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Abstract

In this paper, a new Ritt-Wu’s characteristic set method for ordinary difference sys-
tems is proposed, which is valid for any admissible ordering. New definition for irreducible
chains and new zero decomposition algorithms are also proposed.
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1 Introduction

Ritt-Wu’s characteristic set method is the cornerstone of Wu’s important work on mathe-
matics mechanization [15, 16, 17, 18]. The idea of the method is to decompose the zero set
of an equation system into the union of the zero sets of equation systems in triangular forms.
The characteristic set method has been developed for polynomial systems [1, 5, 15, 19] and
differential polynomial systems [2, 3, 9, 10, 13, 16].

Recently, a characteristic set method is also developed for ordinary difference polynomial
systems [7]. But the theory given in [7] has several drawbacks. First, the definition of the
proper irreducible chain is not natural. Second, the variable ordering is fixed. In this paper,
we propose a new characteristic set method to remedy these drawbacks.

We give a new definition for the concept of proper irreducible chain. Comparing to the old
definition, the new definition is more natural. We show that if a chain is proper irreducible
in the old sense, then it is also proper irreducible according to the new definition. As a
consequence, results proved in the above mentioned paper are still correct. In particular,
proper irreducible chains under the old definition is much easier to check than the old one.
Another advantage of using the new definition is that the following result is now valid: the
characteristic set of a reflexive prime ideal is coherent and strong irreducible. If using the old
definition, we can only prove that: there exists a variable order such that the characteristic
set of a reflexive prime ideal is coherent and strong irreducible under this variable order.

The new characteristic set method works for any admissible ordering. This extends the
scope of the method significantly. As an application of this extension, we give a direct proof
for an important result about difference polynomial system which is used in control theory
in Theorem 3.15. This result cannot be proved with the theory in [7].



With the new definition of the proper irreducible chain, the zero decomposition algorithm
in Section 4 is also updated. The new algorithm appears much simpler than the old one.

In [4], Cohn gave an algorithm to solve the Nullstellensatz test of perfect difference
ideals. The idea is to transform the problem to a difference ideal with order less than or
equal to one and then use zero decomposition algorithms in algebraic case to construct a
difference kernel. This certainly simplifies the problem. On the other hand, reduce the order
of difference polynomials to one by introducing new auxiliary variables destroy the structure
of the ideal itself. In Section 5, by combining the idea of Cohn and the concept of algebraic
irreducible chains, we give another algorithm of zero decomposition for difference polynomial
systems.

2 Preliminaries

We will introduce the notions and preliminary properties needed in this paper. Details on
these concepts can be found in [4, 11].

2.1 Difference fields, difference polynomials and difference ideals

A difference field F is a field with a third unitary operation o satisfying: for any a,b € F,
o(a+b) = oa+ ob, o(ab) = oa - ob, and oa = 0 if and only if a = 0. Here, o is called the
transforming operator of F. If a € F, oa is called the transform of a. If o~ 'a is defined for
all a € F, we say that F is inversive. Every difference field has an inversive closure [4]. In
this paper, all difference fields are assumed to be inversive.

Let IC be the set of rational functions in variable x defined on the complex plane. Let o
be the mapping: of(z) = f(x + 1), f € K. Then K is a difference field with transforming
operator o. This is an inversive field.

Let x1,x2,...,x, be difference indeterminants. Then R = K{x1,...,z,} is called an
n-fold difference polynomial ring over K. Any difference polynomial f (abbr. r-pol) in the
ring K{x1,...,2,} is an ordinary polynomial in variables O'kl‘j(k‘ =0,1,2,...,57=1,...,n).

For convenience, we also denote aka:j by x; .

First, we need to define an ordering < on the set of variables X = {z; ;,1 <i <n,j > 0}.
We call an ordering is admissible if the following conditions hold:

1) up < ug = ouy < oug, for any uj,us € X.

2) u < ou, for any u € X.

We always assume that 1 < u, for any v € X. Let f € K{x1,...,z,} and < is an
admissible ordering on X.

Example 2.1 Let x;; < x5 for any i < [, then the ordering is called variable ordering,
which is used in [7].
Let x; j < a1 for any j < k, then the ordering is called total ordering.

If z, 4 is of the highest ordering of the variables appears in f w.r.t.<, we call z, the
leading variable and x, , the lead of f, denoted as lvar(f) and lead(f), respectively. p is
called the class of f, denoted as class(f). If f € K, we set class(f) = 0. The order of f



w.r.t. z;, denoted by ord(f,z;), is the largest j such that z; ; appears in f. When z; does
not occur in f, we set ord(f,x;) = 0.

The leading coefficient of f as a univariate polynomial in lead(f) is called the initial of
f, and is denoted as init(f).

An r-pol f1 has higher rank than an r-pol fa, denoted as f; = fo, if

i). lead(f1) > lead(f2), or

ii). lead(f1) = lead(f2) = xc,q and deg(f1,2cq) > deg(fa, vca)-

If no one has higher rank than the other for two r-pols, they are said to have the same
rank, denoted as f; = fo. We use fi < fo to denote the relation of either fi < fo or f1 = fo.
It is easy to see that < is a total order on the r-pol ring.

An n-tuple over K is of the form a = (ay,...,a,), where the a; are selected from some
difference extension field of K. Let f € K{z1,...,2,}. To substitute an n-tuple a into
f means to replace each of the z;; occurring in f with o7a;. Let P be a set of r-pols in
K{z1,...,zn}. An n-tuple over K is called a solution of the equation set P=0 if the result
of substituting the n-tuple into each r-pol of P is zero. We use Zero(PP) to denote the set of
solutions of P = 0. Let f € K{z1,...,z,}. We use Zero(P/D) to denote the set of solutions
of P = 0 which do not annihilate any r-pol of .

A difference ideal is a subset Z of R = K{x1,...,z,}, which is an algebraic ideal in R
and is closed under transforming. A difference ideal 7 is called reflexive if for an r-pol f,
of € T implies f € Z. Let P be a set of elements of R. The difference ideal generated by
P is denoted by [P]. The (ordinary or algebraic) ideal generated by P is denoted as (P). A
difference ideal 7 is called perfect if the presence in Z of a product of powers of transforms
of an r-pol f implies f € Z. The perfect difference ideal generated by P is denoted as {P}.
A perfect ideal is always reflexive. A difference ideal 7 is called a prime ideal if for r-pols f
and g, fg € Z implies f € T or g € 7.

2.2 Difference ascending chains

Let f1,f2 be two r-pols and lead(f1) = 4. f2 is said to be reduced w.r.t. fi if deg(fo, zpg+i) <
deg(f1,zp,q)) for any nonnegative integer i.

A finite sequence of nonzero r-pols A = Ay, ..., A, is called an ascending chain, or simply
a chain, if one of the two following conditions holds:

i). p=1and A; #0, or

ii). 0 < class(A1), A; < Aj and A; is reduced w.r.t. A; for 1 <i < j <p.

A is called trivial if class(A;) = 0.

Example 2.2 Let us consider f1 = x%l — $%0 +1, fo=z120+ 211 € K{z1}. Since f1 < fa,
deg(f2,x1,1) < deg(f1,z1,1) and deg(fa2, x12) < deg(f1,21,1), by the definition, fo is reduced
w.r.t. fi1. Hence, fi1, fo is a difference chain.

Let A be a chain and I 4 the set of all products of powers of the initials and their
transforms of the r-pols in A. The saturation ideal of A is defined as follows

sat(A) ={f € K{x1,...,z,} |39 €14, fg € [A]}.

Let B be an algebraic chain and Ig the set of products of powers of initials of the
polynomials in B. Then we define the algebraic saturation ideal of B to be the following



a-sat(B) = {f € K[x1,...,2,] |39 € I, fg € (B)}.

Note that I 4 is closed under transforming and multiplication. Then [A] : I 4 is a difference
ideal.

A chain A = A4,..., A; is said to be of higher rank than another chain B = By, ..., Bs,
denoted as A > B, if one of the following conditions holds:

i). 30 < j < min{t, s}, such that Vi < j, A; = B; and A; > Bj, or

ii). s >tand A; = B, for i <t.

If no one has higher rank than the other for two chains, they have the same rank, and is
denoted as A = B. We use A; < As to denote the relation of either A; < Ay or A1 = As.
It is easy to see that =< is a total order on the difference chain set.

Lemma 2.3 [1}] Any descending chain Ay = Ag = As = ... is finite.

Let P be a set of r-pols. It is possible to form chains with r-pols in P. Among all
those chains, by the above lemma, there are some which have a lowest rank. Any of those
chains contained in P with the lowest rank is called a characteristic set of P, and denoted by
B =C.S(P).

An r-pol is said to be reduced w.r.t. a chain if it is reduced to every r-pol in the chain.

Lemma 2.4 [14] If A is a characteristic set of P and A" a characteristic set of P U {f}
for an r-pol f, then we have A = A'. Moreover, if f is reduced with respect to A, we have
A A

As a consequence, we have

Lemma 2.5 A is a characteristic set of P if and only if there is no nonzero r-pol in P
which is reduced w.r.t. A.

Lemma 2.6 Let A be a characteristic set of an ideal I. If an r-pol f is invertible w.r.t A,
then f & 1.

Proof. Let V be the algebraic parameter set of Ay. Since f is invertible w.r.t A, there exists
an r-pol g and a nonzero r € K[V] such that gf = r mod[A]. If f € I, we have r € I. Since
r is reduced w.r.t A, by Lemma 2.5, we have r = 0, a contradiction. |

2.3 Difference Pseudo-remainders

For any chain A, we could write it as the following form.
A= A,..., A, (1)

with A; € IC{.I‘l, - ,:L'n}.

A variable x4 is called a principal variable of A if there exists an A € A and integer
J = 0 such that z.4 = o’/lead(A). Otherwise, it is called a parametric variable of A. Denote
the set of principal variables and the parametric variables of A by M 4 and P4 respectively.
It is clear that Mg UP4 = {z; ;|1 <i <n,j > 0}.
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Figure 1: The leads of chain A Figure 2: The principal variables of chain A

Example 2.7 Let A= {A;1,..., A5} be a chain as following with variable ordering:

A = 2,4y +1

Ay = x14—T1p

Az = 90%72 + 231230+ 1,0 (2)
Ay = x43+ 240

As = 50 + 1.

The principal variables and the parametric variables for A are given in Figure 1 and 2.
The horizontal axis is the variable indexr and the vertical axis is the number of transforms
of the variables. The hollow circles are the leads of the polynomials in A, the circles are the
principal variables, and the x symbols are the parametric variables for A.

If we use the total ordering and x1 < ... < x5, then A = As, A1, A3, Ay, Ao is also an
ascending chain.

Let hi,..., h, be nonnegative integers. In order to compute the pseudo-remainder of an
r-pol w.r.t. A, we need to determine the extension of A. First, we collect 4;,7 =1,...,m
by the class of A;.

Let A be a chain. We rewrite A as the following form:

Al,l(l‘la e ,[L‘n), . .,A17k1($1, e ,:L'n)
A=< ... (3)

Api(z1,... ,an),---,Ap,kp(!Eh ceeyTy)

where class(A; ;) = ¢; for j =1,...,k;, and ord(A4; ;, z.;) < ord(A;,z.,;) for j <.

We use algorithm Extension to define the extension of A w.r.t. some nonnegative inte-
gers hi,...,hy. Note that the definition for h; is used in the proof of Theorem 3.8.

We use Ay, .. 1,) to denote the polynomial sequence obtained by rearranging the poly-
nomials of A,(hl,..., hn) according to the admissible ordering <. We have

Lemma 2.8 Use the notations above. Let s; = minaca, . {ord(4,z;)|j = class(4)},
€j = MaXAc A, pyl0rd(A, z;)|j = class(A)}. For a j,1 < j < n, if there exists no A € A

,,,,,

such that j = class(A), then we denote by V; = {o'z;|0 < i < e;} and Y; = 0; if there



Algorithm 1 — Extension Al(hl,---7hn)

Input: A chain A of form (3) and a set of integers (hi,...,hy).

Output: The extension ‘A,(hl ) of Aw.r.t. hi,..., "y

S0. Let S = {1, cee ,p}, .A, = @, C; = class(Am), tiﬂ‘ = OI‘d(AiJ,.’ECi).

S1. For any i € S, let 0; = max{order of x; appears in AU A'}, h; = max(h;,0; + 1).
S2. For all i € S, let 0"z, be the largest among {o"z.,} w.r.t. the ordering <.

S3. Let B = {Am,la J(Am’l), R ,Jtm’gitm’lil(Am,l), Am72, O'(Am’g), e O'tm’37tm’271(Am72),
s Aoy ey Ok (A Y

A=A UB,S =8\ {m}.

S4. If S = 0, return(A’), else goto S1. Since S is a finite set, this process will terminate.

exists an A € A such that j = class(A), then we denote by V; = {o'z;|0 < i < s; — 1}
and Y; = {o'z;|s; <i<ej}. V= Uiz Vi, Y = Uj_ ). Then A, ,..n,) s an algebraic
triangular set in K[V, Y| when the elements in' V and Y are treated as independent variables.
Furthermore, the parameters of Ay, . p.) as a triangular set are V.
Proof. By the procedure of Extension, we can assume that S = {my,mg,...,m,} and m;
is chosen before m; 1 for 1 <i <p —1. B

For the first time ,we select o™ Zc,,, as the largest one among {oMiz.,} w.r.t. the ordering
<. Since the ordering is admissible, all the variables presented in 3 and A is of lower ordering
than o™ Tc,, - Similarly, when we select mg from 5, all the variables presented in B is of

lower ordering than o/m2 ZTc,,,, where B and hp, is redefined and olma Tep, = ol Ty, -

As a consequence, when the procedure is terminated, .A’(h1 . hy) Must have the following
form: '

Bl,l(l‘la e ,:L'n), e 7Bl,sl($1a e ,{L‘n)
/
A(hl,...,hn) = (4)
Bpi(z1,.. . Tn), .oy Bps,(T1,. .., 70)
Where B; = {Bi1(z1,....,2pn),...,Bis;(z1,...,20)},1 < i < p and B; is obtained in the
procedure after B;1q for 1 <i<p—1.

Then, Bys, < B2s, < ... < Bps, and all the B;; have different leads. So, after
rearrange the polynomials in 'A/(m h) w.r.t. the ordering <, the polynomials in A, . .
have different leads and it forms an algebraic triangular set for the ordering induced by <.
The conclusion follows by the definition of triangular set. |

Example 2.9 Let A = {A1,..., A5} be a chain as following with total ordering and xq <
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Tg <3 < Tg < IT5!
A = 95%3 + f%z + 10
Ay = w11 — 130
Az = 235+ x31014+ 210 (5)
Ay = x43+Ta0+ 713
As = x50+ x41+230+ 1.

Let (hy,...,hs) = (0,...,0), following the procedure of Extension. Firstly, S = {1,3,4,5},
we select x36 as the largest one w.r.t.the total ordering <, B = {A3,0A3}; secondly, S =
{1,4,5}, we select x1 5 as the largest one, B = {Ag, 0 A2, A1,0A1,0%A1}; thirdly, S = {4,5},
we select £4.4 as the largest one, B = {A4,0A4}; at last, S = {5}, we select x5 3 as the largest
one, B={A5,0A5}. Then

As, 045
Ay, 0A4
!/ 9
A(07-“70) N A27 UA27 A17 JAla U2A1 (6)
As, 0As.

-----

The leads of A and Ay,... o) are given in Figure 3 and 4 respectively.

For a chain A and an r-pol f, let

A" = Apo,.0
Ar = Aord(far)..ord(fan) (7)
Note that A* = A, 4 by the definition of Extension.
We define the pseudo-remainder of an r-pol g w.r.t. a chain A = Ay,..., A, as
prem(f? A) = a'prem(f7 Af) (8)

where a-prem is the algebraic pseudo-remainder [17] and the variables and their transforms
in a-prem(P, Ay) are treated as independent algebraic variables, and the ordering of A is
induced by <. Due to the way to compute Ay and the property of the algebraic pseudo-
remainder, we have



Lemma 2.10 Let g, A be as above. Then there is a J € I 4 with lead(J) < lead(g) such that
Jg =r mod [A] and r is reduced w.r.t A.

2.4 Coherent and regular difference chains

In this section, properties of coherent and regular chains are introduced.

Note that in Example 2.2, we have o f; — (z12 +x11)f2 = 1, i.e. 1 € [f1, f2]. This fact
leads to the following concept.

Let A= Aj,..., Ay, be adifference chain in K{z1,...,z,} and k; = ord(A;, Ivar(4;)), i =
I,...,m. Forany 1 < i < j < m, if class(4;) = class(A;) = t, then k; < kj, let A;; =
a-prem(c*iFi A, Aj, ;) be the algebraic pseudo-remainder of oki=ki A; wor.t. A; about
variable x;; otherwise, let A;; = 0. If prem(A;;, A) = a-prem(A;;, Aa,;) = 0, we call A
a coherent difference chain.

Let A be a difference chain of form (1), f an r-pol. f is said to be invertible w.r.t. A if
it is invertible w.r.t. Ay when f and Ay are treated as algebraic polynomial and triangular
set.

Let A= Ay,..., Ay, be a difference chain and I; = init(A;). A is said to be (difference)
regular if o'I; is invertible w.r.t. A for any non-negative integer i and 1 < j < m.

The following results show that it is easy to solve the ideal membership problem of sat(.A)
for a coherent and regular chain 4. The proof of these results under a general admissible
ordering is similar to those for the variable ordering given in [7]. Their proofs are omitted.

Theorem 2.11 A difference chain A is the characteristic set of sat(A) iff A is coherent
and difference regular.

Theorem 2.12 If A is a coherent and regular chain of form (1), then

sat(A) = U (a-sat(A, ... 1))

h120,...,hn >0

The following lemma will be used later in this paper. Its proof is also similar to the proof
of Lemma 3.5 in [7].

Lemma 2.13 Let A be a coherent chain of form (1), f € (Aq,,..1,)) for li > maxaea+-ord(A, y;).
Then 3J € L4+ s.t. lead(J) < lead(o f) and Jof € (A, 41, 1,+1))-

3 Proper and strong irreducible chains

Note that there is no direct methods to check if a given chain is difference regular since we
need to check that all possible transforms of the initials are invertible. In this section, we
will give a constructive criterion for a chain to be difference regular.



3.1 Invertibility of algebraic polynomials

We will first introduce some notations and known results about invertibility of algebraic
polynomials w.r.t. a chain. In this section, all notions mean to be algebraic case.

Let A= Aj,..., A, be a nontrivial triangular set in K|[z1,...,x,] over a field K of char-
acteristic zero. Let y; be the leading variable of A;, y = {y1,...,yp} and u = {z1,..., 2, }\y.
u is called the parameter set of A. We can denote K|x1,...,z,] as K[u,y]. A polynomial f
is said to be invertible w.r.t. A if (f, Ai,..., As) N Klu] # {0} where lvar(f) = lvar(4;). A
is called regular if the initials of A; are invertible w.r.t. A.

Theorem 3.1 [1, 3] Let A be a triangular set. Then A is a characteristic set of (A) : I4
iff A is regular.

Lemma 3.2 [3] A finite product of polynomials which are invertible w.r.t. A is also invert-
ible w.r.t. A.

Lemma 3.3 [3] A polynomial f is not invertible w.r.t. a reqular triangular set A iff there
is a nonzero g in K|u,y] such that fg € (A) and g is reduced w.r.t. A.

Lemma 3.4 [17] Let A be an irreducible algebraic triangular set with a generic point 7).
Then for any polynomial f, the following facts are equivalent.

e g is invertible w.r.t. A.

e prem(g, A) # 0, or equivalently g & (A) : 14.

e g # 0, where g is obtained by substituting n into g.

o resl(g, A) #0. Let A= Ay,..., An, resl(g,.A) is defined as follows:

resl(g, A) = resl(resl(g, Am, lvar(Ay,)), A1, ..., Am—1), and resl(g,0) = g.

3.2 Proper irreducible chains
A chain A of the form (1) is said to be proper irreducible if

o A* as defined in (7) is an algebraic irreducible triangular set; and

o If og € a-sat(A*) then g € a-sat(A*).

Lemma 3.5 Let A be a coherent and proper irreducible chain of the form (1) and V' be the
algebraic parameter set of A*. If g € K[V], then og is invertible w.r.t. A*.
Proof. Since A* is an algebraic irreducible chain, by Lemma 3.4, if og is not invertible
w.r.t. A* then og € a-sat(A*). Since A is proper irreducible, we have g € a-sat(A*). But
g € K[V] and hence is invertible w.r.t. .[A. Which is a contradiction. |

The following is a key property of a proper irreducible chain.



Lemma 3.6 Let A be a coherent and proper irreducible chain of the form (1). If f is
invertible w.r.t. A, then of is invertible w.r.t. A.

Proof. We assume that A can be rewrited as (3). Let V be the parameter set of the algebraic
chain Ay and Y other variables occurring in A;. By Lemma 2.8, V is also the parameter
set of A*. Since f is invertible w.r.t. A, there exist f € K[V,Y] and nonzero g € K[V] such
that f - f = gmod (Ay), that is

f-f=g+ > BaA 9)

AcAy
Performing the transforming operator on the formula, we have
of -of =0g mod (cAy). (10)
If ord(f,ys) > ord(A;,,ys) for all i < p, by Lemma 2.13, we can find a J € I 4+ such that
Jof-of =Jog mod (Ayf). (11)

If ord(f,y;) < ord(A;y,,y:) for some i < p, we assume that for A in (9), ord(4,y) <
ord(A; ,,y;). Similar to Lemma 2.13, we can also find J € I 4~ such that (11) is true. Since
J is a product of powers of initials of A*, it is invertible w.r.t. A*. og is invertible w.r.t. A*
by Lemma 3.5. As a consequence, there exist h and nonzero r € K[V] such that

h-Jog=r mod (A%).

Hence, B
h-Jof-of =h-J-0g=rmod(As¢).

That is, o f is invertible w.r.t. A. |
The following theorem is one of the main properties of proper irreducible chains, which
gives a constructive criterion for a chain to be regular.

Theorem 3.7 A coherent and proper irreducible chain is difference reqular.

Proof. Let A = Ay,..., Ay, and I; = init(A;). Since A* is an irreducible algebraic chain,
by Lemma 3.4, I; are invertible w.r.t. A* and hence invertible w.r.t. 4. By Lemma 3.6, all
o/ I; are invertible w.r.t. A. |

3.3 Consistence of proper irreducible chains

In order to obtain a complete algorithm for difference polynomial systems, we need to show
that a coherent and proper irreducible chain A is consistent, or equivalently, Zero(sat(.A))
is not empty. The proof of Theorem 3.8 uses the theory of difference kernels established by
Cohn [4]. It can also be considered as an extension of some of the results obtained by Cohn
about one irreducible difference polynomial to certain chains.

Let a; = (ai1,...,Gin),? = 0,...,r be n-tuples, where a; j are elements from an extension
field of K. A difference kernel of length r, R = K(ag,ay,...,a,), over the difference field K
is an algebraic field extension of K such that the difference operator o of IC can be extended
to a field isomorphism from K(ag,...,a,_1) to K(aj,...,a,) and oca; = a;+1,i =0,...,7—1.
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Theorem 3.8 Let A be a coherent and proper irreducible chain. Then Zero(sat(A)) # 0.
Proof. Let A be of form (1). We rearrange A* as follows

*
A*=Bi1,...,Bie,---Bpi,..., By,

where lvar(B; ;) = y;. Let 0; = ord(Bi,, i), i = 1,...,p, € = maxaeca pr1<j<n {0rd(4,y;)},
Up={o'ylp+1<j<n0<i<el U ={oylp+1<j<nl<i<etl)
Yo = {o%y;|1 < j < p,0<i<o;—1},and V7 = {o'y;|1 < j < p,1 < i < oj}.
Then Vo = Up UYy and Vi = U; UY; have the same number of elements. Since A is proper
irreducible, A* is an irreducible algebraic triangular set when aiyj are treated as independent
variables. Hence, I = a-sat(A*) is a prime ideal in K[V], where V = Vo U V;. Let n = (775-”)
be a generic zero of this prime ideal. Then o/y; = ngj ) annul every polynomial in .A* but not
their initials.

We will construct a difference kernel of length one. Now, let ag and a; be obtained from
Vo and Vi by replacing o/y; with nj(-z). The kernel is K(ag,a;). The difference operator o
introduces a map from K(ag) to K(a;) as follows 0’(77](-2)) = 77](“1). We will prove that o
introduces an isomorphism between K(ag) and KC(ay).

Let

Bo=A*—{Bie,-..,Bpe,},Bi = {0cA| A € By}.

From the definition of A*, the orders of y;, in B;; € By are not exceeding o, — 1. As a
consequence, ag is a generic zero of the algebraic prime ideal a-sat(.A*) N K[Vy] = a-sat(By)
with By as a characteristic set.

Note that By = B; and cayg = aj, by the nature of the difference operator, By is an
irreducible triangular set in K[V;] and a; is a generic zero of the prime ideal I} = a-sat(B;)
with B; as a characteristic set. We will show that I = I N K[V4].

First of all, it is easy to see that Iy C INK[V;]. Let Iy = a-sat(By), W be the parametric
set of Iy, then oW is the parametric set of I; by the difference operator. Now we will show
that oW is the parametric set of I N/C[V;]. If this is not true, then there exists a polynomial
P(cW) e INK[Vi] or oW UeW C Vj is the parametric set of I NC[V1]. For the first case,
since K is inversive and A is proper irreducible, we have that o1 P(cW) € INK[Vy] = Iy, W
is not the parametric set of Iy, a contradiction. For the second case, since W is the parametric
set of I, there exists a polynomial P(W', W) € Iy, hence cP(W/ W) = Q(cW',oW) € I,
which is impossible by the assumption. So, the two prime ideal I1, I N K[V;] have the same
dimension and Iy C INK[V4], then I; = INK[V;]. Since oIy — I; is an isomorphism between
two prime ideals, o introduces an isomorphism between K(ag) and K(aj). As a consequence,
K(ag,a1) is a difference kernel over K.

By Lemma V on page 156 of [4], this kernel has a principal realization 1 corresponding
to a series of kernels K(ag,a;), K(ag,ar,az),.... We will show that v is a zero of sat(A).
From the construction of the kernel, for any A € A*, we have A(¢)) = A(n) = 0. Hence v is
a zero of the polynomials in A* but does not annul any initials of A*. Then for any A € A,
1 is a zero of o* A for any k, since o is an isomorphism. Also, 1) does not annul any J € I 4.
As a consequence, ¢ € Zero(sat(A)). |

The following example shows that a coherent and regular chain could have no solutions.
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Example 3.9 fi = v — 1,fo = yi1 + 1 € K{wm}. A = {f1, fo}. A is coherent and
reqular difference. But A is not proper irreducible, since fi is not irreducible. We have
Zero(sat(A)) = Zero(A) = Zero(y1 — L,y11 +y1) UZ(y1 + Lyiq +y1) = 0.

3.4 Characteristic sets of reflexive prime ideals

In the algebraic case, prime ideals can be described by irreducible chains. In this section, we
will extend this result to the difference case. In order to do that, we need to introduce the
concept of strong irreducible chains.

A proper irreducible chain A is called strong irreducible if for any nonnegative integers
hi, Ahs,....h,) 18 an irreducible algebraic triangular set.

n

Theorem 3.10 Let A be a coherent and strong irreducible difference chain. Then sat(A)
is a reflexive prime difference ideal.

Proof. Let f, g be two r-pols such that fg € sat(A). By Theorem 2.12, there exist nonnega-
tive integers hi, ..., h, such that fg € D = a-sat(A, . »,))- Since A is strong irreducible,
A(hy,...hy) 18 an irreducible algebraic triangular set and hence D is a prime ideal. We thus
have f € D or g € D. In other words, f € sat(A) or g € sat(A). Hence, sat(A) is a prime
ideal. We still need to show that sat(.A) is reflexive, that is, if o f € sat(A) then f € sat(A).
Suppose f & sat(A). By Lemma 2.12, f ¢ a-sat(Ay). Since Ay is an irreducible algebraic
triangular set, f must be invertible w.r.t. Ay. As a consequence, f is invertible w.r.t. A.
By Lemmas 3.6 and 2.6, o f is invertible w.r.t. .4 and hence o f ¢ sat(.A), which contradicts
the fact o f € sat(A). |

Example 3.11 Consider A = {A; = :L’%O +t, Ay = x%o +t+k } from [4] in K{z1,z2}
where K is Q(t) with the difference operator ot =t + 1 and k is a positive integer. A* =
{A1,0A1,A,0A2}. If k > 1, A is proper irreducible. But sat(A) is not prime, because
Ay — (A1) = (mo0 — z18) (20 + T18)-

Conversely, we have

Theorem 3.12 Let I be a reflexive prime difference ideal, A the characteristic sets of I.
Then A is coherent, strong irreducible, and T = sat(A).

Proof. By Lemma 3.13, for any characteristic set .4 of Z, we have Z = sat(.A). By Theorem
2.11, A is coherent. By Lemma 3.14, we have for any nonnegative integers t;, A, ., is
algebraic irreducible. Also, if 0g € a-sat(A*), then og € Z. Since Z is reflexive, g € Z. Then
g € a-sat(A*). |

Lemma 3.13 Let Z be a prime difference ideal, A its characteristic set. Then T = sat(A).
Proof. It is clear that 7 C sat(A). Let f € sat(A). Then there is a J € I4 such that
Jf € [A] C Z. By Theorem 2.11, J is invertible w.r.t. .4 and hence not in Z by Lemma 2.6.
Since 7 is a prime ideal, f € Z. |

Lemma 3.14 Let I be a reflexive prime difference ideal, A its characteristic set. Then for
any nonnegative integers ti, A, ..y 18 algebraic irreducible.

Proof. Otherwise, we have nonnegative integers t1,...,t, such that A(tl,...,tn) is a reducible
algebraic triangular set. By definition, there exist r-pols f and g which are reduced w.r.t.
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At,,....tn) and with order not higher than those r-pols in Ay, 4,) such that fg € A, +.) C
sat(,A) = Z. From this we have f € Z or g € Z, which is impossible since f and g are reduced
w.r.t. Ao

Let A= Ay,..., A, be a sequence of the following form
Ay =Viox1 —Uq,..., A, = Vyox, — Uy, (12)

where V;,U; € K[x1,...,x,] and V; # 0. It is clear that under a total ordering, A is a chain.
Furthermore, A is coherent since A(A;, A;) is always zero. Equations of form (12) are often
used in control theory [8] and it is important to know whether sat(A) is a reflexive prime
ideal. We will use the techniques developed in this paper to prove the following result which
was first given in [8].

Theorem 3.15 A is strong irreducible if and only if the determinant of the Jacobi matriz

AT,
Jac = W s not zero.
Proof. By [8], we know that |Jac| # 0 if and only if {%, cee ‘%} is algebraically independent.

Now, we will show that |Jac| # 0 if and only if A is strong irreducible.

We will show that the following conditions are equivalent:

(1) A* is an algebraic irreducible triangular set and

of € a-sat(A*) implies f € a-sat(A*).

(2) of € a-sat(A) implies f € a-sat(A).

(3) |Jac| # 0.

(4) A is strong irreducible.

First, we show (1) < (2). Since A* is a regular triangular set, it is evident that we
only need to show (2) = (1). Assume this is not true, there exists a og € a-sat(A"),
but g ¢ a-sat(A*). By (2), A* is a regular triangular set since V; ¢ a-sat(A) and A is
an algebraic irreducible triangular set. Let A; = oA, and oh = a-prem(og,.A;). Then,
oh € a-sat(A), but h = a-prem(g,.A) # 0. This contradict to (2).

Second, we show that (2) = (3). Assume that |Jac| = 0, then {%,,U—Z} is alge-
braically dependent. Hence, there exists a polynomial P(zq,. .., zy,), such that P(%, e ‘U/—:) =
0. Then a-prem(P(oxy,...,0zy,),A) =V P(%, cee ‘%) =0, P € a-sat(A), where V is a

product of some V;. But 0! P ¢ a-sat(A), this contradict to (2).
Third, we show that (3) = (2). Let of(x1,...,2,) = f'(0x1,...,02,). Since of €

a-sat(A), we have a-prem(cf, A) = a-prem(f’, A) = V' x f’(%, . ‘%) = 0, where V'

is a product of some V;. Hence, f’(%, ce ‘%) = 0. Since f ¢ a-sat(A), f’ is a non-zero
polynomial, hence {U—i, R ‘%} is algebraically dependent, which is contradict to (3).

At last, we show that (1) < (4). Since (4) = (1) is absolutely true by the defi-
nition of strong irreducible, we only need to show (1) = (4). It is sufficient to show
that for any positive integer h, A, . ) is an irreducible triangular set. We prove this
by induction on h. When h = 1,2, Ay, . p) = A", the conclusion is true. Assume for
any | < h,h > 3, A, is an irreducible triangular set, we show that Ay, ) is an
irreducible triangular set. If this is not the case, there exists an 4, such that o"V; €
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a-sat(A(,—1,. p—1)) Let og = a-prem(c"V;, {c" 1A, ..., 0.A}) be the successive pseudo-
remainder of c"V; w.r.t. {o" 1A, ... 0A}, then g = a-prem(c"V;, {o"2A, ..., A}). Since
A(h-1,...h—1) is a regular triangular set, we have og € a-sat(A) and g ¢ a-sat(A). which
contradicts to (1). |

4 Algorithms of Zero Decomposition

In this section, we will present two algorithms which can be used to decompose the zero
set of a general r-pol set into the zero set of proper irreducible chains. Such algorithms are
called zero decomposition algorithms.

4.1 The Zero Decomposition Algorithm

A chain A is called a Wu characteristic set of a set PP of r-pols if A C [P] and for all P € P,
rprem(P, A) = 0. As a direct consequence of the pseudo-remainder formula given in Lemma
2.10, we have

Lemma 4.1 Let P be a finite set of r-pols, A = Ay,...,An a Wu characteristic set of P,
I; = init(4;), and J =[[;2, I;. Then

Zero(P) = Zero(A/J) U Ui, Zero(PU AU {L;})
Zero(P) = Zero(sat(A)) U UL, Zero(P U AU {L;}).

Now, we are ready to give the Ritt-Wu zero decomposition theorem.

Theorem 4.2 (Ritt-Wu’s Zero Decomposition Theorem) Let P be a finite set of r-
pols in KC{y1,...,yn}, then there exist a sequence of coherent and proper irreducible difference
chains A;, i =1,...,k such that

k
Zero(P) = UZerO(Ai/Ji)
i=1

k
Zero(P) = UZero(Sat(Ai)). (13)

1=1

Zero(P) =0 iff k =1 and A; is trivial.

This is a quite straight forward extension of the procedure proposed in [17], except the
procedure Prolrr to find a proper irreducible chain. The correctness of the algorithm is
guaranteed by Lemma 4.1 and Lemma 4.5. The termination of it is guaranteed by Lemma
2.3.

In the algorithm RittWuZDT, we need to check whether a coherent difference chain is
proper irreducible.
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Algorithm 2 —RittWuZDT(P)

e Input: a finite set P of r-pols.

e Output: W = {Ay,..., Ax} such that A; is coherent proper irreducible difference
chain and Zero(P) = Ule Zero(sat(A;)).

Begin
B=C.S(P), B=DBy,...,Bn;
If B =1 then
W= {1}
Else

R = {prem(f,B) £ 0| f € (P\ B)U A(B)}

If R = () then (test,P) :=Prolrr(B)
If test then W={B}URittWuZDT(PU B U {I;})
Else W:= Uf_ RittWuZDT(P, B, f;)U Ritt WuZDT (P, B, I;)
where I; are the initials of the r-pols in B

and P={f;|i=1,...,k}
Else W :=RittWuZDT (P UR)
End.

Example 4.3 Consider B={f; = x%o +x10+1, fo=x32+x20+1} CK{x1, 20,23}, it
18 not coherent. Since x%z +z12+1=(x32+220+1)(232—220— 1)+ (z20+ 12+ z12+1.
When we apply the above algorithm to B, we get A = {m%o +2x90+ w12+ 2, $:2a,0 +x1,0+1,
x32 + x20 + 1}, and A is coherent and proper irreducible difference chain. Zero(B) =
Zero(sat(A)).

4.2 Test of Proper Irreducible Chain

In this section, we will give an algorithm to check whether a chain is proper irreducible,
which is based on the following result.

Lemma 4.4 Let I be an algebraic ideal in R, X1 = {z;;|1 < i < n,j > 0}. Then the
following conditions are equivalent

(a) For any polynomial g, og € I implies g € 1.
(b) o Y I NK[Xy]) C I.

Proof. (a) and (b) are different description of the same proposition of the ideal I. |
The following lemma shows how to decompose the zero set of a polynomial set if its
characteristic set is not proper irreducible.
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Lemma 4.5 Let A be a Wu characteristic set of a finite set P. If A is not a proper irreducible
chain, then we can find f1, fa,..., fn which are reduced w.r.t. A and some initials I; of A
such that

Zero(P) = U Zero(PUAUU{fi})| JUiZero(PU AUU{TL}).

Proof. Denote B = A* = By, ..., B,,. First, if A* is not algebraic irreducible, by Lemma 3
in Section 4.5 of [17], there are fi,..., f;, which are reduced w.r.t. A* such that

k+1

m
=1 =1

where I; is the initial of B;. Since A is a Wu characteristic set of P, f € [P]. Then
Zero(P) = Zero(PU{f}) = U, Zero(P, f;) |JU;Zero(P, I;). If I; is the initial of %A for some
A € A, then Zero(P,I;) = Zero(P,init(A)). In other words, we need only to include the
initials of the r-pols in A.

If A* is algebraic irreducible, let f € a-sat(.A*) be the lowest rank such that f = og,
a-prem(g, A*) # 0. Let f; = a-prem(g, . A*), we have f; # 0, fi is reduced wrt A,

k+1

m
h=1Ir9-> aBi
i=1 i=1

then Zero(P) = Zero(PUAU{f}) JU;Zero(PUAU{IL}) = Zero(PUAU{g})JU;Zero(PU
AU{L}) =Zero(PUAU{f1}) JUiZeroPUAU{L}). 1

The procedure Prolrr, when it applied to a coherent difference chain B, returns two
argument: test, P. If B* is proper irreducible, then test is true and P = ; else test is false,
PP consists of some difference polynomials fi, ... f, mentioned in Lemma 4.5.

5 A Modified Cohn’s Algorithm

In [4], Cohn gave an algorithm to solve the nullstellensatz test of perfect difference ideals.
The idea is to transform the problem to a difference ideal with order less than or equal to
one and then use zero decomposition algorithms in algebraic case to construct a difference
kernel. This certainly simplifies the problem. On the other hand, reduce the order of r-pols
to one by introducing new auxiliary variables destroy the structure of the ideal itself. In this
section, by combining the idea of Cohn and the concept of algebraic irreducible chains, we
will give another algorithm of zero decomposition for difference polynomial systems.

We give some notations at first. Let X = {x;,1 <i <n,d; <e; <o}, Xy = {xi1 <
i <n,di <e; <op— 1}, X = {1 <i<n,di +1<e; <o}

An algebraic ideal I in K[X] satisfies left (right) consistent condition w.r.t. {d; ;o0;}, if
Vf e INK[X](K[X)]), o7tf € I (of € I). In the above definition, if for any i,0; = d;,
we assume that K[X;|(K[Ap]) = 0. If I satisfies left and right consistent condition w.r.t.
{d; ;0;}, we say that I satisfies consistent condition w.r.t. {d; ;0;}.
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Algorithm 3 —Prolrr(.A)

e Input: a difference coherent chain A of the form (1).

e QOutput:
(true,d) if A is proper irreducible

(false,P) otherwise. P consists of the difference polynomials in Lemma 4.5.

Begin
test:=ture
If A* is algebraic irreducible then
G :=GBasis(a-sat(A*))/*/
G1:= GNK[Vi] where V] are the
variables in G minus those y;o with order zero.
Gi:=01G
IfG, c@G
test:=true; Return.
Else P := {prem(g,A)|g € G1 | g & G}, test:= false; Return.
Else
test:=false, P consists of the difference polynomials
which we get in the first case of Lemma 4.5.
End.
/*/G := GBasis(a-sat(A*)) compute the Groebner basis w.r.t. the eliminating ordering
Yn0 > Yn—1,0 > .- > Y10 > Yn1 > ... > Y11 > ... In [6], it is proved that for any chain
A C Klz1,...,zy,], we have a-sat(A) = (A, zI4—1)NK][z1,. .., x|, where 2 is a new variable.
Based on this result, we can compute a finite basis for a-sat(.4*) and its Groebner basis.

Lemma 5.1 Let P C K{x1,...,z,}, and d;, o; the minimal and mazimal orders of x;
appearing in P respectively. Suppose that P generates a prime algebraic ideal I in IC[X], and
n be the generic zero of I. Then n can be extended to a difference zero of P iff I satisfies the
consistent condition w.r.t. {d; ; 0;}.

Proof. Suppose that I satisfies the consistent condition w.r.t. {d; ; o;}. We will extend n to
be a difference kernel of length one. Let A = Ay,..., A, be a characteristic set of I. Then
I = a-sat(A). Let I; = ol. Since o is an isomorphism, I is an algebraic prime ideal in
KX, 210,415+, Tnon+1) and I} = a-sat(c.A). Let n = (n;;) be a generic zero of I. Let
nd = {nid, 1 <i<n},no={Nie;, 1 <i <n,di +1<e; <o}

We claim that I NKC[X)] = I N K[X1]. Since for any f € INK[X1], o1 f € INK[X] by
the left consistent condition, then f € I NK[X;]. For any f € [ NK[X1], o1 f € INK[X],
then f € I NK[A1] by the right consistent condition. So, I NK[X1] = I} N K[X1] and 7, is
the generic zero of I} N KC[X;], then 7, can be extended to a generic zero of I.

Let I = {f(Nos ®1,01415 - - - s Tnon+1) | f € I1}. Then, I} generated a prime algebraic ideal

denoted by I in K(1)[®1,0141,---sTnon+1]- If we denote by i’ a generic zero of I, then
{no,m'} is the generic zero of I.
Let I3 be an ideal generated by I in K(n4)(10)[Z1,0141, - - - s Zn,on+1]. If P is an essential
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Algorithm 4 — Cohn(P)

e Input: a finite set P of r-pols.

e Output:
(X =0) if Zero(P) =0
(X = {B,}) otherwise, Zero(IP) = UZero(B;) and Zero(B;) # 0

Begin
=90
[P] = Na-sat(A4;) // A; is algebraic irreducible
If /[P] = {1}, Return
Else For all A;
I = a-sat(A;)
(test,I) = Consistent(I)
If test ¥ =X U {A;}
Else Cohn(I U )
End.

prime divisor of I3, then PNX(1,)[%1,0,415 - - Tn,on+1] = I2 by the Corollary in the page 32
of [4]. Let the generic zero of P be notr1 = {Ni0;+1,1 < i <n}. Then (ng,1,) and (1o, No+1)
is the generic zero of I and I respectively. n,7,41 is a difference kernel of length one and
{1, Not+1} 1is a zero of P.

Hence, by Lemma V on Page 156 of [4], n can be extended to a difference zero of P. |

If Vi, 0; — d; > 0, then the generic zero of I is difference kernel of length one. This is the
same as Cohn’s theory.

The process Consistent (/) where I is the same as in Lemma 5.1 works as follows: Let
GL be the Grobner bases of I w.r.t. the eliminating ordering 1 4, > 2.4, > ... ZTn4, > - .-
G1 = GL N K[X1]. Let GR be the Grobner bases of I w.r.t. the eliminating ordering
Tlo, > X200 > «--Tno, > --- Gy = GRﬂ]C[X()] If O'ilGl C I and oGy C I, then
test=true, I = (); else test=false, = {o "' f,o09| fE€Gro ' f €I, g€ Gyog &I}

Example 5.2 P = f1, fo where f1, fa are the same as Example 3.9. when we apply Cohn{}
to P, we have \/[P] = a-sat(A;) N a-sat(As), where A1 = y1 — L,y11 + 1 and Ay =
y1+ 1,911 — 1. For Ay, since o(y1 —1) = y11 — 1 and y11 + 1, the procedure return Null.
So is Ag. hence, Zero(P) = (.
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