +o0, A, =0andu; > 0;
—00, A =0 andu,- < 0.

(2) Sortk; in a descending order and rename ther;ad <i <s.

>
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03
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0.1

02 0.4

02

-0.3

Fig. 3. Unexpected tangent direction.

(3) Let
k1 =min(0, 2ky), I = (—o00, k1], whenk; = —o0;
ky =max©, 2k,_1), I, = [k, +00), whenk, = +o0.
I =[k =8,k +8], 1<i<s, otherwise.
Select a propes < § such thatl;, N [, =¢, 1<i <s — 1.
(4) Takex; as thex-coordinate of the right endpoints 6f, 1< j <r and let
. X — Xo
)Cj, £ = 100 .
(5) Find a point(xo + &, y;) on S;, 1< j < r with Algorithm 2. Letk; = 2222 which is an approxi-

&

mation of the slope of; at P,. If there exists &; which is not inUZ;, sete := ¢/10 and repeat this
step. This step will end becauggis approaching to the slope of some segment at p@jnt

(6) Suppose that; is in L, 1< n; <s. Then the left tangent directiofi,_ of §; is (Anjs Hn;)s 1<
J<r.

X = min
1<j<r

We can compute the right tangent directidiss in a similar way as Algorithm 5 by taking ¢ instead
of ¢. Add the tangent information to each segmensjnto obtainS; and seiG =U(Sy) be the graph
representation.

The tangent directions of the segments in Fig. 1 at the singular poini&atg, v/3), (1, —/3); Vs:
(1,0).

2.5. Segments combination
Two methods based on graph disposal are proposed to combine some curve segi§gnisder
the condition that the triangle convexity of the segments is kept. The following algorithm considers the

segments combination at simple points.

Algorithm 6 (Segments combinatior)-IThe input isG;. The output is a new grapfz topologically
equivalent toG; and it has less edges than thosg;gf
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Fig. 4. Segments combination and the corresponding graph-1.

Pa
s Ps
2 Is Ps
Pa Pb

Fig. 5. Convexity maintenance.

(1) Letthe set of vertices of the graph be V(Sz) = Vy U Vs U Vo U V.

(2) Forall Py € Vo and edges;, j, x, = (Po, P1), Ei; j,.r, = (Po, P2), combine them as one edges
whereJ = {{io, jo, ko}, {i1, j1, k1}}. The information inJ is needed, e.g., in Algorithm 2.

(3) Keeping those edges containing no pointy¥inunchanged, we obtaifz. Let Sz = U1(Gz). We
haveV(gé) =VyUVsgU Vg,

Since only two edges meet at a simple point, the graph topology does not change after removing simple
points. The combined segments are still triangle convex because a combined segment always lies between
two vertical lines. Fig. 4 shows the combined segments and its corresponding graph for those in Fig. 1.

The following algorithm tries to combine curve segments at certain singular points ensuring that the
resulted approximation curves have the same topology with the original curve.

Algorithm 7 (Segments combinatior)-2T'he input isGz. The output is a refined plane gragh such
that each segment iz = ¢/~%(Gz) is triangle convex.

(1) Simplify Gz to Gz with Algorithm 6. LetV, C Vs be the set of singular points with degree four and
not all the left or right tangent directions at the point are the same.

(2) For a pointPs € V;, let Es be the set of edges iz with Pg as an endpoint. IE is empty, go to
step 5.

(3) Find two edgesE;; j,«, andE;, j, 1, i Es such that they share the same tangent directiay @nd
they are at the same side of the tangent linat Ps. In Fig. 5 the left case satisfies this condition
while the right one does not.

(4) Combine the edges;; j,«, andE;, j, «, into a new edge and refing: as step 2 in Algorithm 6.

(5) LetV, =V, \{Ps}gotostep 2 untiV, is empty. SeSz =U1(Gz).
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Vo Ve

Vs

Fig. 6. Segments combination and the corresponding graph-2.

Fig. 6 shows the refined graph and curve segments for those in Fig. 1.

3. Segment approximation

In this section, the resulted segments from curve segmentation are to be approximated with rational
guadratic Bézier curves. The approximation algorithm consists of two steps: the shoulder point compu-
tation and the segment approximation.

3.1. Rational quadratic Bézier curve

A rational quadratic Bézier curvias the following form

P(1) = Pogo(1) + w P1p1(1) + Pagha(t)
$o(?) + w1 (t) + ¢2(7)
wherew e R, P, e R? andgpg = (1 — 1)?, pr =2t (1 — 1), pp = 1.
The rational quadratic Bézier curve (3) has the following properties (Lee, 1985; Farin, 1989; Pottmann,
1991).

, 0<r<1y, 3

(P1) P(¢) lies in its control triangleA Py P, P, for w > 0, and is triangle convex.

(P2) P(r) passes through the endpoimsP,, P, with the corresponding tangent directioRs(0) and
P’(1) parallel toPy P, and P, P.

(P3) If the tangent lines at the endpoints are parallel, the curve can be written as

Pogo(1) + oT ¢1(1) + P2¢2(t); 0<r<l @)

$o(t) + P2(1)

whereT is the tangent vector at the endpoify.

(P4) The pointSp = P(%) is called theshoulder pointof P(r). We haveSy = %(Qo + Q5), where
Qo = 2hr g, = 2Btl2 or 9o = Py + 0T, 0 = wT + P, when (4) is usedS is the unique

1+w 1+
point in the curve segmerit(z), 0 < r < 1, that has the maximum distance to liRgP».

P(t) =

We usually rewriteP(¢) in (3) or (4) asP(w, t) to show its dependence an Let S[ Py, Ty, P>, T>]
be a triangle convex segment, aig be the intersection point of the tangent linesPgtand P; if it
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Fig. 7. Approximation curve family.

exists. The curve familyP (w, t) with @ > 0 interpolates point®,, P, and has the tangent directions
To, T» at Py, P> respectively, and thus providesGt approximation ofS. Suppose that the solid curve in
Fig. 7 is the curve segmelistto be approximated and the dotted curves are the quadratic curve family
P(w,1). A proper value must be set far such that it has an optimal approximation to the segnfent
The selection of the weight might lead to some optimization problems similar to the following:

min(s(S, P, 1)), min( max(d*(,n)),

max
0<r<1
wheres(S, P(w,t)) is the area bounded by and P(w,?), 0<t < 1 andd(w, t) is some distance
expression from a poinP(7) to S (Chuang and Hoffmann, 1989; Pottmann et al., 2002). However such
expressions might involve complicated computations and are quite impractical.

In the next section, we will give another approximation method using the shoulder points. The shoulder
points of S and P(w, t) are to be pushed as near as possible, leading to an optimal approximation of
the two segments in certain sense. This algorithm is therefore csitledlder points approximation
Experiments show that high accuracy of approximation may be achieved with a small number of conics.

3.2. Shoulder point computation

From the definition of the shoulder point, we can see that the gradighaothe shoulder point, of
S[Po, P>], written asV f(Sp), is perpendicular t??>, — Py. The following equations system is therefore
to be solved to gefp.

| fx,y) =0,
F(x’y)'{h(x,y):Vf(x,)’)'(Pz—P0)=0- ©

However, it is not trivial to determine which one of these solutions corresponds to the unigue shoulder
point of S. The following algorithm based on the Newton—Ralphson method provides an efficient method
to obtain the shoulder point.

Algorithm 8 (Shoulder point computatignThe input is a triangle convex segmetitPy, To, Po, T»]. The
output is the shoulder poirst, of S if it is found.

(1) Select an initial pointy.
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P2

Fig. 8. Shoulder point computations.

As shown in the left part of Fig. 8, suppogg Py P, is the control triangle of§ and N is the midpoint
of Py, P,. If Ty is not parallel taT», let M be the midpoint ofV and P;; otherwise letM = N. Suppose
M = (M., M,). Find the intersection poinfy = (M,, I,) on S from Algorithm 2 and sef, as the initial
point.
It should be noticed that we do not take the initial palpias the intersection point of the ling N
with the segmens, which seems to be a better choice, since such an intersection point is not easy to be
obtained.

(2) Find the shoulder point with the Newton—Ralphson method.
Starting atpg = I, repeat the following process unffifhp,|| < §.

e Let J(x, y) be the Jacobian matrix df (x, y) defined in (5).

e Solve the system of the linear equatiah&y) Apy = —F (py).

o Let pri1 = pr + Api. If piyq lies in the control triangle of, go to the preceding step and repeat.
Otherwise or ifk = 10, the algorithm fails.

(3) If the above step ends in a successful way apd is neither a singular point nor an endpointsHf
outputSpy = pi.1. Otherwise, the algorithm fails.

In the left part of Fig. 8/, is the initial point andS, is the shoulder point computed with the algorithm.

The above algorithm can be used to compute the shoulder point in most cases. If it fails, e.g., when
computed in the example cur@g in Section 5, the following algorithm tries to refine the initial point of
the Newton—Ralphson method until the shoulder point is obtained.

Algorithm 9 (Refined shoulder point computatjoihe input and output are the same with that of Al-
gorithm 8 and supposg = (x;, y;),i =0, 2.

(1) Use Algorithm 8 to find a shoulder point. If it fails, go to the next step.
(2) LetIo = (I, I,) be the initial point used in the preceding step, @td y) = 0 the line passing
throughl, and parallel taP, P, with the formy = I, + 22222 (x — I,) (right figure in Fig. 8). Substitute

X2—X0

y into f(x, y) =0 and we get a univariate equatigix) = 0.
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(3) Find all the solutiongg < - - - < x,, of g(x) =0 in the interval(xg, x,). Let

[_)iz(iisly'i'yz_yo(ii_lx))’ O<l<m
X2 — Xo
(4) Select a unique poink;,, 0 < ip < m, with Algorithm 3 such that it is or§. SetPy = Io, P, = P,

05
and go to step 1.
Since the initial positions converge to the shoulder point, the process will end successfully.
3.3. Segment approximation

In geometry, the approximation error should be defined as the following Hausdorff distance between
the segmenf and its approximatiors,,,

e(S,S,) =dis(S, S,) =maxmind(P, P').
PeS P'eS,

However such a distance is difficult to compute and there is no need to compute it in most cases. As an
implement, we take the distance from the parametric cige = (x(¢), y(¢)), 0 < < 1 to an implicit

defined curveC : f(x, y) = 0 in the following form, which is called therror function (Chuang and
Hoffmann, 1989),

S (x (@), y(@))
[f(x(@), y()? + fo(x(0), y(1))2]Y/2
The approximation errorbetween P(r) and C is set as an optimization problea(P(¢),C) =

maxo< <1(e(?)). In practice, we sample ast; = # 0< i < n, for a proper value ofi and take the
approximation erroe(P(t),C) as max(|e(;)|).

e(r) = (6)

Algorithm 10 (Segment approximatipnT he inputs are a triangle convex curve segmiiiy, Ty, P, T>]
and the error boundl. The output is a piecewise rational quadratic Bézier curves @dthontinuity such
that it give an approximation t8 with approximation error less than

(1) According to the interpolating requirements at the endpointB(af, 1), setP(w, t) as (3), or (4)
if To andT> are parallel.

(2) Find the shoulder poirfip = (P, Py) on S with Algorithm 9.

(3) Let the shoulder point aP (w, t) be S(w). A specific valuavg will be determined such that(wo)
has a minimum distance to the shoulder paipt If T is not parallel toT,, supposeP; = (x;, y;),
i =0,1,2, then we have

Po+20Pi+ Py (xo—i—wal-l-xz yo+2wy1+yz>

S(w) = (S, S)’) = 2(1+ ) 21+ w) ’ 21+ w)

Solving the equatioﬁ% =0, whered?(Sp, S(w)) = (P, — S,)?+ (P, — S,)?, we get

_ 1 (o+x2—2P) +alyo+y2—2P)
2 (Py — x1) +a(Py —y1)

__ Yoty2—2ym
wherea = pram—

wo

’
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P1

Qo Q2

P2

Fig. 9. Error control.

If To = (T, T,) is parallel toT», we get in a similar way

_ (28y —x0 — x2) +(25y — yo — y2)
B 2T+ T2 ‘

(4) If the approximation erroe(P(w, t), S) < 8§, output the Bézier curve. Otherwise, divide the seg-
ment into two parts at the shoulder poisit and repeat the approximation method for them until the
approximation error is less than

We may assume that there always exists a control triangle for an approximated curve seggimaet
if its tangent directions are parallel at the endpoints, we may do one step of subdivision at its shoulder
point. We can give the following theorem.

wo

Theorem 4. With Algorithm10, the approximation error is convergent to zero. More precisely, ket the
area of the control triangle for the approximated curve segment. Afsteps of recursive subdivisions,
the Hausdorff distance betwesrand its approximation is less thapls /2*.

Proof. Let P(r) be the approximation curve o after one step of approximation. Théh(r) and S
are contained in the same control triangl®, P, P> (Fig. 9). After one step of subdivision, the resulted
segments are contained in triangle$, QoM and AP, Q,M respectively. LetSy and S, be points on
PoP, such thatM Sg || PoQo and M S, | P,Q5, sg, s1 ands, the areas of trianglea PoQoM, ASpSoM
and AP,Q,M respectively. Then we hav@g + s2)/s1 = QoQ2/S0S> ands1/s = (SoSo/ PoP>)?. As a
consequence,

Sots2 _ Qol2- 5052 _ (QoQ2+ S082)* 1 %
s PP 4Py P? 4
Due to the subdivision procedure, the anglegy PP, and /P, P, Py must be acute angles and hence
the angles’ PoQoM and/P,Q,M must be obtuse angles. Let the altitudes of the triangl®sQoM,
AP,Q>M corresponding toM, P,M behig= QoHy andhi, respectively. We haveQoHg)? < PoHp-
HoM < (PoHo + HoM)?/4 = (PoM)?/4. That ish,o < PoM /2. Acting in a similar way, we géfi1» <
P,M /2. From (7), we have that
PoM PoM N

hip- — = < -.
> + N1 5 S0+ 52 I

In particular, we havé?, < s/4 andh?, < s/4. Repeat the process and it is easy to see that/afieps
of subdivisions, we have?, < s/2%* andh?, < s/2%. Thushio < 4/s/2F andh?, < /s/28. O

hio-l- hiz <hio-
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Fig. 10. Approximation and the error function &f.

The first part of Fig. 10 shows the approximation of the following curve
Cr: (x2 4?3 —4x%y?2 =0.

The approximation process is taken as follo@sis first approximated with one piece of conics with the
error functioneg(z) (6) plotted in the second part of Fig. X0.is then divided at its shoulder poikt and
the resulted two segments are approximated with error functigys andeg,(¢). Due to the symmetry
of Cy, we only showego(?) in the third part of Fig. 10. In a similar waygoo(?), €go1(t), €0010(t), €oo11(t)
are obtained and plotted in the third part of Fig. 10.

4. Curvetracing

The following concepts from graph theory will be used (Bondy and Murty, 1976&yalk in a graph
G is a finite non-null sequenc® = vgeivie,v5. .. e v, Whose terms are alternately vertices and edges,
such that for I< i < k, the ends ok; arev;_; andv;. The integerk is thelengthof W. If the edges
e1, ez, ..., e are further distinctW is called atrail. A trail that traverses every edge @fis called an
Euler trail of G. A walk is closedif it has positive length and its origin and terminus are the same.
A closed Euler trail is called aBuler tour.

Theorem 5 (Bondy and Murty, 1976)A connected graph has an Euler trail if and only if it has at most
two vertices of odd degree.

To guarantee th&* continuity, two segmentS[ Py, Ty, P,, T»] andS[ P3, Tz, P, T4] can be connected
in a trail only if P, = P3 andT> = A T3 for a non-zero numbet. A walk in the topology graph of a curve
is called aranchif the corresponding segments of every neighboring edges in the trail satisfy the above
property.

Based on the theory of plane algebraic curves, for example (Walker, 1978; Cheng et al., 2004), we first
have the following theorems about the structure of a real plane algebraic@urve

Theorem 6. Every point on a real plane algebraic cur@ehas an even number of segments originating
from it. Furthermore, we can divide the segments into pairs such that two segments in the same pair share
the same tangent direction.
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Theorem 7. For a real plane algebraic curv€, the number of the branches approaching to infinity is
even.

From Lemma 2 and the above two theorems, the vertices in the Ggaplith odd degrees must be the
intersections of the boundaries Bfwith the curve branches @iz approaching to infinity. Such points
are calledooundary pointsaind its degree iz must be one.

Algorithm 11 (Curve tracing. The input is a graply = for a plane curv€g. The outputs are edge-disjoint
branched; such that J,_, 7; = E(G¢).

(1) For all the singular point® in Vs do the following steps.

(2) For any edge;, = (P, Py), find another edge, = (P, P,) sharing the same tangent directionPat
with e;. If there exist more than one such edges, we consider all the possible cases and select the one
resulting the smallest number of brancied his step is always possible by Theorem 6.

(3) UpdategG; as follows: (a) add a new vertéx> and two new edges, = (P, Vp), e, = (Vp, P2) t0
G, (b) remove the edges ande; from G. Repeat this step until the degreemfs equal to two.

(4) Divide the updated grapfi= into some connected subgrapﬂfg, 1<i<r.

(5) The degree of each vertex@} is two except the boundary points. The degree of a boundary point
is one. With this property, we can then generate naturally a EulerTirafl glc

There only exist two possible cases for e@h One case is that (G%) contains no boundary points,
then the resulted; is a Euler tour. The other case is tha(g’é) contains just two boundary points and
T; is then a Euler trail from one boundary point to the other one.

This algorithm not only gives a tracing order ¥ but also gives a clear explanation for the number
of the resulted branches. From Theorem 5, if the number of the boundary poifitsi®ék, k > 1, there
always exisk edge-disjoint walkg;, 1 <i <k, of Gz such than.‘:l T; = E(Gz). We can then conclude
thatr > k.

We give the generation process of the tracing ordefodh Fig. 11. Verticesv, andvs are split into
two points respectively, giving a Euler towusvgu,vovgv7vav for the graph. Geometrically, the vertices
v, andvg arev,s andvs respectively.

vo Ve Vo Vo

Vi
vi V4

vs Vs

Fig. 11. The generation of the tracing ordeiCpf
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5. Main algorithm and experimental results

Algorithm 12. The inputs ar€ : f(x, y) = 0 and an error boundl> 0. The outputs are a bounding box
B and rational quadratic B-spline curvés(z), 1 <i < r, such that they give &' approximation ta’s
with e(B; (1), C) < 8.

(1) Topology determinatiorDetermine the bounding ba® and the topology of s with Algorithm 1.
Let the resulted segments 8¢ and letG; = U (S7).

(2) Flex computationCompute the set of flexég- of Ci as shown in Section 2.3. Divide those segments
in Sy containing flexes with Algorithm 4 to obtain a new set of triangle convex segnsgnasd let
Gr =U(SF).

(3) Tangent computationrCompute the tangent directions of each segmed4rat its endpoints with
Algorithm 5 to obtainG; andS;.

(4) Segments combinatio@ombine some edges in the gragh with Algorithm 6 or 7 to obtain a new
graphGg andSg.

(5) Segment approximatiodpproximate each segment & with piecewise rational quadratic Bézier
curves with Algorithm 10.

(6) Curve tracing.Find r edge-disjoint brancheg;, 1 <i <r, in Gz with Algorithm 11. LetE; =
U~(T;) be the corresponding curve branchesin

(7) B-spline conversionConvert these approximation rational quadratic Bézier curves for the segments
in E; into a B-spline curveB; with a proper knot selection (Piegl and Tiller, 198B).provides aC?
continuous approximation to branéh, 1 <i <r.

The method reported is implemented in Maple. The benchmark cdgy€s, Co, Cs, C4 are from (Walker,
1978). Curveg’s andCg are taken from (Gonzalez-Vega and Necula, 2002).
Cz:x4+x2y2— 2x2y —xy2+y2:0,
Ca: (2% +y)2 + 3%y — y°,
Ca: (2% +y)° —4x?y? =0,
Cs: v+ y" — (84 7x)y® — (7 — 21x?)y® — (=20 — 35x + 35¢%)y*
— (=14 + 70x? — 35¢%)y% — (164 42¢ — 70x% + 21x%)y?
—(T—42° +35x* — Tx®) y + 7x — 143 + 7x° —x" =0,
Co: —3+412y% 4+ 2y* — 12y% 4 y& + 12¢2 — 28y2x2 4 12y*x?
+ 4y5x2 — 18¢* 4 20y%x* + 2y*x* 4+ 12¢® — 4x8y%2 — 3x8 = 0.
In the figures in this section, the left figures show the approximation spline curves and the right figures
show the plots of the corresponding error functions. Specifically, the curve in the right figures defined in
the interval(i, i + 1) corresponds to thé + 1)th curve segment with the following tracing orders in the
left figures.
Tracing order foiCq (Fig. 12): vousvgu4v2vsv7v400.
Tracing order foiC, (Fig. 14): vgv1v2v3v400.
Tracing order foiCz (Fig. 15): vov1v2v3v1v4U501 VgV.
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Fig. 13. Approximation o€ in (Bajaj and Xu, 1997).

Table 1
Comparison of our results with results in BX (Bajaj and Xu, 1997)
Our results BX
Ex. deg d-app error p-num d-app error p-num
Co 4 (2,2) Q003 8 (2,1 (011 34
Co 4 (2,2) Q005 5 (3,3) 12
C3 4 (2,2) Q005 9 (2,1 009 27
Cy 6 (2,2) Q003 12 (2,1) a 28

Tracing order foiCy4 (Fig. 16): vou1v2v3v1v4U501 VgV.
Tracing order foiCs (Fig. 17): vgv1v2v3v4U506V7Vg.
Tracing order foiCg (Fig. 18): vou1v2v3v4V5v6v7Vg aNdUgv10V13V11V12V9.

As a comparison, we list some approximation results obtained by our algorithm and that obtained in
(Bajaj and Xu, 1997) in Table 1. In the tabldegis the degree of curv€;; d-app= (m, n), wherem, n
are the degrees df(¢), Q(¢) in the approximation rational cur E;; error is the error boundp-numis
the number of approximation curve segments of degree p-app. It can be seen from the table that our new
method may achieve better approximation bound with less approximation segments than that in (Bajaj
and Xu, 1997). The approximation 6§ obtained in (Bajaj and Xu, 1997) are also shown in Fig. 13 for

an intuitive comparison.
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Fig. 14. Approximation and the error function ©.
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Fig. 15. Approximation and the error function @§.
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Fig. 16. Approximation and the error function ©f.

6. Approximation of spatial curves

Suppose that an irreducible spatial cuBeis defined by the intersection of two implicitly defined
algebraic surfaceg(v) = 0 andi(v) = 0, wherev = (x, y, z). It is known how to decide whether the
curve Cy is irreducible or not (Gao and Chou, 1992). L&tbe a 33 matrix,v= (x,y,z) =V - A,
g(V) =g(v-A), h(V) =h(v- A). We first have the following result (Gao and Chou, 1992).
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Fig. 17. Approximation and the error function &f.
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Fig. 18. Approximation o€g.
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Fig. 19. The error function ofs. Cg has four branches and is symmetric with thaxis. We only show the result of the error
function for two of the branches.

Theorem 8. Let Cg be an irreducible spatial curve defined pyv) = 0 and 4(v) = 0. We may always
find a rotational matrixA such that the new spatial curég defined byg (V) = (V) = 0 is birational
to an algebraic plane curvé : R(x, y) = 0. We may also find a birational map frothto Cs as follows
(x,y)— (x,y, H(x, y)), whereH is a rational function inx, y.
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Before giving our approximation method &g, we will first propose an algorithm to give an approxi-
mation for a functionR (¢) with a rational quadratic function.

Algorithm 13. The input is a rational functioR(z), 1o < ¢t < 1, and the output is an approximation
rational quadratic functio®, (z), 1o < t < 1, of R(¢) such that

R,(t0) = R(t0), R.(t1) = R(11); R/ (t9) = R'(to), R, (t1) = R'(1tp).

(1) Without loss of generality, we may assume that 0, 11 = 1 for simplicity.

(2) Suppose that the approximation function®yf) is

@oRopo(t) + w1R101(f) + w2R22()
woo(1) + w191(t) + wap2(1)
whereg; (¢) is defined in (3).

(3) It can be easily seen th&, = R(0) andR, = R(1). From

Ra(t): 0<r«1l, a)i,RiGR,iZO,l,Z,

, 2w, , 2w,
R,(0) = a)—o(Rl —Ry)=To, R,(1)= w—z(Rz — Ry =T1>,

we get
_ 2(R1—Ro) _ 2(Ro—R1) i .
wo = 2<IC;;[EORO) , W2 = a)21T2 L ) If T0T2 # 0,
wo= =, Ro= Ry, !f I #0, I=0;
CU]_:O, |fT0=T2=0

(4) LetR,(3) =M =R(2), we have

R2T>—R3To—(RoTo—RoTo—ToT2)M

w1 = 1, Rl = goTz—R2T0+ToT2+(TO—T2)M s if TQT2 ?ﬁ 0;
2(R§—RoR2—R2To+(Ro—Ro+To) M) ; .

w1 = 15 w2 = 0 To(Ra—M) ) If TQ ;ﬁ 0’ T2 = O,

61)0=1,61)2=—§2+%,R1=1, ifTQ=T2=O.

It is evident that the approximation error Bf (¢) to R(¢) is convergent to zero.
For an approximatiods (¢) of Cs, we define their approximation error function as

e(t) =maxe(g, 1), e(h, 1)), (8)
where
e(g.1) = g(C5(1))

[g: (C5(1))% + g, (C§(1))? + g (C5(1)HY?

Functione(h, t) is defined in a similar way as in (Chuang and Hoffmann, 1989). The approximation error
e(Cs, C%) is then taken as max; <1 e(t). The following algorithm is taken to give a rational quadratic
approximation oCs. It first gives an approximation to the projection@finto thexy plane with Algo-

rithm 12. And then it approximateS in the z direction with Algorithm 13.

Algorithm 14. The inputs are a spatial cur@g defined byg = 4 = 0 and an error boundi> 0. The out-
puts are a bounding bad%s = {(x, v, z): x0 <x < x1, yo <y < y1, 20 <z < z1} and rational quadratic
spatial spline curves; (¢), 1< i < r, such that they give @' approximation of’s within the bounding
box Bs ande(Cs, Ef) < 6.
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(1) Decide whetheg = h = 0 defines an irreducible spatial curve as done in (Gao and Chou, 1992). If
Cs is not irreducible, end the algorithm. Otherwise, Rtx, y) and H (x, y) be the polynomial and
rational function obtained in Theorem 8.

(2) For the plane curvé : R(x, y) =0, determine a bounding bd¥ = {(x, ¥): xo <x <x1, yo<y <
y1} and its approximation B-spline curvés(z), 0 < i < r with Algorithm 12. Similarly, we may de-
termine a bounding boB, = {(x, z): o <x < i1, 2o <y < z1). Let Bs = {(x, y, 2): min(xg, Xg) <
x <max(x1, 1), yo <y < y1, zo <y < z1}. ThenCg and the part o€ inside Bs have the same
topology.

(3) LetEp(t) = (E((1), E\ (1)), to < t < t, be one quadratic segmentBi(¢). Supposes andSs[ Po, P1]
are the corresponding segmentsAg@(¢) in C and Cs respectively.Ss[ Py, P1] is a spatial curve
segment with endpointg; = (x;, y;, z;), i = 0, 1. Take the following steps to give a rational quadratic
approximation ofS.

o Let E.(t) = H(E,(2), E\ (1)), to < t < t1. From the interpolation property df»(7) at its end-
points, we havet, (t;) = H(E.(t;), E,(t;)) = H(x;, y;) = z;,i =0, 1.

e Give arational quadratic approximation functiép(r) for E, (¢) such thatt, (t;) = E, (1;), El(t;) =
E/(%;),i =0,1, with Algorithm 13. LetE (t) = (E,(t), Ey(t), E.(1)), to < t <t;. Then itis a spa-
tial quadratic curve segment.

o If the approximation erroe(E(¢), Ss) < 8, end this procedure. Otherwise compute the shoulder
point Sp = (x,, y,) of S and letz, = H(x,, y,). Divide Sy at (x,, y,, z,) and repeat this proce-
dure untile(E (1), Sg) < 8.

(4) The resulted spatial quadratic curve segments naturally form a spline curv€Witmtinuity. De-
note them a<; (), 1 <i <r.

Theorem 9. With Algorithm14, each resulted spline curvg; (t), 0 <i < r, is Ct-continuous and the
approximatione(Cs, E;(¢)) is convergent to zero after a sufficient number of subdivisions.

Proof. Suppose thak; (1) = (x; (1), yi(t), z;(¢)), i = 0,1, are two adjacent quadratic segments (con-
ics) in E;(t) sharing a common knat= ;. From the approximation of the plane curge we have
that (xo(r1), yo(t1)) = (x1(f1), y1(r2)) and (xp(12), yo(t1)) = (x1(#1), y1(72)). Then we get thato(r) =

H (xo(t1), yo(t1)) = H (x1(t1), y1(t1)) = z1(t1) and thereforeEy(t,) = E1(t1). Furthermore, from(¢) =

H, (xi (1), i (1))x[(t) + Hy(x; (), yi (1)) y](t), we getzy(ty) = z;(t1) and thereforeEy(r) = E{(¢). This
proves that eaclt; (¢) is Cl continuous.

Suppose thatPy = (xg, yo, zo) IS @ point onCs. Then we haveR (xq, yo) = 0 andzg = H (xg, yo).
From the approximation ofp(¢) to C : R(x,y) = 0, we have a pointEp (1) with the minimum
Euclidean distanced(E (o), (xo, o)) 10 (xo, yo). Let H (to) = H(Ep(t0)), Po = (Ep(to), H (to)) and
Py = (xo, o, H (tp)) and we have

D(E(to), Po) < D(E(to), Po) + D(Po, Po) + D(Po, Po).

From the approximation of (¢) to H(t), D(E(to), Po) is convergent to zero. From the approxi-
mation of Ep(r) to C, D(P,, Py) converges to zero. With the continuity @f (x,y), D(Py, Py) =
D((xo, yo, H(Ep(t9))), (x0, yo, H (xg, y0))) is convergent to zero. TheP(E(ty), Py) is convergent to
zero and so does(Cg, E;(1)). O
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Fig. 20. Approximation of a spatial curvefifeed as the intersection of two surfaces.

Let Cs be a spatial curve defined as below (Bajaj et al., 1988) (Fig. 20)
gy, ) =z-2"—y*=0,  h(x,y,2)=z-3&%y+)y*—-2y°=0,

and letR(x, y) be the resultant of(x, y,z) and h(x, y, z) with respect toz. Then the plane curve
C:R(x,y) = 2x* — 3x%y 4+ y? — 2y 4+ y* = 0 is birational toCs with H(x, y) = 2x* + y*. In factC is
justCq as defined in (1). Using the approximation resul€gfn Section 5, we obtain the approximation
curve forCg, which still consists of eight curve segments as plotted in the left figure in Fig. 20. The plot
of the approximation error function as defined in (8) is shown as the right figure in Fig. 20.

7. Conclusion

In this paper, we give a simple and intuitive approximation of the plane algebraic curve with rational
guadratic curves. The basic idea is to divide the curve into triangle convex segments which can be nicely
approximated with quadratic Bézier curves and to connect the segments into certain maximal branches
which can be globally approximated by quadratic B-splines. We also extend the method to give approxi-
mation to spatial curves.

Experiments show that we can achieve high precision approximation with few segments. Instead of
giving a power series for each approximated segment, the endpoint information and shoulder points are
mainly used to express the segment. Since the geometric information is considered, the algorithm is easy
to understand and many geometric characters of the approximated curve are kept.
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