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A Characteristic Set Method for Equation Solving in Finite Fields1
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Abstract. In this paper, we present a characteristic set method to solve polynomial
equation systems in finite fields. Due to the special property of finite fields, the given
characteristic set methods are much more efficient and have better properties than the
general characteristic set method.
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1. Introduction

The characteristic set (CS) method is a tool for studying systems of polynomial or alge-
braic differential equations [2, 3]. The idea of the method is reducing equation systems in
general form to equation systems in a special “triangular form”, also called ascending chains.
The zero-set of any finitely generated polynomial or algebraic differential polynomial systems
of equations may be decomposed into the union of the zero-sets of ascending chains. With
this method, solving an equation system can be reduced to solving univariate equations.
We can also use the method to determine the dimension, the degree, and the order for a
finitely generated polynomial or differential polynomial systems, to solve the radical ideal
membership problem, and to prove theorems from elementary and differential geometries.

CS methods always consider the zeros of polynomial equations in an algebraically closed
field which is an infinite field. In [1], the CS method was extended to solving equations in
the finite field F2. In this paper, we will extend the CS method to solve equations in any
finite field Fq. More precisely, we consider polynomials in the ring

Rq = Fq[x1, . . . , xn]/(H)

where H = {xq
1 − x1, . . . , x

q
n − xn}.

Due to the special property of Rq, the proposed CS methods are much more efficient and
have better properties than the general CS method. We could decompose the zero set of
a polynomial equation system in Rq as the disjoint union of the zero sets of monic proper
ascending chains. As a consequence, we could give an explicit formula for the number of
solutions of the equation system.

The rest of this paper is organized as follows. In Section 2, we introduce the notations
and give some preliminary results. In Section 3, we present the CS methods. In Section 4,
we present a direct algorithm to decompose the zero set of a polynomial system into the zero
sets of monic proper ascending chains.

1)Partially supported by a National Key Basic Research Project of China (2004CB318000).
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2. Notations and Preliminary Results

Let p be a prime number and q = pk for a non-negative integer k. Fq denotes the finite
field of q elements. We will consider the problem of solving algebraic equations over Fq. Let
X = {x1, . . . , xn} be a set of indeterminants. Since we only consider solutions in Fq, we work
in the ring

Rq = Fq[X]/(H)

where
H = {xq

1 − x1, x
q
2 − x2, . . . , x

q
n − xn}. (1)

It is easy to see that Rq is not an integral domain. For any α ∈ Fq, xi − α is a zero divisor
of Rq. An element P in Rq has the following canonical representation:

P = αsMs + · · ·+ α0M0, αi ∈ Fq, (2)

where Mi is a monomial and deg(Mi, xj) ≤ q − 1 for any j .
To obtain such a canonical representation for a P ∈ Fq[X], we will replace xq

i by xi. For
instance, in the field F3 = {0, 1, 2}, x1x

3
2 + x1x2 + x3 can be represented as 2x1x2 + x3. We

still call an element in Rq a polynomial.
Let P be a set of polynomials in Rq. We use Zero(P) to denote the common zeros of the

polynomials in P in the affine space Fn
q , that is,

Zero(P) = {(a1, . . . , an), ai ∈ Fq, s.t.∀P ∈ P, P (a1, . . . , an) = 0}.
Let D be a polynomial in Rq. We define a quasi variety to be

Zero(P/D) = Zero(P) \ Zero(D).

Let P be a set of polynomials in Fq[X]. Denote the zeros of P in an algebraically closed
extension of Fq as Zero(P). We use P to denote the image of P under the natural ring
homomorphism:

Fq[X] ⇒ Rq.

Lemma 2.1 Use the notations just introduced. We have Zero(P ∪ H) = Zero(P), where H
is defined in (1).

Proof: Let P ∈ P. By the definition, we have P = P +
∑

i Bi(x
q
i − xi), where Bi are some

polynomials. Note that any zero in Zero(P) is also a zero of xq
i −xi. Then the formula to be

proved is a direct consequence of the above relation between P and P . ¤
From Lemma 2.1, to solve a set of equations over Fq, we need only consider polynomials

in Rq. In the rest of this paper, when we say polynomials , we mean an element of Rq with the
canonical representation (2). We will give some preliminary results about the polynomials
in Rq. Most of the them are similar to those in R2 [1].

Lemma 2.2 Let P be a polynomial in Rq. We have P q = P .

Proof: Since xq
i = xi, for any monomial m in Rq we have mq = m. Let P =

∑
i αimi where

mi are monomials and αi ∈ Fq. Then P q = (
∑

i αimi)q =
∑

i α
q
i m

q
i =

∑
i αimi = P .

¤
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Lemma 2.3 Let I be a polynomial ideal in Rq. Then I is a radical ideal.

Proof: For any fs ∈ I with s an integer, there exists an integer k such that q + k(q− 1) ≥ s.
Then fsf q+k(q−1)−s = f q+k(q−1) ∈ I. f q+k(q−1) = f qfk(q−1) = fk(q−1)+1 = f q+(k−1)(q−1) =
· · · = f q = f. Thus, we have f ∈ I, which implies that I is a radical ideal. ¤

Lemma 2.4 Let I be a polynomial ideal in Rq.

(1) I = (x0 + a0, . . . , xn + an) if and only if (a0, . . . , an) is the only solution of I.

(2) I = (1) if any only I has no solutions.

Proof: If I = (x0 + a0, . . . , xn + an), it is easy to see that (a0, . . . , an) is the only solution of
I. Conversely, let (a0, . . . , an) be the only solution of I. By Lemma 2.1, we have xi + ai = 0
on Zero(I ∪H) in Fq[X], where H is defined in (1). By Hilbert’s Nullstellensatz, there is an
integer s such that (xi + ai)s is in the ideal generated by I ∪ H in Fq[X]. Considering Rq,
it means that (xi + ai)s is in I. By Lemma 2.3, I is a radical ideal in Rq. Thus, xi + ai is
in I. This prove (1). For (2), if I has no solution, we have Zero(I ∪ H) = ∅. By Hilbert’s
Nullstellensatz, 1 ∈ (I ∪H). That is, 1 ∈ I. ¤

Lemma 2.5 Let P ∈ Rq. Zero(P ) = Fn
q iff P ≡ 0. Zero(P ) = ∅ iff P q−1 − 1 ≡ 0.

Proof: If P ≡ 0, Zero(P ) = Fn
q is obvious. Conversely, we prove the result by induction on

n. If n = 1, we consider the one-variable polynomial P (x) ∈ Rq. Suppose that P (x) 6= 0.
Since deg(P, x) ≤ q − 1, P has at most q − 1 solutions in Fq. Thus, for n = 1 we have
the result. Now assume the result has been proved for n = k. For n = k + 1, we have
P (x1, . . . , xn) = f0x

q−1
n + f1x

q−2
n + · · · + fq−1, where fi is a k-variable polynomial. By the

induction hypothesis, if some fi is not 0, there exists a element (a1, a2, . . . , ak) in Fk
q such

that fi(a1, . . . , ak) 6= 0. Then P (a1, . . . , ak) is a nonzero polynomial whose degree of xk+1

is less than q. Supposing ak+1 is not the solution of P (a1, . . . , ak), we have (a1, . . . , ak+1) is
not the solution of P , a contradiction. Thus, we have fi = 0 for all i. It means that P ≡ 0,
and the first result is proved.

If Zero(P ) = ∅, then P 6= 0 for any element in Fn
q , which implies that P q−1 − 1 = 0 for

any element. Then P q−1 − 1 ≡ 0. Conversely, if there is a element (a1, . . . , an) ∈ Fn
q such

that P (a1, . . . , an) = 0, P q−1 − 1 6= 0 for the element, a contradiction. Thus, Zero(P ) = ∅.
¤

As a consequence of Lemma 2.5, we have

Corollary 2.6 Let q = 2 and P ∈ R2 \ F2. Then Zero(P ) 6= ∅.
But when q > 2, the corollary is not right. For example, considering F3, it is easy to see

that Zero(x2 + 1) = ∅.
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Lemma 2.7 Let U, V , and D be polynomials in Rq. We have

(U q−1V q−1 − 1) = (U q−1 − 1, V q−1 − 1). (3)
(U q−1V q−1 − U q−1 − V q−1) = (U, V ). (4)
Zero(UV ) = Zero(U) ∪ Zero(V ). (5)
Zero(∅/D) = Zero(Dq−1 − 1). (6)
Zero(P) = Zero(P ∪ {U}) ∪ Zero(P ∪ {U q−1 − 1}). (7)

Proof: We have

(U q−1V q−1 − 1) = (U q−1V q−1 − 1, U q−1(U q−1V q−1 − 1))

= (U q−1V q−1 − 1, U q−1V q−1 − U q−1)

= (U q−1V q−1 − 1, U q−1 − 1) = (U q−1 − 1, V q−1 − 1).

This proves (3). Equation (4) can be proved similarly:

(U q−1V q−1 − U q−1 − V q−1) = (U q−1V q−1 − U q−1 − V q−1, U(U q−1V q−1 − U q−1 − V q−1))

= (U q−1V q−1 − U q−1 − V q−1, U) = (U, V ).

Since Fq is a field, (5) is obvious. For any element α ∈ Fn
q , D(α) 6= 0 means that Dq−1(α)−1 =

0. Conversely, for any element α ∈ Fn
q , if D(α) = 0, we have Dq−1(α)−1 6= 0, a contradiction.

This proves (6). Since U(U q−1 − 1) ≡ 0, (7) is a consequence of (5). ¤

3. A Characteristic Set Method in Rq

The general CS methods are for infinite fields and do not take into account of the special
property of finite fields. In [1], the CS method was extended to solving equations in the
finite field F2. We will show that most of the properties of the the CS method given in [1]
can be extended to CS methods in Rq.

3.1. Triangular Sets
Let P ∈ Rq. The class of P , denoted by class(P ), is the largest c such that xc occurs

in P . Then xc is called the leading variable of P , denoted as lvar(P ). If P ∈ Fq, we set
class(P ) = 0. If class(P ) = c, let us regard P as a univariate polynomial in xc. We call
deg(P, xc) the degree of P , denoted as deg(P ). The coefficient of P w.r.t xd

c is called the
initial of P , and is denoted by init(P ). Then P can be represented uniquely as the following
form:

P = Ixd
c + U (8)

where I = init(P ), and either U = 0 or U is a polynomial with deg(U, xc) < d. A polynomial
P1 has higher ordering than a polynomial P2, denoted as P2 ≺ P1, if class(P1) > class(P2) or
class(P1) = class(P2) and deg(P1) > deg(P2). If neither P1 ≺ P2 nor P2 ≺ P1, they are said
to have the same ordering, denoted as P1 ∼ P2. It is easy to see that ≺ is a partial order on
the polynomials in Rq.

A sequence of nonzero polynomials

A : A1, A2, . . . , Ar (9)
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is a triangular set if either r = 1 and A1 6= 0 or 0 < class(A1) < · · · < class(Ar). A trivial
triangulated set is a polynomial set consisting of a nonzero element in Fq. For a triangular
set A, we denote IA as the product of the initials of the polynomials in A.

Let A′ : A′1, A
′
2, . . . , A

′
r′ and A′′ : A′′1, A

′′
2, . . . , A

′′
r′′ be two triangular sets. A′ is said

to be of lower ordering than A′′, denoted as A′ ≺ A′′, if either there is some k such that
A′1 ∼ A′′1, . . . , A

′
k−1 ∼ A′′k−1, while A′k ≺ A′′k; or r′ > r′′ and A′1 ∼ A′′1, . . . , A

′
r′′ ∼ A′′r′′ . We

have the following basic property for triangular sets.

Lemma 3.1 A sequence of triangular sets steadily lower in ordering is finite. More precisely,
let A1 Â A2 Â · · · Â Am be a strictly decreasing sequence of triangular sets in Rq. Then
m ≤ qn.

Proof: Let P be a polynomial in Rq. If class(P ) = c and deg(P ) = d, P and xd
c have the

same ordering. Since we only consider the ordering of the triangular sets, we may assume
that the triangular sets consist of powers of variables. In this case, two distinct triangular
sets can not have the same ordering. To get a triangular set of this kind, we can choose one
polynomial from {∅, xi, x

2
i , . . . , x

q−1
i }, and set it as the ith polynomial of the triangular set.

Thus, there are qn − 1 nontrivial triangular sets consist of powers of variables. Adding the
trivial triangular set consist of 1, we have a sequence of triangular sets C1 Â C2 Â · · · Â Cqn .
Let A1 Â A2 Â · · · Â Am be a strictly decreasing sequence of triangular sets. If Ai is
nontrivial, for P ∈ Ai, replace it by lvar(P )deg(P ). If Ai is trivial, replace it by 1. Then
we get a strictly decreasing sequence of triangular sets B1 Â B2 Â · · · Â Bm. This sequence
must be a sub-sequence of C1 Â C2 Â · · · Â Cqn . Hence, m ≤ qn. ¤

Let P be given in (8) with c > 0. For another polynomial Q, write Q as a polynomial
in xc. First set R = Q. Then repeat the following process until m = deg(R, xc) < d:
R := IR− bmxm−d

c P , where bm is the leading coefficient of R in xc. It is easy to see that m
strictly decreases after each iteration. Thus the process terminates. At the end, we have a
equation

IsQ = GP + R.

where G,R ∈ Rq, s is a nonnegative integer, and either R = 0 or deg(R, xc) < d. R is called
the pseudo-remainder of Q wrt P , denoted as prem(Q,P ). If P is a nonzero element in Rq,
define prem(Q,P ) = 0. For a triangular set A defined in (9), the pseudo-remainder of Q wrt
A is defined recursively as

prem(Q,A) = prem(prem(Q,Ar), A1, . . . , Ar−1) and prem(Q, ∅) = Q.

Let R = prem(Q,A). Then we have

Is1
1 Is2

2 · · · Isr
r AG =

∑

i

QiAi + R (10)

for some polynomials Qi. The above formula is called the remainder formula. Let P be a
set of polynomials and A a triangular set. We use prem(P,A) to denote the set of nonzero
prem(P,A) for P ∈ P.
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A polynomial Q is reduced wrt P 6= 0 if class(P ) = c > 0 and deg(Q, xc) < deg(P ). A
polynomial Q is reduced wrt a triangular set A if P is reduced wrt to all the polynomials in
A. It is clear that the pseudo-remainder of any polynomial wrt A is reduced wrt A.

The saturation ideal of a triangular set A is defined as follows

sat(A) = {P ∈ Rq| JP ∈ (A)}

where J is a product of certain powers of the initials of the polynomials in A. We have

Lemma 3.2 Let A = A1, . . . , Ar be a triangular set. Then sat(A) = (A1, . . . , Ar, I
q−1
A − 1).

Proof: Denote I = (A1, . . . , Ar, I
q−1
A −1) and A0 = Iq−1

A −1. If P ∈ sat(A), then Iq−1
A P ∈ A.

There exist polynomials Bi such that

Iq−1
A P =

r∑

i=1

BiAi

Hence, P =
∑r

i=1 BiAi − PA0 ∈ I
Conversely, let P ∈ I. Then there exist polynomials Ci such that

P =
r∑

i=1

Ai + C0A0.

Multiply IA to both sides of the equation. Since IA(Iq−1
A − 1) = 0, we have IAP =∑r

i=1 IACiAi. Thus, P ∈ sat(A). ¤
LetIA be the product of the initials of the polynomials in A. As a consequence of the

above lemma, we have

Corollary 3.3 If prem(IA,A) = 0, then sat(A) = Rq and Zero(sat(A)) = ∅.
3.2. Proper triangular sets and chains

As we mentioned before, a triangular set could have no zero. For example, Zero(x2+1) =
∅ in F3. To avoid this problem, we introduce the concept of proper triangular sets.

A triangular set A = A1, A2, . . . , Ar is called proper, if the following condition holds: if
class(Ai) = ci and deg(Ai) = di, then prem(xq−di

ci Ai,A) = 0.
The following lemmas show that proper triangular sets always have solutions.

Lemma 3.4 Let P (x) be a univariate polynomial in Rq, and suppose that deg(P (x)) = d.
If prem(xq−dP (x), P (x)) = 0, then P (x) = 0 has d distinct solutions in Fq.

Proof: Since P (x) is a univariate polynomial, init(P ) ∈ Fq. If prem(xq−dP (x), P (x)) = 0
in Rq, we have xq−dP (x) = Q(x)P (x), where Q(x) is a polynomial and deg(Q(x)) < q − d.
Considering the above equation in Fq[x], there is a polynomial C such that xq−dP (x)+C(xq−
x) = Q(x)P (x) in Fq[x], where xq−dP (x)+C(xq−x) is equal to the canonical representation
of xq−dP (x) in Rq. Thus, we have (xq−d −Q(x))P (x) = −C(xq − x). Since all the elements
of Fq are solutions of xq−x, the q distinct elements of Fq are solutions of (xq−d−Q(x))P (x).
Note that deg(Q(x)) < q − d. Then deg(xq−d − Q(x)) = q − d. Thus, xq−d − Q(x) has at
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most q − d solutions in Fq, which means that P (x) has at least d distinct solutions in Fq.
However, deg(P (x)) = d implies P (x) has at most d solutions in Fq. Hence, we can conclude
P (x) has d distinct solutions in Fq. ¤

A triangular set A is called monic if the initial of each polynomial in A is 1. For a monic
triangular set A : A1, . . . , Ar, we call deg(A1)deg(A2) · · ·deg(Ar) the degree of A, denoted
as deg(A). Let Y be the set {xi ∈ X|xi is the leading variable of some Aj ∈ A}. Denotes
U as X \ Y . Then we call |U| the dimension of A, denoted as dim(A). For a monic proper
triangular set, we have the following lemma.

Theorem 3.5 Let A be a monic triangular set. Then A is proper iff |Zero(A)| = deg(A) ·
qdim(A).

Proof: For the variables in U, we can substitute them by any element of Fq. Since |U| =
dim(A), there are qdim(A) parametric values for U. For a parametric value U0 of U and
a polynomial P ∈ Rq, let P ′ denote P (U0). Then we have a monic triangular set A′ :
A′1, . . . , A

′
r, where class(A′i) = class(Ai) and deg(A′i) = deg(Ai). Let ci = class(Ai) and

di = deg(Ai). Since A is a proper triangular set, we have xq−d1
c1 A1 = PA1. Then xq−d1

c1 A′1 =
P ′

1A
′
1. By Lemma 3.4, A′1 has d1 distinct solutions. For a solution α of A′1, consider A′2(α).

Since xq−d2
c2 A2 = Q1A1 + Q2A2, we have xq−d2

c2 A′2(α) = Q′
1(α)A′1(α) + Q′

2(α)A′2(α). Since
A′1(α) = 0, it implies that xq−d2

c2 A′2(α) = Q′
2(α)A′2(α). By Lemma 3.4, A′2(α) has d2 distinct

solutions. Then we can recursively prove that A′ has d1d2 · · · dr = deg(A) distinct solutions.
Hence, |Zero(A)| = deg(A) · qdim(A). The other direction is proved in Lemma 3.6. ¤

Conversely, we have

Lemma 3.6 Let A = A1, . . . , Ar be a monic triangular set. If for any parametric value U0

of U and any point x in Zero(A1(U0), . . . , Ai−1(U0)), Ai(U0, x) has deg(Ai) distinct solutions.
Then A is proper.

Proof: Let Ai = Iix
di
ci

+ Vi. For A1, suppose prem(xq−d1
c1 A1,A) = R1 6= 0. Then we

have (xq−d1
c1 − P1)A1 = R1, where P1 is a polynomial. Choose a parametric value U0 of U

such that R1(U0) 6= 0. Then A1(U0) has d1 distinct solutions, this is contradicts to 0 <

deg(R1(U0), xc1) < d1. Thus, R1 = 0. Now we consider A2. Suppose prem(xq−d2
c2 A2,A) =

R2 6= 0. Then we have two polynomials Q1 and Q2 such that xq−d2
c2 A2 = Q1A1 +Q2A2 +R2.

Choose a parametric value U1 of U such that R2(U1) 6= 0. Since deg(R2, xc1) < d1, there is a
solution x of A1(U1) such that R2(U1, x) 6= 0. Then we have (xq−d2

c2 −Q1(U1, x))A2(U1, x) =
R2(U1, x). A2(U1, x) has d2 distinct solutions contradicts to 0 < deg(R2(U1, xc2) < d2. Thus,
R2 = 0. Similarly, we have prem(xq−di

ci Ai,A) = 0. Hence, A is proper. ¤

A (proper) triangular set A in (9) is called an (proper) ascending chain, or simply a
(proper) chain, if Aj is reduced wrt Ai for i < j. A chain A is called conflict if IA = 0. For
a conflict chain, we have Zero(A/IA) = ∅. In R2, if A is non-conflict, Zero(A/IA) 6= ∅ [1].
This is not valid in Rq(q > 2).

A proper chain A = A1, . . . , Ar is called a quasi-monic proper chain, if prem(init(Ai)q−1−
1,A) = 0. For a quasi-monic proper chain, we have the following lemma.



84 X.S. Gao, Z.Y. Huang

Lemma 3.7 Let A = A1, A2, . . . , Ar be a quasi-monic proper chain. There exists a monic
proper chain B such that class(Bi) = class(Ai), deg(Bi) = deg(Ai) and Zero(A) = Zero(B).

Proof: Let Ii = init(Ai) and ci = class(Ai). Note that Iq−1
1 − 1 is reduced w.r.t A.

Then prem(Iq−1
1 − 1,A) = Iq−1

1 − 1 = 0. By Lemma 2.5, we have Zero(I1) = ∅. From
prem(Iq−1

2 − 1,A) = 0 and the remainder formula (10), we have Zero(A1) ⊆ Zero(Iq−1
2 − 1).

Thus, Zero(A1, I2) = ∅. We can recursively prove that Zero(A1, A2, . . . , Ai, I
q−1
i+1 − 1) =

Zero(A1, A2, . . . , Ai) and Zero(A1, A2, . . . , Ai, Ii+1) = ∅, which means that the zero of A is
not the zero of any Ii.

Now we construct a monic proper chain B from A. Note that Zero(A1) = Zero(Iq−2
1 A1).

Let di = deg(Ai) and ci = class(Ai). Write Iq−2
1 A1 as Iq−2

1 (I1x
di
c1 + U1) = (Iq−1

1 − 1)xd1
c1 +

xdi
c1 + Iq−2

1 U1. Then Zero(A1) = Zero(xd1
c1 + Iq−2

1 U1). Let B1 = xd1
c1 + Iq−2

1 U1. We obtain a
monic polynomial B1 such that Zero(A1) = Zero(B1), class(A1) = class(B1) and deg(A1) =
deg(B1). Then we have Zero(A1) = Zero(A1, I

q−1
2 − 1) = Zero(B1, I

q−1
2 − 1) = Zero(B1).

Thus, Zero(A1, A2) = Zero(B1, I
q−1
2 − 1, Iq−2

2 A2). Write Iq−2
2 A2 as (Iq−1

2 − 1)xd2
c2 + xd2

c2 +
Iq−2
2 U2. We have Zero(A1, A2) = Zero(B1, x

d2
c2 +Iq−2

2 U2). Let R2 = prem(Iq−2
2 U2, B1). Since

B1 is monic, Zero(B1, x
d2
c2 +Iq−2

2 U2) = Zero(B1, x
d2
c2 +R2). Let B2 = xd2

c2 +R2. Then we have
Zero(A1, A2) = Zero(B1, B2). Similarly, we can recursively construct Br−1 by Ar−1. Hence,
we obtain a chain B.

Since Zero(A1, A2, . . . , Ai−1, Ii) = ∅ and A is proper, it is easy to prove that for any
parametric value U0 of U and any point x in Zero(A1(U0), . . . , Ai−1(U0)), Ai(U0, x) has
deg(Ai) distinct solutions. Since Zero(A1, . . . , Ai) = Zero(B1, . . . , Bi), by Lemma 3.6, we
have B is a monic proper chain. ¤

3.3. Well-Ordering Principles
A characteristic set (CS) of a polynomial set P is any chain of lowest ordering contained

in P. It is evident that any two characteristic sets of a polynomial set are of the same
ordering. We have the following basic property for the basic set[2, 3].

Lemma 3.8 Let A be a characteristic set of a polynomial set P. If P is reduced wrt A, then
the characteristic set of P ∪ {P} is of lower ordering than that of P.

Let P be a polynomial set. We set P0 = P and choose a CS B0 of P0. Let R0 be
the nonzero remainders of polynomials in P0 \ B0 wrt B0. Suppose that R0 6= ∅. Then
we form a new polynomial set P1 = P ∪ B0 ∪ R0. Choose now an arbitrary CS B1 of P1.
By Lemma 3.2, B1 is of lower ordering than B0. Continuing in this way, we will obtain
successively Pi,Bi,Ri, i = 1, 2, . . ., for which

B0 Â B1 Â B2 Â · · · .

By Lemma 3.1, the sequence can only be a finite one so that up to a certain stage m we
should have Rm = ∅. The above procedure can be exhibited in the form of the scheme (11)
below:

P = P0 P1 · · · Pi · · · Pm

B0 B1 · · · Bi · · · Bm = C
R0 R1 · · · Ri · · · Rm = ∅

(11)
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where
Pi = Pi−1 ∪ Ri−1 (12)

Bi is a CS of Pi, and Ri is the set of nonzero remainders of the polynomials in Pi wrt Bi.
In scheme (11), the corresponding CS Bm = C verifies

prem(P, C) = {0} and Zero(P) ⊂ Zero(C). (13)

Any chain C verifying the property (13) is called a Wu-CS of the P.
In R2, using characteristic set, we can decompose the zero set of a polynomial equation

system as the disjoint union of the zero sets of monic chain [1]. But when q > 2, a monic
chain may not have zero. For example, in R3, Zero(x2

1 + 2x1, x
2
2 + 1) = ∅. From Lemma 3.5,

if a monic chain A is proper, it has degA · qdim(A) solutions. Thus, we can compute the
proper CS, and decompose the zero set of a polynomial equation system as the union of zero
set of monic proper chain.

In scheme (11), if C = C1, C2, . . . , Cr is not proper, let R1
0 be the nonzero remainders of

xq−di
ci Ci wrt C, where ci = class(Ci) and di = deg(Ci). Then we form P1

0 = Pm ∪R1
0. For P1

0,
repeat the process of scheme (11). Then we obtain a characteristic set C1 whose ordering is
lower than C0. If C1 is not proper, we do the above process again. From Lemma 3.1, we know
that the whole process will terminate in l steps, where l ≤ qn. Then we obtain a sequence
of chain

B0 Â · · · Â Bm1 = C Â B1
0 Â · · · Â B1

m1
= C1 Â · · · Â Ct−1 Â Bt

0 Â · · · Â Bt
mt

= Cpro,

where Cpro is a proper chain. Similarly, we have

prem(P, Cpro) = {0} and Zero(P) ⊂ Zero(Cpro). (14)

Then Cpro is called a proper characteristic set (PCS) of P. We have the following key prop-
erties of the CS.

Theorem 3.9 (Well-ordering principle) Let C be a Wu-CS of a polynomial set P, Hi =
prem(Iq−1

i − 1, C). Then we have

Zero(P)

= Zero(C/IC)
⋃
∪r

i=1Zero(P ∪ C ∪ {Ii}) (15)

= Zero(C ∪ {Iq−1
1 − 1, . . . , Iq−1

r − 1})
⋃
∪r

i=1Zero(P ∪ C ∪ {Ii}) (16)

= Zero(C ∪ {H1, . . . , Hr})
⋃
∪r

i=1Zero(P ∪ C ∪ {Ii}) (17)

= Zero(C ∪ {H1, . . . , Hr})
⋃
∪r

i=1Zero(P ∪ C ∪ {H1, . . . , Hi−1, Ii}) (18)

where Ii, i = 1, . . . , r are the initials of the polynomials in C. When i < 0, Ii is assumed not
occurring in the formula.

Proof: Equation (15) is a direct consequence of the remainder formula (10) and is the same
as the characteristic zero case [3, 4]. By (3), (6) and (15), we have equation (16).
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To prove equation (17), it is sufficient to show Zero(C∪{H1, . . . , Hr}) = Zero(C∪{Iq−1
1 −

1, . . . , Iq−1
r −1}). Let x be a element in Zero(C ∪{Iq−1

1 −1, . . . , Iq−1
r −1}). By the remainder

formula (10), we have Hi(x) = 0. Thus, Zero(C ∪ {Iq−1
1 − 1, . . . , Iq−1

r − 1}) ⊂ Zero(C ∪
{H1, . . . , Hr}). Conversely, let x be a element in Zero(C ∪ {H1, . . . , Hr}). Since Iq−1

1 − 1 is
reduced w.r.t C, Iq−1

1 − 1 = H1. Then H1(x) = 0 implies Iq−1
1 (x)− 1 = 0. Thus, I1(x) 6= 0.

By the remainder formula (10), Iq−1
2 (x)− 1 = 0, which means I2(x) 6= 0. We can recursively

obtain Iq−1
i (x)− 1 = 0. Hence, Zero(C ∪ {H1, . . . , Hr}) ⊂ Zero(C ∪ {Iq−1

1 − 1, . . . , Iq−1
r − 1}).

Note that Zero(P ) ∪ Zero(Q) = Zero(P ) ∪ Zero(Q/P ) = Zero(P ) ∪ Zero({Q,P q−1 − 1}).
Then we can obtain (18) from (17) ¤

This result is significant because it represents the zero set for a general polynomial set
as the zero set of an ascending chain.

In procedure (11), the size of Pi could increase very fast. We may adopt the following
way to compute Pi and Theorem 3.9 is still valid.

Pi = P ∪ Bi−1 ∪ Ri−1 (19)

A more drastic way to reduce the size of Pi is give below. In [5], Wu proposed that
instead of (19), we use the the following way to compute Pi

Pi = Bi−1 ∪ Ri−1. (20)

Then |Pi| is always less than or equal to |P|. In the case of characteristic zero, Wu proved
the following theorem.

Theorem 3.10 ([5]) Let C be a CS of a polynomials et P using scheme (11) and (20). Then

Zero(P) = Zero(C/Km)
⋃
∪m

k=0Zero(P ∪ {Jk}/Kk−1).

where Ji is the product of initials of polynomials in Bi, and Ki =
∏i

j=0 Ji.

In Rq, we can modify the formula as the following form..

Theorem 3.11 (Modified well-ordering principle) Let C be a chain computed from a
polynomial set P with procedures (11) and (20), Ij , j = 1, . . . , s the initials of the polynomials
in C = Bm, . . . ,B0 (note that the initials of polynomials in C appear first in the sequence),
Hj = prem(Iq−1

j − 1, C), Tj = prem(Ij , C), j = 1, . . . , s and Km the product for all the Ij.
Then, we have

Zero(P)

= Zero(C/Km)
⋃
∪s

i=1Zero(P ∪ C ∪ {Iq−1
1 − 1, . . . , Iq−1

i−1 − 1, Ii}) (21)

= Zero(C ∪ {H1, . . . , Hs})
⋃
∪s

i=1Zero(P ∪ C ∪ {H1, . . . , Hi−1, Ti}) (22)

When i < 0, Ii will not appear in the formula.
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Proof: Let Ul =
∏l

i=1 Ii. From [5], we have the following equation

Zero(P) = Zero(C/Km)
⋃
∪s

i=1Zero(P ∪ C ∪ {Ii}/Ui−1). (23)

Equation (21) is a consequence of (23), (3) and (6). Similar to Theorem 3.9, we can prove

Zero(C/Km) = Zero(C ∪ {Iq−1
1 − 1, . . . , Iq−1

s − 1}) = Zero(C ∪ {H1, . . . , Hs}).

Since the initial of the polynomials of C are reduced w.r.t C, for the initial Ii, i = 1, . . . , t of
C, we have Ti = Ii. Thus, for i ≤ t,

Zero(P ∪ C ∪ {Iq−1
1 − 1, . . . , Iq−1

i−1 − 1, Ii}) = Zero(P ∪ C ∪ {H1, . . . , Hi−1, Ti}).

For i > t, by the remainder formula (10), we also have the above equation. This proves
equation (22). ¤

3.4. Zero Decomposition Theorems in Rq

Now we give the zero decomposition theorems. The following traditional form [3, 4] is
still valid and the proof is also the same. Note that for a conflict chain A, Zero(A/IA) = ∅.

Theorem 3.12 (Zero Decomposition Theorem) There is an algorithm which permits
to determine for a given polynomial set P in a finite number of steps non-conflict chains
Aj , j = 1, . . . , s such that

Zero(P) = ∪s
j=1Zero(Aj/IAj ).

In R2, we have a monic zero decomposition theorem [1]. As mentioned before, in Rq(q >
2), a monic chain may have no solution. Thus, we need to use the monic proper chain. Then,
we can give the following theorem.

Theorem 3.13 (Monic Zero Decomposition Theorem) There is an algorithm which
permits to determine for a given polynomial set P in a finite number of steps monic proper
chains Aj , j = 1, . . . , t such that

Zero(P) = ∪t
j=1Zero(Aj).

Proof: First we get a PCS of P by process (14). By Theorem 3.9, we have (17). One may
repeat the procedure (14) for each C ∪ {H1, . . . , Hr} and P ∪ C ∪ {Hi}. Since Hi is reduced
wrt C, according to Lemma 3.2, the new chains obtained in this way will be of lower ordering
than that of C. By Lemma 3.1, the procedure will end in a finite number of steps. Note that
we could also use (22) to obtain the decomposition. In (22), since Hi and Ti are reduced wrt
C. By Lemma 3.2, the process will terminate in a finite number of steps.

At the end of the above process we obtain some quasi-monic proper chains Bj , j = 1, . . . , t
such that Zero(P) = ∪t

j=1Zero(Bj). By Lemma 3.7, for any j = 1, . . . , t, we can obtain a
monic proper chain Aj such that Zero(Aj) = Zero(Bj) in a finite number of steps. Then we
have Zero(P) = ∪t

j=1Zero(Aj). ¤
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Example 3.14 In R3, Let P = {x1x2x
2
3−1}. First we obtain a PCS {x2

1−1, x1x2−1, x1x
2
3−

x1} of P. By Theorem 3.12, we have Zero(P) = Zero({x2
1 − 1, x1x2 − 1, x1x

2
3 − x1}/x2

1). By
Theorem 3.13, or (17), Zero(P) = Zero(x2

1− 1, x1x2− 1, x1x
2
3− x1)∪Zero(x1, x

2
1− 1, x1x2−

1, x1x
2
3 − x1) = Zero(x2

1 − 1, x2 − x1, x
2
3 − 1).

The following theorem gives a refined zero decomposition theorem which allows to com-
pute the number of solutions for a finite set of polynomials.

Theorem 3.15 (Disjoint Zero Decomposition Theorem) For a finite polynomial set
P, we can find monic proper chains Aj , j = 1, . . . , s such that

Zero(P) = ∪s
i=1Zero(Ai)

and Zero(Ai) ∩ Zero(Aj) = ∅ for i 6= j. As a consequence, we have

|Zero(P)| =
s∑

i=1

deg(Ai) · qdim(Ai).

Proof: The proof is similar to that of Theorem 3.13. We just need to use (18) instead
of (17). Since the components are disjoint, by Lemma 3.5, the number of solutions are∑s

i=1 deg(Ai) · qdim(Ai). Similar to Theorem 3.12, we could also use (22) to obtain the
decomposition. ¤

Example 3.16 In R3, let P = {x1x
2
2+x2+1}. First we obtain a PCS {x2

1−x1, x1x2+x2+1}.
By Theorem 3.15, we have Zero(P) = Zero(x1−1, x2−1)∪Zero(x1, x2+1). Thus, |Zero(P)| =
30 + 30 = 2.

Now we could give the algorithm DisMPZD from Theorem 3.15.

4. A Top-Down Algorithm for Monic Proper Zero Decomposition

The TopDownZD algorithm for obtaining a monic zero decomposition of P in R2 is
presented in [1]. The main idea is working from the polynomials with the highest rank to
that with the lowest rank.

In this section, we will give a algorithm TopDownPZD to get a monic proper zero
decomposition of P in Rq. By the special properties of Rq, our algorithm has stronger
properties.

Theorem 4.1 Algorithm TopDownPZD is correct and to obtain each monic proper chain
of P, we need O(n(q − 1)l) polynomial arithmetic operations where l = |P|.
Proof. We consider the set Q of polynomials in the algorithm. Q1 ⊂ Q is the set of
polynomials with the highest class and Q ∈ Q1 a polynomial whose degree is lowest and
initial is of the lowest ordering. Let c = class(Q), d = deg(Q) and I = init(Q). If I = 1,
then for P ∈ Q1, as a consequence of remainder formula (10), Zero({Q,P}) = Zero({Q,P1}).
Therefore, we have

Zero(Q) = Zero((Q \Q1) ∪ {Q} ∪ {prem(P, Q) 6= 0 |P ∈ Q1}).
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If I 6= 1, by (6), we can split Zero(Q) as the following two parts:

Zero(Q) = Zero(Q ∪ {Iq−1 − 1}) ∪ Zero(Q ∪ {I})
= Zero((Q \ {Q}) ∪ {Q1} ∪ {Iq−1 − 1}) ∪ Zero((Q \ {Q}) ∪ {I, U}).

The first part can be treated similarly to the case of I = 1 and the second case will be
treated recursively with algorithm TopDownPZD. This proves that after the step 2 of
the algorithm, we get A1, . . . ,Aq such that Zero(P) = ∪iZero(Ai). Then we determine
whether Ai is a proper triangular set in step 4. If it is proper, we turn it into a chain form
A′i. Since Ai is monic, by the remainder formula (10), Zero(A′i) = Zero(Ai). If Ai is not
proper, suppose Ai = Ai1, . . . , Aipi . we add prem(xq−dij

cij Aij ,Ai) 6= 0 to Ai, and get a poly-
nomials set Bi. We have Zero(Ai) = Zero(Ai, x

q−dij
cij Aij) = Zero(Ai,prem(xq−dij

cij Aij ,Ai)).
Thus, Zero(Ai) = Zero(Bi). Then we treated Bi recursively with algorithm TopDown-
PZD. Hence, if A′1, . . . ,A′s is the output of the algorithm, we have Zero(P) = ∪iZero(A′i).

The termination of step 2 of the algorithm can be proved in two steps. First, we will
show the termination for the inner loop of step 2, that is, for each finite polynomial set
Q, the algorithm will terminate. After each iteration of the loop, the lowest degree of the
polynomials of highest class in Q will decrease. Then the highest class of the polynomials in
Q will be reduced and the polynomial Q will be added to A. Hence, this loop will end and
give a triangular set A. Second, we need to show the termination for the outer loop. For
a polynomial set P, we assign an index (cn,q−1, cn,q−2, . . . , cn,1, . . . , c1,q−1, . . . , c1,1) where ci,j

is the number of polynomials in P and with class i and degree j. In the step 2, there are
essentially two cases where new polynomial sets are generated. In the first case, we replace
Q with Q′ = (Q \Q1) ∪ {Q} ∪ {Iq−1 − 1} ∪ {prem(P, Q) 6= 0 |P ∈ Q1}. In the second case,
we add Q′ = (Q \ {Q}) ∪ {I, U} to P∗, where Q = Ixc + U . It is clear that the index of Q′
is less than the index of Q in the lexicographical ordering in both cases. It is easy to show
that a strictly decreasing sequence of indexes must be finite. This proves the termination of
the step 2.

Suppose we get A∗ = A1, . . . ,Aq after step 2. If it is proper, the process of turning it
into the chain form is terminational. If Ai = Ai1, . . . , Aipi is not proper, as mentioned above,
we get a polynomial set Bi such that there are polynomials reduced wrt Ai in Bi.

To prove the termination of the whole algorithm, it is sufficient to show that the new
monic triangular sets we get from Bi by step 2 is of lower ordering than that of Ai. Note
that the inner loop of step 2 generates monic triangular sets while the outer loop generates
new polynomial sets. There is a polynomial Q ∈ Bi with the highest class and lowest degree
such that Q is reduced wrt Ai. Let Q = Ixd

c +U . Then step 2 splits Zero(Bi) into two parts:

Zero(Bi) = Zero({Bi \ {Q}} ∪ {xd
c + U} ∪ {Iq−1 − 1}) ∪ Zero({Bi \ {Q}} ∪ {I, U}).

It is easy to prove the following property of step 2: Let B be a input of step 2. Assume
there is a monic polynomial Bs in B such that class(Bs) = c. Let B′1, . . . ,B′r be the monic
triangular sets getting from step 2. Then, for any i, there is a polynomial B′

ij ∈ B′i such that
class(B′

ij) = c and deg(B′
ij) ≤ deg(Bs).

Since xd
c + U is reduced wrt Ai and Ai ⊆ Bi, the monic triangular sets we obtain from

{Bi \ {Q}} ∪ {xd
c + U} ∪ {Iq−1 − 1} is of lower ordering than Ai. For {Bi \ {Q}} ∪ {I, U},



90 X.S. Gao, Z.Y. Huang

since I and U is reduced wrt Ai, it can be treated recursively as Bi. Hence, we prove the
termination of the algorithm.

Finally, we will analyze the complexity of the inner loop of step 2 of the algorithm, that
is, the complexity to obtain a monic triangular set from Q. Let l = |Q|. After each iteration,
the lowest degree of the highest class of the polynomials in Q will be reduced at least by
one. Then, this loop will execute at most n(q− 1) times. In each iteration, we need to select
the polynomials with the highest class and the polynomials with lowest degree and initials.
These operations need O(l) comparison of integers. If I = 1, then the new Q contains at
most l − 1 polynomials. If I 6= 1, the new Q contains at most l polynomials. Then, after
each iteration, the new Q contains at most l polynomials. In each iteration, we also need
to compute at most l − 1 pseudo-remainders. Suppose we want to get prem(P, Q). It takes
at most 2 polynomial multiplications when we decrease the degree of P by one. When we
reduce a class of polynomials in Q, the lowest degree decreases to 0, and the highest degree
at most decreases to 1. Thus, we need at most 2(q−1+q−2)(l−1) multiplications to reduce
a class of polynomials in Q. In all, the algorithm needs O(n(q − 1)l) polynomial arithmetic
operations and O(n(q − 1)l) comparison of integers.
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Algorithm 1 — DisMPZD(P)

Input: A finite set of polynomials P.
Output: A sequence of monic proper chains Ai such that Zero(P) = ∪iZero(Ai).

1 Set P∗ = {P}, A∗ = ∅.
2 While P∗ 6= ∅ do

2.1 Choose a P from P∗.
2.2 Set Q = P
2.3 Do

2.3.1 Do
C=The characteristic set of Q.
R = prem(Q \ C, C).
Q = Q ∪ R (or P ∪ C ∪ R).

Until R = ∅.
2.3.2 Let C = {C1, C2, . . . , Cr}, class(Ci) = ci and deg(Ci) = di.
2.3.3 Set R1 = ∅.
2.3.4 For i from 1 to k do

R1 = R1 ∪ prem(xq−di
ci Ci, C) 6= 0.

2.3.5 Q = Q ∪ R1 (or P ∪ C ∪ R1).
Until R1 = ∅.

2.4 Set I = {init(P )|P ∈ C} = {I1, . . . , Is}.
2.5 Set J =

∏s
i=1 Ii.

2.6 Set H = {Hi 6= 0|Hi = prem(Iq−1
i − 1, C)}.

2.7 If H = ∅, do A∗ = A∗ ∪ {C}.
2.8 Else, do

2.8.1 If J 6= 0, do P∗ = P∗ ∪ {C ∪H}.
2.8.2 For i from 1 to s, do

P1 = P ∪ C ∪ {H1, . . . , Hi−1, Ii}.
P∗ = P∗ ∪ {P1}.

3 Let A∗ = {A1,A2, . . . ,Aq} and Ai = {Ai1, . . . , Aipi}.
4 For i from 1 to q do

4.1 Set B = ∅.
4.2 For j from 1 to pi do

4.2.1 Let Aij = Iijx
dij
cij + Rij

4.2.2 Aij = prem(xdij
cij + Iq−2

ij Rij ,B).
4.2.3 B = B ∪ {Aij}.

Return A∗
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Algorithm 2 — TopDownPZD(P)

Input: A finite set of polynomials P.
Output: A sequence of monic proper chains Ai such that Zero(P) = ∪iZero(Ai).

1 Set P∗ = {P}, A∗ = ∅ and C∗ = ∅.
2 While P∗ 6= ∅ do

2.1 Choose a Q from P∗.
2.2 Set A = ∅.
2.3 While Q 6= ∅ do

2.3.1 If some element α of Fq is in Q, Zero(Q) = ∅. Set Q = A = ∅ and goto 2.4.
2.3.2 Let Q1 ⊂ Q be the polynomials with the highest class.
2.3.3 Let Q ∈ Q1 be a polynomial whose degree is lowest and initial is of the lowest

ordering.
2.3.4 Let Q = Ixd

c + U such that class(Q) = c, deg(Q) = d and init(Q) = I.
2.3.5 If I = 1 do

Set R = prem(Q1, Q).
If the classes of polynomials in R are lower than c, do
A = A ∪ {Q}.
Q = prem(Q1, Q) ∪ {Q \Q1}.

Else, do
Q = prem(Q1, Q) ∪ {Q} ∪ {Q \Q1} and goto 2.3.2.

2.3.6 Else do
Set Q1 = xd

c + Iq−2U and Q2 = Q1 \ {Q}.
Q = prem(Q2, Q1) ∪ {Iq−1 − 1} ∪ {Q \Q1}.
P1 = {Q \ {Q}} ∪ A ∪ {I, U}.
P∗ = P∗ ∪ {P1}.
Set R = prem(Q2, Q1).
If the classes of polynomials in R are lower than c, do
A = A ∪ {Q1}.

Else, do
Q = Q ∪ {Q1}. and goto 2.3.2.

2.4 If A 6= ∅, do
2.4.1 A∗ := A∗ ∪ {A}.

3 Let A∗ = {A1, . . . ,Aq} and Ai = {Ai1, . . . , Aipi}.
4 For i from 1 to q do

4.1 Set B = ∅.
4.2 For j from 1 to pi do

4.2.1 Let class(Aij) = cij and deg(Aij) = dij .
4.2.2 B = B ∪ {prem(xq−dij

cij Aij , A)} 6= 0.
4.3 If B 6= ∅, do

4.3.1 P∗ = P∗ ∪ {Ai ∪ B}.
4.4 Else, do

4.4.1 Set C = ∅.
4.4.2 For j from 1 to pi do

C = C ∪ {prem(Aij , C)}.
4.4.3 C∗ = C∗ ∪ {C} and A∗ = A∗ \ {Ai}

5 If A∗ 6= ∅, do
5.1 A∗ := ∅, goto 2. Return C∗


