A Characteristic Set Method for Solving Boolean Equations
and Applications in Cryptanalysis of Stream Ciphers'

Fengjuan Chai, Xiao-Shan Gao?, and Chunming Yuan
Key Laboratory of Mathematics Mechanization
Institute of Systems Science, AMSS, Academia Sinica, Beijing, 100080, China

Abstract. We present a characteristic set method for solving Boolean equa-
tions, which is more efficient and has better properties than the general charac-
teristic set method. In particular, we give a disjoint and monic zero decompo-
sition algorithm for the zero set of a Boolean equation system and an explicit
formula for the number of solutions of a Boolean equation system. We also
prove that a characteristic set can be computed with a polynomial number of
multiplications of Boolean polynomials in terms of the number of variables. As
experiments, we use our method to solve equations from cryptanalysis of a class
of stream ciphers based on nonlinear filter generators. Extensive experiments
show that the method is quite effective.

Keywords. Characteristic set method, Boolean equation, finite field Fs, crypt-
analysis, stream ciphers.

1. Introduction

The characteristic set (CS) method is an effective tool for studying systems of poly-
nomial equations, algebraic differential equations, and algebraic difference equations
[28, 23, 12]. The idea of the method is to reduce an equation system in general form
to equation systems in a special “triangular form”, also called ascending chains. The
zero-set, of any finitely generated equations can be decomposed into the union of the
zero-sets of ascending chains. As a consequence, solving an equation system can be
reduced to solving cascaded univariate equations.

Boolean equation solving is a fundamental problem in computer science and has
many applications such as hardware design and verification [1, 19], cryptanalysis of
ciphers [6, 7, 10], and SAT problem solving [14]. The problem of deciding whether
a Boolean equation system has a solution is NP-complete [26]. There exist many
approaches to solve Boolean equations such as the classic algebraic methods [24], the

DPartially supported by a National Key Basic Research Project of China (2004CB318000).
2) Corresponding author. Email: xgao@mmre.iss.ac.cn

2 C. Chai, X.S. Gao, and C. Yuan

logic methods such as the Davis-Putnam procedure [8], the graph based methods such
as the BDD method [2], and the Grébner basis and XL methods [1, 6, 10, 25].

In this paper, we propose two CS methods to solve Boolean equations, which is
equivalent to polynomial equation solving in the finite field F5. By taking into account
of the special property of Iy, our proposed methods are much more efficient and have
better properties than the general CS method.

The first major improvement is that we could decompose the zero set of a Boolean
equation system as the disjoint union of the zero sets of ascending chains consisting
of monic polynomials. As a consequence, we could give an explicit formula for the
number of solutions of the equation system.

The well-ordering principle is a basic step of the CS method, which can be used
to compute a so called Wu-CS for an equation system. If the Wu-CS satisfies certain
properties, it provides at least one solution to the original equation system. The second
improvement is that we design well-ordering principles which can be executed in n steps
and use a polynomial number of polynomial multiplications, where n is the number of
variables. We also design an algorithm, where the degrees of the polynomials occurring
in the algorithm do not increase. This allows us to control the size of the polynomials
effectively. Since Boolean polynomial equation solving is NP-complete, there exist no
universally fast algorithms for this problem. The philosophy behind our algorithms is
that we will compute each Wu-CS or branch effectively by controlling the size of the
polynomials and reducing the total number of branches using various strategies.

The general CS methods do not have the properties mentioned above [11]. The
work [17, 18, 9] considered CS methods for polynomials with coefficients in a field
of a positive characteristic. These algorithms also do not have the above mentioned
properties.

We implement our algorithm with the C language. Besides the concept of ascend-
ing chain, we also used the concept of Wu chain defined in [29] and the concept of
weak chain defined in [5] in our program. In order to save space, we use SZDD [21]
to represent Boolean polynomials. Experiments show that this could speed up the
program significantly.

As experiments, we use our methods to solve equations from cryptanalysis of stream
ciphers based on nonlinear filter generators. Extensive experiments have been done
for equation systems with variables ranging from 40 to 128. Comparisons with the
Grobner basis method are given. Experiments show that our algorithms provide an
effective tool for solving equations over Fs.

The rest of this paper is organized as follows. In Section 2, we introduce the
notations and give some preliminary results. In Section 3, we present the CS methods.
In Section 4, we present a direct algorithm to decompose the zero set of a polynomial
system into the zero sets of monic ascending chains. In Section 5, we discuss the issues
in the implementation of the algorithms. In Section 6, our methods are used to solve
equations from cryptanalysis of stream ciphers based on nonlinear filter generators. In
Section 7, conclusions are given.

A Characteristic Set Method for Solving Boolean Equations 3

2. Notations and Preliminary Results

Let Fy be the field consisting of 0 and 1. We will consider the problem of equation
solving over Fy. Let X = {z1,...,z,} be a set of indeterminants and

R, = F,[X]/(H)

where H = {22 + z1,...,22 + x,}. Then R, is a Boolean ring!. Note that R, has
zero divisors. For instance, x; and x; + 1 are zero divisors. An element P in R, is
called a Boolean polynomial, or simply a polynomial, and has the following canonical
representation:
P=M,+---+ M

where M; is a product of several distinct variables.

Let IP be a set of polynomials in Ry. We use Zero(P) to denote the common zeros
of the polynomials in [P in the affine space 7, that is,

Zero(P) = {(ay,...,ay),a; € Fy,s.t.,.VP € P, P(ay,...,a,) = 0}.
Let D be a polynomial in Ry,. We define a quast variety to be
Zero(P/D) = Zero(P) \ Zero(D).

For a polynomial set P, we use (P) to denote the ideal generated by the polynomials
in P. The following are well-known results.

Lemma 2.1 Let I be a polynomial ideal in R,.

(1) I=(xo+ag,...,xn+ an) if and only if (ag, ..., a,) is the only solution of 1.
(2) I= (1) if and only if I has no solutions.
(8) Let P € Ry and s a positive integer. Then P* = P.

As a consequence of Lemma 2.1(2), we have
Corollary 2.2 Let P € Ry \ Fy. Then Zero(P) # 0.

Lemma 2.3 Let U,V , and D be polynomials and P a polynomial set in Ry. We have

UV +1)=({U+1,V+1}). (1)
UV +U+V)=({UV}). (2)
Zero(D/D) = Zero(D + 1). (3)
Zero(P) = Zero(P U {U}) U Zero(P U {U + 1}). (4)

Proof: We can prove (1) as follows: (UV +1) = (UV + 1,(U + 1)(UV + 1)) =
(UV+1,U+1) = (V+4+1,U+1). Equation (2) can be proved similarly: (UV+U+V) =
UV+U+V,(U+1)H)(UV+U+V))=UV+U+V,UV+V)=(U,V). For any
element o € Fy, D(«) # 0 implies D(a) = 1. This proves (3). Note that U(U+1) = 0.
Then (4) is obviously true. [

DA ring is called a Boolean ring if all its elements are idempotent. See page 31 of [24].

4 C. Chai, X.S. Gao, and C. Yuan

3. A Characteristic Set Method in R,

We will give a CS method to solve Boolean polynomial equations, which is more
efficient and has better properties than the general CS method.

3.1 Triangular Sets and Chains

Let P € Ry. The class of P, denoted by cls(P), is the largest ¢ such that z. occurs
in P. If P €Fy, we set cls(P) =0. If cls(P) = ¢ > 0, we call z. the leading variable
of P, denoted as lvar(P). The leading coefficient of P as a univariate polynomial in
lvar(P) is called the initial of P, and is denoted as init(P).

A sequence of nonzero polynomials

A: AlaAQa"'7A7” (5)

is a triangular set if either r = 1 and A; = 1 or 0 < cls(A;) < --- < cls(A4,). For a
triangular set A of form (5), let T4 = [[;_, init(4;).

Let P = Iz.+U with I = init(P) and class ¢. For @ € Ry, write) as a polynomial
inz.: Q=ILx.+ U If I; #0, the pseudo-remainder of () wrt P is defined as

prem(Q, P) = IQ + I, P = IU, + I U.

If I; = 0, we define prem(Q,P) = Q. If P = 1, define prem(Q, P) = 0. For a
triangular set A of form (5), the pseudo-remainder of) wrt A is defined as

prem(Q, A) = prem(prem(Q, A,), {A1,...,A,_1}) and prem(Q,) = Q.

Let R = prem(Q,.A). By Lemma 2.1(3), we have

JQ = Z QA + R (6)

where J is a factor of I4 and (); are polynomials. The above formula is called the
remainder formula.

Let PP be a set of polynomials and A a triangular set. We use prem(P, .4) to denote
the set of nonzero prem(P, A) for P € P.

A polynomial @ is reduced wrt P # 0 if cls(P) = ¢ > 0 and z. does not occur
in Q. A polynomial @) is reduced wrt a triangular set A if P is reduced wrt all the
polynomials in A. It is clear that prem(P,.A) is reduced wrt A for any polynomial P.

The saturation ideal of a triangular set A is defined as follows

sat(A) = {P € Ry|I4P € (A)}.

The saturation ideal in Ry is very simple. We have

Lemma 3.1 For a triangular set A= Ay, ..., A,, sat(A) = (Ay,..., A, T4+ 1).

A Characteristic Set Method for Solving Boolean Equations 5

Proof: Denote I = (Ay,...,A,, 14+ 1). If P € sat(A), then there exist polynomials
B; such that

I.P =) BiA;.

Let Ay = I4 + 1 and substitute I4 = Ay + 1 into the above equation, we have
P=3".B;A;+ PAy € I. We prove one side of the equation. For the other side of the
equation, let P € I. Then there exist polynomials C; such that

P =" CiA;+ CoA.

Multiply I4 to both sides of the above equation and note that I4(I4+ 1) = 0, we have
I4P =5, 14C;A;. Then P € sat(A). This proves the lemma. [

A triangulated set A is called monic if the initial of each polynomial in A is 1. A
monic triangular set can be written as the following form:

A Ay =2, +U(U),--- A, =z, + Uy(U) (7)

where U = {x;]i # ¢;,j = 1,...,p} is called the parameter set of A. Let ¢ = |U|.
Then, p+q = n. The dimension of A is defined to be dim(A) = g = n—|.A|. We have

Lemma 3.2 Let A be a monic triangular set. Then |Zero(A)| = pdim(4)

Proof: The dimension of A is the number of parameters of A, that is, dim(A) = |U|.
For any z; € U, we assign values 0 and 1 to x;. Then, there are gdim(4) parametric
values for U. For each of these parametric values, A = 0 has exactly one solution since
A is monic. This proves the lemma. [

A triangular set A of form (5) is called an ascending chain, or simply a chain, if
A; is reduced wrt A; for ¢ < j. A chain A is called conflict if I, = 0.

Lemma 3.3 Let A be a non-conflict chain. Then Zero(A/14) # 0.

Proof: Let A= Ay,..., A, and A; = Lz, +U; where I; = init(4;). Since A is a chain,
I4 is reduced wrt A and does not contain x.,,i =1,...,p. Let U= X\ {z,..., 2}
Since I4 # 0, by Corollary 2.2, we can select a value n for U such that I4(n) # 0.
Then I;(n) # 0 and we can solve z., from A; = I;(n)z., + U;(n) = 0. We thus find an
element in Zero(A/I4). O

3.2 Well-Ordering Principles

Let A: Ay,...,A, and B : By,,...,B, be two triangular sets. A is said to
be of lower ordering than B, denoted as A < B, if either there is a k such that
cls(A;y) = cls(By), ..., cls(Ag_1) = cls(By_1), while cls(Ag) < cls(By); or r > s and
cls(4y) = cls(By),...,cls(A4,) = cls(B,). We have the following basic property for
triangular sets.

6 C. Chai, X.S. Gao, and C. Yuan

Lemma 3.4 Let Ay = Ay = -+ = A, be a strictly decreasing sequence of triangular
sets in Ry. Then m < 27",

Proof: Note that a polynomial P and lvar(P) have the same ordering. Since we only
consider the ordering of the triangular sets, we may assume that polynomials in the
triangular sets are variables. We call the class of the first polynomial in a triangular
set to be the class of that triangular set. We will construct the maximal triangular
set with class ¢. The triangular set with the highest ordering is C; = x,,. The next
two triangular sets are Co = x,_1,C3 = x,_1,T,. Following these triangular sets are
the triangular sets with x,_o as the first polynomial: Cy = x,_2,C5 = x,,_2,%,,Cs =
Tp—2,Tn-1,C7 = Tp_9,Tp_1,Ty. Let C; > --- > C,, be the triangular sets with class >
k. Then the triangular sets with class k—1 are 41, {Zn—k+1}UCx, . . ., {Tpn_g11}UC,, -
Let a; be the number of polynomials in the maximal triangular set with class k. We
have a;_; = 2a,+1 and a1 = 2as+1 = 2%2a5+2+1 = a®ay+2°4+2+1 =2""14... 241 =
2" — 1. Considering the trivial triangular set {1}, we have m < 2™.[J

By Lemma 3.4, among all the chains contained in a polynomial set P, there exists
one with the lowest ordering. Such a chain is called a CS of P. We have the following
basic property for CSs [23, 28|.

Lemma 3.5 Let A be a CS of a polynomial set P. If P is reduced wrt A, then a CS
of PU{P} is of lower ordering than A.

Let P be a polynomial set. We set Py = P and choose a CS By of Py. Let
Ry = prem(Py, By). Suppose that Ry # (). Then we form a new polynomial set
P, = PURy. Choose now a CS B; of P;. By Lemma 3.5, B; is of lower ordering than
By. Continuing in this way, we will obtain successively P;, B;,R;, i = 1,2, ..., for which

By =By =By = ---.

By Lemma 3.4, the sequence can only be a finite one so that up to a certain stage m
we should have R, = (). According to [28, 29], the above procedure can be exhibited
in the form of the scheme (8) below:

P=P P --- P --- P,
By By - B - B,=C (8)
Ry Ry - R, -+ R, =0
where
Pi=P_1UR;, (9)

B; is a CS of P;, and R; = prem(P;, B;). As a consequence of Lemma 3.4, we have

Proposition 3.6 In procedure (8), we have m < 2™,

A Characteristic Set Method for Solving Boolean Equations 7

In scheme (8), B,, = C verifies
prem(P,C) = {0} and Zero(P) C Zero(C). (10)

Any chain C satisfying property (10) is called a Wu-CS of P. We have the following
key property of a Wu-CS.

Theorem 3.7 (Well-ordering principle in Ry) Let C be a Wu-CS of a polynomial
set P. Then we have

Zero(P)
= Zero(C/Ic)ng?, Zero(PUC U {I;}) (11)
=Zero(CU{L +1,...,I,+1}) UU 1Zero(PUCU{L +1,..., L1+ 1,L;}) (12)

where I;,1 = 1,...,p are the initials of the polynomaials in C. When i < 0, we assume
that I; does not occur in the formula.

Proof: Equation (11) is a direct consequence of the remainder formula (6). Equation
(12) is a consequence of (11), (3), (1), and the fact that Zero(P)UZero(Q) = Zero(P)U
Zero(Q/P) = Zero(P) U Zero({P +1,Q}). O

This result is significant because it represents the zero set for a general polynomial
set as the zero set of a chain. By Lemma 3.3, if the CS is non-conflict, then Zero(IP) # 0.

In procedure (8), the size of P; could increase very fast. We may adopt the following
way to compute P; and Theorem 3.7 is still valid.

]P)Z' - P U Bi—l U Ri—l (13)

A more drastic way to reduce the size of P; is proposed by Wu [30]. Instead of
(13), we use the following formula to compute P;

]PJZ' = Bi—l + Ri—l- (14)

Then |P;| is always less than or equal to |P|. In this case, procedure (8) will terminate,
but C,, is not a Wu-CS of P any more. We have the following result.

Theorem 3.8 (Modified well-ordering principle) LetC be a chain computed from
a polynomial set P with procedures (8) and (14), Ij,j =1,..., s the initials of the poly-
nomials in C = B,,, By_1...,By with the initials of polynomials in C appearing first
in the sequence, and H; = prem([i,C),j =1,...,s. Then, we have

Zero(P) = Zero(CU{H; +1,...,Hs + 1}) UU _Zero(PUCU{H; +1,...,H;_1+1,H;}) (15)

Proof: Let K, =[]._, I; and J, = [[._, H;. From [30], we have

Zero(P) = Zero(C/K,,) | Ui, Zero(PUC U {1} /K;_y) (16)

8 C. Chai, X.S. Gao, and C. Yuan

Since C is a chain, the initials of the polynomials in C are reduced wrt C. Hence
for the initials I;,7 = 1,...,t of C, we have H; = I; and K; = J;. For j > t,
H; = prem(I;,C). Then for j > t, by the remainder formula (6), we have Zero(C/K;) =
Zero(C/K; [~y Ii) = Zero(C/J, [T—,.., Hi) = Zero(C/J;). Then, (16) becomes

i=t+1 i=t+1

Zero(P) = Zero(C/Jm) | J Ui Zero(PUC U {H;}/Jiy).

Now, equation (15) can be proved similarly to (12). O
Note that in (12) and (15), we obtain disjoint decomposition for the zero set
Zero(P). The technique to obtain this kind of decomposition was introduced in [5, 22].

3.3 Zero Decomposition Theorems in R,

We now give the zero decomposition theorem (ZDT). Notice that the following
ZDT given in [29] is still valid and the proof is also the same.

Theorem 3.9 (ZDT) For a finite polynomial set P, there is an algorithm to deter-
mine non-conflict chains A;,j =1,...,s, such that

Zero(P) = Uj_, Zero(A;/Ly;).
In Ry, we give the following more elegant form of zero decomposition theorem.

Theorem 3.10 (Disjoint Monic ZDT) For a finite polynomial set P, we can find
monic chains A;,j =1,...,s, such that

Zero(P) = Us_, Zero(A;)

and Zero(A;) N Zero(A;) =0 fori # j. As a consequence, we have

[Zero(P)| = 3 2dim,

i=1

Proof: By Theorem 3.7, we have (12). If C is monic, then I; +1 = 0. Let A; = C and
repeat procedure (8) for Py = CU{I; +1,...,I,+1}. Otherwise, repeat procedure (8)
for Py and Py =PUCU{l; +1,...,I;_1 + 1,1;}. Since [; is reduced wrt C, according
to Lemma 3.5, the new chains obtained in this way will be of lower ordering than that
of C. By Lemma 3.4, the procedure will end in a finite number of steps and all the
chains obtained are monic. Since the components are disjoint in (12), by Lemma 3.2,
the number of solutions are y ;_, odim4)
We give a precise description for this ZDT in Algorithm DMZDT.

Example 3.11 Let P = x1x9x3—1. By Theorem 3.9, we have Zero(P) = Zero(P/xx3).
By Theorem 3.10 or Algorithm 1, Zero(P) = Zero(xq + 1,2 + 1, P) U Zero(xy, P) U
Zero(xy + 1,29, P) = Zero(xy + 1,29+ 1,23 + 1).

A Characteristic Set Method for Solving Boolean Equations 9

Algorithm 1 — DMZDT(P)

Input: A finite set of polynomials P.
Output: A sequence of monic chains A; such that Zero(P) = U;Zero(A;) and
Zero(A;) N Zero(A;) = 0 for i # j.

1 Set P* = {P}, A* = 0.
2 While P* # 0, do
2.1 Choose a P from P*. P* = P*\ {P}
2.2 Set Q to be a copy of P.
2.3 Do
C=ACSof Q.
R = prem(Q\ C,C).
Q=QUR (or PUCUR).
Until R = 0.
24 Let I ={init(P)#1|PeC}={L,..., s}
25IfI =0, A*=A*U{C}.
2.6 Else, do
Let J =1[;_, L.
IfJ#0,doP*=P*U{CU{l; +1,..., I, +1}}.
For i from 1 to s, do.
P, =PuCcuU{l+1,....,L;_1+1,L}.
P =P*U{P,}.

3 Return A*.

Example 3.12 Let P = {z129 + 22 + x; + 1}. By By Algorithm 1, Zero(P) =
Zero(A;)UZero(Ay), where Ay = x1, x9+1, Ay = x1+1. Then, |Zero(P)| = 2°42' = 3.

3.4 Complexity Analysis of the Modified Well-ordering Principle

We will show that the key step of the zero decomposition, the modified well-ordering
principle, can be done in a polynomial number of steps and with a polynomial number
of polynomial multiplications.

We repeat the modified well-ordering principle here.

P=P P --- P - P,
By B, -+ B - B, =C (17)
Ry R, -+ R, - R,

=
where P; = B;_1 UR;_1, B; is a CS of P;, and R; = prem(P;, B;). The following lemma
gives a bound for the length of procedure (17).

Lemma 3.13 Let By = By > -+ > B, be the sequence of chains in procedure (17).
Then m < n.

10 C. Chai, X.S. Gao, and C. Yuan

Proof: We denote by X @ the set of the leading variables of polynomials occurring in
By, ..., B;. We will prove that

IXOl < [XD <o < | XM= < | X M),

Since there are at most n leading variables in a chain, the above formula implies that
m < n. Essentially, we need to prove that if X® = X+D then R;,; = () and the
procedure will end. First let us note that P,y; = B;UR,, and for x;, € X (@) there exists
at most one polynomial in P;,; with z;, as the leading variable. If X = X0+1 we will
show that the leading variables of the polynomials in R; are in X~ . Otherwise, let P
be a polynomial with leading variable x;, which is the one with the smallest order and
not in X (=Y. We consider two cases: (1) 4, < for € X, Then P is a polynomial
in P;,y with smallest order and should be in the basic set B, 1, which contradicts to
the fact X = X0+ (2) B; = By,...,By and x;, = B, = B,_; = --- By. Take t to
be the largest to satisfy the above condition. Since P,y = B; UR;, when selecting a
basic set for P;,q, By, ..., B could be first selected. Since P € R;, it must be reduced
wrt B;. Hence, the next polynomial to be selected is P and P will be in B;,;, which
again contradicts to X = X0+ We have proved that if X® = X+ then the
leading variables of the polynomials in R; are in X~ . As mentioned before, for each
z, € X0~ there is at most one polynomial in P; involving xx. So R; is a chain. For
the same reason, B; UR; is also a chain which should be B;, ;. Hence R;;; = () and we
proved the result. [

Theorem 3.14 Let | = |P|. The modified well-ordering principle, or procedure (17),
terminates for at most n + 1 iterations and needs O(n?l) polynomial multiplications.

Proof: By Lemma 3.13, in procedure (17), m < n. That is, the procedure will
stop after at most n + 1 iterations. Notice that to do a pseudo-remainder needs two
polynomial multiplications. To compute R;, since |P;| < I, we need to do at most
2|R;||B;] < 2nl multiplications. So the total number of multiplications is at most
m* (2nl) < 2n(n+1). O

3.5 Using Wu Chains and Weak Chains

Note that the output of Algorithm 1 is a sequence of chains. To improve the
efficiency of the algorithm, we could use other types of chains.

A triangular set A of form (5) is said to be a Wu chain if init(4;) is reduced wrt
A;_1. Ais called a weak chain if prem(init(A;), A;_1) # 0.

The concept of Wu chain is defined in [29]. The concept of weak chain is defined in
[5]. Similar to [29] and [5], we can develop zero decomposition theorems for these types
of chains. The purpose of using these chains is to reduce the size of the polynomials
occurring in the algorithm.

We have three ways to generate new polynomial sets: (9), (13), and (14) and
three types of chains. Therefore, we have nine types of combinations to do zero
decomposition. We will compare these approaches in Section 6.

A Characteristic Set Method for Solving Boolean Equations 11

Algorithm 2 — TDZDT(P)

Input: A finite set of polynomials P.
Output: A sequence of monic chains A; such that Zero(P) = U;Zero(A;) and
Zero(A;) N Zero(A;) = 0.

1 Set P* = {P}, A* = 0.
2 While P* #) do
2.1 Choose a Q from P*. P* =P*\ {Q}
2.2 Set A = 0.
2.3 While Q # 0 do
2311t 1 €Q, Zero(Q) = 0. Set Q = A =0 and goto 2.4.
2.3.2 Let Q; C Q be the polynomials with the highest class.
2.3.3 Let @) € Q be a polynomial whose initial is of the lowest ordering.
2.3.4 Let @ = Iz, + U such that cls(Q) = ¢, init(Q) = I.
23511 =1,do

A=AU{Q}.

Q= (Q\ Qi) Uprem(Qy, Q).
2.3.6 Else, do

Let Q1 = 2.+ U, Q, = Q \ {Q}.

Q=(Q\Q)U{l+1}Uprem(Qq, Q1).
P, =Q\{QHU{IU+U+1}UA.
P = P* U {P,}.
241t A#0, do
Set A* = A* U {A}.
3 Return A*

4. A Top-Down Algorithm for Zero Decomposition

In the preceding section, the zero decomposition algorithm repeatedly uses the
well-ordering principle to obtain the CSs. The algorithm follows the traditional way
of doing the elimination [23, 28]. It processes bottom up, that is, it starts from the
polynomials with the lowermost classes and works the way to polynomials with higher
classes. Another approach is to work top-down, that is, it starts from the polynomials
with the highest class [4, 15, 16, 27].

In this section, we will give a more direct algorithm TDZDT to obtain a monic
zero decomposition based on the top-down idea. Again, by taking into the special
properties of Ry, our decomposition algorithm has stronger properties.

Theorem 4.1 Algorithm TDZDT s correct and to obtain each chain A; in the al-
gorithm, we need O(nl) polynomial multiplications where | = |P|.

Proof: Consider the set Q@ of polynomials in the algorithm. @Q; C Q is the set

12 C. Chai, X.S. Gao, and C. Yuan

of polynomials with the highest class and) = Iz, + U € Q; a polynomial whose
initial is of the lowest ordering. If I = 1, then for P = Lz, + U; € Q; we have
P, = prem(P,Q) = P+ Q. As a consequence, Zero({Q, P}) = Zero({Q, P, }).
Therefore, we have

Zero(Q) = Zero((Q\ Qi) U{@}) U prem(Qy, Q).

If I #1, by (4) and (2), we can split the zero set of Q as two disjoint parts:

Zero(Q) = Zero(QU {I + 1}) U Zero(Q U {I})
= Zero((Q\ {Q}) U{Q1, 1 +1}) U Zero((Q\ {Q}) U{IL, U}) (18)
= Zero((Q\{Q}) U{Q1, 1 +1}) UZero((Q\{QYH U{IU + U +1}) (19)

where @1 = x. + U. Equation (19) comes from (2). The first part can be treated
similarly to the case of I = 1 and the second part will be treated recursively with
algorithm TDZDT. This proves that if A;,7 = 1, ..., s are the output of the algorithm,
then Zero(PP) = U;Zero(A;).

The termination of the algorithm can be proved in two steps. First, we will show
the termination for the inner loop (step 2.3), that is, for each finite polynomial set Q,
the algorithm will terminate. After each iteration of the loop, the polynomial @) will
be added to A and the highest class of the polynomials in Q will be reduced. Hence,
this loop will end and give a chain A. Second, we need to show the termination for
the outer loop (step 2). For a polynomial set P, we assign an index (¢, ..., c;) where
¢; is the number of polynomials in P and with class 7. In the algorithm, there are
essentially two cases where new polynomial sets are generated. In the first case, we
replace Q with Q' = (Q \ @) U {Q} U prem(Qq,Q). In the second case, we add
Q" = (Q\{Q})U{IU+U+1} to P*. It is clear that the index of Q' or Q" is less than
the index of Q in the lexicographical ordering in both cases. Due to Dickson’s lemma,
a strictly decreasing sequence of indexes must be finite. This proves the termination
of the algorithm.

Finally, we will analyze the complexity of the inner loop of the algorithm (step 2.3),
that is, the complexity to obtain a chain from Q. After each iteration, the highest class
of the polynomials in @Q will be reduced at least by one. Then, this loop will execute
at most n times. If I = 1, then the new Q = (Q\ Q;) Uprem(Qy,)) contains at most
[— 1 polynomials. If I # 1, the newly generated polynomial set Q = (Q \ {@}) U
{IU 4+ U + I} contains at most [polynomials. Then, after each iteration, the new Q
contains at most [polynomials. In each iteration, we also need to compute at most
[—1 pseudo-remainders. Since the initial of @) is 1, each pseudo-remainder wrt () needs
one polynomial multiplication. Then we need to do [— 1 polynomial multiplications
in each iteration. In all, the algorithm needs O(nl) polynomial multiplications. O

Example 4.2 Let P = {z1x9+x9+ 21+ 1}. Since P contains one polynomial, we have
Q=(r1+Dreo+az1+1=120+U, and Q1 = o+ 1 + 1. Then Zero(P) = Zero(I +

A Characteristic Set Method for Solving Boolean Equations 13

Algorithm 3 — TDZDTA (P)

Input: A finite set of polynomials P.
Output: A sequence of monic chains A; such that Zero(P) = U;Zero(A;) and
Zero(A;) N Zero(A;) = 0.

1 Set P* = {P}, A* = 0.
2 While P* #) do
2.1 Choose a Q from P*. P* =P*\ {Q}
2.2 Set A = 0.
2.3 While Q # 0 do
2311t 1 €Q, Zero(Q) = 0. Set Q = A =0 and goto 2.4.
2.3.2 Let Q; C Q be the polynomials with the highest class.
2.3.3 Let @2 = Q),]P)l = Q \ @1.
2.3.4 While Q; # 0 do
Let Q = Iz.+U € Q, Q1 = Q: \ {Q}.
P,=P,UQ UQU{I,U}.
P* = P* U {P,}.
Qy=QuU{z.+U}, Py =P, U{l+1}.
235 Let Q =2, + U € Q.
236 A=AU{Q}.
2.3.7 Q =Py Uprem(Qy, Q).
24T A#0, do
Set A* = A* U {A}.
3 Return A*

1,Q1)UZero(1,U) = Zero(x1, Q1)U Zero(z1+ 1,21+ 1). After simplification, we obtain
the decomposition: Zero(P) = Zero(z1, xo+1)UZero(x1+1) and |Zero(P)| = 2°+2! = 3.

Although the number of polynomial multiplications needed in the algorithm is
small, the degree and the size of the polynomials could increase very fast due to
the multiplication of polynomials. We may adopt the following strategy to reduce the
degree of the polynomials occurring in the algorithm. Before doing the pseudo remain-
ders, we reduce the initials of the polynomials in Q; in step 2.3.2 of the Algorithm
2 to 1. In that case, the pseudo-remainder needs additions only: for P = z. + U;
and Q = z. + Us, prem(Q, P) = Uy + U,. As a consequence, degree of prem(Q, P) is
less than or equal to the degrees of P and (). Based on the above idea, we give the
algorithm TDZDTA.

Theorem 4.3 Algorithm TDZDTA is correct. The algorithm does not need polyno-
maal multiplications and the degree of all the polynomials occurring in the algorithm is
bounded by maxpcp deg(P).

14 C. Chai, X.S. Gao, and C. Yuan

Proof: Algorithm 3 is basically Algorithm 2. The only difference is that before doing
pseudo-remainder in step 2.3.7, we reduce the initials of the polynomials in Q; to 1
with formula (18). In this case, the pseudo-remainder of two polynomials becomes
the addition of the two polynomials. Then the algorithm does not need polynomial
multiplications. Also note that addition of polynomials does not increase the degree.
This prove the theorem. [J

5. Implementation of the Algorithms

We implemented the algorithms introduced in this paper with C language. In this
section, we discuss several key issues that affect the efficiency of the program.

5.1 Polynomial Size vs Decomposition Branches
There exist two extreme methods to solve a set of Boolean equations.

A1 We could assign each variable the values of 0 and 1 and test whether the equations
are satisfied. This is basically to compute the truth-table.

A2 Due to (2), a system of equations can be “easily” reduced to one equation. By
Corollary 2.2, a non-constant polynomial equation must have solutions which
can be found easily if such a polynomial is given.

The problem with approach Al is that we need to check 2" sets of values. But
to check whether a set of values is a solution of the equations, we do not need to
compute large polynomials. On the other side, in approach A2, we need only consider
one polynomial. But, this polynomial could be very large. The two extreme cases
are of course very inefficient. It seems that all of the approaches is trying to find an
optimized balance point between the size increase of the polynomials and the number
of cases to be checked.

In the case of CS method, each polynomial set P in P* (step 2 of Algorithms 1
and 2) is called a branch. The problem is to find a balance point between the size of
polynomials and the number of branches. For instance, Algorithm 3 does not increase
the degree of the polynomials and will generally produce polynomials of small sizes,
but it will produce more branches. On the other hand, Algorithm 2 produces less
branches, but it generally will produce larger polynomials than Algorithm 3. In our
implementation, we adopt the following:

Principle of Balance Between Sizes and Branches. Try to produce as few
branches as possible under the constraint that the memory of the computers be suffi-
crently used.

According to our experiments, the size of the polynomials can be effectively con-
trolled by using the splitting formula (18) and different types of chains introduced in
Section 3.5. The main problem is branch control. Here are several possible ways to
reduce the number of branches.

A Characteristic Set Method for Solving Boolean Equations 15

S1 The following strategy can be used to reduce the number of branches without in-
crease the size of the polynomials. For a polynomial set P, we select a polynomial
of the form x. + U where U is a monomial not involving x. and replace x. in P
by U. This process does not change the zero set of P. Experiments show that
most of branches have no solutions and this strategy can be used to detect the
emptiness in an early stage in many cases.

S2 When adding a new polynomial, say the product of initials I = [[;_, I;, to a
polynomial set P, we use the following procedure to split the zero set as several
disjoint ones

Zero(I) = Zero(Iy) U Zero(Iy, Iy + 1) U - - - UZero(ls, [s41 + 1,..., 11 + 1).

When combining with strategy S1, this strategy could simplify the decomposition
procedure significantly.

S3 A well known strategy to simplify the problem is to select one or several variables,
say ., which occur most often in P and consider P, oy and P, _; separately.

For a specific problem, we could use one or several of the above strategies together.

5.2 Using SZDD to Save Space Usage

We could encounter large space problem in two cases. First, a single polynomial
produced in the algorithms could be large. Second, for some problems, the algorithm
could produce a large number of branches.

@ @ @ [

Lol [1lo] 0]
(1) P1 = XX + I (2) P2 =To+ T (3) SZDD for {Pl, PQ}

Fig. 1. SZDD for a polynomial set

The classic method of SZDD (shared zero-suppressed binary decision diagram)
could be used to solve this problem [21]. Briefly speaking, for a set of polynomials P,
we could represent P as an SZDD in three steps:

e For each P € P, let P = [z, + U such that ¢ = cls(P) and [= init(P). We
use a tree to represent P, where z. is the root, I is the right child, and U is
and the left child. Continue the above procedure for I and U recursively. This
representation is called a recursive representation of P. In Fig. 1, (1) and (2)
are recursive representations of P; and Ps.

16 C. Chai, X.S. Gao, and C. Yuan

e In the recursive representation of P, we share all the equivalent sub-graphs. The
obtained representation is called the ZDD of P.

e For all polynomials in P, we unite their ZDDs into one graph with the ZDDs of
polynomials in P sharing their equivalent sub-graphs. In Fig. 1(3), we give the
SZDD of {Pl, Pg}

As shown by Table 3, using SZDD to represent Boolean polynomials could speedup
the program significantly. ZDD representations are used to speedup the computation
of Grébner bases in [1].

6. Cryptanalysis of a Class of Stream Ciphers with CS Method

6.1 Nonlinear Filter Generators

Stream ciphers are an important class of encryption algorithm [20]. In this paper,
we consider stream ciphers based on the linear feedback shift register (LFSR).

An LFSR of length L can be simply considered as a sequence of L numbers
(c1,¢a, ..., cr) from Fy such that ¢;, # 0 . For an initial state Sy = (so,S1,-..,51-1) €
FZ, we can use the given LFSR to produce an infinite sequence satisfying

;= C18i—1 + €289 +---cpsi_p, i =L, L+ 1,---. (20)

A key property of an LFSR is that if the related feedback polynomial P(x) = cpz* +
cr12¥ + -+ cpx — 1 is primitive, then the sequence (20) has period 2 — 1 [20].

Let mg, my, . .. be the plaintext digits. We may use the sequence (20) as key-stream
to generate the ciphertext digits:

ci:mi@si,i:(),l,...

where @ is the XOR function. Decryption is defined by m; = ¢; @ s;.

For a given sequence s; of sufficient length, the Berlekamp-Massey algorithm may
be used to recover the ¢; in polynomial time [20]. Then, to use s; as the key-stream is
not secure. An often used technique to enhance the security of an LFSR is to add a
nonlinear filter to the LESR. Let f(z1,..., ;) be a polynomial in Ry with m variables.
We assume that m < L. Then we can use f and the sequence (20) to generate a new
sequence as follows

zi = f(Sicmy -y Sic1), i =m,m~+1,---. (21)

A combination of an LFSR and a nonlinear polynomial f is called a nonlinear filter
generator (NFG). The sequence (21) could be used as the key-stream.
The filter functions used in this paper are from [3, 10]:

e CanFil 1, z1x0x3 + x124 + T2X5 + X3

A Characteristic Set Method for Solving Boolean Equations 17

e CanFil 2, z1xox3 + x1T274 + T1T2T5 + T124 + Tox5 + T3 + T4 + X5
e CanFil 3, xox3rars + 12273 + ToTy + T3T5 + T4 + X5

e CanFil 4, x1x0mw3 + 12475 + T2T3 + 1

e CanFil 5, xoxsraws + T2T3 + 21

e CanFil 6, 1201375 + ToT3 + T4

e CanFil 7, 12013 + xox3T4 + ToT3T5 + T1 + T2 + X3

e CanFil 8, x1xox3 + Tox326 + T122 + T3T4 + T5T6 + T4 + X5

e CanFil 9, xoxyx507 + Xox5T6T7 + X3T4TeTT + X1T2T4TT7 + X1T3T4TT + T1T3TTT +
T1T4T5T7 + T1T2T5T7 + T1T2T6T7 + T1T4T6XT7 + TIT4T5T7 + T2T4T6T7 + T3T5T627 +
T1X3T5X7 + T1X9T3X7 + T3T4XL5 + T3TATT + T3TeT7 + T5TeX7 + ToTeX7 + T1X4Tg +
T1T52T7 + T2T4T5 + T2XT3%7 + T1T2T7 + 12425 + TeT7 + TaTe + T4T7 + T527 + T2Ts +
X3x4 + X325 + X124 + Xox7 + X6 + 5 + T2 + 21

e CanFil 10, x1x9x3 + XoT3%4 + T2T3X5 + Tex7 + T3 + T2 + X1

6.2 Algebraic Attack of Nonlinear Filter Generators with CS Method

By an algebraic attack of the nonlinear filter generator, we mean to recover the
initial state of the LFSR from a certain number of key-stream in (21). Equivalently,
we need to find Sy = (sg, s1,-..,55-1) by solving the following equations for given ¢;,
z;, and f

zi = f(Sicmy -y Sic1),i=m,...,m+k (22)

where k is a positive integer and s; satisfy (20). Successful attacks on many kinds
of stream ciphers were reported using the XL method [6, 7] and the Grébner basis
method [10].

We use the software package based on our algorithms to solve equation system
(22). The statistic results are given in Tables 1 - 4. In these tables, L is the length of
the LFSR, #sol is the number of solutions of the equation system. The experiments
were done on a PC with a 3.19GHz CPU, 2G memory, and a Linux OS. The running
times are given in seconds.

In Table 1, we give the running times of using Algorithm DMZDT to solve equa-
tions (22) generated with the filter generator GanFil 6. In the experiments, we set
k = L — 1 in (22). For such a system, the number of equations and the number
of variables are the same. The purpose of this experiment is to compare different
versions of Algorithm DMZDT. The parameters “chain”, “wuchain”, and “wchain”
mean that we use the chain, the Wu chain, and the weak chain defined in Section 3.5
respectively. The parameter in the first column means that we use (9), (13), or (14) in
the well-ordering principle respectively. We can see that the approaches based on (14)
are generally faster than other approaches. For the three types of chains, no single
approach is better in all cases.

18 C. Chai, X.S. Gao, and C. Yuan

L= 40 60 81 100 128
#sols= 2 4 8 16 128
chain | 1.49 | 0.12 | 1.52 | 4.00 | 5.68
(9) | wuchain | 1.47 | 0.79 | 1.95 | 18.87 | 37.46
wchain | 0.58 | 0.29 | 0.78 | 0.18 | 12.40
chain | 1.03 | 0.05 | 6.56 | 0.32 | 1.23
(13) | wuchain | 0.72 | 0.12 | 0.50 | 3.55 | 5.34
wchain | 0.40 | 0.19 | 0.37 | 3.26 | 14.36
chain | 0.06 | 0.08 | 0.17 | 0.37 | 2.77
(14) [‘wuchain | 0.06 | 0.06 | 0.12 | 0.31 | 1.13
wchain | 0.16 | 0.23 | 0.50 | 2.16 | 3.81

Table 1. Solving equations (22) with NFG Canfil6 using Algorithm DMZDT.

In Table 2, we give the results for solving equations (22) generated with different
NFGs functions and £ = L—1. The parameters in the first column give the NFGs used
in the computation. The results show that when k = L — 1, the equation system (22)
generally does not have a unique solution and the number of solutions could be large.
This means that we cannot recover the initial state Sy uniquely. The parameter #cs
is the number of branches occurring in the computation process. Notice that #cs is
much larger than #sol in most cases and the ratio (#cs)/(#sol) gives an approximate
measure of the effectiveness of the algorithm on the corresponding problem. In four
cases, the timing is marked with a *. This means that polynomials of lower degrees
(annihilators) generated with methods introduced in [6, 7, 10] are used to speedup the
computation. As a consequence, the number of solutions in these cases becomes very
small. From the results for Canfil6, we can see that Algorithm TDZDT is generally
faster than Algorithm DMZDT.

In order to recover the initial state Sy uniquely, we increase k in (22) to m until
the equation system (22) has a unique solution. The experimental results are given in
Table 3, where the parameter r = m/L. From Table 3, we can obtain two conclusions.
First, r varies from 1 to 2.8, which means that we generally need no more than 3L
equations in order to find a unique solution in (22). Second, for the new equation
system containing m equations, the running time is much faster than the equation
system with L equations. The reason is that since the system has a unique solution,
the number of branches need to be checked is much smaller.

In Table 4, we give the running times for four examples using the SZDD and the
recursive representations for the polynomials respectively. These data show that using
SZDD could significantly speedup the program.

Of the existing methods to solve Boolean equations, the Grobner basis (GB) meth-
ods [1, 10, 25] are most close to our CS method. Table 5 gives a comparison of the GB
method and the CS method. The timings for the GB method are from [10], which are
based on the F5 method and are collected on an HP workstation with an Alpha EV68

A Characteristic Set Method for Solving Boolean Equations 19

L= 40 60 81 100 128
time | 0.03 | 0.04 0.25 0.21 13.11
CanFill | #sols | 30 27 270 180 2340

#cs 246 353 1937 445 1370
time | 0.02 | 0.06 0.03 0.11 0.16

CanFil2 | #sols 7 7 6 56 76
#cs 101 721 368 685 586
time | 0.02 | 0.45 | 218.20 | 0.44* | 1.27*

CanFil3 | #sols | 36 660 14400 2 1

#cs 95 1911 | 10590 1060 3725
time | 0.03 | 29.99 | 1431.16 | 0.04* | 11.53*
CanFild4 | #sols 48 6720 | 38400 2 12
#cs 226 | 2667 | 22501 15 17564
time | 0.00 | 0.00 0.00 0.01 0.01

CanFilb | #sols 1 1 1 1 1
F£cs 2 2 2 2 2
time | 0.00 | 0.01 0.01 0.03 0.26
CanFil6 | #sols 2 4 8 16 128
#cs 7 55 112 124 995
time | 0.01 | 0.02 0.05 0.14 6.71
CanFil7 | #sols 1 16 28 144 1360
#cs 47 186 431 395 21815
time | 0.01 | 0.03 0.12 0.21 4.14
CanFil8 | #sols 3 1 40 20 200

#cs 76 483 1629 2480 | 47915
time | 1.87* | 0.67 1.71 1.90 12.1%*

CanFil9 | #sols 5 20 6 8 358
#cs 681 958 812 631 13170
time | 0.17 | 0.09 0.08 42.44 | 13.76

CanFill0 | #sols 3 2 5 6 11

#cs 203 721 477 148315 | 83860

Table 2. Cryptanalysis of Nonlinear Filter Generators with TDZD'T.

processor at 1000MHz. The timings for the CS method are from Table 3. We should
mention that the comparison is not precise in that the input polynomial systems are
not exactly the same and the results from [10] are done several years ago. The main
purpose of this comparison is to show that the methods proposed in this paper could
provide a new effective tool for solving Boolean equations.

From these results, we may conclude that our CS method is comparable with the
F5 method for these problems.

20 C. Chai, X.S. Gao, and C. Yuan

Filters L= 40 60 81 100 128
time | 0.04 | 0.00 | 0.01 | 0.05 0.06
CankFill r 1.3 1.9 | 1.9 1.4 1.8
time | 0.03 | 0.05 | 0.02 | 0.10 0.07
CankFil2 r 1.1 1.2 | 1.7 1.4 1.7
time | 1.77 | 0.01 | 0.29 | 0.76* | 1.27*
CankFil3 r 1.6 1.9 | 2.0 1.2 1.0
time | 0.63 | 0.01 | 0.01 | 0.01* | 0.02*
CanFil4 r 1.5 28 | 1.9 1.5 1.4
time | 0.00 | 0.00 | 0.00 | 0.01 0.01
CankFil5 r 1 1 1 1 1
time | 0.01 | 0.00 | 0.01 | 0.03 0.06
CanFil6 r 1.3 1.8 | 1.8 1.6 1.8
time | 0.01 | 0.01 | 0.01 | 0.07 0.07
CanFil7 r 1 20 | 1.9 1.5 1.7
time | 0.02 | 0.03 | 0.02 | 0.23 0.22
CanFil8 r 1.1 1.0 | 1.9 1.4 1.7
time | 4.83% | 0.56 | 1.63 | 1.93 | 50.78*
CanFil9 r 1.2 1.7 | 14 1.1 1.7
time | 0.17 | 0.06 | 0.06 | 0.10 0.32
CanFill0 r 1.1 1.5 | 1.5 1.4 1.6

Table 3. Find a unique solution with TDZDT.

L NFG | use SZDD | not use SZDD
60 | Canfil9 0.55 1018

100 | Canfil3 0.76 38

128 | Canfill 13.1 111

128 | Canfil4 0.02 36

Table 4. The improvements of using SZDD for Algorithm TDZDT

7. Conclusions

In this paper, we present several methods to solve nonlinear equation systems over
the finite field F5 based on the idea of CS. Due to the special property of Fy, the given
CS methods are much more efficient and have better properties than the general CS
method. In particular, the well-ordering principle can be executed in a polynomial
number of steps and uses a polynomial number of polynomial multiplications.

We use our methods to solve equations raised from cryptanalysis of stream ciphers
based on nonlinear filter generators. Extensive experiments have been done for equa-
tion systems with variables ranging from 40 to 128. The purpose of the experiments
is two folds: to compare different variants of our algorithms and to show that our

A Characteristic Set Method for Solving Boolean Equations 21

Examples | L | GB | CS Examples | L GB CS
CanFil 1 | 80 | 1.1 | 0.01 CanFil 6 | 80 0.8 0.01
CanFil 1 | 128 | 10.1 | 0.06 CanFil 6 | 128 | 8.9 0.06
CanFil 2 | 80 | 1.1 | 0.02 CanFil 7 | 80 | 0.97 0.01
CanFil 2 | 128 | 10.3 | 0.07 CanFil 7 | 128 | 10 0.07
CanFil 3 | 80 | 1.3 | 0.29 CanFil 8 | 40 | 18.1 0.02
CanFil 3 | 128 | 12.4 | 1.27 CanFil 8 | 80 | 3645 0.02
CanFil 4 | 80 1 0.01 CanFil 9 | 40 | 21.2 4.83
CanFil 4 | 128 | 9.5 | 0.02 CanFil 9 | 70 | 2001 | 1.63(L=81)
CanFil 5 | 80 | 0.1 | 0.01 CanFil 10 | 40 16.5 0.17
CanFil 5 | 128 | 9.1 | 0.01 CanFil 10 | 89 | 14421 | 0.1(L.=100)

Table 5. Timings for Grobner Basis and CS Method

algorithm could provide an effective tool for solving equations over 5.

References

Brickenstein, M. and Dreyer, A. PolyBoRi: A Framework for Grobner Basis Computa-
tions with Boolean Polynomials, MEGA 2007, July, 2007, Austria.

Bryant, R.E. Graph-Based Algorithms for Boolean Function Manipulation, IEEE Trans.
on Computers, 35(8), 677-691, 1986.

Canteaut, A. and Filiol, E. Ciphertext only Reconstruction of Stream Ciphers Based
on Combination Generators, Fast Software Encryption, LNCS 1978, 165-180, Springer,
2000.

Chou, S.C. Mechanical Geometry Theorem Proving, D. Reidel, Dordrecht, 1988.

Chou, S.C. and Gao, X.S. Ritt-Wu’s Decomposition Algorithm and Geometry Theorem
Proving, Proc. of CADE-10, LNAI 449, 207-220, Springer, 1990.

Courtois, N. Higher Order Correlation Attacks, XL Algorithm, and Cryptanalysis of
Toyocrypt, ICISC, LNCS 2587, 182-199, Springer, 2002.

Courtois, N. Algebraic Attacks on Stream Ciphers with Linear Feedback, FEUROCRPYT
2008, LNCS 2656, 345-359, Springer, 2003.

Davis, M. and and Putnam, H. A Computing Procedure for Quantification Theory, J.
ACM, 7(3), 201-215, 1960.

Dahan, X., Maza, M.M., Schost, E., Wu, W., Xie, Y. Lifting Techniques for Triangular
Decompositions, Proc. ISSAC’05, 108-115, ACM Press, New York, 2005.

Faugere, J.C. and Ars, G. An Algebraic Cryptanalysis of Nonlinear Filter Generators
Using Grobner Bases, TR No. 4739, INRIA, 2003.

Gallo, G. and Mishra, B. Efficient Algorithms and Bounds for Wu-Ritt Characteristic
Sets, in Progress in Mathematics, 94, 119-142, Birkhauser, Boston, 1991.

22

C. Chai, X.S. Gao, and C. Yuan

Gao, X.S. and Luo, Y. A Characteristic Set Method for Difference Polynomial Systems,
ICPSS, Nov. 24-26, Paris, 2004.

Gao, X.S., Chai, F., Yuan, C. A Characteristic Set Method for Equation Solving in F2
and Applications in Cryptanalysis of Stream Ciphers, MM-Preprints, 42-56, 2006.

He, S. and Zhang, B. Solving SAT by Algorithm Transform of Wu’s Method, J. Comput.
Sci. and Tech., 14, 468-480, 1999.

Kalkbrener, M. A Generalized Euclidean Algorithm for Computing Triangular Repre-
sentations of Algebraic Varieties, Journal of Symbolic Computation, 15, 143-167, 1993.

Kapur, D. and Wan, H.K. Refutational Proofs of Geometry Theorems via Characteristic
Sets, Proc. ISSAC’90, 277-284, ACM Press New York, 1990.

Li, B. An Algorithem to Decompose a Polynomial Ascending Set into Irredncible Ones,
Acta Anal. Funct. Appl., 7(2), 97-105, 2005.

Lin, D. and Liu, Z. Some Results on Theorem Proving in Geometry over Finite Fields,
Proc. ISSAC’93, 292-300, ACM Press, New York, 1993.

Mao, W. and Wu, J. Application of Wu’s Method to Symbolic Model Checking, Proc.
ISSAC’05, 237-244, ACM Press, New York, 2005.

Menezes, A., van Ooschot, P., Vanstone, S. Hanndbook of Applied Cryptography, CRC
Press, 1996.

Minto, S. Zero-Sppressed BDDs for Set Manipulation in Combinatorial Problems, Proc.
ACM/IEEE Design Automation, 272-277, ACM Press, 1993.

Moller, H.M., On Decomposing Systems of Polynomial Equations with Finitely Many
Solutions, J. AAECC, 4, 217-230, 1993.

Ritt, J.F. Differential Algebra, Amer. Math. Soc. Colloquium, 1950.
Rudeanu, S. Boolean Functions and Equations, North-Holland, Amsterdam, 1974.

Sato, Y. and Inoue, S. On the Construction of Comprehensive Boolean Grobner Bases.
Proc. ASCM 2005, 145-148, 2005.

Smale, S. Mathematical Problems for the Next Century, Math. Intelligencer, 20, 7-15,
1998.

Wang, D. An Elimination Method for Polynomial Systems. Journal of Symbolic Com-
putation, 16, 83-114, 1993.

Wu, W.T. Basic Principles of Mechanical Theorem-proving in Elementary Geometries,
J. Sys. Sci. & Math. Scis., 4, 207-235, 1984. J. Automated Reasoning, 2, 221-252, 1986.

Wu, W.T. On Zeros of Algebraic Equations - An Application of Ritt Principle, Chinese
Science Bulletin, 31, 1-5, 1986.

Wu, W.T. Some Remarks on Characeteristic-Set Formation, MM-Preprints, Vol. 3, 27-
29, 1989.

